MTH 1035 - Handout 1 - Lipschitz continuity
Exercise. For the following claims about real numbers a, b, c, d, which always hold? Which hold under extra assumptions?
Note: for this question (and only this question), it is enough just to say which are true without full justification or proof. In fact, some of these are axioms of the real numbers, meaning they cannot be proved and instead must just be assumed.
(1) If $a<b$, then $a+c<b+c$.
(7) $(\sqrt{a})^{2}=|a|$.
(2) If $a \leq b$, then $a+c \leq b+c$.
(8) $|a+b|=|a|+|b|$.
(3) If $a \leq b$, then $a \cdot c \leq b \cdot c$.
(9) $|a+b| \leq|a|+|b|$.
(4) If $a \leq b$, then $a^{2} \leq b^{2}$.
(10) $|a-b+c-d| \leq|a-b|+|c-d|$.
(5) If $a^{2} \leq b^{2}$, then $a \leq b$.
(11) $|a b|=|a||b|$
(6) $\sqrt{a^{2}}=|a|$.
(12) If $a \leq b$, then $\frac{1}{b} \leq \frac{1}{a}$.

Which number lies halfway between 1 and 9 ? In an arithmetic sense, $5=\frac{1}{2}(1+9)$. In a geometric sense, $3=3^{1}$ is halfway between $1=3^{0}$ and $9=3^{2}$. For positive numbers x and y, define $\frac{1}{2}(x+y)$ as the arithmetic mean and $\sqrt{x y}$ as the geometric mean.
Exercise. Show the AM-GM inequality: $\sqrt{x y} \leq \frac{1}{2}(x+y)$.
Exercise. Show that if $1 \leq x, y \leq 2$, then $\left|x^{2}-y^{2}\right| \leq 4|x-y|$.
Note: the notation $1 \leq x, y \leq 2$ means that both x and y are between 1 and 2 .
Let X be a subset of \mathbb{R}. (For example, $X=[1,2]$ or $X=[0, \infty)$ or $X=\mathbb{R}$.) A function $f: X \rightarrow \mathbb{R}$ is called Lipschitz if there is a constant $L>0$ such that

$$
|f(x)-f(y)| \leq L|x-y|
$$

for any two numbers $x, y \in X$.
For instance, the previous exercise shows that the function $f:[1,2] \rightarrow \mathbb{R}$ defined by $f(x)=x^{2}$ is Lipschitz with constant $L=4$.

Exercises.

(1) Show that the function $g:[1,2] \rightarrow \mathbb{R}$ defined by $g(x)=x^{3}$ is Lipschitz.
(2) Show that $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=x^{2}$ is NOT Lipschitz. That is, for any $L>0$, find $x, y \in \mathbb{R}$ such that

$$
|f(x)-f(y)|>L|x-y| .
$$

(3) Prove the following: if $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ are Lipschitz functions, then the composition $f \circ g: \mathbb{R} \rightarrow \mathbb{R}$ is Lipschitz.
(4) Prove the following: if $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ are Lipschitz functions, then the sum $f+g: \mathbb{R} \rightarrow \mathbb{R}$ defined by $(f+g)(x)=f(x)+g(x)$ is Lipschitz.
(5) A function $f: X \rightarrow \mathbb{R}$ is bounded if there is a constant $M>0$ such that $|f(x)| \leq M$ for all $x \in X$.
For instance, \sin is bounded, since $|\sin (x)| \leq 1=M$ for all $x \in \mathbb{R}$.
Give an example of a function which is Lipschitz, but not bounded.
(6) Show that any Lipschitz function $f:[a, b] \rightarrow \mathbb{R}$ defined on an interval of the form $[a, b]$ is a bounded function
(7) Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ are both Lipschitz functions and bounded functions. Show that the product $f \cdot g: \mathbb{R} \rightarrow \mathbb{R}$ defined by $(f \cdot g)(x)=f(x) g(x)$ is Lipschitz.
(8) Show that $h:[0,1] \rightarrow \mathbb{R}$ given by $h(x)=\sqrt{x}$, is bounded, but not Lipschitz.
(9) Show that the absolute value function $f: \mathbb{R} \rightarrow[0, \infty)$ given by $f(x)=|x|$ is Lipschitz, but is not differentiable at zero.

