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Abstract. We explicitly construct a dynamically incoherent partially

hyperbolic endomorphisms of T2 in the homotopy class of any linear ex-

panding map with integer eigenvalues. These examples exhibit branch-

ing of centre curves along countably many circles, and thus exhibit a

form of coherence that has not been observed for invertible systems.
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1 Introduction

Understanding the integrability of the centre direction is critical for clas-

sifying partially hyperbolic dynamics. Non-invertible surface maps demon-

strate a broader array of dynamics than their invertible counterparts, for in-

stance, while partially hyperbolic surface diffeomorphisms are dynamically

coherent, examples in [HH19] and [HSW19] show that there exist incoherent

non-invertible maps. In this paper, we introduce a periodic centre annulus as

a mechanism for incoherence of partially hyperbolic surface endomorphisms,

and use this to construct incoherent surface endomorpshims which are homo-

topic to linear expanding maps. The center curves of these examples behave

unlike those of the currently known maps on T2 and diffeomorphisms in

higher dimensions.

We begin the statement of our results by recalling the definition of par-

tial hyperbolicity. For non-invertible maps, this is most naturally given in

terms of cone families. A cone family C ⊂ TM consists of a closed convex

cone C(p) ⊂ TpM at each point p ∈ M . A cone family is Df -invariant if

Dpf (C(p)) is contained in the interior of C(f(p)) for all p ∈ M . A map

f : M → M is a (weakly) partially hyperbolic endomorphism if it is a local

diffeomorphism and it admits a cone family Cu which is Df -invariant and

there is k > 0 such that 1 < ‖Dfkvu‖ for all vu ∈ Cu. In general, an un-

stable cone family in the non-invertible setting does not imply the existence
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of an invariant splitting. However, it does imply the existence of a centre

direction, that is, a continuous Df -invariant line field Ec ⊂ TM [CP15,

Section 2]. For M an orientable closed surface, the existence of Ec implies

that M = T2.

The homotopy class of a partially hyperbolic surface endomorphism f

plays a fundamental role in the existing classification results. Each endo-

morphism is homotopic to a unique linear map A : T2 → T2 which we call

the linearisation of f . It is useful to categorise the linearisation into three

types based on the eigenvalues λ1 and λ2 of the matrix inducing A which

we refer to as follows:

• if |λ1| < 1 < |λ2|, we say A is hyperbolic if,

• if 1 < |λ1| ≤ |λ2|, we say A is expanding, and

• if 1 = |λ1| ≤ |λ2|, we say A is non-hyperbolic.

We say a partially hyperbolic endomorphism of T2 is dynamically coherent

if there exists an f -invariant foliation tangent to Ec. Otherwise, we say

it is dynamically incoherent. A closely related property which is sufficient

for coherence is unique integrability: the centre direction Ec is said to be

uniquely integrable if there is a unique C1 curve tangent to Ec through every

point.

Every endomorphism which has hyperbolic linearisation is both dynami-

cally coherent and leaf conjugate to its linearisation [HH19]. Both [HSW19]

and [HH19] show this does not hold in general by constructing incoherent

endomorphisms, both of which have non-hyperbolic linearisation. We are

naturally left with the question: how does the centre direction behave in the

case of an expanding linearisation? Our first result addresses this.

Theorem A. There exists a partially hyperbolic surface endomorphism f :

T2 → T2 which is homotopic to an expanding map and whose centre direction

is not uniquely integrable. Moreover, the centre direction of f is uniquely

integrable on an open and dense subset of T2, but is not uniquely integrable

at each point in a countably infinite family of circles.

We will prove Theorem A by constructing a geometric mechanism called

an invariant centre annulus, which is an immersed open annulus X ⊂ T2

such that f(X) = X and whose boundary, which necessarily consists of

either one or two disjoint circles, is tangent to the centre direction. Note

that the case when the boundary is one circle is precisely when the closure of

the annulus is T2. If X is an invariant annulus for some positive iterate fn of

f , then we call X a periodic centre annulus. The annulus in the example is

constructed by taking a linear expanding map, opening up an invariant circle

to obtain an invariant annulus, and then applying a shear on the interior

of the invariant annulus. Partial hyperbolicity of the example is established
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by the construction of an unstable cone-family, and the invariant annulus

on which the shear was applied becomes an invariant centre annulus. The

centre direction is uniquely integrable on this open annulus, but not along

its boundary, and so we observe the behaviour of Ec by taking preimages

of the annulus. The complete construction of this example is carried out in

Section 2.

We present a very specific example in Theorem A for concreteness, but

in Section 3 we generalise this procedure to construct a family of examples

to prove the following result.

Theorem B. Let A : T2 → T2 be a linear map with integer eigenvalues

and at least one eigenvalue greater than 1. Then there exists a partially hy-

perbolic surface endomorphism which is homotopic to A and is dynamically

incoherent.

For the non-hyperbolic case, where |λ2| > |λ1| = 1, examples establishing

Theorem B have already been constructed in [HSW19] and [HH19]. Thus,

we prove the result by constructing incoherent examples homotopic to any

expanding linear map with integer eigenvalues.

To contrast the difference between the invertible and non-invertible set-

tings, we briefly survey the known examples of dynamical incoherence in

the case of diffeomorphisms. For partially hyperbolic diffeomorphisms with

a center bundle of dimension 2 or higher, it is possible to construct examples

with smooth center bundles that are not integrable. In this smooth setting,

the integrability, or lack thereof, is given by the involutivity condition of

Frobenius. See [BW05] and [Ham11] for further details.

For the case of one-dimensional center bundle, the question was open

much longer. Since C1 vector fields are always integrable, a dynamically in-

coherent example here would, by necessity, have a center direction which is

not C1, or even Lipschitz. Rodriguez-Hertz, Rodriguez-Hertz, and Ures con-

structed an example on the 3-torus, using an invariant 2-torus tangent to the

center-unstable direction [RRU16]. In this example, the non-integrability of

the center direction occurs only at this 2-torus and the center direction is

smooth and therefore uniquely integrable everywhere else on the 3-torus. In

fact, any partially hyperbolic system on the 3-torus, can have only finitely

many embedded 2-tori tangent to Ecs or Ecu and the center direction is

integrable outside these regions [HP17]. In any dimension, a partially hy-

perbolic diffeomorphism can have only finitely many compact submanifolds

tangent either to Ecs or Ecu [Ham18].

More recently, new examples of partially hyperbolic diffeomorphisms have

been discovered on the unit tangent bundles of surfaces of negative curvature

[Bon+17]. For certain homotopy classes, these systems are dynamically
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incoherent. Further, these example have unique branching foliations tangent

to the Ecs and Ecu directions and the branching (i.e., merging of distinct

leaves) occurs at a dense set of points. The dynamical incoherence of such

examples may therefore be regarded as a global phenomenon.

In the examples we construct to prove Theorem B, the branching of the

center direction occurs at an infinite collection of circles tangent to the center

and the closure of this collection gives a lamination consisting of uncount-

ably many circles. Moreover, outside this lamination, the center direction

is uniquely integrable and consists of lines. The branching is therefore not

global, nor is it confined to a submanifold. This type of dynamical in-

coherence is possible due the non-invertible nature of partially hyperbolic

endomorphism.

The behaviour of the examples in Theorem B is also distinct from the

previously known incoherent endomorphisms on T2. Namely, the examples

in [HSW19] and [HH19] both have centre curves branch on the boundary of

a submanifold, and so are analogous to diffeomorphisms in dimension 3.

Theorem B also has an immediate consequence to a previously unan-

swered question about which homotopy classes admit endomorphisms. Given

a partially hyperbolic endomorphism of T2, its linearisation A is given by

an invertible integer-entried 2×2 matrix, and existing techniques show that

A must have real eigenvalues. If the eigenvalues have distinct magnitude,

then A itself induces a partially hyperbolic endomorphism. This is not true

if the eigenvalues have equal magnitude, and it was unknown if there can

exist a partially hyperbolic endomorphism which is homotopic to such an

A. In particular, the question of existence had been posed for when A is

twice the identity, and this is now answered by an immediate corollary of

Theorem B.

Corollary C. There exists a partially hyperbolic surface endomorphism

which is homotopic to ( 2 0
0 2 ).

Finally, there are now two qualitatively different forms of incoherent par-

tially hyperbolic surface endomorphisms: those constructed in this paper,

and those in [HSW19] and [HH19]. In preparation is a classification of par-

tially hyperbolic surface endomorphisms in [HH20], where it is shown that

any incoherent example is akin to one of these examples.

2 Concrete example

In this section we construct an explicit example to prove Theorem A. The

resulting endomorphism will be homotopic to ( 4 0
2 3 ). In the next section, we

show how to generalize the construction to other homotopy classes.
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Figure 2.1. Graphs of the functions g and ϕ used to define the

example f .

For small 0 < a < 1, let g : S1 → S1 be a monotone map which:

• is homotopic to the quadrupling map x 7→ 4x,

• has fixed points x = a, −a, 0,

• satisfies g′(0) < 1,

• is linear on the complement of (−a, a), and

• g′(x) ≥ 4 for x ∈ S \[−a, a].

Define f0 : T2 → T2 by f0(x, y) = (g(x), 3y). Then f0 is a map which

is homotopic to the linear map (x, y) 7→ (4x, 3y), and fixes the annulus

[−a, a] × S1. Let ϕ : [−1/2, 1/2] → [−1, 1] be a monotone function which

is odd, that is ϕ(−x) = −ϕ(x), such that ϕ′ is zero off of (−a, a) while

satisfying ϕ(−a) = −1, ϕ(0) = 0, and ϕ(a) = 1. Then ϕ defines a map

to S1 → S1 which is a shear that is seen only inside the interval (−a, a).

We further take ϕ′(0) > 1, noting that we can take ϕ′(0) to be arbitrarily

large by taking the support of ϕ to be smaller. It will also be convenient

to take ϕ and g to be linear on a small neighbourhood about each of the

points −a, 0 and a. Graphs of suitable functions g and ϕ are shown in

Fig. 2.1. Our example f : T2 → T2 is an explicit deformation of f0 defined by

f(x, y) = (g(x), 3y + ϕ(x)). From our construction, we see the linearisation

A : T2 → T2 of f is given by

B =

(
4 0

2 3

)
,

and so f is indeed homotopic to a linear expanding map.
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Cε(p) Cε(f(p))

Df(Cε(p))

Df

Figure 2.2. The cone family Cε with the behaviour as proved in

Lemma 2.1

.

Next we establish that f is indeed partially hyperbolic by building an

unstable cone family. The derivative of f at a point (x, y) ∈ T2 is given by

D(x,y)f =

(
g′(x) 0

ϕ′(x) 3

)
.

Note that Λ = {0}×S1 ⊂ T2 is an f -invariant circle, and that on this circle,

the derivative is given by

DΛf =

(
g′(0) 0

ϕ′(0) 3

)
.

Since g′(0) < 1, then Λ is an invariant normally hyperbolic repeller, and we

will use this to define a cone-family on a neighbourhood of Λ. Let UΛ be a

small open neighbourhood of Λ on which ϕ′ and g′ are constant. For p ∈ UΛ

and ε > 0, define a constant cone family Cε(p) as the cone containing the

first quadrant with boundary given by the slopes of (1,− ε) and (− ε, 1) as

depicted in Fig. 2.2.

Lemma 2.1. There is ε > 0 such that Cε is expanded by Df , and Df(Cε(p)) ⊂
int(Cε(f(p))) for all p ∈ UΛ.

Proof. If p ∈ UΛ, then Df is given by the constant matrix
(
g′(0) 0
ϕ′(0) 3

)
and one

can use this to show that Df(Cε(p)) ⊂ int(Cε(f(p))). We leave the proof of

this to the reader.

To show that there is ε such that Df expands Cε, by continuity, it suffices

to show that Df expands all vectors in the first quadrant. So let (ux, uy) ∈
Tp T2 lie the first quadrant, that is, ux, uy ≥ 0. We compute

Dpf(ux, uy) = (g′(0)ux, 3uy + ϕ′(0)ux).
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Since ϕ′(0) > 1, then ϕ′(0)2 + g′(0)2 > 1, which implies ‖Dpf(ux, uy)‖ >
‖(ux, uy)‖. �

For the remainder of this section, we fix ε, and thus Cε, to be as in the

preceding lemma.

Next, consider the compact set K = T2 \
(
(−a, a)× S1

)
. This set is

‘backward invariant’ in the sense that f−1(K) = K. Then f is linear and

expanding on K, which will allow us to define a natural unstable cone family

on a neighbourhood of K. Let UK be a small open neighbourhood of K

which is disjoint from UΛ and is such that ϕ′(x) = 0 and g′(x) > 3 for all

(x, y) ∈ UK .

Lemma 2.2. Suppose that Bδ is a cone family on UK which for 0 < δ < 1 is

given at each point by the cone that contains the horizontal and is bounded by

the slopes (1, δ) and (1,−δ). Then Bδ is expanded by Df , and Df(Bδ(p)) ⊂
int(Bδ(f(p))) for all p ∈ UK which satisfy f(p) ∈ UK .

Proof. By definition, if (x, y) ∈ UK , then

Df(x,y) =

(
g′(x) 0

0 3

)
.

Since g′(x) > 3, Df(x,y) is expanding. Moreover, Df(x,y) preserves both the

horizontal and vertical, and expands the horizontal more than the vertical.

This implies the result. �

A depiction of a cone family Bδ as in the preceding lemma is shown in

Fig. 2.3.

Bδ(p)

Bδ(f(p))

Df(Bδ(p))

Df

Figure 2.3. A cone family Bδ with the properties stated in Lemma 2.2.

In Fig. 2.4 we depict the regions UΛ and UK over which we have defined

Cε and Bδ. The next step is to ‘stitch together’ these two cones families to

obtain a global one. Let V ⊂ (−a, a) × S1 be an open strip such that that

f(V ) ∪ UK = T2. Note that the definition of the circle map g implies that

f(V ) b V , and so there is N such that fN (V ) ⊂ UΛ. We pull back Cε to

define a cone family CN on V by CN (p) = Df−N (Cε(fN (p))) at p ∈ V .
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−a× S1 Λ = 0× S1 a× S1

UΛ K

UK

K

UK

Figure 2.4. The regions UΛ and UK in T2 we over which we have

defined Cε and Bδ. We glue these cone families together across the

gap between these regions to obtain Cu.

Lemma 2.3. For p ∈ V , the cone CN (p) is a closed neighbourhood of the

horizontal.

Proof. Let q = (x, y) ∈ UΛ and (ux, uy) ∈ Tq T2. Consider a preimage p of q

which also lies in V and let f−1 denote the local inverse, so that p = f−1(q).

Then the tangent vector (ûx, ûy) = Dqf
−1(ux, uy) ∈ Tp T2 is given by

(ûx, ûy) = Dqf
−1(ux, uy) =

(
ux
g′(x)

,− ϕ′(x)

2g′(x)
ux + 2uy

)
.

Since ϕ′, g′ ≥ 0, then uy < 0 < ux implies ûy < 0 < ûx. Similarly, ux < 0 <

uy implies ûx < 0 < ûy. Therefore Dqf
−1 C is a closed neighbourhood of

the first and third quadrants on all of f−1(UΛ)∩ V . By induction, CN (p) is

a closed neighbourhood of the horizontal for all p ∈ V . �

Lemma 2.4. There is a cone family B on UK such that following hold:

• if p ∈ UK and f(p) ∈ UK , then Df B(p) ⊂ intB(f(p));

• if p ∈ UK and f(p) ∈ V , then Df B(p) ⊂ int CN (f(p));

• if p ∈ V ∩ UK , then B(p) ⊂ int CN (p).

Proof. The first property will hold so long as we take B = Bδ as in Fig. 2.3

for any small δ > 0. Since we can take δ arbitrarily small, then to prove the

second and third claims, it suffices to show that CN is a closed neighbourhood

of the horizontal at each point. This was established in Lemma 2.3. �
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We recall (see [CP15], §2.2) that a continuous cone family C is equivalent

to a continuous quadratic form Q on the tangent space. In this correspon-

dence, the cone C(p) at a point p is determined by the quadratic Qp by

C(p) = {v ∈ Tp T2 : Qp(v) ≥ 0}.

Lemma 2.5. The map f admits a cone family Cu such that Df(Cu) ⊂ int Cu
and which coincides with B on UK and CN on f(V ).

Proof. Let CN be prescribed by a quadratic form P on V , and B by a

form Q on UK . Let α : T2 → [0, 1] be a continuous function such that

α(T2 \V ) = {0} and α(f(V )) = {1}. Define a continuous cone family Cu by

the quadratic form

(1− α)P + αQ.

Then Cu coincides with CN on f(V ) and B on UK , and it is invariant by

Lemma 2.4. �

Proposition 2.6. The endomorphism f is partially hyperbolic.

Proof. By Lemma 2.5, Cu is an invariant cone family. It remains to show

that Cu is expanded by Dfk for some k. Observe that there is m > 0 such

that if p ∈ T2, then the orbit of p has at most m points which do not lie in

either UΛ or UK . When p ∈ UΛ or p ∈ UK , we know by construction that

Cu ⊂ CN ⊂ Cε or Cu = Bδ, respectively. By Lemma 2.1 and Lemma 2.2, Df

expands Cε and Bδ. Thus by choosing k sufficiently large, if vu ∈ Cu(p), we

have ‖Dfkvu‖ > ‖vu‖. �

We now know that f is partially hyperbolic, and so it admits an invariant

centre direction Ec [HH19].

Define an annulus X = (−a, a)×S1. Lift f to a diffeomorphism f̃ : R2 →
R2 which fixes the lift X̃ = (−a, a) × R of X. As the lift of a partially

hyperbolic surface endomorphism, the map f̃ admits an invariant splitting

Ec ⊕ Eu, with Ec descending to the centre direction of f on T2 [MP75].

Moreover, f̃ is a finite distance from its linearisation A : R2 → R2, which

we remind the reader was defined in the introduction.

Proposition 2.7. The map f admits an invariant centre annulus X, and

the centre direction Ec is uniquely integrable on X.

Proof. The boundary components of the invariant annulus (−a, a)× S1 are

the circles {a} × S1 and {−a} × S1. Restricted to these circles, Df is given

by (
4 0

0 3

)
.

Thus {a}×S1 and {−a}×S1 are tangent to Ec, and so X = (−a, a)×S1

is an invariant centre annulus.
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To see that Ec is uniquely integrable on X, note that the restriction of

f̃ to X̃ is a diffeomorphism. Under this diffeomorphism, the set {0} × R1

is an invariant normally hyperbolic manifold with splitting Eu ⊕ Es. Here,

Es corresponds locally to Ec. Using classical stable manifold theory, one

may then show that Ec is uniquely integrable on a neighbourhood U of Λ

[HPS77]. But every point in p ∈ X is in the preimage of some point in

q ∈ U , so Ec is uniquely integrable on all of X. �

We now establish that the centre curves must branch on the boundary of

X.

Lemma 2.8. Let U ⊂ X̃ be a set of the form R×(−r0, r0) for some r0 > 0.

Then there is r such that then f̃−n(U) ⊂ R×(−r, r) for all n > 0.

Proof. If U ⊂ R×(−r0, r0) for r0 > 0, then A−1(U) ⊂ R×(−r0/3, r0/3).

Since f is a finite distance from A, then f̃−1(U) ⊂ R×(−r0/3−C, r0/3+C).

Thus by choosing r so that r > r
3 + C and r > r0, the claim follows by

induction. �

Now we establish that the centre direction is not-uniquely integrable,

proving Theorem A.

Proof of Theorem A. Suppose that Ec is uniquely integrable on all of R2, so

that it integrates to a foliation which descends to T2. Consider a small centre

curve Jc ⊂ R2 with one endpoint at the origin and the other endpoint at

p ∈ (0, a)×R, so that Jc ⊂ (0, a)×R. Under f̃−n, the endpoints of f̃−n(p)

at the origin remains fixed, while the x-coordinate of the other endpoint

monotonically approaches the line {a} × R. By unique integrability of X

on Ec, we have f̃−n(Jc) ⊂ f̃−(n+1)(Jc), with both of these curves being

leaf segments of the leaf of the centre foliation through (0, 0). The curve

{a} × R is tangent to the centre, so it is necessarily a leaf of the centre

foliation, implying that the endpoint of f̃−n(Ju) cannot converge to a point

on {a} × R. Thus f̃−n(Ju) must grow unbounded in the vertical direction

as n→∞. But by Lemma 2.8, f̃−n(Ju) must be uniformly bounded in the

vertical direction, giving a contradiction.

Now we prove that the centre curves branch only on a set of countably

many annuli. For this, we recall that g is homotopic to the the circle map

x 7→ 4x. Then a single preimage of the interval [−a, a] under the circle map

g consists of [−a, a] and three other disjoint intervals, and the union of all

backward iterates of [−a, a] under g is dense in S1. Thus the preimage of the

invariant annulus X under f consists of X and three other disjoint annuli,

and
⋃
n≥0 f

−n(X) is dense in T2. Since Ec is uniquely integrable on X,

then it is uniquely integrable on
⋃
n≥0 f

−n(X). The centre direction is not
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a−a 0x

Figure 2.5. The centre curves of the endomorphism f on T2.

uniquely integrable on each boundary circle of X, and is thus not uniquely

integrable on each of their preimages. Thus Ec behaves as desired. �

With Theorem A proved, we conclude this by obtaining a clear depiction

of the centre curves as shown in Fig. 2.5. If p is a point whose orbit is

disjoint from X, then the orbit of p lies in K. Recalling that for (x, y) ∈ K
that

(2.1) Df(x,y) =

(
g′(x) 0

0 3

)
and that g′(x) is a constant greater than 4, we see that the centre direction

on the orbit of such p is vertical. Elsewhere, we can use the following.

Lemma 2.9. The centre direction Ec on X has negative slope.

Proof. Recall that Ec lies in the complement of Cu. For p ∈ UΛ, the unstable

cone is Cε, so all vectors not in Cu have negative slope. Hence the proposition

holds at p. For p ∈ X, then p = fn(q) for some q ∈ UΛ, and Ec(p) =

Df−n(Ec(q)). But Ec(q) has negative slope, and it was shown in the proof of

Lemma 2.5 that Dpf
−1 takes vectors of negative slope to vectors of negative

slope for p ∈ X, so the claim also holds at q. �

Since Df is constant given by the equation Eq. (2.1) on the compliment

of X, then a connected component of f−1(X) which is not itself X is a

rescaled copy of X. This copy is contracted more strongly horizontally than

vertically. This procedure continues while iterating X backwards, and so

one can show that the centre curves are in Fig. 2.5.

We conclude by noting that the authors believe that this example f is

dynamically incoherent. However, showing this would require more effort
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than required for our purposes, since it will be easier to prove incoherence

in the examples we construct in the next section.

3 General construction

In this section, we prove Theorem B by generalising the construction used

to establish Theorem A. Our approach is eased by first observing we only

need to construct an example homotopic to linear maps of a certain form:

Lemma 3.1. Let A : T2 → T2 be a linear expanding map with integer

eigenvalues λ and µ. Then A is conjugate as a map on T2 to a linear map

B : T2 → T2 given by

B =

(
µ 0

t λ

)
for some t ∈ Z.

Proof. If the eigenvalue λ of A is an integer, it has an associated eigenvector

v = (a, b) ∈ Z2 for a and b with gcd(a, b) = 1. The proposition will be

satisfied if we can find P ∈ SL(2,Z) such that Pv = (0, 1), as we may take

B = PAP−1. This amounts to solving two coupled equations over Z, which

since gcd(a, b) = 1, always has a solution. �

Now to prove Theorem B, it suffices to construct examples which are

homotopic to the linear map B of the form in the preceding lemma.

We remark that the deformation approach to obtain f from map the

f0 in Section 2 changed the homotopy class of the map. For our general

example, we will adapt this approach to construct an example in a desired

homotopy class. The idea is to define the initial map f0 with two invariant

annuli, and then apply two shears in opposing directions along each annulus.

To encourage visualising this idea, we refer the reader to Fig. 3.1, which

shows how the centre curves look for our example in the case t = 0. We

suggest comparing this to the centre curves of the example constructed in

the previous section, as shown in Fig. 2.5. The depiction in Fig. 3.1 will be

justified later.

Proposition 3.2. If A : T2 → T2 is an expanding linear map with integer

eigenvalues, there exists a partially hyperbolic surface endomorphism f :

T2 → T2 which admits a periodic centre annulus and is homotopic to A.

Proof. Begin by letting B be as in Lemma 3.1, and assume that λ, µ > 0

and t > 0. We will later explain how an example can be constructed for

general λ and µ, while when t < 0, the examples are similar, so the details

are left to the reader. Define a > 0 so that there is a monotone function

g : S→ S which:
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2a−2a 0x

Figure 3.1. The centre curves of the general example when t = 0.

• is homotopic to the map x 7→ µx,

• has fixed points x = 0, a, 2a, −a, −2a,

• satisfies g′(a) = g′(−a) < 1,

• is linear on the complement of (−2a, 0) ∪ (0, 2a), on which we have

g′ > λ.

Note that we have not assumed any ordering on λ and µ, so that if µ < λ,

then a must be chosen close enough to either 0 or 1/4 to allow g to satisfy

the final property above. Now define f0 : T2 → T2 by f0(x, y) = (g(x), λy).

Then f0 is homotopic to B and has two invariant annuli (−2a, 0) × S1 and

(0, 2a)× S1 which share a boundary circle.

Let ϕ : S1 → S1 be monotone and such that ϕ(−2a) = 0, ϕ(a) = (t+1)/2,

ϕ(0) = t + 1 with the support of ϕ′ contained in (−2a, 0). Define another

monotone function ψ : S1 → S1 to be such that ψ(−2a) = 0, ψ(−a) = −1/2

and ψ(0) = −1 and the support of ψ contained in (0, 2a). Then ϕ is a shear

upwards by a factor of t + 1 in one invariant annulus, while ψ is a shear

downwards by a factor of 1 in the other. The explicit deformation to give

the desired example is given by f(x, y) = (g(x), λy + ϕ(x) + ψ(x)). The

shears ϕ and ψ acting simultaneously result in f being homotopic to B.

To see that f is partially hyperbolic, we adapt the main ideas of Section 2.

Note that the orbits of points in the annuli X1 = (−2a, 0) × S1 and X2 =

(0, 2a)× S1 are disjoint, so the approach is to define cone families much like

the one annulus for the concrete example on each of them. The invariant

circles {−a}× S1 and {a}× S1 are normally hyperbolic invariant manifolds,

so there is a natural unstable cone-family defined on each of these circles

akin to Cε in Lemma 2.1. Meanwhile, on the complement of X1 ∪ X2, the

map f is linear, and a cone family which is a small uniform neighbourhood

of the horizontal will be an unstable cone family, similar to B in Lemma 2.2.
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Arguing as in Lemma 2.4 and Lemma 2.5, we can stitch these cones together

to construct Cu, a cone family which satisfies Df Cu(p) ⊂ int Cu(f(p))).

Since f expands Cu on the linear region close to the invariant hyperbolic

circles, then by using arguments of Proposition 2.6, we can show that Cu is

in fact an unstable cone family and that f is partially hyperbolic. Now by

applying the arguments of Proposition 2.7 to each invariant annulus X1 and

X2, we see that they are invariant centre annuli of f .

Now we drop the assumption that µ, λ > 0. So let the matrix B be of the

form
(
µ 0
t λ

)
where one or both of µ and λ may be negative. Since |µ| > 1,

the linear map g0 : S1 → S1, defined by x 7→ µx has at least one point with

period exactly two. Using a deformation, one can define a map g : S1 7→ S1

and interval I ⊂ S1 such that such that

• g(I) is disjoint from I,

• g2(I) is equal to I, and

• g is linear on the complement of I with derivative |g′| > |λ|.
Up to conjugation with a rigid rotation, we may assume I is centered at zero.

That is, there is a > 0 such that I = (2a,−2a). Moreover, by replacing g|I
(but leaving g on g(I) linear and unchanged), we may assume that g2 has

fixed points at x = −2a,−a, 0, a, 2a, and that (g2)′(−a) = (g2)′(a) < 1.

In other words, g2 here has the properties that g had in the case when µ

and λ were assumed positive in the earlier section of this proof. Let the

shearing functions ϕ and ψ be defined exactly as before and define f(x, y) =

(g(x), λy + ϕ(x) + ψ(x)). By again adapting the previous techniques, one

can show that the resulting endomorphism is partially hyperbolic. It is easy

to see that the annulus I × S1 is an invariant centre annulus for f2, so that

I × S1 is a periodic centre annulus for f . �

To establish Theorem B, we now show that the examples constructed in

the preceding proof are dynamically incoherent. While it is unclear whether

or not the original example of Section 2 was incoherent, the presence of two

adjacent periodic annuli as depicted in Fig. 3.1 makes observing coherence

straightforward.

Proof of Theorem B. Let f be an example established in the proof of the

preceding proposition with the assumption that λ, µ, t ≥ 0. The other

cases are again similar and left to the reader. When we restrict f to X1,

the map admits an invariant splitting Ec ⊕ Eu and the circle {a} × S1 is a

hyperbolic repeller tangent to the unstable direction. The centre direction

is thus uniquely integrable on a neighbourhood of this circle, which in turn

implies it is uniquely integrable on all of X1. Similarly, Ec is uniquely

integrable on X2.
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Using the ideas of Lemma 2.9, one can show that Ec has positive slope

on X1 = (−2a, 0)×S1, while it has negative slope on X2 = (0, 2a)×S1. Due

to the shearing being in the opposite direction on each annulus, the centre

curves approach the centre circle {0}× S1 with slopes of opposite sign, as is

shown in the depiction Fig. 3.1. On a neighbourhood of the circle {0} × S1

there cannot exist a foliation chart. Hence f is dynamically incoherent. �

We conclude by justifying the the rest of the depiction of the centre curves

as is shown in Fig. 3.1. Once more, outside the orbits of the two invariant

annuli X1 and X2, the map f is a linear map preserving the horizontal

and vertical directions, expanding stronger in the horizontal. An annulus in

the preimage of either X1 and X2 is a linear rescaling of the curves on the

invariant annulus that is contracted a greater amount in the horizontal than

the vertical, and so when t = 0 in the linearisation B, the centre curves

are as shown. Note that the slopes on each annulus X1 and X2 will not

be symmetric as in the figure when t 6= 0, though they will always be of

opposite sign.
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