Exercises.

(1) Consider a plane $Q \subset \mathbb{R}^{3}$ passing through the origin and with normal vector $n \in \mathbb{R}^{3}$. That is,

$$
Q=\left\{q \in \mathbb{R}^{3}: q \bullet n=0\right\} .
$$

Also consider a ray of light starting from a point $p_{0} \in \mathbb{R}^{3}$ and pointing in the direction of $v_{0} \in \mathbb{R}^{3}$. Describe a step-by-step procedure (an algorithm) which determines whether or not the ray of light hits the plane. If the ray hits the plane, also determine the position p_{1} and direction ν_{1} of the ray of light when it is reflected off of the plane.

(2) Consider a sphere of radius $r>0$ centered at the origin in \mathbb{R}^{3}. As before, consider a ray of light starting from a point $p_{0} \in \mathbb{R}^{3}$ and pointing in the direction of $\nu_{0} \in \mathbb{R}^{3}$. Describe an algorithm which determines whether or not the ray of light hits the sphere. If the ray hits the sphere, also determine the position p_{1} and direction ν_{1} of the ray of light when it is reflected off of the sphere.

(3) Consider a triangle with vertices $q_{1}, q_{2}, q_{3} \in \mathbb{R}^{3}$. As before, consider a ray of light starting from a point $p_{0} \in \mathbb{R}^{3}$ and pointing in the direction of $v_{0} \in \mathbb{R}^{3}$. Describe an algorithm which determines whether or not the ray of light hits the triangle. If the ray hits the triangle, also determine the position p_{1} and direction ν_{1} of the ray of light when it is reflected off of the triangle.

