MTH 1035 - Handout 1 - Lipschitz continuity

Exercise. For the following claims about real numbers *a*, *b*, *c*, *d*, which always hold? Which hold under extra assumptions?

Note: for this question (and only this question), it is enough just to say which are true without full justification or proof. In fact, some of these are *axioms* of the real numbers, meaning they cannot be proved and instead must just be assumed.

- (1) If *a* < *b*, then *a* + *c* < *b* + *c*.
 (2) If *a* ≤ *b*, then *a* + *c* ≤ *b* + *c*.
 (3) If *a* ≤ *b*, then *a* · *c* ≤ *b* · *c*.
 (4) If *a* ≤ *b*, then *a*² ≤ *b*².
- (5) If $a^2 \le b^2$, then $a \le b$.
- (6) $\sqrt{a^2} = |a|$.

- (7) $(\sqrt{a})^2 = |a|$. (8) |a+b| = |a|+|b|. (9) $|a+b| \le |a|+|b|$. (10) $|a-b+c-d| \le |a-b|+|c-d|$. (11) |ab| = |a||b|
- (12) If $a \le b$, then $\frac{1}{b} \le \frac{1}{a}$.

Which number lies halfway between 1 and 9? In an arithmetic sense, $5 = \frac{1}{2}(1+9)$. In a geometric sense, $3 = 3^1$ is halfway between $1 = 3^0$ and $9 = 3^2$. For positive numbers *x* and *y*, define $\frac{1}{2}(x+y)$ as the *arithmetic mean* and \sqrt{xy} as the *geometric mean*.

Exercise. Show the AM-GM inequality: $\sqrt{xy} \le \frac{1}{2}(x+y)$.

Exercise. Show that if $1 \le x, y \le 2$, then $|x^2 - y^2| \le 4|x - y|$. Note: the notation $1 \le x, y \le 2$ means that *both x* and *y* are between 1 and 2.

Let *X* be a subset of \mathbb{R} . (For example, X = [1,2] or $X = [0,\infty)$ or $X = \mathbb{R}$.) A function $f : X \to \mathbb{R}$ is called *Lipschitz* if there is a constant L > 0 such that

$$|f(x) - f(y)| \le L|x - y|$$

for any two numbers $x, y \in X$.

For instance, the previous exercise shows that the function $f : [1,2] \rightarrow \mathbb{R}$ defined by $f(x) = x^2$ is Lipschitz with constant L = 4.

Exercises.

(1) Show that the function $g: [1,2] \to \mathbb{R}$ defined by $g(x) = x^3$ is Lipschitz.

(2) Show that $f : \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^2$ is **NOT** Lipschitz. That is, for any L > 0, find $x, y \in \mathbb{R}$ such that

$$|f(x) - f(y)| > L|x - y|.$$

- (3) Prove the following: if $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ are Lipschitz functions, then the composition $f \circ g : \mathbb{R} \to \mathbb{R}$ is Lipschitz.
- (4) Prove the following: if $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ are Lipschitz functions, then the sum $f + g : \mathbb{R} \to \mathbb{R}$ defined by (f + g)(x) = f(x) + g(x) is Lipschitz.
- (5) A function f : X → R is *bounded* if there is a constant M > 0 such that |f(x)| ≤ M for all x ∈ X.
 For instance, sin is bounded, since |sin(x)| ≤ 1 = M for all x ∈ R.
 Give an example of a function which is Lipschitz, but not bounded.
- (6) Show that any Lipschitz function $f : [a, b] \to \mathbb{R}$ defined on an interval of the form [a, b] is a bounded function
- (7) Suppose $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ are both Lipschitz functions and bounded functions. Show that the product $f \cdot g : \mathbb{R} \to \mathbb{R}$ defined by $(f \cdot g)(x) = f(x)g(x)$ is Lipschitz.
- (8) Show that $h: [0,1] \to \mathbb{R}$ given by $h(x) = \sqrt{x}$, is bounded, but not Lipschitz.
- (9) Show that the absolute value function $f : \mathbb{R} \to [0, \infty)$ given by f(x) = |x| is Lipschitz, but is not differentiable at zero.