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SYSTEMS
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This erratum addresses two issues with the proofs in the paper [Ham17]. The

first issue is that proposition (6.4) as stated is not correct.1 For instance, the

automorphism Z2 → Z2, (x, y) 7→ (5x + 2y,2x + y) gives a counterexample as it

fixes a coset of Z× 2Z. The flaw in the proof is that it confuses invertibility in

GL(n,Z) with invertibility in GL(n,R) and the notions are not equivalent. In fact,

the proposition holds in the following revised version.

Proposition 1. Let G be a torsion-free, finitely-generated, nilpotent group and

suppose φ ∈ Aut(G) is such that φ(g ) 6= g for all non-trivial g ∈G. If H is a normal,

φ-invariant subgroup, then φ fixes at most finitely many cosets of H.

We prove this revised version below. The original proposition (6.4) is used

in only two places in the proofs of theorem (4.3) and lemma (6.5) and we show

below how to use the revised version of the proposition to recover the proofs of

those two results.

The other issue to address in the original paper comes at the start of section

8 which deals with AB-systems. That section states that h f h−1 is homotopic to

f AB and uses this to lift h f h−1 a map on N ×R. In fact, the two functions are not

homotopic in general. For instance, for the linear partially hyperbolic maps on

the 3-torus T3 =R3/Z3 given by the matrices




5 2 0

2 1 0

0 0 1



 and





5 2 0

2 1 0

1 0 1





both have vertical center foliations and the identity map is a leaf conjugacy be-

tween the two systems. The two systems are not homotopic to each other and

attempting to lift the two systems to AI-system on T2 ×R as in section 8 will not

work. To fix this, we amend the definition of an AB-system to add the homo-

topy as an assumption. That is, a partially hyperbolic diffeomorphism f is an

AB-system if

(1) it preserves the orientation of the center bundle E c ,

(2) there is a leaf conjugacy h between f and an AB-prototype f AB , and

(3) h f h−1 is homotopic to f AB .

1Note that the numbering of sections in some preprint versions may differ from the published

version.
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This additional assumption can always be achieved by lifting f and f AB to finite

covers:

Proposition 2. If a partially hyperbolic diffeomorphism f satisfies conditions (1)

and (2) above, then a lift of f to a finite cover satisfies all of (1), (2), and (3).

The proof of this is given in the final section of this erratum.

For those readers interested only in the case where the nilmanifold N is a

torus Td , we have structured the proofs below so that most of the details specific

to the non-toral case may be skipped over.
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Karel Dekimpe was also very helpful and suggested an alternative method to

establish proposition 1. Instead of proving the proposition directly, one can in-

stead show the following fact, from which the proposition follows as a corollary:

Let G be a finitely generated nilpotent torsion free nilpotent group

and ϕ ∈ Aut(G) be fixed point free. Assume that H is a ϕ invari-

ant subgroup of G such that G/H is torsion free. Then it follows

that the induced automorphism on G/H is also fixed point free.

PROOF OF PROPOSITION 1

This section gives a proof of proposition 1. We first prove this in the abelian

case and then use induction on the nilpotency class to handle the non-abelian

case.

Lemma 3. Let G be isomorphic toZd and supposeφ ∈ Aut(G) is such thatφ(g ) 6= g

for all non-trivial g ∈ G. If H is a normal, φ-invariant subgroup, then φ fixes at

most finitely many cosets of H.

Proof. Assume G =Zd and define a linear map A : Qd →Qd such that Az =φ(z)

for all z ∈ Zd . If A had an eigenvalue of 1, the corresponding eigenspace would

intersect Zd in a non-trivial fixed point φ(z) = z ∈ Zd . Hence, 1 is not an eigen-

value of A.

Let V ⊂Qd be the set of all Q-linear combinations of elements of H . We may

assume H has infinite index in Zd , and so V is a proper A-invariant subspace

of Qd . It induces a linear map Ā on the quotient space Qd /V. If z ∈ Zd is such

that φ(z + H) = z + H , then Ā(z +V ) = z +V and so Ā and therefore A has an

eigenvalue of 1. �

Lemma 4. Let φ : G → G be a group automorphism and let X be a normal φ-

invariant subgroup. If φ|X has at most finitely many fixed points and φ fixes at

most finitely many cosets of X , then φ itself has finitely many fixed points.
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Proof. If φ(g ) = g and φ(g ′) = g ′ are fixed points in the same coset g X = g ′X ,

then φ(g ′g−1) = g ′g−1 is a fixed point in X . Hence, each of the finitely many

fixed cosets has finitely many fixed points. �

Corollary 5. Suppose φ is an automorphism of a group G with center Z , and H

is a φ-invariant normal subgroup of G . If the induced maps on Z /(H ∩ Z ) and

G/H Z have finitely many fixed points, then the induced map on G/H has finitely

many fixed points.

Proof. Apply the previous lemma to the quotient

0 → Z /(H ∩Z ) →G/H →G/H Z → 0 �

Lemma 6. Suppose G is a finitely generated torsion free nilpotent group and let

φ : G → G be an automorphism. Let Z denote the center of G . If there is a non-

trivial fixed coset φ(g Z ) = g Z , then φ has a non-trivial fixed point.

Proof. By the properties of such groups [Dek96], Z is isomorphic to Zd and G/Z

is torsion free. Suppose φ(g Z ) = g Z is a non-trivial fixed coset. Let Y be the

subgroup generated by g and Z . Then Y is isomorphic to Zd+1 and within Y ,

there are infinitely many fixed cosets: φ(g k Z ) = g k Z for k ∈Z. Lemma 3 implies

that φ|Y has a non-trivial fixed point. �

Proof of proposition 1. We prove this by induction on the length of the upper

central series of G . The abelian base case is given by lemma 3. Assume now that

G is non-abelian with center Z and that proposition 1 is already known to hold

for the quotient map Φ : G/Z →G/Z .

Since φ|Z has no non-trivial fixed points, lemma 3 implies that φ|Z fixes at

most finitely many cosets of H ∩ Z . Lemma 6 implies that Φ has no non-trivial

fixed points. By the inductive hypothesis, Φ fixes at most finitely many cosets of

H Z /Z . Then corollary 5 implies that φ (on all of G) fixes at most finitely many

cosets of H . �

REVISED PROOF OF LEMMA (6.5)

The incorrect proposition (6.4) is used in the proof of (6.5) only to establish

λ 6= 1. Recall in that proof that there is F ∈ Aut(G) with no non-trivial fixed points

and a non-zero homomorphism τ : G →R such that τF =λτ. Define H ⊂G to be

the kernel of τ. Note that the cosets of H are exactly the level sets of τ. If λ = 1,

then every level set of τ is fixed by F. Since τ is non-zero, there are infinitely many

such level sets and proposition 1 above gives a contradiction.

CIRCLE BUNDLES OVER NILMANIFOLDS

Before revising the proof of (4.3), we first prove the following.

Proposition 7. Suppose M is a circle bundle with oriented fibers over a nilmani-

fold N . If M has a compact horizontal submanifold Σ, then M is a trivial bundle.
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Remark. We consider everything in the C 0 setting here. The circle bundle is

defined by a C 0 map p : M → N and a compact horizontal submanifold Σ is

a codimension one C 0 submanifold such that p|Σ : Σ → N is a covering map

of finite degree. To show that M is trivial, it enough to find another horizontal

submanifold Σ1 such that p|Σ1
: Σ1 → N is a homeomorphism. To simplify the

proof, we assume that the circle fibers are tangent to a C 0 vector field as is the

case for the center leaves of a partially hyperbolic skew product.

Proof. Assume Σ intersects each fiber in exactly k points. We may define a met-

ric on each fiber such that the length of every fiber is exactly one and that its

points of intersection with Σ are equally spaced; that is, the distance between

one point of intersection and the next is exactly 1
k

. We may choose these metrics

to vary continuously along M .

Let π : M̃ → M be the universal covering map. We may assume that M̃ = Ñ ×R

where Ñ is the nilpotent Lie group covering N and such that the fibers of M lift

to lines of the form v×R with v ∈ Ñ . We further assume that the metric on a fiber

of M lifts to a metric on v ×R which is equal to the standard Euclidean metric

given by R. In particular, π−1(Σ) intersects each fiber v ×R in a set of points of

the form

{ (v,σ(v)+ t ) : t ∈ 1
k
Z }

for some σ(v) depending on v. We may assume σ : Ñ → R is continuous. To

see this, choose a connected component Σ̃ of π−1(Σ) and define σ(v) to be the

unique intersection of v ×R with Σ̃.

Write G = π1(M), and H = π1(N ). The bundle projection p : M → N induces

a surjective homomorphism p∗ : G → N . We now use Σ̃ to define a homomor-

phism τ : G →
1
k
Z. Without loss of generality, assume σ(e) = 0 where e is the

identity element of Ñ . For a deck transformation g ∈ G , let τ(g ) be such that

(e,τ(g )) is the unique intersection of g (Σ̃) with e ×R. Similar to lemma (7.6) in

the original paper, one may show that τ : G →
1
k
Z is a homomorphism. We claim

the following.

Claim. There is a (not necessarily unique) homomorphism

ψ : H →
1
k
Z such that ψp∗(g )−τ(g ) ∈Z for all g ∈G .

We leave the proof of this to the end and first show that this gives the desired

result. By the properties of nilmanifolds [Mal51], ψ determines a Lie group ho-

momorphism ψ : Ñ → R where if we regard H as a discrete subgroup of Ñ then

this is an extension of ψ from H to all of Ñ . Define a submanifold Σ̃1 as the graph

of σ−ψ; that is, (v, t ) ∈ Σ̃1 if and only if t =σ(v)−ψ(v). By the above claim, for all

deck transformations g ∈G , the intersection of g (Σ̃1) with e ×R lies inside e ×Z.

Hence Σ̃1 quotients down to a compact horizontal submanifold Σ1 ⊂ M which

intersects each fiber exactly once and therefore shows that the circle bundle is

trivial
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It remains to prove the claim. We first consider the abelian case where H is

isomorphic to Zd . Let {h1, . . .hd } be a generating set for H and choose elements

gi ∈G such that p∗(gi ) = hi . Let z ∈G be the deck transformation (v, t ) 7→ (v, t +

1) corresponding to going once around a fiber of the circle fibering. Note that

τ(z) = 1. As explained in the original proof of (4.3), 〈z〉 is the kernel of p∗, and so

{z, g1, . . . gd } is a generating set for G . Define ψ : H →
1
k
Z by ψ(hi ) = τ(gi ). Then

ψp∗(z)−τ(z) =−1 and ψp∗(gi )−τ(gi ) = 0. As ψp∗−τ takes integer values on a

generating set for G , it must take integer values on all of G .

We now extend this argument to the non-abelian case. Note that both M and

N are nilmanifolds. Consider the root set G1 of the commutator subgroup of G .

That is g ∈ G1 if and only if g k ∈ [G ,G] for some k ≥ 1. Such sets are discussed

in detail in Chapter 1 of [Dek96] (where the notation there is G
√

γ2(G) instead of

G1). In particular, G1 is a normal subgroup and any homomorphism from G to

a torsion-free abelian group R is identically zero on G1 and so factors through

G →G/G1 → R We can therefore define a homomorphism τ1 : G/G1 →
1
k
Z as the

quotient of τ.

Similarly write H1 for the root set of [H , H ]. Then H/H1 is a torsion-free

abelian group homomorphic to Zd for some d [Dek96], and p∗ : G → H de-

scends to a map p1 : G/G1 → H/H1. Adapting the argument above, we may de-

fine a map ψ1 : H/H1 →
1
k
Z such that ψ1p1 − τ1 takes integer values on all of

G/G1. Then ψ1 determines a map ψ : H →
1
k
Z as desired. �

REVISED PROOF OF THEOREM (4.3)

This section revises the proof of theorem (4.3) to use proposition 1 above in

place of the incorrect proposition (6.4) of the original paper. By virtue of propo-

sition 7 above, we need only show that the partially hyperbolic system has a

compact us-leaf.

The proof of (4.3) is unchanged up to the definition of τ̂ : G → R/Z and the

first use of (6.4). Using instead proposition 1 above, the most we can say is that τ̂

has a finite image. In other words, there is an integer k ≥ 1 such that τ(G) = 1
k
Z.

The existence of τ is given by (6.1) and (6.2). From the proofs of those results,

we can see that then there is a measure µ on S̃ invariant under the action of G

and such that τ(g ) =µ[x, g (x)) for any x ∈Λ and g ∈G . Here, Λ is the intersection

of the non-open accessibility classes Γ with S̃. Choose some point x0 ∈Λ and for

each t ∈ 1
k
Z, define a set X t ⊂Λ by

X t = {x ∈Λ : µ[x0, x) = t }.

The sets X t are disjoint and the action of g ∈ G on Λ takes X t to X t+τ(g ). Define

yt = sup X t where we are identifying S̃ with R in order to define the supremum.

Then {yt : t ∈ 1
k
Z} is a discrete subset of Λ which is invariant under the action of

G . This implies that for any point yt , its accessibility class AC (yt ) ⊂ M̃ quotients

down to a compact us-leaf on M .
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PROOF OF PROPOSITION 2

We now prove proposition 2. Assume f : M → M is a partially hyperbolic dif-

feomorphism which preserves the orientation of E c and h : M → MB is a leaf

conjugacy to f AB : MB → MB . We want to show that after lifting f and f AB to

maps f̂ and f ÂB̂ on finite covers M̂ of M and MB̂ of MB that there is a leaf con-

jugacy ĥ : M̂ → MB̂ such that ĥ f̂ ĥ−1 and f ÂB̂ are homotopic. As all of the man-

ifolds involved are Eilenberg-MacLane spaces of type K (π,1), the existence of

such a homotopy is purely a question involving the actions of the functions on

the fundamental groups of the manifolds. (See, for instance, Propositions 1.33

and 1B.9 of [Hat02].) In particular, we do not need to use the smoothness of f

in any way. Therefore, we may replace f by h f h−1 and assume without loss of

generality that M = MB and that h is the identity map.

In this section, we write G for the simply connected nilpotent Lie group and

Γ for the cocompact lattice such that N = Γ\G is the nilmanifold. Then quoti-

enting G by [G ,G] yields an abelian Lie group isomorphic to Rd for some d . This

defines a projection from G to Rd , and for x ∈G , we write x̄ ∈Rd for its image un-

der the projection. This projection may further be chosen such that Γ is mapped

to Zd . (If the nilmanifold is a torus N =Zd \Rd , then the projection G →Rd is the

identity map and all of the overlines in what follows may be safely ignored.)

Let A, B : G → G be the commuting Lie group automorphisms defining the

AB-prototype. These induce linear automorphisms Ā and B̄ on Rd with the

property that A(x) = Ā(x̄) and B(x) = B̄(x̄).

The universal cover of MB is G ×R. Define β(x, t ) = (B(x), t −1). For γ ∈ Γ, de-

fine τγ(x, t ) = (γ·x, t ). Note that βτγ = τB(γ)β and that every deck transformation

may be written in the form τγβ
n for γ ∈ Γ and n ∈Z.

Lift f to a diffeomorphism f̃ : G ×R→G ×R such that f̃ (0×R) = 0×R where 0

is the identity element of G . Such a lift exists because of the leaf conjugacy. This

lift then determines an automorphism f∗ of the fundamental group π1(MB ) de-

fined by the property f∗(τ)◦ f̃ = f̃ ◦τ for all deck transformations τ. Since 0×R

projects to an f -invariant circle in MB , one can show that f∗(β) = β. By the leaf

conjugacy, f̃ (x×R) = A(x)×R for all x ∈G , and so for each γ ∈ Γ, there is an inte-

ger L(γ) such that f∗(τγ) = τA(γ)β
L(γ). Using that f∗ is a group homomorphism,

one can show that L(γ1 ·γ2) = L(γ1)+L(γ2) and A(γ1 ·γ2) = A(γ1)B L(γ1) A(γ2) for

all γ1,γ2 ∈ Γ. This implies that L : Γ → Z is a group homomorphism and that

there is k ≥ 0 such that L(Γ) = kZ and B k is the identity map on G . If k = 0, then

f induces the same action on π1(MB ) as the AB-prototype f AB and this would

imply the desired result. Therefore, we assume in what follows that k ≥ 1.

By the properties of nilmanifolds [Mal51], L extends to a Lie group homo-

morphism L : G → R. Since R is abelian, L|[G ,G] ≡ 0 and there is a linear map

L̄ : Rd → R such that L̄(x̄) = L(x) for all x ∈ G . Let I denote the identity map on

Rd . As Ā is hyperbolic, Ā− I is invertible. Define S̄ : Rd →R by S̄ = L̄(Ā− I )−1 and
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S : G →Rby S(x) = S̄(x̄). By Cramer’s rule, S̄(mZd ) ⊂ kZwhere m = det(Ā−I ). Us-

ing f∗(βτγ) = f∗(τB(γ)β), one can show LB(γ) = L(γ) for all γ ∈ Γ. Hence, LB = L

as functions on G and one may use this to show L̄B̄ = L̄, S̄B̄ = S̄, and SB = S.

Define Γ0 ⊂ Γ by γ ∈ Γ0 if and only if γ̄ ∈ mZd . Since Ā(mZd ) = mZd and

B̄(mZd ) = mZd , it follows that A(Γ0) = Γ0 and B(Γ0) = Γ0. Hence, A and B de-

fine commuting automorphisms Â and B̂ of a nilmanifold N̂ = Γ0\G that finitely

covers N . Using this we define a new AB-prototype f ÂB̂ on a new suspension

manifold MB̂ which finitely covers the original. Further, f̃ quotients to a func-

tion f̂ : MB̂ → MB̂ which is a lift of the original f .

Define h̃ : G ×R→G ×R by h̃(x, t ) = (x, t +S(x)). If γ ∈ Γ0, then S(γ) ∈ kZ and

since B k is the identity, it follows that βS(γ)(x, t ) = (x, t−S(γ)) which may be used

to show that h̃τγ = τγβ
−S(γ)h̃. This implies that h̃ quotients to a diffeomorphism

ĥ on MB̂ and that induced action on π1(MB̂ ) satisfies ĥ∗(β) = β and ĥ∗(τγ) =

τγβ
−S(γ) for all γ ∈ Γ0. Further note that ĥ is a leaf conjugacy between f̂ and f ÂB̂ .

Since

ĥ∗ f̂∗ĥ−1
∗ (τγ) = ĥ∗ f∗ĥ−1

∗ (τγ) = τA(γ)β
−S A(γ)βL(γ)βS(γ)

= τA(γ),

it follows that ĥ f̂ ĥ−1 and f ÂB̂ have the same action on π1(MB̂ ) and so are homo-

topic.
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