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ABSTRACT. We study global-local mixing for accessible skew products with a
mixing base. For a dense set of almost periodic global observables, we prove
rapid mixing; and for a dense set of global observables vanishing at infinity, we
prove polynomial mixing. More generally, we relate the speed of mixing to
the “low frequency behaviour” of the spectral measure associated to our global
observables. Our strategy relies on a careful choice of the spaces of observables
and on the study of a family of twisted transfer operators.
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1. INTRODUCTION

Dynamical systems within the category of skew products have a long history.
They receive attention for many different reasons: in earlier ergodic theory, they
were studied as mild generalizations of suspensions which cannot be factored [12,
Chapter 10], providing examples of simple partially hyperbolic systems; in recent
days, they are often used to model real life situations [18, 2]. As their name suggest,
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they are products of a base dynamics and a fiber dynamics. Here, we are concerned
with the statistical propertiesof these systems.

One of the simplest examples of a partially hyperbolic skew product is given
by circle extensions of Anosov diffeomorphisms on the 2-dimensional torus T2, de-
fined as follows. Given an Anosov diffeomorphism A : T2 → T2 and a smooth
map f : T2 → T, a skew product F : T3 → T3 over A induced by f is defined
by F(x,r) = (Ax,r + f (x)). The torus T3 is equipped with a product measure
µu ×Leb, where µu is any Gibbs measure with Hölder potential u and Leb is the
Lebesgue measure on the fibers1. In this case, Dolgopyat [13] proved that generic
functions f induce skew products F with rapid decay of correlations, or rapid
mixing, i.e. decorrelation of C ∞-observables is faster than any given polynomial.
The speed of mixing may, in fact, be exponential, but this is still an open problem
([13, Problem 2]). Dolgopyat’s result holds in general for compact group exten-
sions. The interested reader can also check the introductions of [26, 7, 17] for an
overview of old and new results on skew products.

In this paper, we are interested in skew products with non-compact fibers. In
particular we will consider R-extensions of topologically mixing Anosov diffeo-
morphisms. For an introduction to infinite ergodic theory, we refer the reader to
AAronson’s book [1]. In our setting, Guivarc’h showed that any Hölder function
f with zero integral which is not cohomologous to a constant induces an ergodic
skew product [20] (see also [11]).

Concerning stronger statistical properties, an historical perspective on the vari-
ous possible definitions of mixing can be found in [23]. We will be interested in
global-local mixing, a notion introduced by Lenci in [23], namely we will study
the correlations between global and local observables (see Definition 2.1). Local
observables are akin to compactly supported observables, while global observables
are supported over most of the of phase space. One possible concern about the
notion of global-local mixing may be the seemingly arbitrary choice of the aver-
aging involved in the definition of global observables. In our setting, the infinite
volume average is analogous to statistical infinite volume limits introduced and
refined along the years by Van Hove, Fisher [25, Section 3.3] and Ruelle [29, Sec-
tion 3.9], which built on the inspirational work of Bogoliubov [4]. Global-local
mixing has been studied in different situations, for example random walks [23, 24],
mechanical systems [15, 14] and one dimensional parabolic systems [8].

The main ingredient needed to study our class of skew product is accessibility
(see, among others, [10, 9, 30]). The skew-product F is accessible if, roughly
speaking, it is possible to reach any point in the space by moving along segments
of stable and unstable manifolds.

From the measure-theoretic point of view, using Markov partitions, we can trans-
late the problem to study a skew product over a subshift of finite type, keeping the
same R-fibers. The question whether accessibility is preserved passing to symbolic
dynamics appears to be delicate, and will be discussed in Appendix A. Our main
result, Theorem 3.8, provides quantitative estimates for the decay of correlations
of global and local observables for an accessible R-extension of a symbolic shift.
To the best of our knowledge, this is the first quantitative result in the context of
global-local mixing.

Contrary to the case of compact group extensions, we cannot expect exponential
mixing in general, since, taking Fourier transforms, we have to deal with arbitrary

1Recall that if one chooses the potential as the det(DA)|Es , one recovers the usual SRB measure.
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low frequencies. Indeed, we will show in Theorem 3.8 that the speed of conver-
gence of correlations depends on the behavior near zero of the spectral measure
associated to the global observable (namely, its inverse Fourier-Stieltjes transform):
if the support of this measure intersects a neighbourhood of 0 only at 0, then mix-
ing is rapid (Theorem 2.2) as we expect from Dolgopyat’s result; in other cases we
obtain polynomial estimates (Theorem 2.3, Theorem 2.4), which correspond to the
expected behaviour (see Remark 2.5). Note that since the infinite volume average
equals the value of the associated spectral measure at zero, our choice of infinite
volume average is natural.

The main novelties of the work rely on a careful choice of the functional spaces
involved. The accessibility hypothesis, when coupled with a standard central limit
theorem for the underlying symbolic dynamics on the basis, allows for transfer
operator bounds on suitable splitting of lower and higher frequency modes and the
exploiting of cancellation effects due to accessibility.

1.1. Outline of the paper. The rest of the paper is organized as follows. In Section
2 we rigorously introduce our framework and state our main results. In Section 3,
we describe in details the classes of global and local observables we consider and
we state our core result, Theorem 3.8. We then deduce Theorems 2.2, 2.3 and 2.4
from Theorem 3.8.

In Section 4, we present a preliminary result in the non-invertible case of skew
products over one-sided subshifts, Theorem 4.5. We also describe a “collapsed ac-
cessibility” property, which constitutes the main working assumption on the skew
product in this setting.

The main tool to prove Theorem 4.5 is a family of twisted transfer operators. In
Section 5, we show how the collapsed accessibility property can be exploited to
obtain some cancellations in the expression for the twisted transfer operators, as in
the work of Dolgopyat [13]. In Section 6, we prove some estimates on the norm
of the twisted transfer operators. For large twisting paramenters, the estimates are
obtained exploiting the results in Section 5; for small parameters, we apply some
standard results in the theory of analytic perturbations of bounded linear operators.

Section 7 contains some technical results that will be applied to prove the main
theorems. Section 8 is devoted to the proof of Theorem 4.5. In order to deduce
Theorem 3.8 from Theorem 4.5, in Section 9 we deduce the collapsed accessibil-
ity property for a one-sided skew-product from the accessibility property of the
corresponding two-sided skew-product. In Section 10, we prove Theorem 3.8.

In Appendix A, we discuss the problem whether the accessibility property for a
skew product over an Anosov diffeomorphism is equivalent to the accessibility of
the associated symbolic system. Appendices B and C contain the proofs of several
technical results.

2. SETUP AND MAIN RESULTS

Let σ : Σ→Σ be a topologically mixing two-sided subshift of finite type, equipped
with a Gibbs measure µ = µu with respect to a Hölder potential u (see, e.g., [6, §1]
or [26, §3]). For 0 < θ < 1, define the distance

dθ (x,y) = θ max{ j∈N : xi=yi for all |i|< j}.

Let us denote by Fθ the space of Lipschitz continuous functions w : Σ→C equipped
with the norm

(1) ∥w∥θ = ∥w∥∞ + |w|θ , where |w|θ = sup
x ̸=y

|w(x)−w(y)|
dθ (x,y)

.
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We consider the skew-product

(2) F : Σ×R→ Σ×R, F(x,r) = (σx,r+ f (x)),

where f : Σ →R is a Lipschitz continuous function with zero average,
∫

Σ f dµu = 0.
We will assume that F is accessible, see Sections 3 and 9 for definitions.

We are interested in the mixing properties of the map F with respect to the
infinite measure ν = µ ×Leb, where Leb is the Lebesgue measure on R.

Definition 2.1. A local observable is any function ψ ∈ L1(ν). A global observable
is any function Φ ∈ L∞(ν) such that the following limit exists

(3) νav(Φ) := lim
R→∞

1
2R

∫
Σ×[−R,R]

Φ(x,r)dν(x,r).

If ψ is a local observable, we will write ν(ψ) =
∫

Σ×R ψ dν . We will show in
Lemma 3.2 below that if Φ is a global observable, then so is Φ◦F , and the average
νav defined in (3) is invariant under F .

For any pair of global and local observables (Φ,ψ), let us denote by cov(Φ,ψ)
the covariance

cov(Φ,ψ) := ν(Φ ·ψ)−νav(Φ)ν(ψ).

We are interested in showing “global-local mixing”, namely in proving that the
correlations cov(Φ◦Fn,ψ) satisfy

(4) lim
n→∞

cov(Φ◦Fn,ψ) = 0.

and the rate of convergence to such limit (also known as the rate of decay of corre-
lations).

The main result of this paper, Theorem 3.8 below, establishes quantitative global-
local mixing estimates. Since some preliminary work is needed, the statement of
the main theorem is postponed to Section 3. We state here some corollaries which
should give the reader a rather complete picture of the possible scenarios. Theorem
2.2 states that, for a dense class of almost periodic2 global observables, we have
rapid mixing, namely the decay of correlations is faster than any given polynomial,
in analogy to Dolgopyat’s result [13] in the case of circle extensions. On the other
hand, for a dense class of global observables which vanish at infinity, Theorems 2.3
and 2.4 state that the decay is polynomial. The bound in Theorem 2.4 is generically
optimal, as we show in §3.6.

Let us fix some notation. Let C k(R) be the space of k-times differentiable func-
tions on R. We will denote by P the subspace of C 2(R) consisting of 2π-periodic
functions; by C0(R) the space of continuous functions on R which vanish at infin-
ity, and by C ∞

c (R) the subspace of infinitely differentiable functions with compact
support. The space C ∞

c (R) has the structure of a Fréchet space, induced by the
family of seminorms ∥ · ∥C k , for k ∈ N. We will say that a map ψ : Σ → C ∞

c (R) is
Lipschitz if it is Lipschitz with respect to ∥ · ∥C k , for all k ∈ N.

In the rest of the paper, we will implicitely identify maps a from Σ to some space
of complex-valued measurable functions over R with complex-valued measurable
functions on Σ×R by setting a(x,r) = [a(x)](r).

Theorem 2.2 (Rapid global-local mixing). Assume that F, defined as in (2), is
accessible. For any Lipschitz map ψ : Σ → C ∞

c (R), for any Lipschitz map Φ : Σ →

2We recall that the space of almost periodic functions is the closure of the space of trigonometric
polynomials with respect to the uniform norm.
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P , and for every ℓ ∈ N, there exists a constant C = C(ℓ,ψ,Φ) ≥ 0 such that for
all n ∈ N,

|cov(Φ◦Fn,ψ)| ≤Cn−ℓ.

The situation is different when the global observable vanishes at infinity. Note
that, in this case, the average νav defined in (3) is zero.

Theorem 2.3 (Polynomial global-local mixing I). Assume that F, defined as in (2),
is accessible. There exists a space of bounded continuous functions D ⊂ C0(R),
which is dense in C0(R) with respect to ∥ · ∥∞, and there exists α > 0 such that
the following holds. For any Lipschitz map ψ : Σ → C ∞

c (R), and for any map
Φ : Σ →D which satisfies some explicit Lipschitz condition, there exists a constant
C =C(ψ,Φ)≥ 0 such that for all n ∈ N,

|cov(Φ◦Fn,ψ)| ≤Cn−α .

The Lipschitz conditions for the global observable in Theorem 2.3 will be stated
explicitly in Section 3 below, as well as a bound on α . If we further assume that
the global observable takes values in W 1(R), where W 1(R) is the Sobolev space of
L2 functions with weak derivative in L2, then the statement reads as follows.

Theorem 2.4 (Polynomial global-local mixing II). For any Lipschitz map ψ : Σ →
C ∞

c (R), for any Lipschitz map Φ : Σ → W 1(R), and for any ε > 0, there exists a
constant C =C(ψ,Φ,ε)≥ 0 such that for all n ∈ N,

|cov(Φ◦Fn,ψ)| ≤Cn−
1
4+ε .

If moreover Φ : Σ →W 1(R)∩Lp(R) for some 1 ≤ p ≤ 2, then

|cov(Φ◦Fn,ψ)| ≤Cn−
1

2p+ε .

Remark 2.5. The bound in Theorem 2.4 is optimal: we will provide an example in
§3.6 of a pair of global and local observables Φ,ψ for which the correlations are
bounded below by |cov(Φ◦Fn,ψ)| ≥ Bn−

1
2 for some constant B > 0, and, on the

other hand, Theorem 2.4 implies that for any ε > 0 there exists a constant C > 0
such that |cov(Φ◦Fn,ψ)| ≤Cn−

1
2+ε .

3. THE MAIN RESULT

In this section, we first recall the definition of accessibility for F as in (2); then,
we describe the classes of global and local observables we consider, and we state
our main result. The proofs of Lemmas 3.2, 3.5, 3.7 and 3.1 are contained in the
Appendix B. Finally, we deduce Theorems 2.2, 2.3 and 2.4 from Theorem 3.8.

3.1. Accessibility. For each point x ∈ Σ, we define the stable and unstable set at x
by, respectively,

W s(x) = {y ∈ Σ : there exists n ∈ Z such that yi = xi for all i ≥ n},
W u(x) = {y ∈ Σ : there exists n ∈ Z such that yi = xi for all i ≤ n}.

By definition, for any y ∈ W s(x), dθ (σnx,σny) → 0 exponentially fast and, simi-
larly, for y ∈W u(x), dθ (σ−nx,σ−ny)→ 0; moreover, note that dθ attains a discrete
set of values {θ i}i∈N.

The skew product (2) is partially hyperbolic in the following sense. Let us
denote by fn(x) = ∑n−1

i=0 f ◦σ i(x) the n-th Birkhoff sum at x. Let us define for any
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(x,r) ∈ Σ×R
W s(x,r) = {(y,s) ∈ Σ×R : y ∈W s(x) and s− r = lim

n→∞
fn(x)− fn(y)},

W u(x,r) = {(y,s) ∈ Σ×R : y ∈W u(x) and s− r = lim
n→∞

fn(σ−ny)− fn(σ−nx)}.

We equip Σ×R with the product distance given by

dist
(
(x,r),(y,s)

)
= dθ (x,y)+ |s− t|;

it is easy to see that

lim
n→∞

dist(Fn(x,r),Fn(y,s)) = 0 exponentially fast, if (y,s) ∈W s(x,r),

lim
n→−∞

dist(Fn(x,r),Fn(y,s)) = 0 exponentially fast, if (y,s) ∈W u(x,r).

The sets W s(x,r) and W u(x,r) are called the (strong) stable and (strong) unstable
manifold at (x,r) ∈ Σ×R. Vertical lines {x}×R constitute the center manifolds,
namely they form an invariant fibration and the action of F on each line is isometric.

We now define the accessibility property. A su-path from (x,r) to (y,s) is a finite
sequence (xi,ri) ∈ Σ×R, for 0 ≤ i ≤ m for some m ∈ N, such that (x0,r0) = (x,r),
(xm,rm) = (y,s), and (xi,ri) ∈W s(xi−1,ri−1) or (xi,ri) ∈W u(xi−1,ri−1) for all 1 ≤
i ≤ m. We say that F is accessible if for any two points (x,r),(y,s) ∈ Σ×R there
is a su-path from (x,r) to (y,s).

A consequence of the accessibility property is the following fact, which will be
proved in Appendix B.

Lemma 3.1. If F is accessible, then f is not cohomologous to zero.

3.2. The classes of global and local observables. We now describe the classes of
global and local observables we consider. Let us start by observing that the average
defined in (3) is invariant under F .

Lemma 3.2. If Φ is a global observable according to Definition 2.1, then Φ◦F is
a global observable and νav(Φ◦F) = νav(Φ).

We will denote by S the Fréchet space of Schwartz functions on R, with the
family of seminorms

∥g∥a,ℓ := sup
r∈R

|r|a
∣∣∣∣ dℓ

(dr)ℓ
g(r)

∣∣∣∣ .
We will say that a function ψ : Σ → S is Lipschitz if it is Lipschitz with respect
to ∥ · ∥a,ℓ for all a, ℓ ∈ N. Starting from definition (2.1), we restrict ourselves from
now on to smaller classes of observables

Definition 3.3 (Local observables). We denote by L ⊂ L1(ν) the space of Lipschitz
functions ψ : Σ → S .

Let η be a complex measure over R. We will denote by |η | the variation of
η and by ∥η∥TV = |η |(R) its total variation. We recall that the Fourier-Stieltjes
transform η̂(r) of a complex measure η of finite total variation is the L∞ function
defined by

η̂(r) :=
∫
R

e−irξ dη(ξ ).

The space A of all Fourier-Stieltjes transforms is an algebra of functions, called
the Fourier-Stieltjes algebra. We equip A with the total variation norm, namely,
for η̂1, η̂2 ∈ A , we set

∥η̂1 − η̂2∥ := ∥η1 −η2∥TV.
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Definition 3.4 (Global observables). We denote by G ⊂ L∞(ν) the space of Lips-
chitz functions Φ : Σ → A which satisfy the follwing tightness condition:

there exist a,A > 0 such that for all r ≥ 1 and x ∈ Σ we have

|ηx|(R\ [−r,r])≤ Ar−a,
(TC)

where η̂x = Φ(x).

The tightness condition (TC) will be exploited in the proofs of Lemma 10.2 and
Proposition 10.3 in Appendix C to ensure some compactness property. The follow-
ing lemma shows that elements of G are indeed global observables; more precisely,
the average νav of Φ is the average of the values of the associated measures ηx at 0.

Lemma 3.5. If Φ ∈ G , then Φ is a global observable according to Definition 2.1
and

νav(Φ) =
∫

Σ
ηx({0})dµ(x),

where, as before, η̂x = Φ(x).

We conclude this section by providing a useful criterion to determine whether a
given function is the Fourier-Stieltjes transform of a finite complex measure which
satisfies (TC). A positive definite function is any function g : R→ C such that

n

∑
i, j=1

g(xi − x j)ziz j ≥ 0,

for all n ≥ 1, xi,x j ∈ R and zi,z j ∈ C. By Bochner’s theorem, a function g is
continuous and positive definite if and only if it is the Fourier-Stieltjes transform η̂
of a finite positive measure η on R (see, e.g., [28, Theorem IX.9]). For example, it
is easy to check that g(x) = eix or g(x) = cos(x) are positive definite functions. A
less trivial example is the function g(x) = 1

|x|+1 ; the fact that g is positive definite
follows from Pólya’s Criterion: any positive, continuous, even function which, for
positive x, is non-increasing, convex and tends to 0 for x→∞ is the Fourier-Stieltjes
transform of an L1 function, thus positive definite.

Lemma 3.6. Any linear combination of Lipschitz positive definite functions is the
Fourier-Stieltjes transform of a complex measure of finite total variation which
satisfies (TC).

Since any complex measure of finite total variation is a linear combination of
positive finite measures, the proof of the lemma above follows immediately from
the following tail estimate, whose proof can be found in Appendix B.

Lemma 3.7. Let η be a finite positive measure on R, let Φ(r) be its Fourier-
Stieltjes transform. Then, if Φ(r) is Lipschitz of constant L, for all r > 0 we have

η(R\ [−r,r])≤ 2L
r
.

3.3. Statement of the main result. For any Φ ∈ G and for any r > 0, let us define
the “low frequency variation” as

(5) LF(Φ,r) :=
∫

Σ
|ηx|
(
(−r,r)\{0}

)
dµ(x).

Notice that LF(Φ, ·) is monotone and LF(Φ,r)→ 0 for r → 0. We are now ready
to state our main result.
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Theorem 3.8 (Quantitative global-local mixing). Assume that F, defined as in (2),
is accessible. Then, for every ψ ∈L , for every Φ ∈ G , for any k ∈N, and for every
ε > 0, there exists a constant C =C(Φ,ψ,k,ε)> 0 such that for every n ∈ N,

|cov(Φ◦Fn,ψ)| ≤C
(

LF
(

Φ,n−
1
2+ε
)
+n−k

)
.

The bound in Theorem 3.8 is the sum of two terms, namely a superpolynomial
term and the contribution given by the measures |ηx| close to 0. In particular, if the
support of the measures ηx does not intersect some neighbourhood of 0, then the
decay of correlations is superpolynomial. On the other hand, for example under
the assumptions of Theorem 2.4, the measures |ηx| are absolutely continuous and
the decay is polynomial.

In the rest of the section we prove Theorems 2.2, 2.3 and 2.4 from the result
above.

3.4. Proof of Theorem 2.2. We deduce Theorem 2.2 from Theorem 3.8.
By the theory of Fourier series, any p ∈ P ⊂ C 2(R), by periodicity, is the

Fourier-Stieltjes transform of a discrete measure η of the form η = ∑n∈Z anδn,
where an ∈ C and δn is the Dirac measure at n. We claim that any Lipschitz map
Φ : Σ → P is contained in G . Theorem 3.8 then immediately implies the result,
since |ηx|((−1,1)\{0}) = 0 (where, as usual, we write Φ(x) = η̂x).

We first check the Lipschitz condition. For x ∈ Σ, let us write ηx = ∑n∈Z an(x)δn.
Since Φ(x) ∈ C 2(R), it follows that limn→∞ |n2an(x)| = 0. In particular, the se-
quence |an(x)| · (1+ i|n|) is square-summable (notice that inan(x) are the Fourier
coefficients of the derivative Φ(x)′). Thus, for any x,y ∈ Σ, by Cauchy-Schwartz,
we have

∥Φ(x)−Φ(y)∥= ∥ηx −ηy∥TV = ∑
n∈Z

|an(x)−an(y)|= ∑
n∈Z

|an(x)−an(y)| ·
1+ i|n|
1+ i|n|

≤

(
∑
n∈Z

1
1+n2

) 1
2

·

(
∑
n∈Z

|an(x)−an(y)|2 + |an(x)−an(y)|2 ·n2

) 1
2

.

Hence, by Plancharel formula, there exists a constant C > 0 such that

∥Φ(x)−Φ(y)∥ ≤C
(
∥Φ(x)−Φ(y)∥∞ +∥Φ(x)′−Φ(y)′∥∞

)
≤C∥Φ(x)−Φ(y)∥C 2 .

This shows that Φ : Σ → G is Lipschitz.
We now show that Φ satisfies the tightness condition (TC). Since Φ(x)∈C 2(R),

we can bound |an(x)| ≤ ∥Φ(x)′′∥∞n−2. Thus, for any r ≥ 2 we have

|ηx|(R\ [−r,r]) = ∑
|n|>r

|an(x)| ≤ ∥Φ(x)′′∥∞ ∑
|n|>r

n−2 ≤ ∥Φ(x)∥C 2 r−1,

which concludes the proof.

3.5. Proof of Theorems 2.3 and 2.4. Let us first prove Theorem 2.3. To this
end, fix any p > 1 and consider as D the space of Fourier transforms of functions
f ∈ L1∩Lp with power decay, namely, for which there exist constants A,a> 0 such
that f (ξ ) ≤ A|ξ |−a for all |ξ | ≥ 1. Then, since S ⊂ D ⊂ G , it is clear that D is
dense in C0(R).

Consider Φ : Σ → D ; in order to conclude, we show that |ηx|
(
−n−

1
2+ε ,n−

1
2+ε)

decays as a power of n for all x ∈ Σ. Indeed, let us denote dηx = fx(ξ )dξ , with
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fx ∈ L1 ∩ Lp, and let 0 < α̃ = 1
2 − ε < 1

2 . Then, using Hölder inequality, with
1
p +

1
q = 1,

|ηx|
(
−n−α̃ ,n−α̃)≤ ∫ n−α̃

−n−α̃
| fx|(ξ )dξ ≤ ∥ fx∥p

∥∥∥1l(−n−α̃ ,n−α̃ )

∥∥∥
q

≤ ∥ fx∥p(2n−α̃)1/q ≤ ∥ fx∥p(2n−α̃)1−1/p.

Therefore, Theorem 2.3 holds for any α of the form α̃(1− 1
p) = (1

2 − ε)(1− 1
p),

with ε > 0.
Let us now prove Theorem 2.4. It follows from [3, Theorem 4.2] that any func-

tion f ∈ W 1 is the Fourier transform of a function g ∈ L1 ∩ L2, which satisfies
∥g∥2 = ∥ f∥2 and ∥g∥1 ≤ ∥ f∥W 1 . This implies that any Lipschitz map Φ : Σ →W 1

is Lipschitz also with respect to the total variation norm.
Let us check that Φ satisfies the tightness condition (TC). Denote dηx(ξ ) =

fx dξ , with fx ∈ L1 ∩L2. Again, it follows from [3, Theorem 4.2] that ξ fx(ξ ) ∈ L2

and ∥ξ fx(ξ )∥2 ≤ ∥Φ(x)′∥2. For any r ≥ 2, by Cauchy-Schwartz and by Plancharel
formula, we have

|ηx|(R\ [−r,r]) =
∫
R\[−r,r]

| fx|(ξ )dξ =
∫
R\[−r,r]

| fx|(ξ )
1+ i|ξ |
1+ i|ξ |

dξ

≤
∥∥1lR\[−r,r] · (1+ i|ξ |)−1∥∥

2 · ∥(1+ i|ξ |) · | fx|(ξ )∥2

≤ (π −2tan−1(r))∥Φ(x)∥W 1 ≤
(

max
x∈Σ

∥Φ(x)∥W 1

)
r−1.

The estimate |ηx|
(
−n−

1
2+ε ,n−

1
2+ε)=O

(
n−

1
4+ε) follows from Cauchy-Schwarz in-

equality exactly as above. If in addition Φ has range in W 1∩Lp, then the functions
fx belong to Lq, where 1

p +
1
q = 1, and one can conclude using Hölder inequality

again. This finishes the proof.

3.6. Example. We discuss a simple example, which shows that the bound in The-
orem 2.4 cannot, in general, be improved. As local observable, let us consider any
non-negative ψ(x,r) = ψ(r) ∈ C ∞

c (R) which equals 1 in the interval
[
−1

2 ,
1
2

]
and,

as global observable, let Φ(x,r) = Φ(r) = 1
1+|r| . Then, Φ ∈W 1(R)∩Lp(R) for any

p > 1, so that Theorem 2.4 implies that for any ε > 0 there exists a constant C ≥ 0
such that

|cov(Φ◦Fn,ψ)|=
∫

Σ×R
(Φ◦Fn) ·ψ dν ≤Cn−

1
2+ε .

Let us show that there is a lower bound of order exactly O(n−
1
2 ).

Lemma 3.1 implies that f is not cohomologous to zero. Moreover, by the Central
Limit Theorem, there exists a constant C′ > 0 such that for any n ∈ N sufficiently
large, on a subset Yn ⊂ Σ of measure at least 1/2, the Birkhoff sums fn(x) = f (x)+
· · ·+ f (σn−1x) are bounded by | fn(x)| ≤ C′√n. In particular, for any x ∈ Yn and
r ∈
[
−1

2 ,
1
2

]
, we have

Φ◦Fn(x,r) = Φ(r+ fn(x)) =
1

1+ r+ | fn(x)|
≥ 1

2C′√n
.

Thus, for any n ∈ N sufficiently large, it follows that∫
Σ×R

(Φ◦Fn) ·ψ dν ≥
∫

Yn×[− 1
2 ,

1
2 ]
(Φ◦Fn) ·ψ dν ≥ ν

(
Yn ×

[
−1

2
,
1
2

])
1

2C′√n

≥ 1
4C′√n

.
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We have shown that there exists a constant C = (4C′)−1 and, for any ε > 0, there
exists a constant Cε > 0 such that we can bound the correlations by Cn−

1
2 ≤ cov(Φ◦

Fn,ψ)≤Cεn−
1
2+ε , hence the bound of Theorem 2.4 is, in this case, optimal.

4. SKEW-PRODUCTS OVER ONE-SIDED SUBSHIFTS

To prove Theorem 3.8, we have to first prove analogous statements for one-sided
subshifts. In this section, we discuss the case of skew-products over topologically
mixing one-sided subshifts of finite type.

Let σ : X →X be a topologically mixing one-sided subshift of finite type, equipped
with a Gibbs measure µ = µu with respect to the potential u. For 0 < θ < 1, the
distance d+

θ and the space of Lipschitz functions F+
θ are defined analogously to

the case of the two-sided shift. Let f+ ∈ F+
θ be a real-valued Lipschitz function

with zero average, and consider the skew-shift

(6) F+ : X ×R→ X ×R, F(x,r) = (σx,r+ f+(x)).

Denote by ν the infinite measure µ ×Leb on X ×R. For any pair of global and
local observables Φ,ψ over X ×R, define the analogous correlation function

cov(Φ◦ (F+)n,ψ) :=
∫

X×R
(Φ◦ (F+)n)(x,r) ·ψ(x,r)dν(x,r).

4.1. Global and local observables for skew-shifts over one-sided subshifts.
The class of global and local observables we consider in this case are described
below. In this setting, we require less regularity of the observables than in the case
of two-sided shifts.

Definition 4.1 (Local observables – one-sided case). Let L + ⊂ L1(ν) be the space
of functions ψ : X → S such that, for every ℓ ∈ N, the function x 7→ ∂ ℓψ(x) from
X to L1(R) is Lipschitz. For every ψ ∈ L +, denote by Maxℓ(ψ) and Lipℓ(ψ) the
minimum constants such that
(7)∥∥∂ ℓψ(x)

∥∥
L1(R) ≤ Maxℓ(ψ) and

∥∥∂ ℓψ(x)−∂ ℓψ(y)
∥∥

L1(R) ≤ Lipℓ(ψ)d+
θ (x,y).

Let us remark that, if ψ ∈L +, then, for every fixed x ∈ X , the Fourier transform
ψ̂(x) of ψ(x) ∈ S is a Schwarz function as well. For any fixed ξ ∈ R, we denote
by ψ̂ξ : X → C the function ψ̂ξ (x) = ψ̂(x)(ξ ).

Lemma 4.2. Let ψ ∈ L +. For every ξ ∈ R, we have ψ̂ξ ∈ F+
θ . Moreover, for

every ℓ≥ 0, and for all ξ ̸= 0 we have∥∥ψ̂ξ
∥∥

∞ ≤ Maxℓ(ψ)ξ−ℓ and |ψ̂ξ |θ ≤ Lipℓ(ψ)ξ−ℓ.

Proof. For any ξ ̸= 0, x ∈ X , and ℓ≥ 0 we have, by assumption in equation (7),

|ξ ℓψ̂(x)(ξ )|= |∂̂ ℓψ(x)(ξ )| ≤
∥∥∥∂̂ ℓψ(x)

∥∥∥
∞
≤
∥∥∂ ℓψ(x)

∥∥
L1 ≤ Maxℓ(ψ),

hence supx |ψ̂ξ (x)| ≤ Maxℓ(ψ)ξ−ℓ. Similarly, for any x ̸= y ∈ X ,

|ξ ℓ[ψ̂(x)(ξ )− ψ̂(y)(ξ )]|= |∂̂ ℓψ(x)(ξ )− ∂̂ ℓψ(y)(ξ )| ≤
∥∥∂ ℓψ(x)−∂ ℓψ(y)

∥∥
L1

≤ Lipℓ(ψ)d+
θ (x,y),

so that, for any fixed ξ ̸= 0, we have |ψ̂ξ |θ ≤ Lipℓ(ψ)ξ−ℓ. �
Let us recall that A ⊂ L∞ denotes the space of Fourier-Stieltjes transforms of

complex measures with finite total variation.
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Definition 4.3 (Global observables – one-sided case). Let G + ⊂ L∞(ν) be the
space of bounded functions Φ : X → A . For Φ ∈ G +, we define

∥Φ∥G+ := sup
x∈X

∥ηx∥TV ,

where, as usual, η̂x = Φ(x).

In the next sections, we will deal only with the non-invertible case of the sew-
product F+ and we will often suppress the + in the notations introduced above,
as it should not generate confusion. In Section 10 we will return to the invertible
setting.

4.2. Collapsed accessibility. The property we need in the case of one-sided shifts
which will replace the accessibility assumption is the following notion of collapsed
accessibility.

Definition 4.4. A Lipschitz function f : X → R has the collapsed accessibility
property if there are constants C and N such that the following holds: for any
x ∈ X , t ∈ [0,1], and n ≥ 2N, there is a sequence of points

x1,y1,x2,y2, . . .ym,xm+1

such that
(1) m ≤ N and x1 = xm+1 = x;
(2) σnxi = σnyi;
(3) d(yi,xi+1)≤Crn; and
(4) t = ∑m

k=1 fn(xk)− fn(yk).

The adjective “collapsed” refers to the fact that local stable manifolds are col-
lapsed to points when going from Σ×R to X ×R.

In order to prove Theorem 3.8, we will see in Section 10 that we can reduce an
accessible skew-product F to a skew-product F+ over a one-sided shift such that
f+ enjoys the collapsed accessibility property.

4.3. The one-sided version of the main theorem. We state our main theorem
in the case of skew-products over one-sided subshifts which have the collapsed
accessibility property. In Section 10, we will deduce Theorem 3.8 from Theorem
4.5 below.

Theorem 4.5 (Quantitative global-local mixing for one-sided subshifts). Assume
that f+, defined as in (6), has the collapsed accessibility property. Then, for every
ψ ∈ L +, for every Φ ∈ G +, for any k ∈ N, and for every ε > 0, there exists a
constant C =C(Φ,ψ,k,ε)> 0 such that for every n ∈ N,

|cov(Φ◦Fn,ψ)| ≤C
(

LF(Φ,n−
1
2+ε)+n−k

)
.

The “low frequency” term LF(Φ, ·) in Theorem 4.5 is defined exactly as in (5),
except that the integral is on X instead of Σ.

4.4. An expression for the correlation function. The main tool to study the cor-
relations is the transfer operator. We recall the relevant definitions.

We denote by L = Lσ : L1(µ)→ L1(µ) the transfer operator for the base dynam-
ics σ : X → X , namely the operator on L1(µ) defined implicitly by∫

X
(v◦σ)wdµ =

∫
X

v · (Lw)dµ,
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for v ∈ L∞(µ) and w ∈ L1(µ). Similarly, we denote by LF+ : L1(ν) → L1(ν) the
transfer operator associated to F+, that is, the operator which, for every Φ ∈ L∞(ν)
and ψ ∈ L1(ν), satisfies∫

X×R
(Φ◦F+)ψ dν =

∫
X×R

Φ · (LF+ψ)dν .

Explicitly, for any n ∈ N, we can write
(8)
(Lnw)(x) = ∑

σny=x
eun(y)w(y) and (Ln

F+ψ)(x,r) = ∑
σny=x

eun(y)ψ(y,r− fn(y)).

For any z ∈ C, we let us further define the twisted transfer operator Lz : L1(µ)→
L1(µ) by

(Ln
z w)(x) = ∑

σny=x
eun(y)−iz fn(y)w(y),

where u is the potential defining the Gibbs measure and un its cocycle. Notice that
all the operators described above restrict to operators acting on F+

θ .

Proposition 4.6. Let ψ ∈ L + and Φ ∈ G +. Then, for every n ∈ N we have∫
X×R

(Φ◦ (F+)n) ·ψ dν =
∫

X

∫ ∞

−∞
(Ln

ξ ψ̂ξ )(x)dηx(ξ ) dµ(x).

Proof. By definition of the transfer operator LF+ , we can write∫
X×R

Φ◦ (F+)n(x,r) ·ψ(x,r)dν(x,r) =
∫

X×R
Φ(x,r) ·Ln

F+ψ(x,r)dν

=
∫

X

∫ ∞

−∞
Φ(x,r) ·Ln

F+ψ(x,r)dr dµ,

where the applicability of the Fubini-Tonelli Theorem follows immediately from
the definition of G + and L +. Since Φ(x) is the Fourier-Stieltjes transform of a
measure ηx we get∫

X×R
(Φ◦ (F+)n) ·ψ dν =

∫
X

∫ ∞

−∞

(∫ ∞

−∞
e−irξ dηx(ξ )

)
Ln

F+ψ(x,r)dr dµ

=
∫

X

∫ ∞

−∞

∫ ∞

−∞
eirξ Ln

F+ψ(x,r)dηx(ξ )dr dµ.

For every x ∈ X , we have∫ ∞

−∞

∫ ∞

−∞
|Ln

F+ψ(x,r)|d|ηx|(ξ )dr ≤ ∥Φ∥G+

∫ ∞

−∞
|Ln

F+ψ(x,r)|dr ≤ ∥Φ∥G+∥ψ(x)∥1

≤ ∥Φ∥G+ Max0(ψ),

thus we can again apply the Fubini-Tonelli Theorem to get∫
X×R

(Φ◦ (F+)n) ·ψ dν =
∫

X

∫ ∞

−∞

(∫ ∞

−∞
eirξ Ln

F+ψ(x,r)dr
)

dηx(ξ )dµ

=
∫

X

∫ ∞

−∞
L̂n

F+ψ(x,−ξ )dηx(ξ )dµ =
∫

X

∫ ∞

−∞
L̂n

F+ψ(x,ξ )dηx(ξ )dµ.

The conclusion follows by construction due to the equality

L̂n
F+ψ(x,ξ ) = (Ln

ξ ψξ )(x).

�
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5. CANCELLATIONS FOR TWISTED TRANSFER OPERATORS

From Proposition 4.6, it is clear that, in order to estimate the correlations, we
need to study the twisted transfer operators Lξ , for real frequencies ξ ∈R. The aim
of this section is to show that the collapsed accessibility property can be exploited
to obtain some cancellations in the expression of Lξ .

Let us fix a complex-valued Lipschitz function g̃ : X →C, and let |g̃|= g. In this
section, we use a tilde to denote a complex-valued or “twisted” function, and the
same letter without a tilde to denote its absolute value. We denote by L : F+

θ →
F+

θ the operator defined by

(Lṽ)(x) = ∑
σy=x

g̃(y) · ṽ(y),

and by L : F+
θ → F+

θ the positive “untwisted” operator

(Lv)(x) = ∑
σy=x

g(y) · v(y).

Up to conjugating L with a suitable multiplication operator, we can assume that
L1 = 1, namely

∑
σy=x

g(y) = 1,

for all x ∈ X . Notice that the for the operator Lξ defined in the previous section,
we have g̃ = exp(u+ iξ f ), where u is the potential for the Gibbs measure µ .

One can easily see that |Lṽ(x)| ≤ Lv(x). Moreover, recall that | · |θ is the Lips-
chitz seminorm defined in (1). Then, the following Lasota-Yorke inequality holds,
see [26, Proposition 2.1].

Lemma 5.1 (Basic inequality). There exists a constant C0 > 0 such that

|Lṽ|θ ≤ θ |ṽ|θ +R∥ṽ∥∞ ,

where R =C0|g̃|θ .

By induction,

(Lnv)(x) = ∑
σny=x

gn(y)v(y) and (Lnṽ)(x) = ∑
σny=x

g̃n(y)ṽ(y)

where gn and g̃n are the cocycles

gn(x) = g(x)g(σ(x)) · · ·g(σn−1(x)) and g̃n(x) = g̃(x)g̃(σ(x)) · · · g̃(σn−1(x)).

It follows that for all n ≥ 1 we have

(9) |Lnṽ|θ ≤ θ n|ṽ|θ +
R

1−θ
∥ṽ∥∞ .

5.1. Collapsed accessibility and cancellation pairs. Let us fix a positive constant
ε > 0, and an integer n ≥ 1. We assume ε < 1

2 and ε < 1−θ . Define

H := max
{

1,
2R

1−θ

}
.

A Lipschitz function ṽ : X → C is a nice observable if |ṽ|θ ≤ H and 1− ε <
v(x)< 1 for all x ∈ X (as always, |ṽ|= v).

We say L has (ε,n)-cancellation if for any observable ṽ with |ṽ|θ ≤ H and
0 ≤ v(x) < 1 for all x ∈ X , there is an integer 0 ≤ k ≤ n and a point x ∈ X such
that |Lkṽ(x)| ≤ 1− ε . We say L has strong (ε,n)-cancellation if for every nice
observable ṽ, there is a point x ∈ X such that |Lkṽ(x)| ≤ 1− ε . One can see that
strong (ε,n)-cancellation implies (ε,n)-cancellation.
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A pair of points (x,y) in X is a stable pair if σnx = σny. We say a stable pair
(x,y) is a cancellation pair for a nice observable ṽ if

|g̃n(x)ṽ(x)+ g̃n(y)g̃n(y)| ≤ gn(x)v(x)+gn(y)v(y)− ε.

Lemma 5.2. If (x,y) is a cancellation pair for ṽ, then

|Lnṽ(p)| ≤ 1− ε,
where p = σnx = σny.

Proof. By definition of cancellation pair, we have

|Lnṽ(p)| ≤ |g̃n(x)ṽ(x)+ g̃n(y)g̃n(y)|+

∣∣∣∣∣ ∑
σnq=p, q̸=x,y

g̃n(q)ṽ(q)

∣∣∣∣∣
≤ gn(x)v(x)+gn(y)v(y)− ε + ∑

σnq=p, q̸=x,y
gn(q)v(q)

≤

(
∑

σnq=p
gn(q)

)
− ε = 1− ε,

where we used that Ln1 = 1. �
For a stable pair (x,y) define the phase of (x,y) as

arg
(

g̃n(y)
g̃n(x)

)
.

Here, arg is the complex argument and so the phase is the angle between g̃n(x) and
g̃n(y) in the complex plane. For the most part, we can just think of this value as an
angle. However, if we include it in an inequality, we will assume it is a real number
between −π and π .

Define the stable tolerance of (x,y) as the number 0 < δ < π which satisfies

1− cos(δ ) = ε
(

1
gn(x)

+
1

gn(y)

)
.

Note that the right hand side must be less than two for this to be well defined. In
practice, we will always choose ε small enough so that this is the case.

Proposition 5.3. Let (x,y) be a stable pair, and ṽ a nice observable. If (x,y) is not
a cancellation pair for ṽ, then

−δ ≤ arg
(

g̃n(x)
g̃n(y)

ṽ(x)
ṽ(y)

)
≤ δ ,

where δ is the stable tolerance of (x,y).

In other words, if s is the phase of (x,y), then

s+δ < arg
(

ṽ(x)
ṽ(y)

)
< s−δ

ignoring issues of the angle only being defined up to a multiple of 2π .
To prove the proposition, we first establish the following lemma.

Lemma 5.4. Let z1 and z2 be non-zero complex numbers with α = arg( z1
z2
). If

ε
(

1
|z1|

+
1
|z2|

)
≤ 2(1− cos(α))

then
|z1 + z2| ≤ |z1|+ |z2|− ε.
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Proof. Write z0 = z1 + z2 and rk = |zk| for k = 0,1,2. We wish to show that r2
0 ≤

(r1 + r2 − ε)2. The cosine rule implies that

r2
0 = r2

1 + r2
2 +2r1r2 cos(α)

and so it is enough to show

2r1r2 cos(α)≤ 2r1r2 − ε(r1 + r2)+ ε2.

This may be rewritten as

ε
(

1
r1

+
1
r2

)
= ε

r1 + r2

r1r2
≤ 2(1− cos(α))+

ε2

r1r2
. �

Proof of Proposition 5.3. We show the contrapositive. Define z1 = g̃n(x)ṽ(x) and
z2 = g̃n(y)ṽ(y). Then

|z1|= gn(x)v(x)≥ (1− ε)gn(x),

and a similar estimate holds for |z2|. Using ε < 1
2 and the definition of the stable

tolerance, one sees that

ε
(

1
|z1|

+
1
|z2|

)
≤ ε

1− ε

(
1

gn(x)
+

1
gn(y)

)
≤ 2(1− cos(δ )).

Let α be the angle between z1 and z2. If δ < α , then 1− cos(δ )< 1− cos(α) and
Lemma 5.4 shows that (x,y) is a cancellation pair for ṽ. �

For an arbitrary pair (x,y) of points in X , define the unstable tolerance as 0 ≤
δ < π

2 such that
sin(δ ) = 2Hd(x,y)

Note that x and y must be reasonably close for this to be well defined.

Proposition 5.5. If (x,y) is a pair with unstable tolerance δ and ṽ is a nice observ-
able, then

−δ ≤ arg
(

ṽ(x)
ṽ(y)

)
≤ δ .

Again, we rely on a trigonometric lemma.

Lemma 5.6. Let z1 and z2 be non-zero complex numbers with angle α = arg( z1
z2
).

If 0 < α < π
4 and 1− ε ≤ |zi| ≤ 1, then

(1− ε)sin(α)< |z1 − z2|.

Proof. Assume |z1| > |z2| and consider the acute triangle defined by the points 0,
z1 and z2 in complex plane. Split this triangle into two right triangles by adding
a line segment from z2 to the opposite side of the triangle. This new segment has
length |z2|sin(α)≥ (1−ε)sin(α) and so the line segment from z1 to z2 has length
at least (1− ε)sin(α). �

Proof of Proposition 5.5. Let z1 = ṽ(x) and z2 = ṽ(y) and let α be the angle be-
tween them. The above lemma and the definition of “nice” together imply that

(1− ε)sin(α)≤ |z1 − z2| ≤ Hd(x,y).

Since ε < 1
2 by assumption, the result follows. �
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A us-cycle is a (finite) sequence of points in X :

x1,y1,x2,y2, . . . ,ym,xm+1

where x1 = xm+1 and each pair (xk,yk) is a stable pair. The tolerance of the cycle
is the sum of the stable tolerances of the pairs

(x1,y1), (x2,y2), . . . , (xm,ym)

and the unstable tolerances of the pairs

(y1,x2), (y2,x3), . . . , (ym,xm+1).

We only consider us-cycles for which this tolerance is well defined. The phase of
the cycle is

arg
(

g̃(y1)

g̃(x1)

g̃(y2)

g̃(x2)
· · · g̃(ym)

g̃(xm)

)
.

That is, the phase of the cycle is the sum of the phases of the individual stable pairs
(up to a multiple of 2π). As defined, the phase is a number in (−π,π]. We will
only consider cycles where the phase is positive.

Proposition 5.7. If there is a us-cycle where the phase is greater than the tolerance,
then L has strong (ε,n)-cancellation.

Proof. Let ṽ be a nice observable. Our goal is to show that one of the stable pairs
in the cycle is a cancelling pair for ṽ. We assume none of them is a cancelling
pair and derive a contradiction. Let S be the phase of the cycle and δ = δs +δu be
the tolerance, where δs is the sum of the stable tolerances and δu is the sum of the
unstable tolerances. We are assuming 0 < δ < S. Proposition 5.3 implies that

S−δs < arg
(

ṽ(x1)

ṽ(y1)

ṽ(x2)

ṽ(y2)
· · · ṽ(xm)

ṽ(ym)

)
< S+δs

and Proposition 5.5 implies that

−δu < arg
(

ṽ(x2)

ṽ(y1)

ṽ(x3)

ṽ(y2)
· · · ṽ(xm+1)

ṽ(ym)

)
< δu.

Since x1 = xm+1, the complicated product in the middle of each inequality is actu-
ally the same complex number and so we get S−δs < δu, a contradiction. �

5.2. Cancellation by frequency. We now apply the results above to the specific
case of the operators Lξ defined in the previous section, namely to the case

(Lξ ṽ)(x) = ∑
σy=x

g̃ξ (y) · ṽ(x),

where g̃ξ = exp(u+ iξ f ). To simplify the presentation we only consider positive
ξ , but analogous results will hold for negative frequencies.

One can show that the Lipschitz norm of g̃ξ satisfies |g̃ξ |θ ≤ |g|θ +ξ | f |θ , and so
each twisted operator satisfies a Lasota-Yorke inequality |Lξ ṽ|θ ≤ θ |ṽ|θ +Rξ∥ṽ∥∞,
where Rξ grows linearly in ξ , see Lemma 5.1.

The notion of a “nice observable” will also depend on the frequency. In par-
ticular, the value H from the previous section depends on ξ and so we denote it
by Hξ = 2

1−θ Rξ , which also grows linearly in ξ . Define a constant G = inf{ 1
g(x) :

x ∈ X} and an exponent α > 0 determined by θ αG = 1. Note that G and α are
independent of the frequency.

We now show that accessibility of the skew product leads to cancellation of these
twisted operators and give quantitative estimates of the amount of cancellation.
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Proposition 5.8. Suppose f+ has the collapsed accessibilty property and ξ0 > 0
is given.

Then there are positive constants A and B such that if ξ ≥ ξ0 and

εξ =
1

AGnξ
where nξ is the smallest integer which satisfies θ nξ <

1
Bξ

,

then Lξ has strong (εξ ,nξ )-cancellation.

Remark 5.9. One can see from the definitions of εξ and nξ that εξ = 1
A θ αnξ ≥

θ
ABα ξ−α .

Proof. Assume without loss of generality that 0 < ξ0 < π . The overall strategy of
the proof is to use collapsed accessibility to show that, for any frequency ξ ≥ ξ0,
there is a us-cycle with phase equal to ξ0 and tolerance less than ξ0. Proposition
5.7 then gives cancellation.

Let C and N be as given as in Definition 4.4 of collapsed accessibility . Then
there is a constant 0 < a < 1 such that any angle 0 < δ < π which satisfies either
1− cos(δ ) ≤ a or sin(δ ) ≤ a also satisfies δ < 1

2N ξ0. Since Hξ grows linearly in
ξ , there is B > 0 such that 2CHξ ≤ aBξ , for all ξ ≥ ξ0. Up to increasing the value
of B, we can also ensure that n > 2N for any integer n which satisfies θ n < 1

Bξ0
.

Define A = 2
a .

Now consider a specific frequency ξ ≥ ξ0 and use n = nξ and ε = εξ defined
as in the statement of the proposition. Using this n and t = ξ

ξ0
, there is a sequence

of points x1,y1,x2,y2, . . . ,ym,xm+1 satisfying Definition 4.4. This sequence is a us-
cycle for Lξ and has phase equal to ξ0. If δ is the stable tolerance of a pair (xk,yk),
then

1− cos(δ ) = ε
(

1
gn(xk)

+
1

gn(yk)

)
≤ 2εGn = a.

If instead δ is the unstable tolerance of a pair (yk,xk+1), then

sin(δ ) = 2Hξ d(yk,xk+1)≤ 2CHξ θ n ≤ aBξ θ n ≤ a.

Together, these estimates show that the total tolerance of the us-cycle is less than
ξ0 and so Proposition 5.7 gives cancellation. �

6. CONTRACTION

In this section, we show how to obtain some estimates on the norm of the opera-
tor Lξ . For high frequencies, we exploit the cancellations obtained in the previous
section, while, for low frequencies, we apply some standard results from the per-
turbation theory of bounded linear operators.

6.1. High frequencies. Recall that we defined H := max
{

1, 2R
1−θ
}

. It will be con-
venient to define the following norm on F+

θ : let

∥ṽ∥H := max
{
∥ṽ∥∞,

|ṽ|θ
H

}
.

Notice that the norms ∥ · ∥H and ∥ · ∥θ are equivalent, namely

∥ṽ∥H ≤ ∥ṽ∥θ ≤ 2H∥ṽ∥H .

In this section, we will prove the following result.
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Proposition 6.1. Suppose that f+ has the collapsed accessibility property, and let
ξ0 > 0 be given. Then, there exists positive constants A,B > 0 and an exponent
β > 0 such that for all ξ ≥ ξ0 we have

∥LN
ξ ∥H ≤ 1−Aξ−β ,

for all N ≥ B| logξ |.

We start by proving some simple preliminary results.

Lemma 6.2. For any given ξ > 0, if ṽ ∈ F+
θ , then ∥Lξ ṽ∥H ≤ ∥ṽ∥H .

Proof. Clearly, ∥Lξ ṽ∥∞ ≤ ∥ṽ∥∞ ≤ ∥ṽ∥H . From the Basic Inequality in Lemma 5.1
we also get

|Lξ ṽ|θ
H

≤ θ
|ṽ|θ
H

+
R
H
∥ṽ∥∞ ≤

(
θ +

R
H

)
∥ṽ∥H ≤ ∥ṽ∥H ,

since H > R/(1−θ). This completes the proof �

Let us recall that, from the definition of Gibbs measure, it follows that there exist
constants Cu,d such that for any ball B(x,r) centered at x ∈ X with radius r ≥ 0 we
can bound

(10) µ(B(x,r))≥Curd .

We will also use the fact that the untwisted transfer operator L on F+
θ has a spectral

gap, namely the following well-known result, see, e.g., [26, Theorem 2.2].

Lemma 6.3. There exist a bounded operator N : F+
θ → F+

θ , a real number 0 <
δ < 1, and a constant C > 0 such that for all n ∈ N we have ∥N∥θ ≤Cδ n, and for
all ṽ ∈ F+

θ ,

Ln(ṽ) =
∫

X
ṽdµ +Nn(ṽ).

We have the following result.

Lemma 6.4. There exists a constant C1 > 0 such that the following holds. For any
ε > 0, ℓ≥ 1, and ṽ ∈ F+

θ with |ṽ|θ ≤ ℓ, if |ṽ(x̄)| ≤ 1− ε for a point x̄ ∈ X, then∫
X

vdµ ≤ 1−C1

(ε
ℓ

)d
ε.

Proof. Define w = 1− v and note that w(x̄)≥ ε and the Lipschitz semi-norm of w
satisfies |w|θ = |v|θ ≤ |ṽ|θ ≤ ℓ. If B is the ball centered at x̄ of radius r = ε

2ℓ , then
w(x)≥ ε

2 for all x ∈ B, so∫
X

wdµ ≥ ε
2

µ(B)≥ ε
2

Cu

( ε
2ℓ

)d
.

Since
∫

X vdµ = 1−
∫

X wdµ , the result follows. �

Lemma 6.5. There exist constants Ā, B̄ > 0 such that the following holds. Assume
that L = Lξ has (ε,n)-cancellation. Then, for every ṽ ∈ F+

θ with ∥ṽ∥H ≤ 1, and
for any N ≥ N0 := ⌊−B̄ log(ε/H)⌋, we have

∥LN+nṽ∥H ≤ 1− Ā
εd+1

Hd .
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Proof. Let N1 and N2 be the minimum integers which satisfy

3CHδ N1 ≤ C1

3
εd+1

Hd and 2θ N2 ≤ C1

3
εd+1

Hd ,

and let N0 = N1 +N2. It is clear from the definition that there exists a constant
B̄ > 0 such that N0 = ⌊−B̄ log(ε/H)⌋.

For every x ∈ X ,

|LN1+nṽ(x)| ≤ |LN1(|Lnṽ|)(x)| ≤
∫

X
|Lnṽ|dµ + |NN1(|Lnṽ|)(x)|,

where, by Lemma 6.3 and (9),

|NN1(|Lnṽ|)(x)| ≤Cδ N1∥Lnṽ∥θ ≤Cδ N1(1+θ n|ṽ|θ +H)≤ 3CHδ N1 ≤ C1

3
εd+1

Hd ,

where the last inequality follows from the definition of N1. From Lemma 6.2, we
have |Lnṽ|θ ≤ H∥ṽ∥H ≤ H. Thus, Lemma 6.4 applied to |Lnṽ| gives us

|LN1+nṽ(x)| ≤ 1−C1

( ε
H

)d
ε +

C1

3
εd+1

Hd .

Therefore, we obtain

(11) ∥LN+nṽ∥∞ ≤ ∥LN1+nṽ∥∞ ≤ 1− 2C1

3
εd+1

Hd .

Finally, the inequality (9) gives us

|LN+nṽ|θ ≤ θ N2 |LN−N2+nṽ|θ +H∥L N−N2+nṽ∥∞ ≤ H
(
2θ N2 +∥L N1+nṽ∥∞

)
.

By the definition of N2 and (11), we conclude

|LN+nṽ|θ ≤ H
(
2θ N2 +∥LN1+nṽ∥∞

)
≤ H

(
1− C1

3
εd+1

Hd

)
.

The inequality above and (11) conclude the proof. �

We are in position to complete the proof of Proposition 6.1

Proof of Proposition 6.1. By Proposition 5.8, Lξ has (εξ ,nξ )-cancellations, with
ε ≥ A0ξ−α and nξ ≤ B0| logξ |, for some positive constants A0,B0. Therefore, by
Lemma 6.5, for every N ≥ N0 +nξ we have

∥LN
ξ ∥H ≤ 1− Ā

εd+1

Hd ≤ 1−Aξ−(αd+α+d),

for some constant A > 0. By the definitions of N0 and nξ , there exists a constant
B > 0 such that N0 +nξ ≤ B| logξ |. �

6.2. Low frequencies. We now want to estimate the norm of Lξ for small ξ ∈ R.
Let us notice that there exists ξ0 > 0 such that for all 0 ≤ ξ ≤ ξ0 we have H =
max

{
1, 2R

1−θ
}
= 1, so that ∥ · ∥H ≤ ∥ · ∥θ ≤ 2∥ · ∥H . We will prove the following

bound.

Proposition 6.6. There exist κ > 0 and a constant Aκ > 0 such that, for all 0 <
ξ < κ and for all n ≥ 0, we have

∥Ln
ξ∥H ≤ 4(1−Aκξ 2)n.
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Let us recall that the family of operators z 7→ Lz is analytic for z ∈ C. This
ensures that we can apply classical results from analytic perturbation theory to
study the spectrum of bounded linear operators, see in particular [22, Theorem
VII.1.8]. In our case, since the operator L0 = L has a spectral gap, we can deduce
the following result, see [26, Chapter 4], [19, Proposition 2.3] and [31, p.15].

Theorem 6.7. There exists a κ > 0 such that the twisted transfer operator Lz on
F+

θ has a spectral gap for all |z| < κ . Moreover, there exist λz ∈ C and linear
operators Pz and Nz such that Lz = λzPz +Nz and which satisfy the following
properties:

(1) λz, Pz and Nz are analytic on the disk {|z|< κ},
(2) Pz is a projection and its range has dimension 1,
(3) PzNz =NzPz = 0,
(4) the spectral radius ρ(Nz) of Nz satisfies ρ(Nz)< λz −δ , for some δ inde-

pendent of z.

In our case, we restrict to real frequencies 0 < ξ < κ . For the proof of the
following lemma, see [26, Chapter 4] and [31, Section 4].

Lemma 6.8. With the notation of Theorem 6.7, there exist constants Aκ ,Bκ > 0
such that for all 0 < ξ < κ we have∣∣λξ − (1−2Aκξ 2)

∣∣≤ Bκξ 3.

The fact that Aκ is strictly positive follows from the fact that f+ is not cohomol-
ogous to zero, see Lemma 3.1.

Proof of Proposition 6.6. By Theorem 6.7, up to choosing a smaller κ , we can
assume that ρ(Nξ ) < |λξ | ≤ 1−Aκξ 2 for all 0 < ξ ≤ κ . Therefore, for any ṽ ∈
F+

θ , we have

∥Ln
ξ ṽ∥H ≤ ∥Ln

ξ ṽ∥θ ≤ (|λξ |n +ρ(Nξ )
n)∥ṽ∥θ ≤ 4(1−Aκξ 2)n∥ṽ∥H ,

which proves the result. �

7. RAPID DECAY

In Section 8, we will use the contraction results established for the twisted trans-
fer operator Lξ in the previous section in order to prove rapid mixing. In this
section, we give several technical propositions in an abstract setting which encap-
sulate most of the difficult inequalities involved in the proof.

Definition 7.1. Consider a function w : A ⊆ (0,∞) → R. We say w(ξ ) decays
rapidly in ξ if for each ℓ≥ 1, there is a constant C such that |w(ξ )| ≤Cξ−ℓ for all
ξ . We say a sequence {sn} decays rapidly in n if for each ℓ≥ 1, there is a constant
C such that |sn| ≤Cn−ℓ for all n.

Proposition 7.2. Suppose A, B, β , and ξ0 are positive constants and that {wn} is a
decreasing sequence of non-negative functions of the form wn : [ξ0,∞)→ [0,1]. If
w0(ξ ) decays rapidly in ξ and

wn+N(ξ )≤ (1−Aξ−β )wn(ξ ) for all N > B log(ξ ),

then the sequence {sn} defined by sn = supξ wn(ξ ) decays rapidly in n.

In order to prove this, we first give a lemma which establishes for each fixed ξ
an exponential rate of decay of the sequence {wn(ξ )}.
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Lemma 7.3. In the setting of Proposition 7.2, there are constants D and γ such
that wn+K(ξ )< 1

e wn(ξ ) for all K > Dξ γ .

Proof. Consider a specific ξ and let k and N be the smallest integers such that
k > 1

A ξ β and N > B log(ξ ). Then (1−Aξ−β )k < exp(−kAξ−β )< exp(−1) and so

wn+kN(ξ )≤ (1−Aξ−β )kwn(ξ )≤
1
e

wn(ξ ).

If we choose an exponent γ > β , then there is a constant D such that

kN ≤ (
1
A

ξ β +1)(B logξ +1)≤ Dξ γ .

Moreover, this constant D may be chosen uniformly for all ξ . If K > Dξ γ , then
K > kN and wn+K(ξ )≤ wn+kN(ξ ). �

Proof of Proposition 7.2. We will show for any q> 0 that there is a constant Q such
that sn < ε for all 0 < ε < 1 and n > Qε−q. One can see that this condition implies
that {sn} decays rapidly. Let D and γ be as in the above lemma and choose an
integer ℓ > γ/q. As w0(ξ ) decays rapidly in ξ , there is C such that w0(ξ )<Cξ−ℓ

for all ξ in the domain. For a given ε > 0:
• let a > 0 be such that Ca−ℓ = ε ,
• let j be the smallest integer such that e− j < ε , and
• let K be the smallest integer such that K > Daγ .

Now consider a frequency ξ . If ξ > a, then w jK(ξ )≤ w0(ξ )< ε . If instead ξ ≤ a,
then K > Dξ γ which implies w jK(ξ ) ≤ e− jw0(ξ ) < ε . Together, these imply that
sn < ε for all n > jK. Since aγ = 1

C ε−γ/ℓ and q > γ/ℓ, there is a constant Q such
that

jK ≤ (log(ε−1)+1)(Daγ +1)< Qε−q

holds uniformly for all ε . �

Proposition 7.4. Suppose A, and ξ0 are positive constants, 0 < α < 1
2 , and {wn}

is a decreasing sequence of non-negative functions of the form wn : (0,ξ0]→ [0,1].
If wn+k(ξ )≤ 4(1−Aξ 2)kwn(ξ ) for all ξ , k and n, then the sequence {sn} defined
by

sn = sup {wn(ξ ) : n−α ≤ ξ ≤ ξ0}
decays rapidly in n.

Proof. If n−α ≤ ξ , then wn(ξ )≤ 4(1−Aξ 2)n ≤ 4exp(−nAξ 2)≤ 4exp(−n1−2αA),
and, since 1−2α > 0, one can show that 4exp(−n1−2αA) decays rapidly in n. �

Propositions 7.2 and 7.4 are enough to establish rapid mixing in the setting of
skew products over one-sided shifts. However, to handle two-sided shifts, we will
need the following more technical results.

Proposition 7.5. Let A, B, β , ξ0 and θ be positive constants. Let vn,m : [ξ0,∞)→
[0,∞) be a collection of functions defined for all integers n ≥ 0 and m ≥ 0 and let
w : [ξ0,∞) → [0,∞) be a bounded function. Suppose for all n,m ≥ 0 and ξ ≥ ξ0
that

(1) vn,m(ξ )≤ vn+1,m(ξ ),
(2) vn+N,m(ξ )≤ (1−Aξ−β )vn,m(ξ ) when N > B log(ξ ),
(3) v0,m(ξ )≤ θ−mw(ξ ), and
(4) w(ξ ) decays rapidly in ξ .
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Then, for any c > 0, the sequence {tn} defined by

tn = sup {vn,m(ξ ) : ξ > ξ0 and m < c log(n)}

decays rapidly in n.

Proof. As w(ξ ) is bounded, we may without loss of generality assume that w(ξ )≤
1 for all ξ . Define wn(ξ ) = supm θ mvn,m(ξ ). One can verify that {wn} satisfies the
hypotheses of Proposition 7.2. Hence supξ wn(ξ ) decays rapidly in n, meaning
that for a given ℓ, there is C such that vn,m(ξ ) < Cθ−mn−ℓ for all m and n. If
m < c log(n), then

θ−m < θ−c log(n) = n−c log(θ) ⇒ vn,m(ξ )<Cn−ℓ−c log(θ).

From this, one can see that {tn} decays rapidly in n. �

Proposition 7.6. Let A, β , ξ0 and θ be positive constants, and 0 < α < 1
2 . Let

vn,m : (0,ξ0]→ [0,∞) be a collection of functions defined for all integers n ≥ 0 and
m≥ 0, and let w : (0,ξ0]→ [0,∞) be a bounded function. Suppose for all n,m,k ≥ 0
and ξ ≤ ξ0 that

(1) vn,m(ξ )≤ vn+1,m(ξ ),
(2) vn+k,m(ξ )≤ 4(1−Aξ 2)kvn,m(ξ ),
(3) v0,m(ξ )≤ θ−mw(ξ ).

Then for any c > 0, the sequence {tn} defined by

tn = sup {vn,m(ξ ) : n−α < ξ ≤ ξ0 and m < c log(n)}

decays rapidly in n.

Proof. This follows from Proposition 7.4 using the proof of Proposition 7.5. �

8. PROOF OF THEOREM 4.5

This section is devoted to the proof of Theorem 4.5.
Let ψ ∈ L + and Φ ∈ G + be given, and fix k ∈ N and 0 < α < 1/2. Recall that

the global observable Φ defines a complex measure ηx for each x ∈ X and that there
is a uniform constant M = ∥Φ∥G+ such that ∥ηx∥TV ≤ M for all x ∈ X . The Fourier
transform of the local observable ψ is a function of the form ψ̂ : X ×R→C where,
for each frequency ξ , the function ψ̂ξ : X → C defined by ψ̂ξ (x) = ψ̂(x)(ξ ) is
Hölder and lies in F+

θ .
By Proposition 4.6, we have

cov(Φ◦Fn,ψ) =
∫

X

∫ ∞

−∞
(Ln

ξ ψ̂ξ )(x)dηx(ξ ) dµ(x)−νav(Φ)ν(ψ).

We will estimate the correlations by splitting the frequencies ξ ∈ R into the cases
ξ = 0, 0 < |ξ | < n−α , and |ξ | > n−α . In fact, we only consider ξ ≥ 0 as the
estimates for ξ < 0 are analogous.

The proof of Theorem 4.5 follows from the next three lemmas.

Lemma 8.1. There exist constants C > 0 and 0 < δ < 1 such that∣∣∣∣∫X

∫
{0}

(Ln
ξ ψ̂ξ )(x)dηx(ξ ) dµ(x)−νav(Φ)ν(ψ)

∣∣∣∣≤CM(Max0(ψ)+Lip0(ψ))δ n,

for all n.
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Proof. Recalling that L0 = L is the transfer operator associated to σ , we have∫
{0}

(Ln
ξ ψ̂ξ )(x)dηx(ξ ) dµ(x) = ηx({0})(Lnψ̂0)(x).

By Lemma 6.3, there exists a constant C > 0 and 0 < δ < 1 such that∣∣∣∣(Lnψ̂0)(x)−
∫

X
ψ̂0(x)dµ(x)

∣∣∣∣= |(Lnψ̂0)(x)−ν(ψ)| ≤Cδ n∥ψ̂0∥θ ,

where we used that ψ̂0(x) =
∫
R ψ(x,r)dr. Hence, by Lemma 3.5 and Lemma 4.2,

we conclude∣∣∣∣∫X

∫
{0}

(Ln
ξ ψ̂ξ )(x)dηx(ξ ) dµ(x)−νav(Φ)ν(ψ)

∣∣∣∣
≤C

(∫
X
|ηx|({0})dµ(x)

)
∥ψ̂0∥θ δ n ≤CM(Max0(ψ)+Lip0(ψ))δ n.

�
Lemma 8.2. We have that∣∣∣∣∫X

∫
(0,n−α )

(Ln
ξ ψ̂ξ )(x)dηx(ξ ) dµ(x)

∣∣∣∣≤ Max0(ψ)LF(Φ,n−α),

for all n.

Proof. Since, by Lemma 4.2, we have ∥Ln
ξ ψ̂ξ∥∞ ≤ ∥ψ̂ξ∥∞ ≤ Max0(ψ), we obtain∣∣∣∣∫X

∫
(0,n−α )

(Ln
ξ ψ̂ξ )(x)dηx(ξ ) dµ(x)

∣∣∣∣≤ Max0(ψ)
∫

X
|ηx|
(
(0,n−α)

)
dµ(x)

≤ Max0(ψ)LF(Φ,n−α),

which settles the proof. �
Lemma 8.3. The sequence{∫

X

∫
[n−α ,∞)

Ln
ξ ψ̂ξ dηx(ξ ) dµ(x)

}
n≥0

decays rapidly in n.

Proof. For each n, define a function wn : [0,∞)→ [0,∞) by

wn(ξ ) = ∥Ln
ξ ψ̂ξ∥H .

By Lemma 6.2, wn is a decreasing sequence of functions, and by Lemma 4.2, w0(ξ )
is a bounded function which (in the notation of Section 7) decays rapidly in ξ . Up
to rescaling ψ , we may freely assume that w0 takes values in [0,1].

Proposition 6.6 implies that wn restricted to (0,κ] satisfies the hypotheses of
Proposition 7.4. We then fix ξ0 = κ , so that Proposition 6.1 implies that wn re-
stricted to [ξ0,∞) satisfies the hypotheses of Proposition 7.2. Hence, the sequence
defined by

sn = sup {wn(ξ ) : n−α ≤ ξ < ∞}
decays rapidly in n. Note that ∥Ln

ξ ψ̂ξ∥∞ ≤ ∥Ln
ξ ψ̂ξ∥H and so, for each n,∣∣∣∣∫

[n−α ,∞)
Ln

ξ ψ̂ξ dηx(ξ )
∣∣∣∣≤ ∥ηx∥TV sn

As µ is a probability measure, it follows that∣∣∣∣∫X

∫
[n−α ,∞)

Ln
ξ ψ̂ξ dηx(ξ )dµ(x)

∣∣∣∣≤ Msn,
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where M is the uniform bound on ∥ηx∥TV. �

9. FROM ACCESSIBILITY TO COLLAPSED ACCESSIBILITY

In this section, we relate the notion of accessibility for a skew-product F as in
(2) to the property of collapsed accessibility defined in Section 4.

For a two sided shift σ : Σ → Σ, let X be the corresponding one sided shift and
let π : Σ → X be the projection. Note that π is a continuous, surjective, open map.
We also write x+ for π(x).

For x ∈ Σ, define W s
0 (x) = π−1π(x). In other words, y ∈ W s

0 (x) if and only if
x+ = y+. For n ∈ Z, define W s

n (x) = σ−nW s
0 (σnx) and note that

W s
0 (x)⊂W s

1 (x)⊂W s
2 (x)⊂ ·· ·

is an increasing sequence whose union is W s(x). For a subset U ⊂ Σ, write

W s
n (U) =

∪
x∈U

W s
n (U).

Lemma 9.1. If U ⊂ Σ is open, then W s
n (U) is open for all n. If K ⊂ Σ is compact,

then W s
n (K) is compact for all n.

Proof. Since π is an open map, W s
0 (U) = π−1π(U) is an open set. Since σn is a

diffeomorphism W s
n (U) = σ−1(W s

0 (σnU)) is also open. A similar proof holds for
compact sets. �
Lemma 9.2. For points x and y in Σ and n ∈ Z, the following are equivalent:

(1) y ∈W s
n (x),

(2) dist(σn+kx,σn+ky)≤ rk for all k ≥ 0.

Proof. One can show that each of these conditions is equivalent to the sequences
of symbols for x and y satisfying xm = ym for all m ≥ n. �

Instead of projecting onto the future x 7→ x+, we can analogously project onto
the past x 7→ x−. Define local unstable manifolds by y ∈ W u

0 (x) if and only if
x− = y−, and for n ∈ Z define W u

n (x) = σnW s
0 (σ−nx). Analogous versions of the

above lemmas hold for these manifolds.
Let us now consider the skew-product (2). Writing p = (x,s) and q = (y, t), we

define local stable manifolds by p ∈W s
n (q) if and only if p ∈W s(q) and x ∈W s

n (y).
Define local unstable manifolds analogously. For points p and q and an integer
n > 0, a us-N-path from p to q is a sequence

p = p0, p1, . . . pn = q

such that n ≤ N and for each 0 ≤ k < n either pk+1 ∈W s
N(pk) or pk+1 ∈W u

N(pk).
For a point p, define ACN(x) by q ∈ ACN(x) if and only if there is a us-N-path

from p to q. Note that ACN(x) form an increasing sequence whose union is AC(p).
For a subset U ⊂ Σ×R, define

ACN(U) =
∪

x∈U

ACN(U).

Lemma 9.3. If U ⊂ Σ×R is open, then ACN(U) is open for all n ≥ 0. If K ⊂ Σ×R
is compact, then ACN(K) is compact for all n ≥ 0.

Proof. This follows directly from Lemma 9.1. �

Proposition 9.4. Let K be a compact subset of Σ×R such that int(K) = K. If
p ∈ Σ×R is such that K ⊂ AC(p), then there is N such that K ⊂ ACN(p).
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Proof. Since ACN(p) is an increasing sequence of compact sets and K is a Baire
space, there is N1 such that ACN1(p) contains a non-empty open subset U ⊂ K.
Since ACN(U) is an increasing sequence of open sets whose union contains the
compact set K, there is N2 such that K ⊂ ACN2(U). Then K ⊂ ACN1+N2(p). �

We have the following result.

Proposition 9.5. Let f : X → R be a Lipschitz function. If the skew product

F : Σ×R→ Σ×R, (x, t) 7→ (σx, t + f (x+))

is accessible, then f has the collapsed accessibility property.

Proof. Let K = Σ× [0,1]. By Proposition 9.4, there is a uniform constant N such
that ACN(p) contains K for any p ∈ K. With N fixed, let x ∈ X , t ∈ [0,1], and n ≥ 1
be given. Then there is a sequence of points p1,q1, p2,q2, . . . ,qm, pm+1 such that

(1) m ≤ N, p1 = FN−n(x,0), and pm+1 = FN−n(x, t);
(2) pk ∈W s

N(qk); and
(3) pk+1 ∈W u

N(qk).
Applying FN−n to this sequence, we define (ak,sk) = FN−n(pk) and (bk, tk) =
FN−n(qk) which satisfy bk ∈W s

n (ak) and ak+1 ∈W u
2N−n(bk). As (ak,sk) and (bk, tk)

are on the same stable manifold in Σ×R, it follows that tk − sk = fn(b+k )− fn(a+k ).
By the unstable analogue of Lemma 9.2, one can show that d(bk,ak+1)≤ rn−2n+1.
That is, d(bk,ak+1)≤Crn where C = r1−2N . One can then check that xk = a+k and
yk = b+k satisfy all of the conditions in the definition of collapsed accessibility. �

10. PROOF OF THEOREM 3.8

We now prove Theorem 3.8. The strategy of the proof is to reduce the problem
to the setting of Theorem 4.5.

10.1. Step 1: f only depends on future coordinates. Let us start with a prelimi-
nary step: we show that we can assume that the function f in (2) only depends on
the future coordinates. From [26, Proposition 1.2], we inherit the following result.

Lemma 10.1. There exist h ∈ F√
θ and f+ ∈ F+√

θ
such that f = f++h−h◦σ .

When reducing to a one-sided shift, we will encounter some loss in regularity as
in the previous lemma: the functions h and f+ are Holder with exponent 1/2. We
can however replace θ with

√
θ in the definition of the distance dθ to make them

Lipschitz. We remark that this is not an issue, and we will freely replace θ with a
suitable choice that makes the functions Lipschitz.

For any Φ ∈ G and ψ ∈ L , using Lemma 10.1, we can write

cov(Φ◦Fn,ψ) =
∫

Σ

∫ ∞

−∞
Φ(σnx,r+ fn(x)) ·ψ(x,r)dr dµ(x)

=
∫

Σ

∫ ∞

−∞
Φ(σnx,r+ f+n (x)+h(x)−h(σnx)) ·ψ(x,r)dr dµ(x).

Let us define Φh(x,r) = Φ(x,r− h(x)) and ψh(x,r) = ψ(x,r− h(x)). We change
variable s = r+h(x) and we get

cov(Φ◦Fn,ψ) =
∫

Σ

∫ ∞

−∞
Φ(σnx,s+ f+n (x)−h(σnx)) ·ψ(x,s−h(x))dsdµ(x)

=
∫

Σ

∫ ∞

−∞
(Φh ◦Fn

1 )(x,r) ·ψh(x,r)dr dµ(x),
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where the skew-product F1 is defined by F(x,r) = (σx,r + f+(x)). The map
H(x,r) = (x,r+h(x)) used in the change of variable above is a conjugacy between
F and F1, namely H ◦F = F1 ◦H. Moreover, H is uniformly continuous (more
precisely, it is Lipschitz with respect to the distance d√θ , exactly as h), hence it
preserves stable and unstable manifolds. In particular, F1 is accessible.

The initial claim follows from the following lemma, whose proof is contained
in the Appendix C.

Lemma 10.2. With the notation above, ψh ∈ L with ν(ψh) = ν(ψ), and Φh ∈ G
with νav(Φh) = νav(Φ). Moreover, for every x ∈ Σ, we have |(ηh)x| = |ηx|, where
(̂ηh)x = Φh(x) and η̂x = Φ(x).

10.2. Step 2: observables only depend on future coordinates. In the previous
subsection, we have seen that we can assume that f = f+ ∈ F+

θ (up to replacing
θ with

√
θ ). We now show that we can replace the observables Φ = Φh ∈ G and

ψ = ψh ∈ L with observables in G + and in L + respectively: this is the content
of Proposition 10.3 below. The proof follows the same lines as in [13]; however
in our case there are some additional difficulties in showing that the functions de-
fined belong to G + and L +. In particular, we will need to use the assumption
(TC) to ensure some compactness property in A . We postpone the proof to the
Appendix C.

Proposition 10.3. Let Φ ∈ G and ψ ∈ L . There exist constants K,M(Φ) ≥ 0,
sequences {Φm}m∈N ⊂ G +, {ψ}m∈N ⊂ L +, and, for every ℓ ∈ N, there exist con-
stants M(ψ, ℓ) and L(ψ, ℓ) such that the following properties hold for all ℓ,m,n∈N
and x ∈ X:

(i) νav(Φm) = νav(Φ) and ν(ψm) = ν(ψ),
(ii) ∥Φ◦Fm(x, ·)−Φm(x, ·)∥ ≤ M(Φ)θ m, and ∥Φ(x)∥ ≤ M(Φ),

(iii) Maxℓ(ψm)≤ M(ψ, ℓ) and Lipℓ(ψm)≤ θ−mL(ψ, ℓ),
(iv) |cov(Φ◦Fn,ψ)− cov(Φm ◦ (F+)n,ψm)| ≤ Kθ m.

From Proposition 9.5, it follows that the function f+ in the definition of the
one-sided skew-product F+ has the collapsed accessibility property.

10.3. Step 3: end of the proof. We are now ready to prove Theorem 3.8. Let
Φ ∈ G and ψ ∈ L , and fix k ∈ N and 0 < α < 1/2. Consider the sequence of
functions {ψ}m∈N ⊂ L + given by Proposition 10.3. By Lemma 4.2, their Fourier
transforms (ψ̂m)ξ satisfy

∥(ψ̂m)ξ∥∞ ≤ M(ψ, ℓ)ξ−ℓ and |(ψ̂m)ξ |θ ≤ θ−mL(ψ, ℓ)ξ−ℓ.

If we define a function w : (0,∞)→ [0,∞) by w(ξ )= supm θ m∥(ψ̂m)ξ∥H , then these
estimates imply that w(ξ ) decays rapidly in ξ in the sense of Section 7. We further
define functions vn,m : (0,∞) → [0,∞) by vn,m(ξ ) = ∥Lξ (ψ̂m)ξ∥H , and we notice
that vn,m and w satisfy the hypotheses of Proposition 7.5 and Proposition 7.6. Con-
sequently, for any c > 0, the sequence {tn}n∈N defined by

tn = sup {vn,m(ξ ) : n−α ≤ ξ < ∞ and m < c log(n)}

decays rapidly in n.
Fix n ∈ N and let m be the largest integer such that m < c log(n), where c =

k/(− log(θ)); in particular

n−k = θ c log(n) < θ m ≤ θ c log(n)−1 = θ−1n−k.
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By Proposition 10.3-(iv), we get

|cov(Φ◦Fn,ψ)| ≤ |cov(Φm ◦ (F+)n,ψm)|+Kθ−1n−k,

hence it suffices to bound the first summand in the right-hand side above. By
Proposition 4.6, we have

|cov(Φm ◦ (F+)n,ψm)| ≤
∣∣∣∣∫X

∫
{0}

(Ln
ξ (ψ̂m)ξ )(x)d(ηm)x(ξ ) dµ(x)−νav(Φm)ν(ψm)

∣∣∣∣
+

∣∣∣∣∫X

∫
(0,n−α )

(Ln
ξ (ψ̂m)ξ )(x)d(ηm)x(ξ ) dµ(x)

∣∣∣∣
+

∣∣∣∣∫X

∫
[n−α ,∞)

(Ln
ξ (ψ̂m)ξ )(x)d(ηm)x(ξ ) dµ(x)

∣∣∣∣ .
The last summand in the right-hand side above is bounded by Mtn, hence decays
rapidly. The first term, by Lemma 8.1, is bounded by

C∥Φm∥G+(Max0(ψm)+Lip0(ψm))δ n ≤CM(Φ)(M(ψ,0)+L(ψ,0))nkδ n,

which decays rapidly as well. Finally, for the second term, Lemma 8.2 implies∣∣∣∣∫X

∫
(0,n−α )

(Ln
ξ (ψ̂m)ξ )(x)d(ηm)x(ξ ) dµ(x)

∣∣∣∣≤ M(ψ,0)LF(Φm,n−α).

In order to coclude the proof of Theorem 3.8, it suffices to establish the following
lemma.

Lemma 10.4. With the notation above, for any r > 0 we have

|LF(Φm,r)−LF(Φ,r)| ≤ M(Φ)θ−1n−k.

Proof. Note that the measure associated to (Φ ◦ Fm)(x, ·) is e−iξ fm(x) dησmx(ξ ),
whose variation is |ησmx|. Let us denote R = (−r,r)\{0} ⊂ R. Then, by Proposi-
tion 10.3-(ii),

|LF(Φm,r)−LF(Φ,r)|=
∣∣∣∣∫X

|(ηm)x|(R)dµ(x)−
∫

Σ
|ηx|(R)dµ(x)

∣∣∣∣
≤
∣∣∣∣∫Σ

|ησmx|(R)dµ(x)−
∫

Σ
|ηx|(R)dµ(x)

∣∣∣∣+max
x∈X

∥(ηm)x − e−iξ fm(x)ησmx∥TV

= max
x∈X

∥Φm(x, ·)−Φ◦Fm(x, ·)∥ ≤ M(Φ)θ m ≤ M(Φ)θ−1n−k.

�

APPENDIX A. ACCESSIBILITY AND SYMBOLIC DYNAMICS

Let A : M → M be a diffeomorphism and let Ω ⊂ M be a transitive uniformly
hyperbolic subset. One can construct a Markov partition on Ω and use it to define
symbolic dynamics. That is, there is a subshift of finite type σ : Σ → Σ and a
continuous surjective map π : Σ → Ω such that A◦π = π ◦σ .

Let f : M → R be a continuous function which defines a skew product

F(x, t) = (A(x), t + f (x))

on M×R. This function then also defines a “symbolic skew product”

Fsym(x, t) = (σ(x), t + fsym(x))

on Σ×R where fsym : Σ → R is given by fsym = f ◦π .

Question A.1. If F |Ω×R is accessible, does it follow that Fsym is accessible?
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At first glance, the question might seem easy to answer, but there are some subtle
issues here. As π is uniformly continuous, if points x and y lie on the same stable
manifold in Σ, then they project down to points π(x) and π(y) lying on the same
stable manifold in M. However, one can construct examples where π(x) and π(y)
lie on the same stable manifold, but σn(x) and σn(y) stay far apart for all n ∈ Z.
Hence, not all us-paths in M lift to us-paths in Σ. Despite this, we can establish
accessibility of Fsym in certain settings.

We will adopt the notation used in Bowen’s book on the subject [6]. In particular
recall that if p and q are in the same rectangle, then [p,q] is the intersection of the
local stable manifold of p with the local unstable manifold of q. If x = {xn} and
y = {yn} are elements of the symbolic dynamics with the same “zeroth” symbol
x0 = y0, then [x,y] = z = {zn} is defined by zn = xn for n ≥ 0 and zn = yn for n ≤ 0
and one can show that π([x,y]) = [π(x),π(y)].

For p and q in Ω, if q∈W s
A(p), define ∆s(p,q) =∑∞

n=0 f (Anq)− f (An p) and note
that (p,s) ∈ W s

F(q, t) if and only if t − s = ∆s(p,q). If q ∈ W u
A (p), define ∆u(p,q)

analogously. For p and q in the same rectangle, define

h(p,q) = ∆s(p, [p,q])+∆u([p,q],q)+∆s(q, [q, p])+∆u([q, p], p).

That is, h(p,q) measures the height of the “Brin quadrilateral” that has p and q as
two of its four vectices. Note that h is continuous and if q is on the local stable or
manifold manifold of p, then h(p,q) = 0.

Define ∆s
sym,∆u

sym, and hsym using the same formulas, but with fsym in the place
of f . Then on the cylinder Ci ⊂ Σ consisting of the sequences whose zeroth symbol
corresponds to Ri, the function hsym : Ci ×Ci → R is continuous and hsym(x,y) =
h(π(x),π(y)).

Proposition A.2. If p ∈ Ri and γ : [0,1] → Ri is a continuous curve such that
h(p,γ(0)) is zero and h(p,γ(1)) is non-zero, then Fsym is accessible.

Proof. Since h and γ are continuous, I = h(p,γ([0,1])) is a positive length interval
containing zero. For any t ∈ [0,1], using the properties of symbolic dynamics we
may find elements x,y ∈Ci such that π(x) = p and π(y) = γ(t). This implies that
hsym(Ci ×Ci) contains I. From this, one can show that Fsym has an open accessibil-
ity class and then use this to conclude that Fsym is accessible. �
Corollary A.3. If A : M → M is an Anosov diffeomorphism and Ω = M, then for a
C 1-open and C r-dense (1 ≤ r < ∞) set of choices of f : M →R, the corresponding
Fsym is accessible.

Proof. Choose a rectangle Ri in a partition. Since A is Anosov and Ri has interior,
there is a periodic point p in the interior of Ri. Adapting the proof of the “Unweav-
ing Lemma”, that is [30, Lemma A.4.3], we can make a small perturbation to any
starting f in a small neighbourhood in order to find a point q with h(p,q) ̸= 0. We
can then define a path γ : [0,1]→ Ri from p to q and apply Proposition A.2. �
Corollary A.4. If A : T2 → T2 is an Anosov diffeomorphism, then F is accessible
if and only is Fsym is accessible.

Proof. Here, A is topologically conjugate to a linear map [16], and so we assume A
itself is linear. In this setting, we can find a Markov partition where the interior of
each rectangle is homeomorphic to a disc and its boundary consists of two stable
curves and two unstable curves. For such a construction, see for instance [27,
Section 8]. If Fsym is not accessible, then for each rectangle Ri the stable and
unstable directions of F are jointly integrable inside the region Ri ×R ⊂ M ×R.
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This region is therefore foliated by C1 surfaces (with boundary) tangent to Es⊕Eu.
As the rectangles meet along stable and unstable curves, we can “glue together” the
leaves of neighbouring rectangles to produce a foliation on all of M×R tangent to
Es ⊕Eu. �
Remark A.5. The proof above is highly specific to the 2-torus. Bowen showed in
higher dimensions that the boundaries of the rectangles are not smooth [5]. More-
over, for the standard constuction of a Markov partition of an Anosov diffeomor-
phism, it is not clear in general whether the rectangles even have finitely many
connected components.

We now consider accessibility in the setting of hyperbolic attractors.

Corollary A.6. If A : M → M is an Axiom A diffeomorphism and Ω ⊂ M is an
attractor or repellor, then for a C 1-open and C r-dense (1 ≤ r < ∞) set of choices
of f : M → R, the corresponding Fsym is accessible.

Proof. We will assume Ω is an attractor so that for each p ∈ Ω, the unstable mani-
fold W u

A (p) is a connected immersed submanifold lying entirely within Ω.
As shown in [21], there is a neighbourhood of Ω on which one can define in-

variant stable and unstable foliations. We may find a periodic point p and a small
neighbourhood U of p, such that every unstable manifold intersects U in a path-
connected set.

As in the proof of Corollary A.3 above, one can adapt the “Unweaving Lemma”
to perturb f and find p and q with h(p,q) ̸= 0. We define γ : [0,1]→ Ri to be a path
from [p,q] to q and then apply Proposition A.2. �

APPENDIX B. PROOFS OF LEMMAS 3.2, 3.5, 3.7, AND 3.1

B.1. Proof of Lemma 3.2. For any fixed R > 0, by the invariance of the Gibbs
Measure with respect to the dynamics, we have

1
2R

∫
Σ×[−R,R]

Φ(x,r)dν(x,r) =
1

2R

∫
Σ×[−R,R]

Φ(σx,r)dν(x,r),

therefore
1

2R

∣∣∣∣∫Σ×[−R,R]
(Φ◦F −Φ)(x,r)dν(x,r)

∣∣∣∣
≤ 1

2R

∣∣∣∣∫Σ

(∫ R+ f (x)

−R+ f (x)
Φ(σx,r)dr

)
dµ(x)−

∫
Σ×[−R,R]

Φ(σx,r)dν(x,r)
∣∣∣∣

≤ 1
R
∥ f∥∞ ∥Φ∥∞ .

The last term above converges to zero for R → ∞, hence the limit

lim
R→∞

1
2R

∫
Σ×[−R,R]

Φ◦F(x,r)dν(x,r)

exists and equals νav(Φ).

B.2. Proof of Lemma 3.5. By definition, we can write

Φ(x,r) =
∫ ∞

−∞
e−irξ dηx(ξ ) = ηx({0})+

∫
R\{0}

e−irξ dηx(ξ ).

We have to show that the limit (3) exists; in order to do this, we prove that for any
x ∈ Σ we have

(12) lim
R→∞

1
2R

∫ R

−R
Φ(x,r)dr = ηx({0}),
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from which the claim follows. For any R > 0,

1
2R

∫ R

−R
Φ(x,r)dr =

1
2R

∫ R

−R

(
ηx({0})+

∫
R\{0}

e−irξ dηx(ξ )
)

dr

= ηx({0})+
∫
R\{0}

(
1

2R

∫ R

−R
e−irξ dr

)
dηx(ξ )

= ηx({0})+
∫
R\{0}

eiRξ − e−iRξ

2iRξ
dηx(ξ ) = ηx({0})+

∫
R\{0}

sin(Rξ )
Rξ

dηx(ξ ).

We have that |sin(Rξ )/(Rξ )| ≤ 1 (and 1 ∈ L1(|ηx|), since the total variation of ηx
is finite) and sin(Rξ )/(Rξ ) converges to 0 for all ξ ̸= 0. Lebesgue theorem yields
(12), which completes the proof.

B.3. Proof of Lemma 3.7. Let us show that for all ε > 0 we have

η
(
R\
[
−2

ε
,

2
ε

])
≤ 1

ε

∫ ε

−ε
Φ(0)−Φ(r)dr

Then, simply by choosing ε = 2/K, we conclude

η(R\ [−K,K])≤ K
2

∫ 2/K

−2/K
|Φ(0)−Φ(r)|dr ≤ LK

2

∫ 2/K

−2/K
|r|dr =

2L
K

.

Fix ε > 0; then
1

2ε

∫ ε

−ε
Φ(0)−Φ(r)dr =

1
2ε

∫ ε

−ε
Φ(0)−

(∫ ∞

−∞
e−iξ r dη(ξ )

)
dt

= Φ(0)−
∫ ∞

−∞

(∫ ε

−ε

e−iξ r

2ε
dr

)
dη(ξ ) =

∫ ∞

−∞
1−
(∫ ε

0

cos(ξ r)
ε

dr
)

dη(ξ )

=
∫ ∞

−∞
1− sin(εξ )

εξ
dη(ξ ) =

∫
[− 2

ε ,
2
ε ]

1− sin(εξ )
εξ

dη(ξ )+
∫
R\[− 2

ε ,
2
ε ]

1− sin(εξ )
εξ

dη(ξ ).

Since sin(x)/x ≤ max{1,1/|x|} for all x ∈ R, we get

1
2ε

∫ ε

−ε
Φ(0)−Φ(r)dr ≥

∫
R\[− 2

ε ,
2
ε ]

1− sin(εξ )
εξ

dη(ξ )≥
∫
R\[− 2

ε ,
2
ε ]

1− 1
|εξ |

dη(ξ ).

Clearly, R\
[
− 2

ε ,
2
ε
]
=
{

ξ ∈ R : 1− 1
|εξ | >

1
2

}
, thus, by Chebyshev inequality,

η
(
R\
[
−2

ε
,

2
ε

])
≤ 2

∫
R\[− 2

ε ,
2
ε ]

1− 1
|εξ |

dη(ξ )≤ 1
ε

∫ ε

−ε
Φ(0)−Φ(r)dr,

which proves the initial claim.

B.4. Proof of Lemma 3.1. Assume that f is cohomologous to zero, namely there
exists a measurable function w such that f = w ◦σ −w. By Livs̆ic Theorem, we
can assume that w is continuous. We claim that for any x ∈ Σ, all the points that
can be reached by an su-path from (x,w(x)) ∈ Σ×R are contained in the graph of
w, i.e. in the set G(w) := {(y,w(y)) : y ∈ Σ}, which will give a contradiction with
the accessibility assumption.

Let (x,w(x))∈ G(w); we now show that the whole stable set W s(x,w(x)) is fully
contained in G(w). Let (y,s) ∈W s(x,w(x)); then, y ∈W s(x) and

s−w(x)= lim
n→∞

fn(x)− fn(y)= lim
n→∞

(w(σnx)−w(x)−w(σny)+w(y))=−w(x)+w(y),

that is s = w(y). This implies W s(x,w(x))⊂ G(w). An analogous argument shows
that W u(x,w(x))⊂ G(w).
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APPENDIX C. PROOFS OF LEMMA 10.2 AND PROPOSITION 10.3

C.1. Proof of Lemma 10.2. In this proof, we will enounter another loss in regular-
ity, namely we will need to replace θ with a different one to make the observables
Lipschitz: again, this is not an issue and we will freely do so.

Let ψ ∈ L and define ψh(x,r) = ψ(x,r− h(x)), where h ∈ Fθ . By definition,
it is clear that ψh is well-defined from Σ to S , and, by the Fubini-Tonelli Theorem,
ν(ψ) = ν(ψh). The only thing to check is that it is a Lipschitz map.

Let a, ℓ be non negative integers, and fix x,y ∈ Σ. We need to estimate

∥ψh(x)−ψh(y)∥a,ℓ := sup
r∈R

|r|a|∂ ℓψh(x,r)−∂ ℓψh(y,r)|.

By definition, for any r ∈ R, we have

|r|a|∂ ℓψh(x,r)−∂ ℓψh(y,r)| ≤|r|a|∂ ℓψ(x,r−h(x))−∂ ℓψ(x,r−h(y))|
+ |r|a|∂ ℓψ(x,r−h(y))−∂ ℓψ(y,r−h(y))|

Let us consider the two summands separately. For the fisrt one, we have

|r|a|∂ ℓψ(x,r−h(x))−∂ ℓψ(x,r−h(y))| ≤ |r|a|∂ ℓ+1ψ(x,r−h(x)+u)|·|h(x)−h(y)|,

for some |u| ≤ h(x)−h(y)≤ 2∥h∥∞. If |r| ≤ 4∥h∥∞, we have

|r|a|∂ ℓψ(x,r−h(x))−∂ ℓψ(x,r−h(y))| ≤ (4∥h∥∞)
a∥ψ(x)∥0,ℓ+1|h|θ dθ (x,y),

otherwise, if |r|> 4∥h∥∞, then

|r|a|∂ ℓψ(x,r−h(x))−∂ ℓψ(x,r−h(y))| ≤ ∥ψ(x)∥a,ℓ+1|h|√θ d√θ (x,y).

In both cases, the first term satisfies a Lipschitz bound, independent of r. For the
second term, if |r| ≤ 4∥h∥∞, then

|r|a|∂ ℓψ(x,r−h(y))−∂ ℓψ(y,r−h(y))| ≤ (4∥h∥∞)
a∥ψ(x)−ψ(y)∥0,ℓ,

and the Lipschitz bound follows from the assumption on ψ; otherwise, if |r| >
4∥h∥∞, then

|r|a|∂ ℓψ(x,r−h(y))−∂ ℓψ(y,r−h(y))| ≤ ∥ψ(x)−ψ(y)∥a,ℓ,

and again the conclusion follows from the assumption on ψ . This concludes the
proof of the claims on ψ .

Let now Φ ∈ G . Then, for any x ∈ Σ, the function Φh(x)(r) = Φ(x,r−h(x)) is
the Fourier-Stieltjes transform of the measure d(ηh)x = eiξ h(x) dηx. In particular,
the variation are the same |(ηh)x| = |ηx| and, from Lemma 3.5, it also follows
that νav(Φh) = νav(Φ). Again, the only claim left to be shown is the Lipschitz
assumption. We will exploit here the tail condition (TC).

Fix x,y ∈ Σ. Then,

∥Φh(x)−Φh(y)∥= ∥(ηh)x − (ηh)y∥TV ≤ ∥(eiξ h(x)− eiξ h(y))ηx∥TV +∥ηx −ηy∥TV.

The second summand in the right hand-side above satisfies a Lipschitz bound by
assumption. We need to verify for the first term. If h(x) = h(y), the term is 0 and
the proof is complete. Assume h(x) ̸= h(y) and let I = [−|h(x)−h(y)|−1/2, |h(x)−
h(y)|−1/2]. Then we have

∥(eiξ h(x)− eiξ h(y))ηx∥TV =
∫
R
|1− eiξ (h(x)−h(y))|d|ηx|(ξ )

=
∫

I
|1− eiξ (h(x)−h(y))|d|ηx|(ξ )+

∫
R\I

|1− eiξ (h(x)−h(y))|d|ηx|(ξ ).
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the first term can be bound by∫
I
|1− eiξ (h(x)−h(y))|d|ηx|(ξ )≤ |h(x)−h(y)|1/2∥ηx∥TV,

and the second by∫
R\I

|1− eiξ (h(x)−h(y))|d|ηx|(ξ )≤ 2|ηx|(R\ I)≤ |h(x)−h(y)|a/2,

hence the proof follows from the fact that h is Lipschitz (again, up to possibly
replacing θ with θ a/2 if a < 2).

C.2. Proof of Proposition 10.3. This section is devoted to the proof of Proposi-
tion 10.3. The strategy follows the same lines as in [13] and [26, Proposition 1.2],
although there are additional difficulties in showing that the functions Φ and ψ
belong to G + and L + respectively.

Let α : Σ×R→R be any Lipschitz function, with Lipschitz constant L(α). Fix
m ∈ N. The first step is to prove that there exists a function β : Σ×R → R such
that the function

α+ = (α ◦Fm)+β ◦F −β
depends only on the future coordinates. In other words, we want to show that
α ◦Fm is cohomologous to a function defined on X ×R. We recall the construction
of β for the reader’s convenience. For any cylinder Cn, j := C−n,o(x j), choose an
element ωn, j ∈ Cn, j. Define the element ωn(x) ∈ Σ in the following way:

(ωn(x))i =

{
xi if i ≥ 0,
ωn, j

i if i < 0.

Notice that by definition dθ (ωn(x),x)≤ θ n for all x ∈ Σ. Define

α(n)(x,r) := α(ωn(x),r+δn(x)), where δn(x) := fn(ωn(x))− fn(x).

Since ∥δn∥∞ ≤ | f |θ (1−θ)−1θ n, we have

(13)
∥∥∥α −α(n)

∥∥∥
∞
≤ L(α)(dθ (ωn(x),x)+∥δn∥∞)≤Cθ L(α)θ n,

for a constant Cθ = 1+ | f |θ (1−θ)−1. Define

β (x,r) :=
∞

∑
n=m

(α ◦Fn −α(n) ◦Fn)(x,r),

which, by (13), is well-defined as a function from Σ×R→R. Then, we can define

α+ := α ◦Fm +β ◦F −β =
∞

∑
n=m

α(n) ◦Fn −α(n) ◦Fn+1,

and from its definition, it is clear that α+ depends only on the future coordinates;
namely, it follows that α ◦Fm is cohomologous to a function defined on X ×R.

We will show in Lemma C.1 and Lemma C.2 below that if α belongs to L or
G , then α+ belongs to L + or G + respectively. Assuming these claims, let us first
finish the proof, namely we show (i) and (iii). There exist Φ+ ∈ G + and ψ+ ∈ L +

which are cohomologous to Φ◦Fm and ψ ◦Fm respectively. In particular, we have

ν(ψ+) = ν(ψ ◦Fm) = ν(ψ), and νav(Φ+) = νav(Φ◦Fm) = νav(Φ).

Moreover, from the definitions of ψ+ and Φ+ and from (13), it follows that

∥Φ+−Φ◦Fm∥= O(θ m),
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and similarly for ψ . Therefore, by invariance of the measure νu under Fm, we
obtain

|covΦ,ψ(n)|= |covΦ◦Fm,ψ◦Fm(n)|= |covΦ,ψ(n)|+O(θ m),

which concludes the proof.

Lemma C.1. If α ∈ L , then α+ ∈ L +. For any ℓ ∈ N, there exist constants
M(A, ℓ) and L(A, ℓ) depending on α and ℓ only such that Maxℓ(α+) ≤ M(α, ℓ)
and Lipℓ(α+)≤ θ−mL(α, ℓ).

Proof. In order to prove the result, it is sufficient to show that for every x ∈ Σ,
the function β (x, ·) is Schwartz and the functions x 7→ ∂ ℓβ (x, ·) are lipschitz with
respect to the L1-norm.

Since, for every x ∈ Σ and ℓ ∈ N, the series

∞

∑
n=m

∂ ℓα(σnx,r+ fn(x))−∂ ℓα(ωn(σnx),r+ fn(x)+δn(σnx))

converges uniformly, the derivative ∂ ℓβ (x, ·) exists and equal the series above. We
now show that β (x, ·) is a Schwartz function for every x ∈ Σ.

Let a, ℓ ∈ N. We need to show that ra∂ ℓβ (x,r) is uniformly bounded in r. To
save notation, let us write xn = σnx, yn = ωn(σnx) and δn = δn(σnx). We have

|ra∂ ℓβ (x,r)| ≤
∣∣∣∣ra

∞

∑
n=m

∂ ℓα(xn,r+ fn(x))−∂ ℓα(yn,r+ fn(x))
∣∣∣∣

+

∣∣∣∣ra
∞

∑
n=m

∂ ℓα(yn,r+ fn(x))−∂ ℓα(yn,r+ fn(x)+δn)

∣∣∣∣
Each term in the sum above satisfies a Lipaschitz bound exactly as in the proof of
Lemma 10.2. Since the terms d(xn,yn) and δn can be bounded by O(θ n), the series
above converge. Therefore, |ra∂ ℓβ (x,r)| is uniformly bounded for all a, ℓ ∈ N,
hence β (x, ·) is a Schwartz function.

The lipschitz bounds on the functions x 7→ ∂ ℓβ (x, ·) with respect to the L1-norm
can be proved in a similar way and is left as an exercise to the reader: we remark
that if α is a lipschitz function with constant L(α), then α ◦Fm is lipschitz with
constant L(α ◦Fm)≤ θ−mL(α). �

We now show the analogous result if we assume that α is a global observable.

Lemma C.2. If α ∈ G , then α+ ∈ G +, and ∥α+∥G+ ≤ ∥α∥G .

Proof. It suffices to show that for any x ∈ Σ, β (x, ·) is the Fourier-Stieltjes trans-
form of a complex measure ηx and moreover the total variation ∥ηx∥TV is uniformly
bounded.

By definition,

β (x,r) = lim
N→∞

(
N

∑
n=m

α(σnx,r+ fn(x))−α(ωn(σnx),r+ fn(x)+δn(σnx))

)
.
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Fix x ∈ Σ and again let us denote xn = σnx, yn = ωn(σnx) and δn = δn(σnx). For
N ≥ m, let ζN = ζ (1)

N +ζ (2)
N be the complex measure defined by

dζN(ξ ) = dζ (1)
N (ξ )+dζ (2)

N (ξ ) =
N

∑
n=m

eiξ fn(x) dηxn(ξ )− eiξ ( fn(x)+δn) dηyn(ξ ),

where dζ (1)
N (ξ ) =

N

∑
n=m

eiξ fn(x) dηxn(ξ )− eiξ fn(x) dηyn(ξ )

and dζ (2)
N (ξ ) =

N

∑
n=m

(eiξ fn(x)− eiξ ( fn(x)+δn))dηyn(ξ ).

From the expression for β above, by definition, the Fourier-Stieltjes transforms ζ̂N
of ζN converge uniformly to β (x, ·). In order to conclude that β (x, ·) is the Fourier-
Stieltjes transform of a complex measure, it is enough to show that the family of
measures ζN is contained in a weakly compact set. We will proceed as in the proof
of Lemma 10.2 and use the tightness condition (TC).

We will show this separately for ζ (1)
N and ζ (2)

N . For ζ (1)
N , by the lipschitz assump-

tion on α , we have

∥ζ (1)
N ∥TV =

∥∥∥∥∥ N

∑
n=m

eiξ fn(x)ηxn − eiξ fn(x)ηyn

∥∥∥∥∥
TV

≤
N

∑
n=m

∥ηxn −ηyn∥TV ≤ ∥α∥G

N

∑
n=0

θ n.

The total variation norm is stronger that the weak-convergence topology, hence
the sequence of measures ζ (1)

N converges weakly (since the tails are exponentially
small). For the second term, we apply Prokhorov theorem: it suffices to show that
the sequence ζ (2)

N is uniformly bounded in total variation norm and is tight. Notice
that the variation of ζ (2)

N can be bounded by

|ζ (2)
N | ≤

N

∑
n=m

|1− eiξ δn ||ηyn |.

Using the tightness condition (TC),

∥ζ (2)
N ∥TV = |ζ (2)

N |(R)

≤
N

∑
n=m

|1− eiξ δn ||ηyn |
(
[−θ−n/2,θ−n/2]

)
+

N

∑
n=m

|1− eiξ δn ||ηyn |
(
R\ [−θ−n/2,θ−n/2]

)
≤

N

∑
n=m

|ηyn |(R)

(
max

ξ∈[−θ−n/2,θ−n/2]
|1− eiξ δn |

)
+2

N

∑
n=m

|ηyn |
(
R\ [−θ−n/2,θ−n/2]

)
≤ ∥A∥G

N

∑
n=m

∥δn∥θ−n/2 +2A∥A∥G

N

∑
n=m

θ an/2 ≤ (1+2A)∥A∥G

N

∑
n=m

(θ n/2 +θ an/2).
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This shows that ζ (2)
N is uniformly bounded in total variation. Similarly we prove

tightness: let us fix ε > 0, and let K = [−ε−1/a,ε−1/a]. Then,

|ζ (2)
N |(R\K)≤

N

∑
n=m

|1− eiξ δn ||ηyn |
(
[−ε−1/2θ−n/2,ε−1/2θ−n/2]∩ (R\K)

)
+

N

∑
n=m

|1− eiξ δn ||ηyn |
(
R\ [−ε−1/2θ−n/2,ε−1/2θ−n/2]

)
≤

N

∑
n=m

|ηyn |(R\K)∥δn∥θ−n/2ε−1/2 +2Aεa/2
N

∑
n=m

θ an/2

≤Aε1/2
N

∑
n=m

θ n/2 +2Aεa/2
N

∑
n=m

θ an/2.

This proves tightness and hence concludes the proof. �
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