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Abstract. An Anosov diffeomorphism is topologically conjugate to an in-

franilmanifold automorphism if and only if it has polynomial Global Product
Structure.

1. Introduction

A famous conjecture states that every Anosov diffeomorphism is topologically
conjugate to an algebraic example, specifically an infranilmanifold automorphism.
In classification results toward this end [5] [8] [15], a key step is establishing Global
Product Structure.

Foliations F and G have Global Product Structure if every leaf F(x) intersects
every leaf G(y) in a unique point [x, y]. An Anosov diffeomorphism has Global
Product Structure if its stable and unstable foliations have Global Product Struc-
ture on the universal cover. While it is not clear if Global Product Structure alone
is enough to give a classification, the following stronger condition is.

Foliations F and G have polynomial Global Product Structure if there is a poly-
nomial p such that dF (x, [x, y])+ dG(y, [x, y]) < p(d(x, y)) for all x and y. Here, dF
and dG are distances measured along the leaves, and d is distance on the ambient
manifold.

Theorem 1.1. An Anosov diffeomorphism is topologically conjugate to an infranil-
manifold automorphism if and only if it has polynomial Global Product Structure.

In particular, all known examples of Anosov systems have polynomial Global
Product Structure. The major ingredients needed to prove the “if” direction appear
in the work of Brin and Manning [3][5], and the “only if” direction is an exercise in
basic Lie group theory. However, the result seems to have gone unnoticed to date.

We give a specific application of the result. A foliation F is quasi-isometric if,
after lifting to the universal cover, there is Q > 1 such that dF (x, y) ≤ Qd(x, y)+Q
for all x and y on the same lifted leaf.

Theorem 1.2. An Anosov diffeomorphism with quasi-isometric stable and unstable
foliations is topologically conjugate to an infranilmanifold automorphism.

The same analysis applies to partially hyperbolic systems and we give several
results, including the following.

Theorem 1.3. For a (strongly) partially hyperbolic diffeomorphism on a 3-manifold
M , the stable, center, and unstable foliations exist and are quasi-isometric if and
only if M is finitely covered by the 3-torus.
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2. Anosov systems

Definition. Consider a diffeomorphism f on a compact Riemannian manifold M
with a Tf -invariant splitting TM = Es ⊕ Ec ⊕ Eu and constants σ < 1 < µ such
that

‖Tfvs‖ < σ < ‖Tfvc‖ < µ < ‖Tfvu‖

for all unit vectors vs ∈ Es, vc ∈ Ec, and vu ∈ Eu.

• If Ec is the zero bundle, then f is called Anosov.
• If exactly one of Es and Eu is the zero bundle,
then f is called weakly partially hyperbolic.

• If all three subbundles are non-zero,
then f is called strongly partially hyperbolic.

We first give two polynomial estimates which hold for all Anosov systems.

Definition. For an ordered pair of foliations (F ,G), an R-rectangle is a continuous
map φ : [0, 1]2 → M such that each φ([0, 1]× {v}) lies in a leaf of F , each φ({t} ×
[0, 1]) lies in a leaf of G, and sup

{

dG(φ(t, v1), φ(t, v2)) : t, v1, v2 ∈ [0, 1]
}

< R.
The pair (F ,G) has polynomial bounds on rectangles if there is a polynomial p

such that

sup
t

dF (φ(0, 0), φ(t, 0)) <
1

p(R)
⇒ dF (φ(0, 1), φ(1, 1)) < 1

for every R-rectangle φ. We simply write that F and G have polynomial bounds
on rectangles, if both (F ,G) and (G,F) satisfy the property.

Notation. In what follows, a lifted foliation means the lift of a foliation from a
compact manifold to its universal cover.

The following observation is at the core of the proof in [2].

Lemma 2.1. For an Anosov diffeomorphism, the lifted stable and unstable folia-
tions have polynomial bounds on rectangles.

Appendix A contains a proof.

Definition. A Riemannian manifold M̃ has polynomial growth of volume, if there
is a polynomial p such that volume(B(x,R)) < p(R) for all x ∈ M̃ and R > 0. Here
B(x,R) is the set of all points at a distance less than R from x.
A foliation F has polynomial growth of volume if there is a polynomial p such that
volume(F(x,R)) < p(R) for all x ∈ M̃ and R > 0, and where F(x,R) denotes all
points reachable from x by a path in F(x) of length less than R. (That is, each
leaf has polynomial growth, and the polynomial is independent of the leaf.)

If a map f : M → M is uniformly expanding, the universal cover M̃ must have
polynomial growth of volume [17]. The same applies to the uniform contraction or
expansion inside a stable or unstable foliation.

Lemma 2.2. In an Anosov (or partially hyperbolic) diffeomorphism, the lifted sta-
ble and unstable foliations have polynomial growth of volume.

Brin showed that for an Anosov diffeomorphism with “pinched” spectrum, the
supporting manifold has a universal cover with polynomial growth of volume [3].
The proof relies on the following.
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Proposition 2.3. Suppose F and G are C0 foliations with C1 leaves on a compact
Riemannian manifold M , such that TF and TG are continuous as subbundles of
TM . If the lifted foliations

• have polynomial Global Product Structure,
• have polynomial bounds on rectangles, and
• have polynomial growth of volume,

then the universal cover has polynomial growth of volume.

Pinching is needed only to establish the first of the above three conditions.

Corollary 2.4. If an Anosov diffeomorphism f : M → M has polynomial Global
Product Structure, the universal cover has polynomial growth of volume.

For a compact manifold M , the universal cover has polynomial growth of volume
if and only if the fundamental group does. In such a case, a famous result of Gromov
shows that the fundamental group is virtually nilpotent [9]. This fact allowed
Brin and Manning to classify Anosov diffeomorphisms with pinched spectra [5].
Their paper never directly uses the hypothesis of pinching and actually proves the
following more general result.

Theorem 2.5 (Brin-Manning). If an Anosov diffeomorphism f has Global Prod-
uct Structure, and the universal cover has polynomial growth of volume, then f is
topologically conjugate to an infranilmanifold automorphism.

Taken with Corollary 2.4, this proves one direction of Theorem 1.1. The other
direction is an enjoyable exercise in basic Lie group theory. Appendix B gives hints.
The proof of Theorem 2.5 given in [5] relies on a result stated by Auslander [1] now
known to be false [7][14]. Appendix C shows how to handle this issue.

Definition. We define linear Global Product Structure as polynomial Global Prod-
uct Structure where the associated polynomial may be taken as linear, that is, of
the form p(t) = at+ b.

The following is proved, but not explicitly stated in [12].

Proposition 2.6. An Anosov diffeomorphism with quasi-isometric stable and un-
stable foliations has linear Global Product Structure.

Taken with Theorem 1.1, this proves Theorem 1.2.

3. Partially hyperbolic systems

First, consider weakly partially hyperbolic systems. For simplicity, assume Es is
the zero bundle. That is, the splitting is TM = Ec⊕Eu. For every weakly partially
hyperbolic system, there is a unique foliation tangent to the unstable subbundle
Eu. For the center subbundle Ec, there may or may not be a tangent foliation. It
is not known if such a center foliation must be unique [6].

Definition. A weakly partially hyperbolic system has (linear/polynomial) Global
Product Structure, if there are foliations W c and Wu tangent to Ec and Eu which
satisfy the property after lifting to the universal cover.

The following is proved in Appendix A.
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Lemma 3.1. If a weakly partially hyperbolic diffeomorphism has linear Global Prod-
uct Structure, then the lifted foliations W c and Wu have polynomial bounds on
rectangles.

As in the Anosov case, the strong expansion in the unstable direction implies
that Wu has polynomial growth of volume, but no such claim can be made for the
center. Lemma 3.1 and Proposition 2.3 give the following.

Proposition 3.2. If f : M → M is weakly partially hyperbolic with linear Global
Product Structure, and the lifted foliation W c has polynomial growth of volume,
then the universal cover has polynomial growth of volume.

Proposition 2.6 also applies to the foliations of a weakly partially hyperbolic
system (again see [12]), giving the following.

Corollary 3.3. If f : M → M is weakly partially hyperbolic, W c and Wu exist and
are quasi-isometric, and the lifted foliation W c has polynomial growth of volume,
then the universal cover has polynomial growth of volume.

Now consider strongly partially hyperbolic systems. Due to the three-way split-
ting Es⊕Ec⊕Eu, we need to define a notion of product structure inside a foliation.

Definition. Suppose F and G are subfoliations of a foliation W. Then F and
G have (linear/polynomial) Global Product Structure inside W if they have this
property when restricted to each leaf of W. Any choice of polynomial must be
independent of the leaf.

Most of the above results can be adapted to the case of product structure inside
a foliation, with almost no change to the proofs.

Definition. Suppose a strongly partially hyperbolic system f has foliations Wu,
W s, W c, W cu, and W cs tangent to Eu, Es, Ec, Ec ⊕ Eu, and Ec ⊕ Es. Then, f
has (linear/polynomial) Global Product Structure if the following pairs satisfy the
property on the universal cover:

• W cs and Wu,
• W s and W cu,

• W s and W c inside W cs,
• W c and Wu inside W cu.

The following is proved, but not explicitly stated in [12].

Proposition 3.4. A strongly partially hyperbolic diffeomorphism with quasi-isometric
stable, center, and unstable foliations has linear Global Product Structure.

The next two results may be proved from their weakly partially hyperbolic coun-
terparts.

Proposition 3.5. If f : M → M is strongly partially hyperbolic with linear Global
Product Structure, and the lifted foliation W c has polynomial growth of volume,
then the universal cover has polynomial growth of volume.

Corollary 3.6. If f : M → M is strongly partially hyperbolic, W s, W c and Wu

exist and are quasi-isometric, and the lifted foliation W c has polynomial growth of
volume, then the universal cover has polynomial growth of volume.

Note that one-dimensional foliations always have polynomial growth of volume.
One-dimensional center foliations are by far the most commonly studied case.

We now prove the last claim of the introduction.



POLYNOMIAL GLOBAL PRODUCT STRUCTURE 5

Proof of Theorem 1.3. By classical Bieberbach theory, any diffeomorphism on a
finite quotient of the 3-torus lifts to a diffeomorphism on the 3-torus [10]. For
partial hyperbolicity on the 3-torus, it is already known that the invariant foliations
exist and are quasi-isometric [4][11].

For the other direction, apply Corollary 3.6 to see that the fundamental group
has polynomial growth. In this case, M is finitely covered by a circle bundle over a 2-
torus [16]. For partially hyperbolic systems on such manifolds, the center foliations
have been completely classified [11][13]. The center foliation is quasi-isometric if
and only if the circle bundle is the 3-torus. �

Appendix A. Proofs on rectangles

Proof of Lemma 2.1. As Es is uniformly continuous, there is ǫ0 > 0 such that
dc(x, y) < 4

3d(x, y) when x and y are points on the same local stable leaf and
d(x, y) < ǫ0. Let σ and µ be as in the definition of an Anosov diffeomorphism and
let α > 0 be such that ‖Txf

−1‖ < α for all x.
Given R > 0, let n be the smallest positive integer such that ǫ := µ−nR satisfies

the inequalities 3ǫ < ǫ0 and 4ǫσn < 1. Define δ := α−nǫ. Suppose φ is an R-
rectangle for the ordering (Wu,W s), and that supt ds(φ(0, 0), φ(t, 0)) < δ. Then,
f−nφ is an ǫ-rectangle, supt ds(f

−nφ(0, 0), f−nφ(t, 0)) < ǫ, and

d(f−nφ(0, 1), f−nφ(1, 1)) < 3ǫ ⇒ ds(f
−nφ(0, 1), f−nφ(1, 1)) < 4ǫ

⇒ ds(φ(0, 1), φ(1, 1)) < 1.

As δ = δ(R) = α−nµ−nR and n is proportional to logR, there is a polynomial p
such that 1/p(R) < δ(R) for all R > 0. �

Proof of Lemma 3.1. For the ordered pair (W c,Wu) the proof is as in the Anosov
case. For (Wu,W c), consider an R-rectangle φ with du(φ(0, 1), φ(1, 1)) > 1. We
wish to bound du(φ(0, 0), φ(0, 1)) from below. By a compactness argument, there
are constants γ, µ, β such that

‖Tfvc‖ < γ < µ < ‖Tfvu‖ < β

for all unit vectors vc ∈ Ec and vu ∈ Eu. Then, du(f
nφ(0, 1), fnφ(1, 1)) > µn for

all n > 0. By linear Global Product Structure, there is n proportional to logR such
that d(fnφ(0, 0), fnφ(1, 1)) > 2γnR. Then

d(fnφ(1, 0), fnφ(1, 1)) < γnR ⇒ d(fnφ(0, 0), fnφ(1, 0)) > γnR

⇒ d(φ(0, 0), φ(1, 0)) > β−nγnR.

As n is proportional to logR, this gives a polynomial bound. �

Appendix B. One direction of Theorem 1.1

Suggested steps in proving the “only if” direction of Theorem 1.1.

Proposition B.1. If two Anosov diffeomorphisms are topologically conjugate and
one has polynomial Global Product Structure, both do.

Lemma B.2. Let G be a nilpotent group with a subset V such that [V, V ] ⊂ V .
Any element of the form g = s1u1 · · · snun with si, ui ∈ V may be rewritten as

g = s1 · · · sn a1 · · · aℓ u1 · · ·un

where ak ∈ [V, V ] for k = 1, . . . , ℓ and where ℓ depends polynomially on n.
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Proposition B.3. If f is a hyperbolic automorphism of a nilpotent Lie group G,
then the stable and unstable foliations have polynomial Global Product Structure.

Proof. By Lemma B.2, reduce the problem from f to f |[G,G], which is also a hy-
perbolic automorphism of a nilpotent Lie group. Then apply induction. �

Appendix C. The proof of Theorem 2.5

The proof in [5] is given in three steps. Step 1 constructs an infranilmanifold
automorphism g : P → P covered by an automorphism A of a nilpotent Lie group.
This relies on an erroneous result of Auslander [1, Theorem 2]. In fact, the most
we can say a priori is that g is covered by an affine map α on a nilpotent Lie group
(see [7, Theorem 2.2 and Definition 3.6] and also [14]).

To construct the automorphism A from the affine map α, we first show that
α has a fixed point. Note that if a map f : (M,x0) → (M,x0) has a lift to the

universal cover f̃ : (M̃, x̃0) → (M̃, x̃0) such that x̃0 is the unique fixed point, then
the homomorphism f∗ induced on π1(M) satisfies f∗(γ) = γ only when γ is the

identity. For an Anosov map with Global Product Structure, if f̃ had distinct fixed
points x, y ∈ M̃ , then [x, y] would also be fixed. This would give two distinct fixed
points on either the same stable or unstable leaf, a contradiction. Thus f∗(γ) 6= γ
for non-trivial γ ∈ π1(M). By [7, Lemmas 4.3 and 4.1], α does not have 1 as an
eigenvalue and it has a unique fixed point. By adapting the proof of [7, Theorem
4.5], we may replace the infranilmanifold by one diffeomorphic to it, and replace
the affine map α by a Lie group automorphism A. Then, Steps 2 and 3 of [5] follow
as before.
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de l’IHÉS, 53(1):53–78, 1981.
[10] K.Y. Ha, J.H. Jo, S.W. Kim, and J.B. Lee. Classification of free actions of finite groups on

the 3-torus. Topology and its Applications, 121(3):469–507, 2002.

[11] A. Hammerlindl. Leaf conjugacies on the torus. PhD thesis, University of Toronto, 2009.
[12] A. Hammerlindl. The dynamics of quasi-isometric foliations. Nonlinearity, 25:1585–1599,

2012.
[13] A. Hammerlindl. Partial hyperbolicity on 3-dimensional nilmanifolds. Discrete and Continu-

ous Dynamical Systems, 33(8):3641–3669, 2013.
[14] K. B. Lee and F. Raymond. Rigidity of almost crystallographic groups. In Combinatorial

methods in topology and algebraic geometry (Rochester, N.Y., 1982), volume 44 of Contemp.

Math., pages 73–78. Amer. Math. Soc., Providence, RI, 1985.



POLYNOMIAL GLOBAL PRODUCT STRUCTURE 7

[15] A. Manning. There are no new Anosov diffeomorphisms on tori. Amer. J. Math., 96(3):422–
42, 1974.

[16] K. Parwani. On 3-manifolds that support partially hyperbolic diffeomorphisms. Nonlinearity,
23:589–606, 2010.

[17] M. Shub. Expanding maps. Global Analysis: Proceedings of the Symposia in Pure Mathe-
matics, 14:273–276, 1970.


