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Abstract. We show the existence of a family of manifolds on which all (pointwise or

absolutely) partially hyperbolic systems are dynamically coherent. This family is the set

of 3-manifolds with nilpotent, non-abelian fundamental group. We further classify the

partially hyperbolic systems on these manifolds up to leaf conjugacy. We also classify

those systems on the 3-torus which do not have an attracting or repelling periodic

2-torus. These classification results allow us to prove some dynamical consequences,

including existence and uniqueness results for measures of maximal entropy and quasi-

attractors.
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1. Introduction

Since the beginning of its study, there have been two competing candidates for the

definition of partial hyperbolicity. In both definitions, there is a continuous splitting of

the tangent bundle

TM = Es ⊕ Ec ⊕ Eu

invariant under the derivative Df of the diffeomorphism f : M → M and where the

strong expansion of the unstable bundle Eu and the strong contraction of the stable

bundle Es dominate any expansion or contraction on the center Ec. The distinction

between the two definitions is in the exact nature of the domination. If (for some

Riemannian metric on M) the inequalities

‖Dfvs‖ < ‖Dfvc‖ < ‖Dfvu‖ and ‖Dfvs‖ < 1 < ‖Dfvu‖

are satisfied for each point x ∈ M and for unit vectors vs ∈ Es(x), vc ∈ Ec(x), and

vu ∈ Eu(x), then f is pointwise (or relatively) partially hyperbolic. If f also satisfies the

condition that there are global constants λ, γ̂, γ, µ independent of x such that

‖Dfvs‖ < λ < γ̂ < ‖Dfvc‖ < γ < µ < ‖Dfvu‖

then f is absolutely partially hyperbolic. See [HPS] where both notions are discussed.
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Only recently have important differences between the two notions come to light.

In every (pointwise or absolutely) partially hyperbolic system, there are unique foli-

ations Wu and Ws tangent to Eu and Es ([HPS]), but there is not always a foliation

tangent to Ec (see [BuW1]). A partially hyperbolic diffeomorphism f is dynamically

coherent if there are f -invariant foliations tangent to Ecs = Es ⊕ Ec, Ecu = Ec ⊕ Eu,

(and consequently also to Ec).

Brin, Burago, and Ivanov proved that every absolutely partially hyperbolic system

on the 3-torus is dynamically coherent [BBI2]. Inspired by this result, Hertz, Hertz,

and Ures attempted to extend it to all pointwise partially hyperbolic systems, but this

line of research led them to discover a counterexample. There are pointwise partially

hyperbolic diffeomorphisms on T
3 for which there is no foliation tangent to the center

direction [RHRHU4]. Hertz, Hertz, and Ures further asked if there are any manifolds

on which all pointwise partially hyperbolic systems are dynamically coherent. In this

paper, we answer this question in the affirmative.

Theorem 1.1. Suppose M is a 3-manifold with (virtually) nilpotent fundamental group.

If M is not finitely covered by T
3, then every pointwise partially hyperbolic diffeomor-

phism on M is dynamically coherent.

This builds on results, obtained independently in [H2] and [Par], in the absolute par-

tially hyperbolic setting.

Only certain 3-manifolds can support partially hyperbolic diffeomorphisms. In par-

ticular, if π1(M) is (virtually) nilpotent and M supports partially hyperbolic diffeomor-

phisms, then M is (finitely covered by) a circle bundle over a 2-torus [Par]. Therefore,

Theorem 1.1 will follow as a consequence of:

Theorem 1.2. If M is a non-trivial circle bundle over T2 and f :M →M is pointwise

partially hyperbolic, then f is dynamically coherent and there is a unique f -invariant

foliation tangent to each of the bundles. Further, the bundle projection π :M → T
2 may

be chosen so that every leaf of the center foliation is a fiber of the bundle.

Beyond dynamical coherence, we also consider the classification problem for pointwise

partially hyperbolic systems. In studying Anosov flows, the natural notion of equivalence

is topological equivalence. Two flows are topologically equivalent if there is a homeo-

morphism which maps orbits of one flow to orbits of the other and which preserves the

orientations of the orbits.

The natural notion of equivalence for partially hyperbolic systems is leaf conjugacy, as

introduced in [HPS]. Two dynamically coherent partially hyperbolic diffeomorphisms f

and g are leaf conjugate if there is a homeomorphism h which maps each center leaf L

of f to a center leaf of g and hf(L) = gh(L).
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For every diffeomorphism f of the 3-torus, there is a unique linear map Af : R
3 → R

3

such that Af (Z
3) = Z

3 and, viewing T
3 as the quotient R

3/Z3, the quotiented map

Af : T3 → T
3 is homotopic to f . We call Af the linear part of f . If f is absolutely

partially hyperbolic, then Af has a partially hyperbolic splitting and the diffeomorphisms

f and Af are leaf conjugate [H].

If f is pointwise partially hyperbolic, it may not have a center foliation ([RHRHU4]),

in which case, it is not possible to define a leaf conjugacy. However, in [Pot1] it was

shown that there is only one obstruction to dynamical coherence in T
3 and here we show

that this is also the only obstruction to extending the classification.

Theorem 1.3. Let f : T3 → T
3 be pointwise partially hyperbolic. Then, either

• f is not dynamically coherent and there is a periodic 2-torus T = fk(T ) tangent

either to Ec ⊕ Eu or Ec ⊕ Es, or

• f is dynamically coherent and leaf conjugate to its linear part.

In the first case above, such a torus T is transverse either to Eu or Es and is therefore ei-

ther an attractor or a repeller. Such phenomena are impossible when the chain-recurrence

set R(f) is all of T3 (see [BDV, Chapter 10]).

Corollary 1.4. If f : T3 → T
3 is pointwise partially hyperbolic and R(f) = T

3, then f

is dynamically coherent and leaf conjugate to its linear part.

Note that if the non-wandering set Ω(f) is all of T3 (for example when f is transitive

or when f is volume-preserving) the previous corollary applies.

One can also show that a torus T as in Theorem 1.3 cannot exist when the linear part

is hyperbolic (see for example Proposition A.1 of [Pot1]).

Corollary 1.5. If f : T3 → T
3 is pointwise partially hyperbolic and its linear part Af

has no eigenvalues of modulus one, then f is dynamically coherent and leaf conjugate to

Af .

The proof of Theorem 1.3 combines results from [H], where leaf conjugacy was obtained

for absolutely partially hyperbolic systems, and [Pot1], where dynamical coherence was

studied in the pointwise case. This proof is given in section 3 after some preliminaries

are introduced in section 2.

For the manifolds considered in Theorem 1.2, all of the systems are dynamically coher-

ent and we can classify all of them. IfM is a circle bundle over T2, it is a nilmanifold, i.e.

a compact quotient G/Γ of a nilpotent Lie group G. For a diffeomorphism f :M →M ,

there is a unique Lie group automorphism on G which descends to a map Φf :M →M

homotopic to f . Call Φf the algebraic part of f .
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Theorem 1.6. Suppose M is a 3-dimensional nilmanifold, M 6= T
3, and f : M → M

is pointwise partially hyperbolic. Then, f is leaf conjugate to its algebraic part Φf .

In 2001, Pujals made a conjecture on transitive partially hyperbolic diffeomorphisms

which we paraphrase here (see [BoW]).

Conjecture 1.7 (Pujals (2001)). Up to a finite cover, every transitive partially hyper-

bolic diffeomorphism on a 3-manifold is leaf conjugate to

• an Anosov diffeomorphism on T
3,

• a time-one map of an Anosov flow, or

• a topological skew product over an Anosov map on T
2.

More recently (in 2009), Hertz, Hertz, and Ures conjectured that transitivity could

be replaced by dynamical coherence in the previous conjecture. Moreover, they posed

the following conjecture which, if proven to be true implies in particular that transitive

partially hyperbolic diffeomorphisms are dynamically coherent.

Conjecture 1.8 (Hertz, Hertz, Ures (2009)). If a partially hyperbolic diffeomorphism f

on a 3-manifold is not dynamically coherent, there is a periodic torus T = fk(T ) tangent

either to Ec ⊕ Eu or Ec ⊕ Es.

Both conjectures were posed in the pointwise case, and the results of this paper show

that both conjectures are true when the manifold in question has (virtually) nilpotent

fundamental group. As we mentioned, this last conjecture in the case of T3 was already

established in [Pot1]. We mention that in a forthcoming paper ([HP]) we plan to extend

our results to all 3-manifolds with solvable fundamental group.

One obvious reason to study pointwise partially hyperbolic systems over absolutely

partially hyperbolic systems is that it is more general. One family of diffeomorphisms

properly includes the other. Another important motivation is the study of robust tran-

sitivity and stable ergodicity (see [BDV, Wi]): Dı́az, Pujals, and Ures proved that every

C1 robustly transitive diffeomorphism of a 3-manifold is partially hyperbolic in the weak

sense, that is, it satisfies the definition given at the start of this paper, with the possible

caveat that one of the bundles Es, Ec, or Eu may be zero [DPU]. Their theorem is def-

initely a pointwise theorem, as there are robustly transitive diffeomorphisms which are

not absolutely partially hyperbolic. The result shows that pointwise partial hyperbolicity

is a notion which arises naturally when studying the space of C1 diffeomorphisms.

We remark that once the topological classification is obtained, further dynamical con-

sequences follow. Section 6 explores some more-or-less direct consequences of our result.

First, we study the existence and finiteness of maximal entropy measures which are a

direct application of our main results and previous ones [RHRHTU, U]. Then, we obtain
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another dynamical consequence which holds for partially hyperbolic diffeomorphisms of

non-toral nilmanifolds:

Proposition 1.9. Let f :M →M a partially hyperbolic diffeomorphism of a nilmanifold

M 6= T
3. Then, the foliations Wu and Ws have a unique minimal set (in particular, a

unique quasi-attractor1).

Notation. Throughout this paper “partially hyperbolic” without further qualifiers is

taken to mean pointwise partially hyperbolic and where all three bundles Eu, Ec, and

Es are non-zero.

2. Branching foliations

In this section, we introduce the notions of “almost aligned” and “asymptotic” for

branching and non-branching foliations, and review the results of Burago and Ivanov.

A (complete) surface in a 3-manifold M is a C1 immersion ı : U → M of a connected

smooth 2-dimensional manifold without boundary U which is complete with the metric

induced by the metric on M pulled back by ı.

A branching foliation on M is a collection of complete surfaces tangent to a given

continuous 2-dimensional distribution on M such that:

• Every point is in the image of at least one surface.

• There are no topological crossings between any two surfaces of the collection.

That is, no curve lying on one leaf can cross through another leaf.

• It is complete in the following sense: if xk → x and ık are surfaces of the

partition having xk in its image we have that ık converges in the C1-topology

to a surface of the collection with x in its image (see [BI] Lemma 7.1).

The image ı(U) of each surface in a branching foliation is called a leaf.

Theorem 2.1 (Burago-Ivanov [BI], Theorem 4.1). If f is a partially hyperbolic diffeo-

morphism on a 3-manifold M , such that the bundles Es, Ec and Eu are orientable and

the orientation is preserved by Df , then, there is a (not necessarily unique) f -invariant

branching foliation F cs
bran tangent to Ecs. Further, any curve tangent to Es lies in a

single leaf of F cs
bran.

A similar foliation F cu
bran is defined tangent to Ecu under the same hypotheses.

Remark. In proving results of dynamical coherence, we will need to show in some

cases that the branching foliation given by this theorem is a true foliation. A helpful

observation is that if F is a branching foliation such that every point in M belongs to

a unique leaf, then F is indeed a true foliation (see Proposition 1.6 and Remark 1.10 in

1See section 6 for a definition.
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[BoW]). A foliation for us will mean a C1,0+ foliation in the notation of [CC], that is, a

C0-foliation with C1-leaves tangent to a continuous distribution.

A surface ı : S → M can be lifted to a surface ı̃ : S̃ → M̃ where S̃ and M̃ are the

universal covers. This lift is not unique in general. For a branching foliation F on M ,

consider the collection of all possible lifts of all surfaces. This collection defines a unique

branching foliation F̃ called the lift of F to M̃ . A branching foliation F1 is almost

aligned with a branching foliation F2 if there is R > 0 such that each leaf of F̃1 lies

in the R-neighborhood of a leaf of F̃2. Note that this defines a relation on the set of

foliations which is transitive, but not necessarily symmetric.

Burago and Ivanov further proved that from any branching foliation, a non-branching

foliation can be constructed by deforming each leaf by an arbitrarily small amount [BI]

(Section 7). In the partially hyperbolic setting, if the branching foliation is transverse

to the unstable foliation, the new foliation is also transverse, and by this virtue, it does

not contain a Reeb component [BI] (Section 2). These results imply the following.

Theorem 2.2 (Burago-Ivanov [BI]). Under the hypotheses of Theorem 2.1, there is a

(non-branching) C1,0+ Reebless foliation W such that W is almost aligned with F cs
bran

and F cs
bran is almost aligned with W. A similar foliation exists for F cu

bran.

Note that the new foliation W is neither f -invariant nor tangent to Ecs.

In the specific case of the torus Td = R
d/Zd, we define a notion of the “asymptotic”

behavior of a foliation. A linear subspace V ⊂ R
d defines a linear foliation F̃V where the

leaves are the fibers of the orthogonal projection π : Rd → V ⊥. A branching foliation F̃

is asymptotic to F̃V if for ε > 0 there is K > 0 such that

‖x− y‖ > K ⇒ ‖πx− πy‖ < ε‖x− y‖

for all x, y on the same leaf of F̃ . Note that if F̃ is almost aligned with F̃V then F̃ is

asymptotic to F̃V .

As a final definition, a foliation W̃ on a manifold M̃ is quasi-isometric if there is a

global constant Q > 1 such that

d
W̃
(x, y) < Q dM̃(x, y) +Q

for any points x and y on the same leaf of W̃ . Here, d
W̃

denotes the distance inside a

leaf of the foliation.

Figure 1 gives a graphical illustration of these definitions.
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F1 F2 F3 F4

Figure 1. A graphical depiction of four examples of branching foliations

on the plane. Only F4 exhibits branching; the others are true foliations.

For any 1 ≤ i, j ≤ 4, one can verify that Fi is almost aligned with Fj.

The foliation F1 is linear and the other foliations are asymptotic to F1.

Finally, F3 is the only one which is not quasi-isometric.

3. Leaf conjugacy on the 3-torus

The main result of [H] is the following.

Theorem 3.1. Let f : Td → T
d be an absolutely partially hyperbolic diffeomorphism.

Suppose

• W̃α
f is a quasi-isometric foliation (α = u, s), and

• Ec
f is one-dimensional.

Then, f is leaf conjugate to its linear part.

While the theorem is stated under the stronger hypothesis of absolute partial hyper-

bolicity, many of the arguments of the proof apply equally well in the pointwise case. In

fact, absolute partial hyperbolicity is used only in the beginning of one of the sections

(Chapter 2, titled “Nice Properties of the Invariant Manifolds”).

In this paper’s introduction, we used Af to denote the linear part of f , whereas in [H]

it is called the “linearization” and denoted by g. In this section, we use the symbols Af
and g interchangeably depending on the context.

At the start of the proof in [H], the constants 0 < λ < γ̂ < γ < µ associated to the

absolutely partially hyperbolic splitting of f are used to define a splitting for g. Next,

the quasi-isometry assumption is used to show dynamical coherence. This follows from

a result of Brin which holds only in the absolutely partially hyperbolic case [Br]. Then,

[H] states and proves a number of propositions comparing the foliations of f and g. The

proofs of exactly three of these propositions (numbered (2.3), (2.5), and (2.7)) rely on

absolute instead of pointwise partial hyperbolicity. Using the definitions given in this

paper, these three propositions may be stated as follows.

I. W̃α
f is asymptotic to Eα

g (α = u, s).
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II. W̃α
f is almost aligned with W̃α

g (α = cu, cs).

III. For all x ∈ R
d, W̃cs

f (x) ∩ W̃u
f (x) = {x} and W̃cu

f (x) ∩ W̃s
f (x) = {x}.

The version of II in [H] also states that W̃c
f is almost aligned with W̃c

g , but this easily

follows as a consequence of II as given above. While the proof of III in [H] relies on

absolute partial hyperbolicity, it can be replaced by a short proof that works in the

pointwise case.

Proof of III assuming I and II. Suppose x 6= y ∈ W̃cs
f (x) ∩ W̃u

f (x) and define vn =

f̃n(x) − f̃n(y). Quasi-isometry of the unstable foliation implies that ‖vn‖ → ∞ as

n→ ∞. Then, property I implies that the angle of vn with Eu
g goes to zero and property

II implies that the angle with Ecs
g goes to zero. These cannot both be true. �

As the rest of the proof of Theorem 3.1 follows assuming only pointwise partial hyper-

bolicity, we may reformulate the statement thus.

Theorem 3.2. Let f : Td → T
d be a pointwise partially hyperbolic diffeomorphism with

linear part g : Td → T
d. Suppose g has a (linear) partially hyperbolic splitting and that

• f is dynamically coherent,

• W̃α
f is a quasi-isometric foliation (α = u, s),

• Ec
f is one-dimensional, and

• f and g satisfy properties I and II above.

Then, f is leaf conjugate to g.

Remark. The constants λ and µ from the absolutely partially hyperbolic splitting are

used throughout the exposition in [H]. However, apart from the special cases mentioned

above, all we need are constants Cph > 1 and 0 < λ < 1 < µ satisfying

1

Cph

µn‖v‖ < ‖Dfnv‖ for v ∈ Eu
f (x) \ {0},

‖Dfnv‖ < Cphλ
n‖v‖ for v ∈ Es

f (x) \ {0}.

Such constants exist for any pointwise partially hyperbolic system.

This finishes the discussion for diffeomorphisms on a torus T
d of general dimension

d ≥ 3. In the specific case of dimension three, we combine Theorem 3.2 with the results

in [Pot1] to prove Theorem 1.3. First, we note that the linear part g = Af is partially

hyperbolic.

Proposition 3.3. If f : T3 → T
3 is partially hyperbolic, the linear part Af has real

eigenvalues λ1, λ2 and λ3 where

|λ1| < |λ2| < |λ3| and |λ1| < 1 < |λ3|.

The associated eigenspaces define a partially hyperbolic splitting for Af .
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Proof. Let λ1, λ2 and λ3 be the (possibly complex) eigenvalues of Af , ordered so that

|λ1| ≤ |λ2| ≤ |λ3|. Burago and Ivanov proved that |λ1| < 1 < |λ3|; see [BI] (Theorem

1.2). If |λ2| = 1, we are done, since non-real eigenvalues must come in conjugate pairs.

If |λ2| > 1, then [Pot1] (Theorem A) shows that λ2 and λ3 are real and distinct, and

λ1, as the only eigenvalue with modulus smaller than 1, must be real as well. Finally, if

|λ2| < 1, consider f−1 instead. �

To show that the unstable foliation of f is asymptotic to the unstable foliation of Af ,

we need a technical lemma.

Lemma 3.4. Suppose

• F is a one-dimensional foliation on T
3,

• F is invariant under a diffeomorphism f : T3 → T
3,

• the linear part Af of f is partially hyperbolic and therefore defines a plane P

through the origin tangent to Ecs
Af
, and

• there is K > 0 and a cone E transverse to P such that

‖y − x‖ > K ⇒ y − x ∈ E

for all x ∈ R
3 and y ∈ F̃(x).

Then, F̃ is asymptotic to the unstable foliation of Af .

Here, we take a cone transverse to P to mean a set of the form

E = {v ∈ R
3 : ‖πv‖ < c‖v‖}

where 0 < c < 1 and where π : R3 → P is any projection. The proof of Lemma 3.4

relies on two properties. First, that as k → ∞, the angle between a vector v ∈ Akf (E)

and the one-dimensional subspace Eu
Af

tends uniformly to zero. Second, that for fixed

k, as ‖y− x‖ goes to infinity, the angle between fk(y)− fk(x) and Akf (y)−Akf (x) tends

uniformly to zero. We leave the details to the reader.

Several of the results of [Pot1] are used to establish the leaf conjugacy. We compile

them all into the following statement.

Theorem 3.5. Let f : T3 → T
3 be a partially hyperbolic diffeomorphism such that there

is no periodic 2-torus tangent to Es ⊕ Ec. Then:

(i) There is a unique f -invariant foliation Wcs
f tangent to Ecs

f .

(ii) W̃cs
f is almost aligned with W̃cs

Af
.

(iii) Each leaf of W̃cs
f intersects each leaf of W̃u

f exactly once.

(That is, the two foliations have global product structure.)

(iv) W̃u
f is a quasi-isometric foliation.

(v) W̃u
f is asymptotic to W̃u

Af
.



10 A. HAMMERLINDL AND R. POTRIE

Proof. The first item is a restatement of [Pot1] (Theorem B). The second and third items

follow from [Pot1] (Proposition A.1) in the case where Af is Anosov, or from [Pot1]

(Proposition 8.7) in the case where it is not. With these established, [Pot1] (Proposition

6.9) implies that W̃u
f is quasi-isometric (iv) and that there is a cone E as in Lemma 3.4

above. The last item then follows from this lemma. �

Note that this result also holds with the roles of the stable and unstable bundles

exchanged. Theorem 1.3 now follows easily as a combination of Theorem 3.2, Proposition

3.3, and Theorem 3.5.

4. Numbering

The next section extensively references results in section 4 of [H2]. To avoid any

possible confusion between that paper and this one, we do not state any results in this

paper’s section 4.

5. Non-toral nilmanifolds

There are several ways to view nilmanifolds in dimension three. One is as quotients of

nilpotent Lie groups. Another is as bundles of the 2-torus over the circle. While in this

section, we only consider the former, we will use the latter view in Appendix B.

Let H denote the Heisenberg group, the group of all real-valued matrices of the form






1 x z

0 1 y

0 0 1






.

Fix a co-compact subgroup Γ. Then H/Γ is a compact manifold and every non-toral

three-dimensional nilmanifold is of this form. For a more detailed introduction, see [H2].

Observe that if π : H → R is a Lie group homomorphism, it must be of the form






1 x z

0 1 y

0 0 1






7→ ax+ by

for constants a, b ∈ R. If π is non-zero, its level sets define a codimension one foliation

F̃π on H which quotients down to a foliation Fπ on the nilmanifold H/Γ. Plante showed

that any Reebless C2 foliation of H/Γ must be almost aligned to Fπ for some π [Pl]. We

need a similar result for foliations which are C1,0+, that is, C0 with C1 leaves tangent to

a C0 distribution. We prove the following.

Proposition 5.1. Every Reebless C1,0+ foliation on H/Γ is almost aligned with some

Fπ.
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There are two approaches to proving this. One is to adapt the proof of Plante to the

C1,0+ setting. The other is to extend the techniques used by Brin, Burago, and Ivanov on

the 3-torus to other manifolds. Both approaches work, and since both techniques may be

useful in the future if applied to other manifolds, we give both proofs in the appendices.

Appendix A gives a self contained proof of this result using some algebraic arguments

à la Brin-Burago-Ivanov. Appendix B provides a more geometric proof which uses the

classification of such foliations in T
3 and some general position results ([Rou, Ga]) and

gives a classification for every torus bundle over the circle (this will be used in [HP]). In

this section, we assume Proposition 5.1 and show how it can be used to prove Theorems

1.2 and 1.6.

Remark. To keep the presentation short, we only reprove those parts of [H2] which rely

on absolute partial hyperbolicity. This has the unfortunate consequence that the proof

of dynamical coherence for the pointwise case is split between different papers and is not

presented in one place from start to finish. As such, we present here a rough outline of

the proof as a whole.

If J is a small unstable curve on the universal cover H, then the length of f̃k(J) grows

exponentially fast. By the results of Brin, Burago, and Ivanov, U1(f̃
k(J)) also grows

exponentially fast in volume. Here, U1(X) is all points at distance at most 1 from a point

in X. Comparing f̃ with its algebraic part Φ = Φf : H → H, one can prove that such

exponential expansion is only possible if f̃k(J) lies more-or-less in the unstable direction

of Φ. Since these unstable curves lie in leaves of the branching foliation F̃ cu
bran, it follows

from Proposition 5.1 that F̃ cu
bran is almost aligned with the center-unstable foliation of Φ

as no other foliations of the form F̃π have long curves in the same direction.

Similarly, F̃ cs
bran is almost aligned with the center-stable foliation of Φ and there is

R > 0 such that if p and q lie on the same leaf of F̃ cs
bran then q is at distance at most

R from W̃ cs
Φ (p). If F cs

bran is genuinely branching and not a true foliation, there are two

distinct leaves of F̃ cs
bran which intersect in a common point p and one can find a small

unstable arc J which lies in the space between these two leaves. For all k > 0, f̃k(J)

lies between two leaves of F̃ cs
bran which pass through the point f̃k(p) and so all points

in fk(J) are at distance at most R from W̃ cs
Φ (fk(p)). This contradicts the above-stated

fact that fk(J) must grow exponentially fast in the unstable direction of Φ. Thus, F cs
bran

is a non-branching foliation, and f is dynamically coherent. Again, we stress that this

is a non-rigorous outline, and the rigorous proof follows below.

5.1. The orientable case. Suppose f : H/Γ → H/Γ is partially hyperbolic. To keep

things simple, we make the unjustified assumption that the subbundles Eu, Ec, Es are

oriented, and that Df preserves these orientations. The next subsection shows how the

general case can be deduced from this special case. Under these assumptions, Theorem
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2.1 applies and there are f -invariant branching foliations F cu
bran and F cs

bran tangent to Ecu

and Ecs.

Lemma 5.2. F cu
bran is almost aligned with some Fπ.

Proof. This follows immediately from Proposition 5.1 and Theorem 2.2. �

If π : H → R is a Lie group homomorphism, there is C > 0 such that

|π(p)− π(q)| < Cd(p, q)

for all p, q ∈ H. This can be shown by adapting the proof of (4.2) in [H2]. With this,

Lemma 5.2 can be restated thus.

Lemma 5.3. There is a non-zero Lie group homomorphism π : H → R and R > 0 such

that |π(p)− π(q)| < R for any two points p and q on the same leaf of F̃ cu
bran.

Almost all of the work in [H2] carries over immediately to the pointwise partially

hyperbolic case. In particular, the results in Section 4 of that paper up to and including

(4.8) also hold in our current setting. That section defines two projections πs, πu : H → R

which are Lie group homomorphisms, and from their special properties, we can show the

following.

Lemma 5.4. There is R > 0 such that |πs(p)− πs(q)| < R for all p and q on the same

leaf of F̃ cu
bran.

Proof. By (4.3) of [H2], there is a constant x0 > 0 such that |πs(p)| < x0 implies

|πsf̃(p)| < x0 for all p ∈ H. As a consequence, we can find a small unstable seg-

ment J such that |πs(p)| < x0 for all n > 0 and p ∈ f̃n(J). By (4.7), the diameter

of πuf̃n(J) as a subset of R tends to infinity as n → ∞. Each of the curves f̃n(J) is

contained in a leaf of the lifted foliation F̃ cu
bran. Further, it is not hard to show that

the homomorphism π : H → R given by Lemma 5.3 above can be written as a linear

combination, π = aπs + bπu. The only way all of these estimates can hold is if b = 0.

The result then follows. �

By repeating the arguments of Lemma 5.4 for f−1 in place of f , the following also

holds.

Lemma 5.5. There is R > 0 such that |πu(p)− πu(q)| < R for all p and q on the same

leaf of F̃ cs
bran.

This is a non-dynamically coherent analogue of (4.10) of [H2]. Using this version, we

may repeat the proofs of (4.11), (4.12), and (4.13) of [H2], taking Wcs(p) to mean any

leaf of F̃ cs
bran which passes through the point p. We state the reformulations of (4.12) and

(4.13) explicitly.
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Lemma 5.6. Every leaf of F̃ cs
bran intersects every leaf of W̃u exactly once.

Lemma 5.7. For M > 0 there is ℓ > 0 such that for any unstable curve J of length

greater than ℓ, the endpoints p and q satisfy |πu(p)− πu(q)| > M.

Proof of dynamical coherence. We now prove dynamical coherence by showing that the

“branching” foliation F̃ cs
bran does not actually branch. Suppose instead that two distinct

leaves L1 and L2 pass through a point p ∈ H and take q1 ∈ L1 \ L2. By Lemma 5.6,

there is q2 ∈ L2 ∩ W̃
u(q1). By Lemma 5.7, |πuf̃n(q1) − πuf̃n(q2)| → ∞ as n → ∞. By

Lemma 5.5, |πuf̃n(q1)− πuf̃n(q2)| < 2R for all n, a contradiction.

This same argument allows us to show that there is a unique f -invariant foliation. If

Wcs
1 and Wcs

2 are distinct f -invariant foliations, there are distinct leaves L1 and L2 from

the lifted foliations which pass through a common point p ∈ H. Applying Lemmas 5.7

and 5.5 as above again gives a contradiction. �

Proof of leaf conjugacy. As noted in [H2] (see the Remark after Lemma 4.10), only the

proofs of (4.9) and (4.10) rely on absolute partial hyperbolicity. The first of these is

dynamical coherence, proved above, and once dynamical coherence is established, (4.10)

is equivalent to Lemma 5.5. As such, the entire proof of leaf conjugacy now holds in the

pointwise case. �

5.2. The general case. The last subsection assumed the subbundles Eu, Ec and Es had

orientations which were preserved by the derivative Df of f . Now consider the general

case, where the assumption does not necessarily hold. For convenience, we simply say

that a diffeomorphism preserves the orientation of a bundle if its derivative preserves the

orientation.

Proposition 5.8. If f : H/Γ → H/Γ is partially hyperbolic, then Eu, Ec, and Es are

orientable.

Proof. Lift the subbundles to the universal cover H and choose an orientation for each of

them. Regarding Γ as the group of deck transformations, those γ ∈ Γ which preserve all

three of these orientations form a normal, finite-index subgroup Γ0. Lift f to f̃ : H → H.

As f̃ 2 preserves the orientations of the subbundles, it descends to a diffeomorphism g on

the nilmanifold H/Γ0. On this manifold, the subbundles are oriented and g preserves

these orientations. Therefore, all of the previous analysis now applies. In particular,

Lemma 5.7 holds for the unstable foliation on H.

Choose an orientation for R. Suppose x ∈ H and that α : R → W̃u(x) is an orientation-

preserving parameterization of the unstable curve through x. Lemma 5.7 implies that

limt→+∞ πuα(t) is either +∞ or −∞. Basic continuity arguments show that this limit
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does not depend on the choice of α or x. It is straightforward to show that

lim
t→+∞

πuγα(t) = lim
t→+∞

πuα(t)

for any deck transformation γ ∈ Γ. From this, it follows that the orientation of the lifted

unstable bundle is Γ-invariant and descends to an orientation of Eu on H/Γ. A similar

argument shows that Es is orientable. As the full three-dimensional tangent bundle

Eu ⊕ Ec ⊕ Es is orientable, the center bundle Ec is orientable as well. �

Though the subbundles are always orientable, there are examples of partially hyper-

bolic systems on H/Γ which do not preserve these orientations. (To construct such an

example, take a hyperbolic toral automorphism on T
2 which does not preserve the ori-

entations of its stable and unstable subbundles. Then, build a bundle map over this.)

Fortunately, this obstruction does not pose a serious problem.

Suppose f : H/Γ → H/Γ is partially hyperbolic. Then, f 2 preserves the orientations

of the bundles Eu, Ec, and Es, and from the above proof of dynamical coherence, there is

a unique f 2-invariant foliation W tangent to Ecs. Note that f(W) is also an f 2-invariant

foliation tangent to Ecs and so f(W) = W . Finding such an f -invariant foliation via

Theorem 2.1 was the only reason for the added assumption on orientations, and therefore

the results of the last subsection now follow in the general (non-orientation-preserving)

case.

5.3. Finite quotients. To prove Theorem 1.1 from Theorem 1.2 we must consider finite

quotients of nilmanifolds.

Proposition 5.9. If a compact manifold M has a universal cover homeomorphic to R
3

and π1(M) is virtually nilpotent, then there is a regular finite cover M̂ over M such that

M̂ is diffeomorphic to a nilmanifold and every diffeomorphism f :M →M can be lifted

to a diffeomorphism f̂ : M̂ → M̂ .

Proof. As π1(M) is virtually nilpotent, the Hirsch-Plotkin radical N is the maximal

normal nilpotent subgroup and is of finite index. It defines a regular finite covering M̂ .

As any automorphism of π1(M) leaves N invariant, any diffeomorphism ofM lifts to M̂ .

By a classical result of P. A. Smith, any free action on R
n is torsion free (see [Bor, page

43]), and then by a result of Malcev [Mal], N can be identified with the fundamental

group of a compact nilmanifold K̂. As M̂ and K̂ are aspherical and have isomorphic

fundamental groups, they are homotopy equivalent and K̂ must be three-dimensional.

One can verify directly that three-dimensional nilmanifolds are “sufficiently large” in the

sense of Waldhausen, and therefore, M̂ and K̂ are in fact homeomorphic [Wal]. By a

result of Moise, they are diffeomorphic [Moi]. �
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Proof of Theorem 1.1. If f : M → M is as in Theorem 1.1, it lifts to f̂ : M̂ → M̂ by

the above proposition, and by Theorem 1.2 there is a foliation W which for each k ≥ 1

is the unique f̂k-invariant foliation tangent to Ecs. For each deck transformation α of

the finite covering of M̂ over M , there is k such that f̂kα = αf̂k, so that α(W) is also

f̂k-invariant, and by uniqueness α(W) = W . As such, W quotients to a foliation on M

and is the unique f -invariant foliation tangent to Ecs. �

6. Dynamical consequences

6.1. Entropy maximizing measures. In this subsection, we observe how our results

allow one to re-obtain some results about entropy maximizing measures previously proven

under less generality. First, the main result of [U] also holds in the pointwise case.

Proposition 6.1. Let f : T3 → T
3 be a partially hyperbolic diffeomorphism such that

its linear part Af is hyperbolic. Then, f has a unique maximal entropy measure which

is measurably equivalent to the volume measure for Af (i.e. it is intrinsically ergodic).

Proof. The only dependence on absolute partial hyperbolicity in [U] is in establishing

Lemmas 3.2 and 3.3. Those lemmas can be proven directly from Corollary 1.5 of this

paper. �

In higher dimensions, under the assumption of being isotopic to Anosov along a path of

partially hyperbolic systems it is possible to recover also the same result in the pointwise

case ([FPS]).

Proposition 6.2. Let f be a C1+α partially hyperbolic diffeomorphism of a non-toral

three-dimensional nilmanifold. Then, f has at least one and at most a finite number of

measures of maximal entropy.

Proof. By Theorem 1.2, f has a center foliation of compact leaves, and is also accessible

(see Proposition 6.4 below). The proposition then follows immediately from the main

result of [RHRHTU]. See that paper for more details. �

Under additional assumptions, one can prove similar results for diffeomorphisms on T
3

with non-hyperbolic linear part. We again refer the interested reader to [RHRHTU].

6.2. Uniqueness of attractors on nilmanifolds. In this section we deduce some

dynamical consequences from the main results to the study of dynamics of partially

hyperbolic diffeomorphisms in 3 dimensional non-toral nilmanifolds.

We recall that a quasi-attractor is a chain-recurrence class2 such that it admits a basis

of neighborhoods {Un} such that f(Un) ⊂ Un. It is well known (and simple to show) that

2See [BDV] Chapter 10.



16 A. HAMMERLINDL AND R. POTRIE

a quasi-attractor must be saturated by unstable sets. Thus, in the partially hyperbolic

setting saturated by the unstable foliation.

As a consequence of an argument very similar to the one in [BCLJ] (Proposition 4.2)

we can deduce that for a partially hyperbolic diffeomorphism of H/Γ these foliation have

a unique minimal set, thus concluding:

Proposition 6.3. Let f : H/Γ → H/Γ be a strong partially hyperbolic diffeomorphism,

then, f has a unique quasi-attractor. Moreover, there exists a leaf of Wu which is dense

in H/Γ and a unique minimal set of the foliation.

One could wonder if such a result does not imply that every strong partially hyperbolic

diffeomorphism onH/Γ is transitive, however, this result is sharp: Y. Shi has constructed

examples of partially hyperbolic diffeomorphisms in nilmanifold which are Axiom A (in

particular they have an attractor and a repeller). The construction is in the spirit of

[BG].

Proof. The key point is that this problem can be reduced to a problem about dynamics

of homeomorphisms of T2 which are skew-products over the irrational rotation. In fact,

we can consider a two-dimensional torus T consisting of center leaves and transverse to

both the strong stable and strong unstable foliations of Φf , the algebraic part of f .

We consider the leaf conjugacy h : H/Γ → H/Γ from f to Φf .

We obtain that h−1(T ) is a topological torus, foliated by center leaves and such that

it is transverse to both strong foliations for f . Now, the return map of the unstable

holonomy defines a homeomorphism of T which after conjugacy can be written in the

following form:

F (x, y) = (x+ α, ϕx(y)) mod Z
2

and satisfying that ϕx(y + 1) = ϕx(y) + 1 and that ϕx+1(y) = ϕx(y) + k (this is to say

that F is homotopic to a Dehn twist).

We will divide the proof in two claims about such homeomorphisms. Notice that the

existence of a unique minimal set for the unstable foliation implies immediately that f

has a unique quasi-attractor since quasi-attractors are compact disjoint and saturated

by the unstable foliation.

The following claim3 implies that f has a dense unstable leaf:

Claim. F is transitive.

Proof. Consider two open sets U1, U2 in T
2. We will show that there is an iterate of U

that intersects V . To do this, we consider arcs Ji ⊂ Ui of the form Ji = (x−i , x
+
i )× {yi}.

3We thank Tobias Jäger who communicated to us this argument.
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We will work in the universal cover R2 of T2. We claim that that if we denote as F̃ to

the lift of F and we consider the iterates J̃k1 = F̃ k(J̃k) and we define ℓk to be the length

of J̃k1 when projected in the second coordinate, then ℓk goes to infinity with k. Now,

since the dynamics on the base is minimal this implies that there is an iterate of F such

that F (J1) ∩ J2 6= ∅ which will conclude the proof.

To prove the claim, consider a sequence of iterates J1, f
i1(J1), . . . f

im such that the

projection of their union in the first coordinate is surjective. It is clear that this can

be done since the dynamics in the first coordinate is minimal. Now, join these arcs by

arcs contained in the second coordinate in order to make a non-trivial loop γ homotopic

to the first coordinate circle. The iterates of γ by F start to turn around the second

coordinate infinitely many times and thus the length of F n(γ) goes to infinity. since the

vertical arcs remain of bounded length, we conclude the claim. ♦

The following claim concludes the proof of the Proposition.

Claim. F has a unique minimal set.

Proof. We follow the argument in Proposition 4.2 of [BCLJ] which with the use of the

previous proposition allows to conclude.

Assume there are two disjoint minimal sets K,K ′ in T
2. We know that K ∩ K ′ = ∅

and since they are compact, they are at bounded distance from below. Consider the set

U1 as the set of (ordered) arcs {x}× (y1, y2) with y1 ∈ K and y2 ∈ K ′. Similarly one can

consider the set of arcs U2 of the form {x} × (y1, y2) with y1 ∈ K ′ and y2 ∈ K. Clearly,

U1 ∩ U2 = ∅, and since the maps ϕx are order preserving they are invariant. Both sets

intersect every fiber of the type {x} × S1 since the base dynamics is minimal.

We will prove that both have non-empty interior which will contradict transitivity. To

do this, notice that compactness of K and K ′ implies that if we consider the mappings

x 7→ (K ∩ {x}× S1) and x 7→ (K ′ ∩ {x}× S1) which are both semi-continuous and thus

share a residual set of continuity points. Take x a common continuity point, then any

point of the form (x, y) in Ui is an interior point of Ui concluding the proof. ♦�

6.3. Accessibility. A partially hyperbolic diffeomorphism f : M → M is accessible

if any two points x, y ∈ M can be connected by a concatenation of paths, each path

tangent either to Eu or Es. As with dynamical coherence, we can now show there are

manifolds where every pointwise partially hyperbolic system is accessible.

Proposition 6.4. Suppose M is a non-toral 3-dimensional nilmanifold. Every C1 par-

tially hyperbolic diffeomorphism on M (measure-preserving or not) is accessible.

This was previously proven in the measure-preserving case in [RHRHU2].
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Proof. If f is not accessible, there is a non-empty lamination Λ ⊂ M whose leaves are

complete and tangent to Eu ⊕ Es [RHRHU1, §3]. Lift Λ to the universal cover H and

choose a leaf S of the lifted lamination. By Global Product Structure, as proved in

[H2] and now extended to the pointwise case, such a surface S intersects each center

leaf exactly once. For any deck transformation γ ∈ Γ, the surface γ(S) also intersects

each center leaf exactly once. Further γ(S) and S are either disjoint or coincide. By

Proposition 5.8, Ec is orientable on H/Γ, and so there is a Γ-invariant orientation of Ec

on H. This orientation allows us to define an ordering on the surfaces γ(S) for γ ∈ Γ,

saying whether one such surface is “above” or “below” another. From Proposition A.7

in Appendix A, this ordering must be trivial. However, as shown in [H2] there are

elements γ ∈ Γ which fix each center leaf, but do not fix any point of H. This gives a

contradiction. �

Appendix A. Classification of Reebless foliations in nilmanifolds

In this section, a leaf system is a tuple (M, M̂,F , S) where

• M is a compact manifold without boundary,

• M̂ is a normal (or regular) covering space of M ,

• F is a transversely oriented foliation on M ,

• S is a leaf of F̂ , the foliation obtained by lifting F to M̂ , and

• there is no closed loop topologically transverse to F̂ passing through S.

While the last condition implies that S is properly embedded in M̂ , other leaves of F̂

may not be. Also note that M̂ is not necessarily the universal cover of M . Assume

such a leaf system is fixed, and let L denote the group of deck transformations on M̂ . If

γ ∈ L, let xγ denote the action of γ on x ∈ M̂ . A right action was chosen to keep the

notation as close as possible to that used in [BBI2]. S splits M̂ into two open subspaces,

S+ and S− where the sign is given by the transverse orientation on F . Define

Γ+ = {γ ∈ L : S+γ ⊂ S+},

Γ− = {γ ∈ L : S+γ ⊃ S+},

Γ = Γ+ ∪ Γ−.

Lemma A.1 (confer Lemma 3.9 of [BBI2]). If A is an abelian subgroup of L, then A∩Γ

is a subgroup of A.

For X ⊂ M̂ and H ⊂ L, define the notation XH := {xγ : x ∈ M̂, γ ∈ H}.

Lemma A.2 (confer Lemma 3.11 of [BBI2]). If A is an abelian subgroup of L and

S+A = S−A = M̂ then A ⊂ Γ.
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Lemma A.3. Suppose (M, M̃,F , S) is a leaf system, where M̃ is the universal cover of

M , N is a normal subgroup of the group of deck transformations and Ũ := S+N 6= M̃.

Then, for M̂ = M̃/N and Û = Ũ/N , and any connected component C of the (non-empty)

boundary of Û , the tuple (M, M̂,F , C) is a leaf system.

Proof. As Ũ is N -invariant, it is easy to see that ∅ 6= Û 6= M̂ and that Û is open and is

a union of leaves of the lift F̂ of the foliation F . Further, while the boundary of Û many

have several components, each has the same orientation, and so any curve transverse to

F̂ which exits Û , cannot later re-enter Û . This shows the last item in the definition of

“leaf system” and the others are immediate. �

Lemma A.4 (confer Lemma 3.12 of [BBI2]). Suppose the leaf system is such that there

is a group isomorphism h : L → Z
d and S+L = S−L = M̂. Then, Γ = L and there is a

hyperplane P separating R
d into closed half-spaces H+ and H− such that h(Γ+) ⊂ H+

and h(Γ−) ⊂ H−.

All of the results listed so far hold for any C0 foliation F . To proceed further, we need

to add an assumption of “uniform structure.”

Assumption. There are constants r, R > 0 such that if x ∈ S+ then there is y ∈ M̂

such that Br(y) ⊂ BR(x) ∩ S+. Similarly, if x ∈ S−, there is y ∈ M̂ such that Br(y) ⊂

BR(x) ∩ S−.

This property holds for any foliation tangent to a C0 subbundle of the tangent bundle,

so long as the base space M is compact.

Lemma A.5. If X = {x1, . . . , xn} is an r-net of a fundamental domain of M̂ , then

XL∩S+ is an R-net for S+. Further, if Γ = L and X ∩S+ = ∅, then XΓ+ is an R-net

for S+.

Proof. The first part follows immediately from the above assumption and the fact that

XL is an r-net for all of M̂ . To prove the second part, suppose y ∈ S+. By the first part,

there is xi ∈ X and γ ∈ L such that y ∈ BR(xiγ) and xiγ ∈ S+. Then, xi demonstrates

that S+γ
−1 is not a subset of S+, which, in the special case of L = Γ = Γ+ ∪ Γ− implies

that γ ∈ Γ+. �

We say that a codimension one manifold P has the same “ordering” as S if P splits

M̂ into two subspaces P+ and P− where P+γ ⊂ P+ for all γ ∈ Γ+ and P+γ ⊃ P+ for all

γ ∈ Γ−.

Proposition A.6. Suppose Γ = L and S+Γ = S−Γ = M̂ and that there is a codimension

one manifold P with the same “ordering” as S. Then S lies a finite distance from P .
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Proof. Since S−Γ = M̂ , we can find a fundamental domain for M̂ inside of S−. Let

X = {x1, . . . , xn} be an r-net for this fundamental domain, where r is as in Lemma A.5.

Fix a point y ∈ P+ and set D = supi d(xi, y) where d is distance measured on M̂ . Then,

for γ ∈ Γ+, d(xiγ, yγ) ≤ D, and xiγ ∈ P+γ ⊂ P+. This means that every point of XΓ+,

is at distance at most D from P+. By Lemma A.5, XΓ+ is an R-net for S+ and so every

point in S+ is at distance at most R+D from P+. A similar argument shows that every

point in S− is a bounded distance from P− and completes the proof. �

Now consider the specific case of the Heisenberg group.

Proposition A.7. If a relation “≤” on the Heisenberg lattice

Γ = 〈x, y, z : xy = yxz, xz = zx, yz = zy〉

satisfies all of the following properties

• reflexivity: u ≤ u,

• totality: either u ≤ v or v ≤ u or both,

• transitivity: u ≤ v and v ≤ w implies u ≤ w,

• right-invariance: u ≤ v implies uw ≤ vw, and

• an “Archimedean” property for z: for all u ∈ Γ, there is k(u) ∈ Z such that

zk(u) ≤ u ≤ zk(u)+1,

then ≤ is trivial: u ≤ v ≤ u for all u and v.

Proof. Using the Archimedean property, let i, j ∈ Z be such that zi ≤ x ≤ zi+1 and

zj ≤ y ≤ zj+1. Since z commutes with both x and y, for any n ∈ Z

z(i+j)n ≤ xnyn ≤ z(i+j+2)n

and

z(i+j)n ≤ ynxn ≤ z(i+j+2)n ⇒

z(i+j)n+n
2

≤ ynxnzn
2

≤ z(i+j+2)n+n2

.

Notice that xnyn = ynxnzn
2

and therefore

z(i+j)n+n
2

≤ z(i+j+2)n ⇒ zn
2

≤ z2n

for all n ∈ Z. This is enough to deduce zk1 ≤ zk2 for any two integers k1, k2, and then

by the Archimedean property

u ≤ zk(u)+1 ≤ zk(v) ≤ v

for any u and v, showing that the relation is trivial. �
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Any three-dimensional nilmanifold can be thought of as a circle bundle over a 2-torus.

If the bundle is trivial, the manifold is the 3-torus. If it is non-trivial, then it can be

finitely covered by a manifoldM whose fundamental group is exactly as in Property A.7.

Therefore, we will only consider this specific case M . The base space T
2 has universal

cover R
2. Therefore, the bundle M is covered by a circle bundle M̂ whose base space

is R
2. Both M and M̂ have as universal cover the Heisenberg group, here denoted by

M̃ . For a Lie group homomorphism π : M̃ → R, recall the definition of the foliation Fπ

where each leaf of F̃π is a level-set of π.

Theorem A.8. If M is a non-toral three-dimensional nilmanifold, and F is a C0 Reeb-

less foliation on M with uniform structure (as explained above), then F is almost aligned

with Fπ for some π.

Proof. Without loss of generality, we may replace M by a finite cover, such that the

fundamental group of M is exactly the group Γ given in Proposition A.7. As F is

Reebless, there are no closed cycles transverse to the lifted foliation F̃ . Fix a lifted leaf

S. This defines a leaf system (M, M̃,F , S). As before, let L denote the set of deck

transformations on M̃ . Let Z ⊂ L be the center of this group.

We first assume that S+Z = S−Z = M̃ and show this leads to a contradiction. Under

this assumption, pick any γ ∈ L and define Aγ as the smallest subgroup of L containing

Z and γ. As this group is abelian and S+Aγ = S−Aγ = M̃ , Lemma A.2 implies that

Aγ ⊂ Γ. As γ was chosen arbitrarily, this shows that Γ = L.

The center Z is cyclic, and we may take a generator z such that S+ ⊂ S+z. Consider

γ ∈ L and take points x ∈ S+γ and y ∈ M̃ \S+γ. By the assumption S+Z = S−Z = M̃ ,

there are integers i < j such that x ∈ M̃ \ S+z
i and y ∈ S+z

j . Using that L = Γ =

Γ+ ∪ Γ−,

S+z
i ⊂ S+γ ⊂ S+z

j.

Hence, there is k ∈ Z, i ≤ k < j such that

S+z
k ⊂ S+γ ⊂ S+z

k+1.

Define a relation “≤” on Γ = L by α ≤ β if S+α ⊂ S+β. This relation satisfies the

hypotheses of Proposition A.7 and is therefore trivial: S+γ = S+ for all γ ∈ Γ. This

contradicts the assumption S+Z = M̃ .

We have reduced to the case where either S+Z 6= M̃ or S−Z 6= M̃ . Without loss

of generality, assume the first. Consider now a new leaf system (M, M̂,F , C) given by

Lemma A.3. The group of deck transformations L̂ = L/Z is isomorphic to Z
2.

First consider the case C+L̂ 6= M̂ . The boundary of C+L̂ quotients to a union of

compact leaves of M . Let T be such one such leaf. As F is Reebless, the embedding

T →֒ M is π1-injective, and this implies that T is either a 2-sphere, or a 2-torus. The
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Reeb stability theorem rules out the possibility of a sphere. Then, as a π1-injective

torus, T lifts to a cylinder T̂ ⊂ L̂ and one can verify T̂+L̂ = T̂−L̂ = M̂ . Therefore, up to

replacing the leaf C, we may freely assume that C+L̂ = C−L̂ = M̂ .

Applying Lemma A.4 and Proposition A.6, the leaf C is a finite distance away from a

surface P̂ which is the pre-image by the projection M̂ → R
2 of a geometric line on R

2.

Fix a fundamental domain K of the covering M̂ → M . Since C+L̂ = C−L̂ = M̂ , K

must lie inside a set U := C+α ∩ C−β for some α, β ∈ L̂. Further, there is D > 0 such

that every point of U is at distance at most D from P̂ . Since there are no topological

crossings, any leaf C ′ of F̂ passing though K must lie in the closure of U and so C ′ lies

at most a distance D away from P̂ . By considering translates C ′γ for γ ∈ L̂, we can

show that every leaf of F̂ lies at most a distance D away from some translate P̂ γ of P̂ .

There is a Lie group homomorphism π : M̃ → R such that each translated surface P̂ γ

lifts to a leaf of F̃π. Then, lifting leaves of F̂ to leaves of F̃ , the result is proved. �

Appendix B. Classification of foliations in torus bundles over the

circle

In this section we give a classification result of foliations of 3-dimensional manifolds

which are torus bundles over the circle S1. This result applied to mapping torus of

Anosov automorphisms will be also used in [HP].

We will classify Reebless foliations of such manifolds under the relation of being almost

aligned with some model foliation. In certain cases, namely, when there are no torus

leaves, we will be able to obtain a stronger relation.

Two branching foliations F1 and F2 are almost parallel if there exists R > 0 such that:

- For every leaf L1 ∈ F̃1 there exists a leaf L2 ∈ F̃2 such that L1 ⊂ BR(L2) and

L2 ⊂ BR(L1) (i.e. the Hausdorff distance between L1 and L2 is smaller than

R).

- For every leaf L2 ∈ F̃2 there exists a leaf L1 ∈ F̃1 such that L1 ⊂ BR(L2) and

L2 ⊂ BR(L1).

Foliations F1,F2 and F4 in Figure 1 are almost parallel to each other, however, F3 is

not almost parallel to them.

We state the definition for branching foliations since in fact, the results of [BI] give that

the branching foliations they construct are almost parallel to some Reebless foliation.

Moreover, we have the following:

Proposition B.1. The following properties are verified:

(i) Being almost parallel is an equivalence relation among branching foliations.
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(ii) If W is almost aligned with W ′ a foliation in M and ϕ a diffeomorphism of M

isotopic to the identity, then ϕ(W) is almost parallel to W and almost aligned

to W ′.

Proof. Property (i) follows from the triangle inequality. Properties (ii) follows from

the fact that the map in the universal cover is at bounded distance from the identity.

�

For C2-foliations, Plante (see [Pl]) gave a classification of foliations without torus leaves

in 3-dimensional manifolds with almost solvable fundamental group. His proof relies on

the application of a result from [Rou] which uses the C2-hypothesis in an important way

(other results which used the C2-hypothesis such as Novikov’s Theorem are now well

known to work for C0-foliations thanks to [So]). We shall use a recent result of Gabai

[Ga] which plays the role of Roussarie’s result and allows the argument of Plante to be

recovered.

We state now a consequence of Theorem 2.7 of [Ga] which will serve our purposes4:

Theorem B.2. Let F be a foliation of a 3-dimensional manifoldM without closed leaves

and let T be an embedded two-dimensional torus whose fundamental group injects in the

one of M , then, T is isotopic to a torus which is transverse to F .

On the one hand, Gabai proves that a closed incompressible surface is homotopic to

a surface which is either a leaf of F or intersects F only in isolated saddle tangencies.

Since the torus has zero Euler characteristic, this implies that it must be transverse to

F . We remark that Gabai’s result is stated by the existence of a homotopy, and this

must be so since Gabai starts with an immersed surface, however, it can be seen that

Lemma 2.6 of [Ga] can be done by isotopies if the initial surface is embedded. The rest of

the proof uses only isotopies. See also [Cal] Lemma 5.11 and the Remark after Corollary

5.13.

In view of this result and in order to classify foliations in torus bundles over the circle

it is natural to look at foliations of T2× [0, 1]. By considering a gluing of the boundaries

by the identity map, we get a foliation of T3. These foliations (in the C0-case) were

classified in [Pot1], and the result can be restated in the terms used in this paper as

follows:

Theorem B.3 (Theorem 5.4 and Proposition 5.7 of [Pot1]). Let W be a Reebless foliation

of T3, then, W is almost aligned with a linear foliation of T3. Moreover, if the linear

foliation is not a foliation by tori, then W is almost parallel to the linear foliation and

if it is a foliation by tori then there is at least one torus leaf.

4Notice that a foliation of a 3-dimensional manifold without closed leaves is taut, see [Cal] Chapter

4 for definitions and these results.
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A linear foliation of T3 is the projection by the natural projection p : R3 → R
3/Z3 ∼= T

3

of a linear foliation of R3. It is a foliation by tori if the linear foliation is given by a plane

generated by two vectors in Z
3. The same classification can be done for one-dimensional

foliations of T2 for which the proof is easier (see for example section 4.A of [Pot2]). This

allows us to classify foliations of T2 × [0, 1] transverse to the boundary:

Proposition B.4. Let W be a foliation of T2× [0, 1] which is transverse to the boundary

and has no torus leaves. Then, the foliation W is almost aligned with a foliation of the

form L× [0, 1] where L is a linear foliation of T2. If L is not a foliation by circles, then

W is almost parallel to L × [0, 1].

Proof. The proof can be done directly (see [Rou, Pl] for the C2-case). We will use

Theorem B.3 instead. Consider the foliationW ′ of T2×[0, 2] obtained by gluing T2×[0, 1]

with the foliation W with T
2 × [1, 2] with the foliation ϕ(W) where ϕ1 : T2 × [0, 1] →

T
2 × [1, 2] is given by ϕ1(x, t) = (x, 2− t). It is not hard to check that this gives rise to

a well defined foliation W ′ of T2 × [0, 2] (is like putting a mirror in the torus T2 × {1}).

We can now construct a foliation of T3 as follows: we glue T
2 × {0} with T

2 × {2} by

the diffeomorphism ϕ2 : T2 × {0} → T
2 × {2} given by ϕ2(x, 0) = (x, 2). Again, it is

easy to show that the foliation can be defined in T
3 = T

2 × [0, 2]/ϕ2
.

By the previous Theorem, we know that the resulting foliation is almost aligned with

a linear foliation of T3. Since we have assumed that there is no torus leaves of W we

know that this linear foliation cannot be the one given by the planes R2×{t} so, it must

be transverse to the boundaries of T2 × [0, 1]. This concludes the proof. �

Remark. As a consequence of the previous result we get the following: The foliations

W ∩ (T2 × {0}) and W ∩ (T2 × {1}) are almost aligned with each other. In particular,

one can prove that if in one of the boundary components is almost parallel to a linear

foliation, then the whole foliation W is almost parallel to a linear foliation of T2 times

[0, 1].

Consider the manifoldMψ obtained by T
2× [0, 1] by identifying T

2×{0} with T
2×{1}

by a diffeomorphism ψ. Let p :Mψ → S1 = [0, 1]/∼ given by the projection in the second

coordinate. Any torus bundle over the circle can be constructed this way, naturally, if ψ

and ψ′ are isotopic then Mψ and Mψ′ are diffeomorphic.

The construction ofMψ determines a incompressible torus inMψ which we will assume

remains fixed. Under this choice of incompressible torus we can consider a family of

foliations of Mψ transverse to such torus.

We are now able to classify foliations in torus bundles over S1 depending on the isotopy

class of ψ.
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Any manifold of the form H/Γ can be constructed as a torus bundle over S1: The

monodromy being given by (something isotopic to) the diffeomorphism ψk : R2/Z2 →

R
2/Z2 given by:

ψk(x) =

(

1 k

0 1

)

x mod Z
2

In the case that ψ : T2 ∼= S1 × S1 → T
2 is a Dehn-twist of the form:

ψ(t, s) = (t, s+ kt)( mod Z
2)

Mψ is homeomorphic to a nilmanifold of the form H/Γ. We define the foliations Fθ on

Mψ given by starting with the linear foliation L of T2 by circles of the form {t}×S1 and

we consider the foliation L × [0, 1] of T2 × [0, 1]. The foliation Fθ will be the foliation

obtained by gluing T
2 × {0} with T

2 × {1} by the diffeomorphism

ψθ : T
2 × {0} → T

2 × {1} ψθ(t, s, 0) = (t+ θ, s+ kt, 1)

Remark. Notice that if W is a foliation of Mψ which is transverse to T the torus

obtained by projection of T2 × {0} ∼ T
2 × {1} we know that it must be invariant by a

map of T which is isotopic to ψ.

The foliation F∞ is the foliation by the fibers of the torus bundle. These foliations

correspond to the foliations of the form Fπ in H/Γ defined in section 5. In particular,

we know that they are pairwise not almost parallel.

Theorem B.5. Let W be a codimension one Reebless foliation of Mψ where ψ is a Dehn

twist as above. Then, W is almost aligned with Fθ for some θ ∈ R ∪ {∞}. Moreover, if

θ is irrational then W is almost parallel to Fθ.

Proof. If W has a torus leaf, this torus must be incompressible by Novikov’s Theorem

([So, CC]). We can cut the foliation along this torus. By doing the same doubling

procedure as in Proposition B.4 we obtain a foliation of T3 and using Theorem B.3 we

deduce that W is almost aligned with a foliation of the form Fθ with θ being irrational.

If W has no torus leaves, we can consider the torus T
2 × {0} ⊂ Mψ which is incom-

pressible. Using Theorem B.2 we can make an isotopy and assume that the foliation W

is transverse to this torus (recall from Proposition B.1 that the isotopy does not affect

the equivalence class of the foliation under the relation of being almost parallel). Here

we are using the fact that the isotopy of the torus can be extended to a global isotopy

of M (see for example Theorem 8.1.3 of [Hi]).

We can cutMψ by this torus and apply Proposition B.4 to obtain that W in T
2× [0, 1]

is almost aligned to a linear foliation of T2 times [0, 1]. In fact, if the foliation is not

almost parallel to the linear foliation we deduce that the foliation in T
2×{0} must have



26 A. HAMMERLINDL AND R. POTRIE

Reeb annuli (see section 4.A of [Pot2]). Since the foliation in T
2 ×{0} must be glued by

ψ with the foliation in T
2×{1} we deduce that it must permute these Reeb annuli which

are finitely many. So, we get that there is a periodic circle of the foliation of T2 × {0}

by ψ which implies the existence of a torus leaf for W . We deduce that W in T
2 × [0, 1]

is almost parallel to a linear foliation of T2 times [0, 1].

Now, we must show that this linear foliation corresponds to the linear foliation L by

circles of the form {t} × S1 but this follows from the fact that the foliation is invariant

by ψ.

Now we must see that after gluing the foliation is almost parallel to some Fθ. This

follows from the following fact, since in the boundary it is almost parallel to the foliation

L, we know that it has at least one circle leaf L. Now we obtain the value of θ by

regarding the relative order of the images of ψn(L) and performing a classical rotation

number argument as in the circle. �

When ψ is isotopic to Anosov, the classification gives only three possibilities.

We consider then A a hyperbolic matrix in SL(2,Z) and in MA we consider the fol-

lowing linear foliations: F cs
A is given by the linear foliation which is the projection of

Ls × [0, 1] where Ls is the linear foliation corresponding to the strong stable foliation

of A and similarly we obtain F cu
A as the projection of Lu × [0, 1] where Lu is the linear

foliation which corresponds to the strong unstable foliation.

Finally, we consider the foliation FT which is the projection of foliation by tori T2×{t}

to MA. Clearly, these 3 foliations are pairwise not almost parallel to each other.

Theorem B.6. Let W be a Reebless foliation of MA, then, W is almost aligned to one

of the foliations F cs
A ,F

cu
A or FT . Moreover, if W has no torus leaves, then W is almost

parallel to either F cs
A ,F

cu
A and if it is almost aligned with FT it has a torus leaf.

Proof. The first part of the proof is as in the previous Theorem: If W has a torus leaf,

it must be isotopic to T the projection of T2 × {0} since it is the only incompressible

embedded torus in MA and we get that we get that W is almost parallel to FT .

Otherwise, we can assume that W is transverse to T and we obtain a foliation of

T
2 × [0, 1] which is almost aligned with a foliation of the form L× [0, 1] and which in T

is invariant under a diffeomorphism f isotopic to A.

This implies that the linear foliation L is either the strong stable or the strong unstable

foliation for A, and in particular, since it has no circle leaves, we get that W in T
2× [0, 1]

is almost parallel to L × [0, 1].

Now, since the gluing map f is isotopic to A, we know it is semiconjugated to it, so,

we get that after gluing, the foliations remain almost parallel. �
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