MTH 1035 Handout - Abstract Vector Spaces

Definition of an abstract vector space (taken from <u>Elementary Linear Algebra</u> by Anton and Rorres).

Let *V* be an arbitrary nonempty set of objects on which two operations are defined: addition, and multiplication by scalars. By **<u>addition</u>** we mean a rule for associating with each pair of objects **u** and **v** in *V* an object, called the <u>**sum**</u> of **u** and **v**; by <u>**scalar multiplication**</u> we mean a rule for associating with each scalar *k* and each object **u** in *V* an object *k***u**, called the <u>**scalar**</u> **<u>multiple**</u> of **u** by *k*. If the following axioms are satisfied by all objects **u**, **v**, **w** in *V* and all scalars *k* and *m*, then we call *V* a <u>**vector space**</u> and we call the objects in *V* <u>**vectors**.</u>

Rule 1If u and v are objects in V, then u + v is also in V.Rule 2u + v = v + uRule 3u + (v + w) = (u + v) + wRule 4There is an object $\vec{0}$ in V, called a zero vector for V, such that $\vec{0} + u = u + \vec{0} = u$ for all u in V.Rule 5For each u in V, there is an object -u such that $u + (-u) = (-u) + u = \vec{0}$

Rule 6 If k is any scalar and **u** is an object in V, then k**u** is in V.

Rule 7 $k(\mathbf{u} + \mathbf{v}) = k\mathbf{u} + k\mathbf{v}$

Rule 8 $(k+m)\mathbf{u} = k\mathbf{u} + m\mathbf{u}$ **Rule 9** $k(m\mathbf{u}) = (km)\mathbf{u}$

Rule 101u = u

We sometimes write $t \cdot \mathbf{v}$ to emphasize the scaling operation.

Exercise. Do the following sets satisfy the definition of a vector space under the most sensible choices of addition and scalar multiplication?

(1) \mathbb{R}^2

- (2) \mathbb{R}^3
- (3) R
- (4) C
- (5) ℕ
- (6) Q
- (7) Z
- (8) A set $X = {\mathbf{v}}$ with exactly one element.
- (9) A set

Beatles = {John, Paul, George, Ringo}

with the operations that if *t* is a real number and **v**, **w** are elements of Beatles, then $t \cdot \mathbf{v} = \text{John and } \mathbf{v} + \mathbf{w} = \text{Ringo}$.

(10) The set of all sequences of real numbers.

- (11) The set of all bounded sequences of real numbers.
- (12) The set of all increasing sequences of real numbers.
- (13) The set of all "Fibonacci-like" sequences. That is sequences of real numbers of the form $\{x_n\}_{n=1}^{\infty}$ where $x_{n+2} = x_{n+1} + x_n$ for all $n \ge 1$.
- (14) The set of polynomials.
- (15) The set of all real-valued functions defined on \mathbb{R} .
- (16) The set of all real-valued continuous functions defined on \mathbb{R} .
- (17) The set of all real-valued functions defined on \mathbb{R} with the property f(0) = 7.
- (18) The set of all real-valued functions defined on \mathbb{R} with the property f(0) = 0.
- (19) The set of all real-valued functions defined on \mathbb{R} with the property f(0) = f(1).
- (20) The set of all real-valued differentiable functions defined on \mathbb{R} with the property f'(0) = 0.
- (21) The set of all real-valued differentiable functions defined on \mathbb{R} with the property f'(0) = f(0).
- (22) The set of all real-valued differentiable functions defined on \mathbb{R} with the property f'(0) = f(1).
- (23) The set of all Lipschitz functions defined on \mathbb{R} .
- (24) The set of all linear functions from \mathbb{R}^m to \mathbb{R}^n .

Proof exercises for an abstract vector space.

- (1) Show that $\mathbf{v} + \mathbf{v} = 2\mathbf{v}$.
- (2) Show that $\mathbf{v} + \mathbf{v} + \mathbf{v} = 3\mathbf{v}$ (and argue why $\mathbf{v} + \mathbf{v} + \mathbf{v}$ makes sense as an expression).
- (3) Show that if $\mathbf{u} + \mathbf{v} = \mathbf{u} + \mathbf{w}$, then $\mathbf{v} = \mathbf{w}$.
- (4) Show that $0 \cdot \mathbf{v} = \vec{\mathbf{0}}$. (Note the two different "zeros".)
- (5) Show that $t \cdot \vec{\mathbf{0}} = \vec{\mathbf{0}}$.
- (6) Show that $(-1) \cdot v = -v$.
- (7) Show that if t is a non-zero real number and v is a non-zero vector, then $t \cdot v \neq \vec{0}$.
- (8) Show that if $t \cdot \mathbf{v} = s \cdot \mathbf{v}$, then either $\mathbf{v} = 0$ or t = s.
- (9) Show that if $t \cdot \mathbf{v} = t \cdot \mathbf{w}$, then either t = 0 or $\mathbf{v} = \mathbf{w}$.
- (10) Show that if a vector space *V* has (at least) two distinct elements, then *V* has infinitely many elements.
- (11) If *V* and *W* are vector spaces, show that the set $V \times W$ which consists of all pairs (\mathbf{v}, \mathbf{w}) with \mathbf{v} in *V* and \mathbf{w} in *W* is also a vector space. What are the operations?
- (12) Suppose *V* is a vector space, and consider the set Fib(*V*) of all Fibonacci-like sequences of the form $\{\mathbf{v}_n\}_{n=1}^{\infty}$ where each \mathbf{v}_n is an element of *V* and $\mathbf{v}_{n+2} = \mathbf{v}_{n+1} + \mathbf{v}_n$ for all $n \ge 1$. Is Fib(*V*) a vector space?
- (13) Find a set which satisfies Rules 1 to 9, but does not satisfy Rule 10.