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ABSTRACT. This paper gives a complete classification of the possible ergodic

decompositions for certain open families of volume-preserving partially hy-

perbolic diffeomorphisms. These families include systems with compact cen-

ter leaves and perturbations of Anosov flows under conditions on the dimen-

sions of the invariant subbundles. The paper further shows that the non-open

accessibility classes form a C 1 lamination and gives results about the accessi-

bility classes of non-volume-preserving systems.

Note: this document has been modified slightly from earlier preprints. The

numbering of sections was changed to match the published version and an

erratum has been added to the end.

1. INTRODUCTION

Invariant measures are important objects in the study of dynamical systems.

Often, these measures are ergodic, allowing a single orbit to express the global

behaviour of the system. However, this is not always the case. For instance, a

Hamiltonian system always possesses a smooth invariant measure, but a generic

smooth Hamiltonian yields level sets on which the dynamics are not ergodic

[32]. Any invariant measure may be expressed as a linear combination of ergodic

measures and while such a decomposition always exists, it is not, in general,

tractable to find it. For partially hyperbolic systems, there is a natural candidate

for the ergodic decomposition given by the accessibility classes of the system.

This paper analyzes certain families of partially hyperbolic systems, character-

izing the possible accessibility classes and showing that these coincide with the

ergodic components of any smooth invariant measure.

By the classical work of Hopf, the geodesic flow on a surface of negative cur-

vature is ergodic [28]. Further, by the work Anosov and Sinai, the flow is stably
ergodic meaning that all nearby flows are also ergodic [1, 2]. Based on these

techniques, Grayson, Pugh, and Shub showed that the time-one map of this ge-

odesic flow is also stably ergodic as a diffeomorphism [22]. To prove this, they

observed two important properties. The first property is partial hyperbolicity. A

diffeomorphism f is partially hyperbolic if there is an invariant splitting of the

tangent bundle of the phase space M into three subbundles

T M = E u ⊕E c ⊕E s

1



2 ANDY HAMMERLINDL

such that vectors in the unstable bundle E u are expanded by the derivative T f ,

vectors in the stable bundle E s are contracted, and these dominate any expan-

sion and contraction of vectors in the center bundle E c . (Appendix A gives a

precise definition.) The second property is accessibility. For a point x ∈ M , the

accessibility class AC (x) is the set of all points that can be reached from x by

a concatenation of paths, each tangent to either E s or E u . A system is called

accessible if its phase space consists of a single accessibility class. For the ge-

odesic flow, the phase space M is the unit tangent bundle of the surface, E c is

the direction of the flow, and E s and E u are given by the horocycles. Grayson,

Pugh, and Shub demonstrated that any diffeomorphism near the time-one map

of the flow is both partially hyperbolic and accessible and used this to prove its

ergodicity. This breakthrough was followed by a number of papers demonstrat-

ing stable ergodicity for specific cases of partially hyperbolic systems (see the

surveys [42, 48]) and lead Pugh and Shub to formulate the following conjecture

[39].

Conjecture 1. Ergodicity holds on an open and dense set of volume-preserving
partially hyperbolic diffeomorphisms.

They further split this into two subconjectures.

Conjecture 2. Accessibility implies ergodicity.

Conjecture 3. Accessibility holds on an open and dense set of partially hyperbolic
diffeomorphisms (volume-preserving or not).

The Pugh-Shub conjectures have been established in a number of settings.

In particular, they are true when the center bundle E c is one-dimensional [43].

However, there are a number of partially hyperbolic systems which arise natu-

rally and which are not ergodic, leading to the following questions.

Question. Is it possible to give an exact description of the set of non-ergodic
partially hyperbolic diffeomorphisms?

Question. For a non-ergodic partially hyperbolic diffeomorphism, do the
ergodic components coincide with the accessibility classes of the system?

This paper answers these questions in the affirmative under certain assump-

tions on the system. We first give one example as motivation before introducing

more general results. Consider on the 3-torus T3 = R3/Z3 a diffeomorphism f
defined by

f (x, y, z) = (2x + y, x + y, z).

The eigenvalues are λ < 1 < λ−1 and f is therefore partially hyperbolic. Ar-

guably, this is the simplest partially hyperbolic example one can find. It pre-

serves Lebesgue measure but is not ergodic. Further, there are several ways to

construct nearby diffeomorphisms which are also non-ergodic. With a bit of

thought, the following methods come to mind.
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(1) Rotate f slightly along the center direction, yielding a diffeomorphism

(x, y, z) 7→ (2x + y, x + y, z +θ)

for some small rational θ ∈R/Z.

(2) Compose f with a map of the form (x, y, z) 7→ (ψ(x, y, z), z) for some ψ :

T3 →T2.

(3) Perturb f on a subset of the form T2 ×X where X (S1.

(4) Conjugate f with a diffeomorphism close to the identity.

The results of this paper imply that any non-ergodic diffeomorphism in a neigh-

bourhood of f can be constructed by applying these four steps in this order.

2. STATEMENT OF RESULTS

We again refer the reader to the appendix for a list of definitions.

Suppose A and B are automorphisms of a compact nilmanifold N such that

A is hyperbolic and AB = B A. Then, A and B define a diffeomorphism

f AB : MB → MB , (v, t ) 7→ (Av, t )

on the manifold

MB = N ×R/(v, t ) ∼ (B v, t −1).

Call f AB an AB-prototype.

Note that every AB-prototype is an example of a volume-preserving, partially

hyperbolic, non-ergodic system. Further, just like the linear example on T3

given above, every AB-prototype may be perturbed to produce nearby diffeo-

morphisms which are also non-ergodic.

To consider such perturbations, we use the notion of leaf conjugacy as intro-

duced in [27]. Two partially hyperbolic diffeomorphisms f and g are leaf con-
jugate if there are invariant foliations W c

f and W c
g tangent to E c

f and E c
g and a

homeomorphism h such that for every leaf in L in W c
f , h(L) is a leaf of W c

g and

h( f (L)) = g (h(L)).

We now define a family of diffeomorphisms which will be the focus of the

paper. A partially hyperbolic system f : M → M is an AB-system if it preserves an

orientation of the center bundle E c and is leaf conjugate to an AB-prototype.

In order to consider skew-products over infranilmanifolds and systems which

do not preserve an orientation of E c , we also consider the following general-

ization. A diffeomorphism f0 is an infra-AB-system if an iterate of f0 lifts to an

AB-system on a finite cover. To the best of the author’s knowledge, this family

of partially hyperbolic diffeomorphisms includes every currently known exam-

ple of a non-ergodic system with one-dimensional center. Further, there are

manifolds on which every conservative partially hyperbolic diffeomorphism is

an AB-system.

Question 2.1. Suppose f is a conservative, non-ergodic, partially hyperbolic C 2

diffeomorphism with one-dimensional center. Is f necessarily an infra-AB-system?
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Skew products with trivial bundles correspond to AB-systems where B is the

identity map. The suspensions of Anosov diffeomorphisms correspond to the

case A = B . These are not the only cases, however. For instance, one could take

hyperbolic automorphisms A,B : T3 →T3 defined by the commuting matrices





3 2 1

2 2 1

1 1 1



 and





2 1 1

1 2 0

1 0 1



 .

Throughout this paper, the letters A and B will always refer to the maps as-

sociated to the AB-system under study, and N and MB will be the manifolds in

the definition. In general, if f : M → M is an AB-system, M need only be home-

omorphic to MB , not diffeomorphic [16, 15].

We show that every conservative AB-system belongs to one of three cases,

each with distinct dynamical and ergodic properties.

Theorem 2.2. Suppose f : M → M is a C 2 AB-system which preserves a smooth
volume form. Then, one of the following occurs.

(1) f is accessible and stably ergodic.

(2) E u and E s are jointly integrable and f is topologically conjugate to MB →
MB , (v, t ) 7→ (Av, t+θ) for some θ. Further, f is (non-stably) ergodic if and
only if θ defines an irrational rotation.

(3) There are n ≥ 1, a C 1 surjection p : M → S1, and a non-empty open set
U (S1 such that

• for every connected component I of U , p−1(I ) is an f n-invariant
subset homeomorphic to N × I and the restriction of f n to this subset
is accessible and ergodic, and

• for every t ∈ S1 \U , p−1(t ) is an f n-invariant submanifold tangent
to E u ⊕E s and homeomorphic to N .

Note that the first case can be thought of as a degenerate form of the third

case with U =S1. Similarly, the second case with rational rotation corresponds

to U =∅.

To give the ergodic decomposition of these systems, we decompose the mea-

sure and show that each of the resulting measures is ergodic. Suppose µ is a

smooth measure on a manifold M and p : M →S1 is continuous and surjective

such that p∗µ = m where m is Lebesgue measure on S1 = R/Z. The Rokhlin

disintegration theorem [47] implies that µ can be written as

µ=
∫

t∈S1
µt dm(t )

where the support of each µt is contained in p−1(t ). Moreover, this disintegra-

tion is essentially unique; if measures {νt }t∈S1 give another disintegration of µ,
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then νt =µt for m-a.e. t ∈S1. For an open interval I ⊂S1 define

µI := 1

m(I )

∫

I
µt dm(t ).

Note that µI is the normalized restriction of µ to p−1(I ). Then an open subset

U ⊂S1 yields a decomposition

(2.3) µ=
∑

I
m(I )µI +

∫

t∈S1\U
µt dm(t )

where
∑

I denotes summation over all of the connected components I of U .

Theorem 2.4. If f : M → M is a C 2 AB-system and µ is a smooth, invariant, non-
ergodic measure with µ(M) = 1, then there are n ≥ 1, a C 1 surjection p : M →S1,
and an open set U (S1 such that p∗µ= m and (2.3) is the ergodic decomposition
of ( f n ,µ).

If f is in case (3) of (2.2), then the n, p, and U can be taken to be the same

in both theorems. If f is in case (2) and non-ergodic, then θ is rational, and the

map p can be defined by composing the topological conjugacy from M to MB

with a projection from MB to S1.

As f preserves µ and p∗µ = m, it follows that p( f (x)) = p(x) + q for some

rational q ∈ S1 and all x with p(x) ∉ U . Because of this, one can derive the er-

godic decomposition of ( f ,µ) from (2.4). Each component is either of the form
1
n

∑n
j=1µt+ j q or 1

n

∑n
j=1µIk, j where if Ik = (a,b) then Ik, j = (a+ j q,b+ j q). In (2.4),

the ergodic components of ( f n ,µ) are mixing and, in fact, have the Kolmogorov

property [12]. The ergodic components of f are mixing if and only if (2.4) holds

with n = 1.

Using the perturbation techniques of [43], for any AB-prototype f AB , rational

number θ = k
n , and open subset U (S1 which satisfies U +θ =U , one can con-

struct an example of a volume-preserving AB-system which satisfies (2.4) with

the same n and U . In this sense, the classification given by (2.2) and (2.4) may

be thought of as complete. Versions of these theorems for infra-AB-systems are

given in Section 14.

Accessibility also has applications beyond the conservative setting. For in-

stance, Brin showed that accessibility and a non-wandering condition imply

that the system is (topologically) transitive [8]. Therefore, we state a version

of (2.2) which assumes only this non-wandering condition. For a homeomor-

phism f : M → M , a wandering domain is a non-empty open subset U such that

U ∩ f n(U ) is empty for all n ≥ 1. Let NW ( f ) be the non-wandering set, the set of

all points x ∈ M which do not lie in a wandering domain.

Theorem 2.5. Suppose f : M → M is an AB-system such that NW ( f ) = M. Then,
one of the following occurs.

(1) f is accessible and transitive.
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(2) E u and E s are jointly integrable and f is topologically conjugate to MB →
MB , (v, t ) 7→ (Av, t +θ) for some θ. Further, f is transitive if and only if θ
defines an irrational rotation.

(3) There are n ≥ 1, a continuous surjection p : M → S1, and a non-empty
open set U (S1 such that

• for every connected component I of U , p−1(I ) is an f n-invariant sub-
set homeomorphic to N × I , and

• for every t ∈ S1 \U , p−1(t ) is an f n-invariant submanifold tangent
to E u ⊕E s and homeomorphic to N .

The restriction of f n to a subset p−1(t ) or p−1(I ) is transitive.

The non-wandering assumption is used in only a few places in the proof and

so certian results may be stated without this assumption. For a partially hyper-

bolic diffeomorphism with one-dimensional center, a us-leaf is a complete C 1

submanifold tangent to E u ⊕E s .

Theorem 2.6. Every non-accessible AB-system has a compact us-leaf.

Theorem 2.7. Suppose f : M → M is a non-accessible AB-system with at least one
compact periodic us-leaf. Then, there are n ≥ 1, a continuous surjection p : M →
S1 and an open subset U ⊂S1 with the following properties.

For t ∈ S1 \U , p−1(t ) is an f n-invariant compact us-leaf. Moreover, every f -
periodic compact us-leaf is of this form.

For every connected component I of U , p−1(I ) is f n-invariant, homeomorphic
to N × I and, letting g denote the restriction of f n to p−1(I ), one of three cases
occurs:

(1) g is accessible,
(2) there is an open set V ⊂ p−1(I ) such that

g (V ) ⊂V ,
⋃

k∈Z
g k (V ) = p−1(I ),

⋂

k∈Z
g k (V ) =∅,

and the boundary of V is a compact us-leaf, or
(3) there are no compact us-leaves in p−1(I ), uncountably many non-compact

us-leaves in p−1(I ), and λ 6= 1 such that g is semiconjugate to

N ×R→ N ×R, (v, t ) 7→ (Av,λt ).

It is relatively easy to construct examples in the first two cases above. Section

16 gives an example of the third case. It is based on the discovery by F. Rodriguez

Hertz, J. Rodriguez Hertz, and R. Ures of a non-dynamically coherent system

on the 3-torus [46]. Theorem (2.7) corresponds to a rational rotation on an f -

invariant circle. The following two theorems correspond to irrational rotation.

Theorem 2.8. Suppose f : M → M is a non-accessible AB-system with no periodic
compact us-leaves. Then, there is a continuous surjection p : M → S1 and a C 1

diffeomorphism r : S1 →S1 such that

• NW ( f ) = p−1(NW (r )),
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• if t ∈ NW (r ) then p−1(t ) is a compact us-leaf and f (p−1(t )) = p−1(r (t )),
and

• if I is a connected component of S1 \ NW (r ), then f (p−1(I )) = p−1(r (I )).
In particular, p−1(I ) ⊂ M is a wandering domain.

Theorem 2.9. Suppose f : M → M is a non-accessible AB-system with no periodic
compact us-leaves. Then, f is semiconjugate to

MB → MB , (v, t ) 7→ (Av, t +θ)

for θ defining an irrational rotation.

One can construct C 1 examples of AB-systems satisfying the conditions of

(2.8) and with NW ( f ) 6= M . For instance, if r is a Denjoy diffeomorphism of the

circle, simply consider a direct product A× r where A is Anosov.

The diffeomorphism f in (2.5)–(2.9) need only be C 1 in general. If f is a C 2

diffeomorphism, then the surjection p : M → S1 may be taken as C 1. This is a

consequence of the following regularity result, proven in Section 12.

Theorem 2.10. For a non-accessible partially hyperbolic C 2 diffeomorphism with
one-dimensional center, the us-leaves form a C 1 lamination.

The existence of a C 0 lamination was shown in [43].

The next sections discuss how this work relates to other results in partially hy-

perbolic theory, first for three-dimensional systems in Section 3 and for higher

dimensions in Section 4. Section 5 gives an outline of the proof and of the orga-

nization of the rest of the paper. The appendix gives precise definitions for many

of the terms used in these next few sections.

3. DIMENSION THREE

The study of partially hyperbolic systems has had its greatest success in di-

mension three, where dimE u = dimE c = dimE s = 1. Still, in this simplest of

cases, a number of important questions remain open. Hertz, Hertz, and Ures

posed the following conjecture specifically regarding ergodicity.

Conjecture 3.1. If a conservative partially hyperbolic diffeomorphism in dimen-
sion three is not ergodic, then there is a periodic 2-torus tangent to E u ⊕E s .

They also showed that the existence of such a torus would have strong dy-

namical consequences. We state this theorem as follows.

Theorem 3.2 ([45]). If a partially hyperbolic diffeomorphism on a three dimen-
sional manifold M has a periodic 2-torus tangent to E u ⊕E s , then M has solvable
fundamental group.

In fact, the theorem may be stated in a much stronger form. See [45] for de-

tails.
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Work on classifying partially hyperbolic systems has seen some success in re-

cent years, at least for 3-manifolds with “small” fundamental group. This was

made possible by the breakthrough results of Brin, Burago, and Ivanov to rule

out partially hyperbolic diffeomorphisms on the 3-sphere and prove dynamical

coherence on the 3-torus [9, 7]. Building on this work, the author and R. Potrie

gave a classification up to leaf conjugacy of all partially hyperbolic systems on

3-manifolds with solvable fundamental group. Using the terminology of the cur-

rent paper, the conservative version of this classification can be stated as follows.

Theorem 3.3 ([24]). A conservative partially hyperbolic diffeomorphism on a 3-
manifold with solvable fundamental group is (up to finite iterates and finite cov-
ers) either

(a) an AB-system,
(b) a skew-product with a non-trivial fiber bundle, or
(c) a system leaf conjugate to an Anosov diffeomorphism.

Further, the ergodic properties of each of these three cases have been exam-

ined in detail. Case (a) is the subject of the current paper. Case (b) was studied in

[44], where it was first shown that there are manifolds on which all partially hy-

perbolic systems are accessible and ergodic. Case (c) was studied in [25], which

showed that if such a system is not ergodic then it is topologically conjugate to

an Anosov diffeomorphism (not just leaf conjugate). It is an open question if

such a non-ergodic system can occur. All of these results can be synthesized

into the following statement, similar in form to (2.2).

Theorem 3.4. Suppose M is a 3-manifold with solvable fundamental group and
f : M → M is a C 2 conservative partially hyperbolic system. Then, (up to finite
iterates and finite covers) one of the following occurs.

(1) f is accessible and stably ergodic.
(2) E u and E s are jointly integrable and f is topologically conjugate either to

a linear hyperbolic automorphism of T3 or to

MB → MB , (v, t ) 7→ (Av, t +θ)

where A,B : T2 →T2 define an AB-prototype and θ ∈S1.
(3) There are n ≥ 1, a C 1 surjection p : M → S1, and a non-empty open set

U (S1 such that
• for every connected component I of U , p−1(I ) is an f n-invariant sub-

set homeomorphic to T2 × I and the restriction of f n to this subset is
accessible and ergodic,

• for every t ∈S1 \U , p−1(t ) is an f n-invariant 2-torus tangent to E u⊕
E s .

If (3.1) is true, then this theorem encapsulates every possible ergodic decom-

position for a 3-dimensional partially hyperbolic system.
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Question 3.5. Is the condition “with solvable fundamental group” necessary in
(3.4)?

4. HIGHER DIMENSIONS

We next consider the case of skew products in higher dimension. In related

work, K. Burns and A. Wilkinson studied stable ergodicity of rotation extensions

and of more general group extensions over Anosov diffeomorphisms [11], and

M. Field, I. Melbourne, V. Niţică, and A. Török have analyzed group extensions

over Axiom A systems, proving results on transitivity, ergodicity, and rates of

mixing [17, 18, 33].

In this paper, we use the following definition taken from [21]. Let π : M →
X define a fiber bundle on a compact manifold M over a topological manifold

X . If a partially hyperbolic diffeomorphism f : M → M is such that the center

direction E c
f is tangent to the fibers of the bundle and there is a homeomorphism

A : X → X satisfying π f = Aπ, then f is a partially hyperbolic skew product. We

call A the base map of the skew product. While f must be C 1, π in general will

only be continuous.

This definition has the benefit that it is open: any C 1-small perturbation of a

partially hyperbolic skew product is again a partially hyperbolic skew product.

This can be proven using the results in [27] and the fact that the base map is

expansive. The base map also has the property that it is topologically Anosov

[3]. As with smooth Anosov systems, it is an open question if all topologically

Anosov systems are algebraic in nature.

Question 4.1. If A is a base map of a partially hyperbolic skew product, then is A
topologically conjugate to a hyperbolic infranilmanifold automorphism?

We now consider the case where dimE c = 1 in order to relate skew products

to the AB-systems studied in this paper. The following is easily proved.

Proposition 4.2. Suppose f is a partially hyperbolic skew product where the base
map is a hyperbolic nilmanifold automorphism and E c is one-dimensional and
has an orientation preserved by f . Then, f is an AB-system if and only if the fiber
bundle defining the skew product is trivial.

If we are interested in the ergodic properties of the system, we can further

relate accessibility to triviality of the fiber bundle.

Theorem 4.3. Suppose f is a partially hyperbolic skew product where the base
map is a hyperbolic nilmanifold automorphism and E c is one-dimensional and
orientable. If f is not accessible, then the fiber bundle defining the skew product
is trivial.

Corollary 4.4. Suppose f is a conservative C 2 partially hyperbolic skew product
where the base map is a hyperbolic nilmanifold automorphism and E c is one-
dimensional and has an orientation preserved by f . Then, f satisfies one of the
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three cases of (2.2) and if f is not ergodic, its ergodic decomposition is given by
(2.4).

Theorem (4.3) is proved in Section 13. A similar statement, (14.6), still holds

when “nilmanifold” is replaced by “infranilmanifold” and the condition on ori-

entability is dropped.

Every partially hyperbolic skew product has compact center leaves and an

open question, attributed in [42] to C. C. Pugh, asks if some form of converse

statement holds.

Question 4.5. Is every partially hyperbolic diffeomorphism with compact center
leaves finitely covered by a partially hyperbolic skew product?

This question was studied independently by D. Bohnet, P. Carrasco, and A. Go-

golev who gave positive answers under certain assumptions [5, 6, 13, 21]. In

relation to the systems studied in the current paper, the following results are rel-

evant.

Theorem 4.6 ([21]). If f is a partially hyperbolic diffeomorphism with compact
center leaves, and dimE c = 1, dimE u ≤ 2, and dimE s ≤ 2, then f is finitely cov-
ered by a skew product.

Corollary 4.7. Suppose f : M → M is a partially hyperbolic diffeomorphism with
compact center leaves, dimE c = 1, and dim M = 4. If f is not accessible, then f is
an infra-AB-system.

A compact foliation is uniformly compact if there is a uniform bound on the

volume of the leaves.

Theorem 4.8 ([6]). If f is a partially hyperbolic diffeomorphism with uniformly
compact center leaves and dimE u = 1, then f is finitely covered by a partially
hyperbolic skew product where the base map is a hyperbolic toral automorphism.

Corollary 4.9. Suppose f is a partially hyperbolic diffeomorphism with uniformly
compact center leaves and dimE u = dimE c = 1. If f is not accessible, then f is an
infra-AB-system.

In the conservative setting, we may then invoke the results of the current pa-

per to describe the ergodic properties of these systems.

Question 4.10. If f is a non-accessible partially hyperbolic diffeomorphism with
compact one-dimensional center leaves, then is f an infra-AB-system?

Positive answers to both (4.1) and (4.5) would give a positive answer to (4.10).

In his study of hyperbolic flows, Anosov established a dichotomy, now known

as the “Anosov alternative” which states that every transitive Anosov flow is ei-

ther topologically mixing or the suspension of an Anosov diffeomorphism with

constant roof function [1, 18]. Ergodic variants of the Anosov alternative have

also been studied and the following holds.
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Theorem 4.11 ([35, 10]). For an Anosov flow φt : M → M, the following are equiv-
alent:

• the time-one map φ1 is not accessible,
• the strong stable and unstable foliations are jointly integrable,

and both imply the flow is topologically conjugate to the suspension of an Anosov
diffeomorphism.

Corollary 4.12. Suppose every Anosov diffeomorphism is topologically conjugate
to an infranilmanifold automorphism. Then, every non-accessible time-one map
of an Anosov flow is an infra-AB-system.

Thus, if the conjecture about Anosov diffeomorphisms is true, then the re-

sults given in Section 14 will classify the ergodic properties of diffeomorphisms

which are perturbations of time-one maps of Anosov flows. This conjecture is

true when the Anosov diffeomorphism has a one dimensional stable or unsta-

ble bundle [34].

Corollary 4.13. Suppose f is the time-one map of an Anosov flow with dimE u
f =

1. If f is not accessible, then it is an AB-system.

5. OUTLINE

Most of the remaining sections focus on proving the results listed in Section 2

and we present here an outline of the main ideas.

A partially hyperbolic system has global product structure if it is dynamically

coherent and, after lifting the foliations to the universal cover M̃ , the following

hold for all x, y ∈ M̃ :

(1) W u(x) and W cs(y) intersect exactly once,

(2) W s(x) and W cu(y) intersect exactly once,

(3) if x ∈W cs(y), then W c (x) and W s(y) intersect exactly once, and

(4) if x ∈W cu(y), then W c (x) and W u(y) intersect exactly once.

Theorem 5.1. Every AB-system has global product structure.

This proof of this theorem is left to Section 15. That section also proves the fol-

lowing.

Theorem 5.2. AB-systems form a C 1-open subset of the space of diffeomorphisms.

Now assume f is a non-accessible AB-system. There is a lamination con-

sisting of us-leaves [43], and this lamination lifts to the universal cover. Global

product structure implies that for a center leaf L on the cover, every leaf of the

lifted us-lamination intersects L exactly once. Each deck transformation maps

the lamination to itself and this leads to an action of the fundamental group on

a closed subset of L as depicted in Figure 1.

In Section 6, we consider an order-preserving action of a nilpotent group G
on a closed subset Γ ⊂ R. We also assume there is f acting on Γ such that
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f G f −1 =G . Then, f and G generate a solvable group. Solvable groups acting on

the line were studied by Plante [37]. By adapting his results, we prove (6.5) which

(omitting some details for now) states that either Fix(G) is non-empty or, up to a

common semiconjugacy from Γ to R, each g ∈G gives a translation x 7→ x +τ(g )

and f gives a scaling x 7→λx.

Instead of applying this result immediately to AB-systems, Section 7 intro-

duces the notion of an “AI-system” which can be thought of as the lift of an AB-

system to a covering space homeomorphic to N ×R where, as always, N is a

nilmanifold. Using (6.5), Section 7 gives a classification result, (7.1), for the ac-

cessibility classes of AI-systems. Section 8 applies the results for AI-systems to

give results about AB-systems and gives a proof of (2.6). The higher dimensional

dynamics of the AB-system depend on the one-dimensional dynamics on an

invariant circle. Sections 9 and 10 consider the cases of rational and irrational

rotation respectively and prove theorems (2.7)–(2.9).

Section 11 gives the proofs of (2.2), (2.4), and (2.5) based on the other results.

In order to establish the ergodic decomposition, the lamination of us-leaves

must be C 1. By (2.10), this holds if the diffeomorphism is C 2. The proof requires

a highly technical application of Whitney’s extension theorem and is given in

Section 12. The specific version of this regularity result for AB-systems can be

stated as follows.

Proposition 5.3. Let f : M → M be a C 2 AB-system. Then, there is a C 1 surjection
p : M → S1 and U ⊂ S1 such that the compact us-leaves of f are exactly the sets
p−1(t ) for t ∈S1 \U .

If S is a center leaf which intersects each compact us-leaf exactly once, then p
may be defined so that its restriction to S is a C 1-diffeomorphism.

If µ is a probability measure given by a C 1 volume form on M, then p may be
chosen so that p∗µ is Lebesgue measure on S1 =R/Z.

Section 13 proves (4.3) concerning the triviality of non-accessible skew prod-

ucts. Infra-AB-systems are treated in Section 14.

6. ACTIONS ON SUBSETS OF THE LINE

Notation. To avoid excessive parentheses, if f and g are composable functions,

we simply write f g for the composition. In this section, µ is a measure on the

real line and µ[x, y) denotes the measure of the half-open interval [x, y).

Let Homeo+(R) denote the group of orientation-preserving homeomorphisms

of the line. If Γ is a non-empty closed subset of R, let Homeo+(Γ) denote the

group of all homeomorphisms ofΓwhich are restrictions of elements of Homeo+(R).

That is, g is in Homeo+(Γ) if it is a homeomorphism of Γ and g (x) < g (y) for

x < y .

We now adapt results of Plante to this setting.
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x

α(x)

W s(α(x))

W u(gα(x))

gα(x) L

α(L)

FIGURE 1. After lifting to the universal cover, an AB-system has

a center leaf L invariant under the lifted dynamics f . Each deck

transformation α then defines a function gα : L → L where gα(x)

is the unique point for which W s(α(x)) intersects W u(gα(x)).

These functions together with f define a solvable action on a

closed subset of L and this action is semiconjugate to an affine

action on R.

Proposition 6.1. Suppose Γ is a non-empty closed subset of R and G is a subgroup
of Homeo+(Γ) with non-exponential growth. Then, there is a measure µ on R

such that

• suppµ⊂ Γ,
• µ(X ) =µ(g (X )) for all g ∈G and Borel sets X ⊂R, and
• if X ⊂R is compact, then µ(X ) <∞.

Proof. In the case Γ=R, this is a restatement of (1.3) in [37]. One can check that

the techniques in [37] and [36] extend immediately to the case Γ 6=R. �

Proposition 6.2. Let Γ, G, and µ be as in (6.1) and suppose Fix(G) is empty. Then
there is a non-zero homomorphism τ : G →R such that for all x ∈R

τ(g ) =







µ[x, g (x)) if x < g (x),

0 if x = g (x),

−µ[g (x), x) if g (x) < x.

Proof. Choose any x ∈ R and define τ as above. One can then show that τ is a

non-zero homomorphism and independent of the choice of x. See (5.3) of [36]

for details. �
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Proposition 6.3. Let Γ, G, µ, τ be as in (6.2) and suppose f ∈ Homeo+(R) is such
that F : G → G defined by F (g )(x) = f g f −1(x) is a group automorphism. Then,
there is λ> 0 such that τ(F (g )) =λτ(g ) for all g ∈G.

Moreover, if λ 6= 1, then f∗µ = λµ and any homeomorphism of R which com-
mutes with f has a fixed point.

Proof. The first half of the statement follows as an adaptation of §4 of [37]. Fur-

ther, if λ 6= 1, then f∗µ = λµ by (4.2) of [37]. To prove the final claim, we first

show that if λ 6= 1 then f has a fixed point. Consider x ∈ Γ. As Fix(G) is empty by

assumption, there is g ∈G such that x < g (x). Then,

µ[x,+∞) ≥µ[x, g k (x)) = k τ(g )

for all k ≥ 1. This shows that µ[x,+∞) =∞ for any x ∈R.

Assume, without loss of generality, that λ < 1 and x < f (x) for some x ∈ R.

Then,

µ[x, sup
k≥0

f k (x)) =
∞
∑

k=0

λkµ[x, f (x)) <∞

and therefore, x0 := supk≥0 f k (x) < ∞ is a fixed point for f . If h ∈ Homeo+(R)

commutes with f then for all k ∈Z

µ[x0,hk (x0)) =µ[ f (x0), f hk (x0)) =λµ[x0,hk (x0))

which is possible only if µ[x0,hk (x0)) = 0. Then µ[x0, supk∈Z hk (x0)) = 0 and so

suphk (x0) <∞ is a fixed point for h. �

We now consider the case where G is a fundamental group of a nilmanifold.

Proposition 6.4. Let G be a torsion-free, finitely-generated, nilpotent group and
suppose φ ∈ Aut(G) is such that φ(g ) 6= g for all non-trivial g ∈ G. If H is a φ-
invariant subgroup, then φ(g H) 6= g H for all non-trivial cosets g H 6= H.

Proof. First, we show that the function ψ : G → G defined by ψ(g ) = g−1φ(g ) is

a bijection. If G is abelian, then G is isomorphic to Zd for some d and ψ is an

invertible linear map, and hence bijective. Suppose now that G is non-abelian

and let Z be its group-theoretic center. Pick some element g0 ∈ G . As G/Z is of

smaller nilpotency class, by induction there is g ∈ G such that ψ(g Z ) = g0Z or

equivalently ψ(g )z0 = g0 for some z0 ∈ Z . As ψ|Z is an automorphism of Z , there

is z ∈ Z such that ψ(g z) =ψ(g )ψ(z) =ψ(g )z0 = g0. As h was arbitrary, this shows

ψ is onto.

To prove injectivity, suppose ψ(g ) = ψ(g ′). By induction, g ′ = g z for some

z ∈ Z . Then,

ψ(g ) =ψ(g ′) =ψ(g )ψ(z) ⇒ ψ(z) = 1 ⇒ z = 1 ⇒ g ′ = g .

If H is a φ-invariant subgroup, then ψ(H) = H and the bijectivity of ψ implies

that ψ(g H) 6= H for any non-trivial coset. �
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The results of J. Franks and A. Manning [20, 19, 31] show that for any Anosov

diffeomorphism on a nilmanifold, the resulting automorphism on the funda-

mental group satisfies the hypotheses of (6.4).

Lemma 6.5. Suppose Γ⊂R, G < Homeo+(Γ), and f ∈ Homeo+(R) are such that

• Γ is closed and non-empty,
• G is finitely generated and nilpotent,
• F : G →G defined by F (g )(x) = f g f −1(x)

is a group automorphism with no non-trivial fixed points, and
• Fix(G) is empty.

Then, there are

• a closed non-empty subset Γ0 ⊂ Γ,
• a continuous surjection P : R→R,
• a non-zero homeomorphism τ : G →R, and
• 0 <λ 6= 1

such that for x, y ∈R and g ∈G

• x ≤ y implies P (x) ≤ P (y),
• P g (x) = P (x)+τ(g ),
• P f (x) =λP (x),
• Γ0 = {x ∈ Γ : g (x) = x for all g ∈ kerτ}, and
• for each t ∈ R, P−1(t ) is either a point z ∈ Γ0 or an interval [a,b] with

a,b ∈ Γ0.

Moreover, any homeomorphism which commutes with f has a fixed point in P−1(0).

Proof. The conditions on G imply that it has non-exponential growth [23]. There-

fore, we are in the setting of the previous propositions. In particular, there are µ,

τ, and λ as above.

First, suppose that the image τ(G) is a cyclic subgroup of R in order to derive

a contradiction. In this case, the condition τF =λτ in (6.3) implies that λτ(G) =
τ(G) and therefore λ= 1. Then, F maps a coset of kerτ to itself. As Homeo+(Γ) is

torsion free, so is G , and by (6.4), F has a non-trivial fixed point, in contradiction

to the hypotheses of the lemma being proved. Therefore, τ(G) is non-cyclic.

Consequently, τ(G) is a dense subgroup of R. Further λ 6= 1, as otherwise, one

could derive a contradiction exactly as above. By (6.3), f has at least one fixed

point, say x0 ∈R. Define a function P : R→R by

P (x) =







µ[x0, x) if x > x0,

0 if x = x0,

−µ[x, x0) if x < x0.

By definition, P is (non-strictly) increasing. The density of τ(G) implies that P (R)

is dense. Then, as a monotonic function without jumps, P is continuous and

therefore surjective. For each t ∈ R, the pre-image P−1(t ) is either a point or

a closed interval, In either case, one can verify that g (P−1(t )) = P−1(t ) for all
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g ∈ kerτ and therefore the boundary of P−1(t ) is in Γ0. The other properties of P
listed in the lemma are easily verified.

The statement for homeomorphisms commuting with f follows by adapting

the proof of (6.3). �

7. AI-SYSTEMS

We now consider partially hyperbolic systems on non-compact manifolds.

Suppose M is compact and f : M → M is partially hyperbolic. Then, any lift of f
to a covering space of M is also considered to be partially hyperbolic. Also, any

restriction of a partially hyperbolic diffeomorphism to an open invariant subset

is still considered to be partially hyperbolic.

Let A be a hyperbolic automorphism of the compact nilmanifold N and I ⊂R

an open interval. The AI-prototype is defined as

f AI : N × I → N × I , (v, t ) → (Av, t ).

A partially hyperbolic diffeomorphism f on a (non-compact) manifold M̂ is an

AI-system if it has global product structure, preserves the orientation of its center

direction, and is leaf conjugate to an AI-prototype.

Theorem 7.1. Suppose f : M̂ → M̂ is an AI-system with no invariant compact
us-leaves. Then, either

(1) f is accessible,
(2) there is an open set V ⊂ M̂ such that

f (V ) ⊂V ,
⋃

k∈Z
f k (V ) = M̂ ,

⋂

k∈Z
f k (V ) =∅,

and the boundary of V is a compact us-leaf, or
(3) there are no compact us-leaves in M̂, uncountably many non-compact

us-leaves in M̂ and there is λ 6= 1 such that f is semiconjugate to

N ×R→ N ×R, (v, t ) 7→ (Av,λt ).

Notation. For a point x on a manifold supporting a partially hyperbolic system,

let W s(x) be the stable manifold through x, and W u(x) the unstable manifold.

Then AC (x), the accessibility class of x, is the smallest set containing x which

satisfies

W s(y)∪W u(y) ⊂ AC (x)

for all y ∈ AC (x). For an arbitrary subset X of the manifold, define

W s(X ) =
⋃

x∈X
W s(x), W u(X ) =

⋃

x∈X
W u(x), and AC (X ) =

⋃

x∈X
AC (x).

Note that AC (X ) may or may not be a single accessibility class.

Proposition 7.2 ([43]). Suppose f is a partially hyperbolic system with one-dimen-
sional center on a (not necessarily compact) manifold M. For x ∈ M, the following
are equivalent:
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• AC (x) is not open.
• AC (x) has empty interior.
• AC (x) is a complete C 1 codimension one submanifold.

If L is a curve through x tangent to the center direction, then the following are also
equivalent to the above:

• AC (x)∩L is not open in L.
• AC (x)∩L has empty interior in L.

If f is non-accessible, the set of non-open accessibility classes form a lamination.

Assumption 7.3. For the remainder of the section, assume f : M̂ → M̂ is a non-
accessible AI-system.

All of the analysis of this section will be on the universal cover. Let M̃ and

Ñ be the universal covers of M and N . Then, f and the leaf conjugacy h lift

to functions f : M̃ → M̃ , and h : M̃ → Ñ × I still denoted by the same letters.

Every lifted center leaf of the lifted f is of the form h−1(v × I ) for some v ∈ Ñ . In

general, the choice of the lifts of f and h are not unique. They may be chosen,

however, so that h f h−1(v×I ) = Av×I where A : Ñ → Ñ is a hyperbolic Lie group

automorphism. As A fixes the identity element of the Lie group, there is a center

leaf mapped to itself by f . Let L denote this leaf. As L is homeomorphic to R,

assume there is an ordering on the points of L and define open intervals (a,b) ⊂
L for a,b ∈ L and suprema sup X for subsets X ⊂ L exactly as for R.

Define a closed subset

Λ= {t ∈ L : AC (t ) is not open}.

Lemma 7.4. Λ is non-empty.

Proof. As M̃ is connected, if all accessibility classes were open, f would be ac-

cessible (both on M̃ and M̂). Therefore, there is at least one non-open accessi-

bility class. By global product structure, this class intersects L. �

Lemma 7.5. If t ∈Λ, then AC (t ) =W sW u(t ) =W uW s(t ).

This is an adaptation to the case of global product structure of local argu-

ments used in the proof of (7.2).

Proof. Each center leaf in M̃ is of the form h−1(v × I ) for some v ∈ Ñ . By global

product structure, for each v ∈ Ñ , there exist unique points xv , yv , zv , tv ∈ M̃
such that

xv ∈W s(t ), yv ∈W u(xv )∩h−1(v × I ), zv ∈W s(yv ), tv ∈W u(zv )∩L.

See Figure 2. These points depend continuously on v . As Ñ is connected, the set

{tv : v ∈ Ñ } ⊂ L∩ AC (t )

is connected and, by (7.2), has empty interior as a subset of L. Therefore, it

consists of the single point t . This shows that both W sW u(t ) and W uW s(t ) in-

tersect each center leaf h−1(v × I ) in the same unique point yv and so the two
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s

u
s

u

t

xv

yv

zv

tv

L

h−1(v × I )

FIGURE 2. A “bracket” of points defined by global product

structure. The proof of (7.5) shows that if t ∈Λ, then tv = t .

sets are identical. This set is both s-saturated and u-saturated and so contains

AC (t ). �

By global product structure, for any x ∈ M̃ , there is a unique point R(x) ∈ L
such that W u(x) intersects W s(R(x)). This defines a retraction, R : M̃ → L. By

the previous lemma, if t ∈Λ, then R−1(t ) = AC (t ).

Let α : M̃ → M̃ be a deck transformation of the covering M̃ → M̂ . Then, as

depicted in Figure 1, α defines a map gα ∈ Homeo+(Λ) given by the restriction

of R ◦α to Λ. Define

G = {gα : α ∈π1(M̃)}.

Lemma 7.6. G is a finitely generated, nilpotent subgroup of Homeo+(Λ).

Proof. For α ∈ π1(M̃) and t ∈ Λ, gα(t ) is given by the unique intersection of

α(AC (t )) and L. Then,

AC (gα(gβ(t ))) =α(AC (gβ(t ))) =αβ(AC (t )) = AC (gαβ(t ))

shows that π1(M̂) → Homeo+(Λ), α 7→ gα is a group homomorphism. As M̂
is homotopy equivalent to the nilmanifold N , its fundamental group is finitely

generated and nilpotent. �

It is necessary to define G with elements in Homeo+(Λ) as, in general, the

same construction on L will define a subset of Homeo+(L) but not a subgroup.

Lemma 7.7. For a point t ∈ Λ, AC (t ) ⊂ M̃ projects to a compact us-leaf in M̂ if
and only if t ∈ Fix(G).

Proof. Consider t ∈ Λ and let X̂ ⊂ M̂ be the image of AC (t ) by the covering

M̃ → M̂ . First, suppose t ∈ Fix(G). By global product structure, there is a unique

map σ : Ñ → AC (t ) such that hσ(v) ∈ v × I for every v ∈ Ñ . For any deck trans-

formation α ∈π1(M̂),

α(AC (t )) = AC (gα(t )) = AC (t )
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which implies that ασ = σαN where αN is the corresponding deck transforma-

tion for the covering Ñ → N . It follows that σ quotients to a homeomorphism

from the compact nilmanifold N to X̂ and therefore X̂ is compact.

To prove the converse, suppose X̂ is compact. From the definition of an AI-

system, one can see that every center leaf on M̂ is properly embedded. There-

fore, X̂ intersects each center leaf in a compact set. If X̃ is the pre-image of

X̂ by covering M̃ → M̂ , then X̃ intersects each center leaf on M̃ in a compact

set. In particular, X̃ ∩L is compact. Note that X̃ ∩L is exactly equal to the or-

bit Gt = {g (t ) : g ∈ G}. Define s = supGt . Then, s ∈ Gt by compactness and

g (Gt ) = Gt implies g (s) = s for each g ∈ G . This shows that {s} = Gs = Gt and

therefore t = s ∈ Fix(G). �

Lemma 7.8. Suppose J ⊂ L is an open interval such that ∂J ⊂ Fix( f )∩Fix(G). Let
X be the image of AC (J ) by the covering M̃ → M̂. Then, f |X is an AI-system.

This lemma is the justification for assuming there are no invariant, compact

leaves in (7.1). If such leaves exist, the AI-system can be decomposed into smaller

systems.

Proof. Assume the subinterval J in the hypothesis is of the form J = (a,b) with

a,b ∈ L. Unbounded subintervals of the form (a,+∞) and (−∞,b) are handled

similarly.

For every center leaf h−1(v×I ), let av ,bv ∈ I be such that v×av ∈ h(AC (a)) and

v ×bv ∈ h(AC (b)). The set X̃ =⋃

v∈Ñ h−1(v ×(av ,bv )) is s-saturated, u-saturated,

and contains J . Therefore, AC (J ) ⊂ X̃ . By global product structure, one can show

that X̃ ⊂ AC (J ), so the two sets are equal. By its construction X̃ is simply con-

nected, and invariant under deck transformations. Therefore, it is the universal

cover for X . Global product structure is inherited from M̃ . For instance, for

x, y ∈ AC (J ), there is a unique point z ∈ M̃ such that z ∈ W s(x)∩W cu(y). Since,

W s(x) ⊂ X̃ , z is in X̃ .

Compose h with a homeomorphism which maps each v × (av ,bv ) to v × (0,1)

by rescaling the second coordinate. This results in a leaf conjugacy between f
on X̃ and A × id on Ñ × (0,1) which quotients down to a leaf conjugacy from X
to N × (0,1). �

We now show that if the AI-system has no fixed compact us-leaves, then it

satisfies either case (2) or case (3) of (7.1) depending on whether it has any (non-

fixed) compact us-leaves.

Lemma 7.9. If Fix(G) is non-empty and Fix( f )∩Fix(G) is empty, then f satisfies
case (2) of (7.1).

Proof. We first show that f restricted to L is fixed-point free. Suppose, instead,

that f (t ) = t ∈ L. By assumption t ∉ Fix(G), so let J be the connected component

of L \ Fix(G) containing t . As Fix(G) is f -invariant, f (J ) = J and each s ∈ ∂J is

then an element of Fix( f )∩Fix(G), a contradiction.
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Without loss of generality, assume t < f (t ) for all t ∈ L. Choose some t0 ∈
Fix(G) and define L+ = {t ∈ L : t > t0}. Then,

f (L+) ⊂ L+,
⋃

k∈Z
f k (L+) = L, and

⋂

k∈Z
f k (L+) =∅.

One can then show that the covering M̃ → M̂ takes AC (L+) to an open set V ⊂ M̂
which satisfies the second case of (7.1). �

Lemma 7.10. If Fix(G) is empty, then f satisfies case (3) of (7.1).

Proof. In this case, the hypotheses of (6.5) hold with Γ = Λ. Let P : L → R and

τ : G →R be as in (6.5).

If α ∈ π1(M̂) is a deck transformation M̃ → M̃ , then hαh−1 is equal to αN ×
id on Ñ × I for some deck transformation αN ∈ π1(N ). As N is a nilmanifold,

any homomorphism from π1(N ) to R defines a unique homomorphism from

the nilpotent Lie group Ñ to R [30]. This implies that there is a unique Lie group

homomorphism T : Ñ → R such that TαN (v) = T (v)+ τ(gα) for all v ∈ Ñ and

α ∈π1(M̂).

Let R : M̃ → L be the retraction defined earlier in this section and let H : M̃ →
Ñ be the composition of the leaf conjugacy h : M̃ → Ñ × I with projection onto

the first coordinate. Define

Q : M̃ →R, x 7→ PR(x)−T H(x).

We will show that Q quotients to a function M̂ →R and use this to construct the

semiconjugacy in the last case of (7.1).

First, consider a point x ∈ M̃ which has a non-open accessibility class. Then,

R(x) ∈Λ and, for α ∈π1(M̂),

PR(α(x)) = P gαR(x) = PR(x)+τ(gα)

and

T Hα(x) = TαN H(x) = T H(x)+τ(gα)

which together show Qα(x) =Q(x).

Now, consider a point x ∈ M̃ which has an open accessibility class, and let

J ⊂ M̃ be the connected component of W c (x)∩ AC (x) which contains x. The set

Γ0 from (6.5) is a subset of Γ=Λ and therefore P is constant on L \Λ. Then, PR
is constant on J and, by continuity, constant on the closure of J as well. As H is

constant on center leaves, Q = PR −T H is also constant on the closure of J . Let

y be a point on the boundary of J . Then, as AC (y) is non-open, Q(x) = Q(y) =
Qα(y) = Qα(x). This shows that Q quotients down to a function Q̂ : M̂ → R. A

much simpler argument shows that H : M̃ → Ñ quotients down to a function

Ĥ : M̂ → N .

The properties of F and P in (6.5) imply that T A = λT and therefore T H f =
T AH = λT H . As PR f = P f R = λPR, this shows that Q f = λQ. Then, Ĥ × Q̂ is

the desired semiconjugacy in (7.1). By (6.5), P (Λ) = R and so Λ is uncountable.
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Each G-orbit ofΛ corresponds to a distinct us-leaf, and so there are uncountably

many. �

This concludes the proof of (7.1). We note one additional fact which will be

used in the next section.

Corollary 7.11. If Fix(G) is empty, any homeomorphism of L which commutes
with f has a fixed point.

Proof. This follows from the use of (6.5) in the previous proof. �

8. AB-SYSTEMS

Assumption 8.1. In this section, assume f : M → M is a non-accessible AB-system.

The AB-prototype f AB has an invariant center leaf which is a circle. By the leaf

conjugacy, f also has an invariant center leaf. Call this leaf S. Note that f lifts

to an AI-system. This is because the AB-prototype f AB lifts to the AI-prototype

A× id on N ×R. If h : M → MB is the leaf conjugacy, then h f h−1 is homotopic to

f AB and therefore also lifts to N ×R.

Let π : M̃ → M be the universal covering, and choose a lift f̃ : M̃ → M̃ and

S̃ a connected component of π−1(S) such that f̃ (S̃) = S̃. The universal cover

Ñ ×R of the manifold MB has a deck transformation of the form (v, t ) 7→ (B v, t −
1). Conjugating this by the lifted leaf conjugacy gives a deck transformation β :

M̃ → M̃ and one can assume that β(S̃) = S̃. Then, S̃ plays the role of L in the

previous section. Define Λ = {t ∈ S̃ : AC (t ) is not open} and G as a subgroup of

Homeo+(Λ) as in the previous section.

Lemma 8.2. Fix(G) is non-empty.

Proof. This follows from (7.11) since β and f̃ are commuting diffeomorphisms

when restricted to S̃ and β is fixed-point free. �

Lemma 8.3. For t ∈Λ, AC (π(t )) ⊂ M is compact if and only if t ∈ Fix(G).

Proof. If t ∈ Fix(G), then, by (7.7), AC (π(t )) is covered by a compact us-leaf of

the AI-system and is therefore compact itself.

Conversely, suppose t ∈ Λ is such that AC (π(t )) ⊂ M is a compact us-leaf.

Note that as β(Fix(G)) = Fix(G) there are a,b ∈ Fix(G) such that a < t < b in the

ordering on S̃. Then, Gt is contained in (a,b), a bounded subset of S̃. Consid-

ering the supremum as in (7.7), one shows that s := supGt is in Fix(G). Conse-

quently, AC (π(t )) accumulates on π(s) which, as AC (π(t )) is compact, implies

π(s) ∈ AC (π(t )) and so there is a deck transformation α : M̃ → M̃ such that

α(s) ∈ AC (t ). This implies there is k ∈Z and g ∈G such that t =βk g (s) =βk (s) ∈
Fix(G). �

In this, and the next two sections, define

K = {x ∈ S : AC (x) ⊂ M is compact}.
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The last lemma shows that K =π(Fix(G)).

Corollary 8.4. K is closed and non-empty. �

This also completes the proof of (2.6).

Corollary 8.5. K ∩NW ( f |S) is non-empty.

Proof. K is non-empty, f -invariant, and closed. �

Corollary 8.6. f has a compact periodic us-leaf if and only if f |S has rational
rotation number.

Proof. As a consequence of (8.3), any compact us-leaf X in M intersects S in a

unique point t . If f n(X ) = X then f n(t ) = t and f |S has rational rotation number.

If, conversely, f |S has rational rotation number, its non-wandering set consists

of periodic points, and a compact periodic leaf exists by (8.5). �

The following is also from the last proof.

Corollary 8.7. All compact periodic us-leaves have the same period. �

Lemma 8.8. If K = S, then f on M is topologically conjugate to a function (v, x) 7→
(Av, r̃ (x)) defined on the manifold

MB = N ×R/(B v, t ) ∼ (v, t +1)

where r̃ : R→ R is a lift of a homeomorphism r : R/Z→ R/Z topologically conju-
gate to f |S .

Proof. Let φ : S̃ →R be any homeomorphism such that φβ(t ) =φ(t )+1 for all t .

Define r̃ as φ f̃ φ−1. Extend φ to all of M̃ by making it constant on accessibility

classes. As in the proof of (7.10), let H : M̃ → Ñ be the first coordinate of the

lifted leaf conjugacy h : M̃ → Ñ ×R. Then, the function H ×φ : M̃ → Ñ ×R gives

a topological conjugacy between f̃ on M̃ and A× r̃ .

The fundamental group of MB is generated by deck transformations of the

form (v, t ) 7→ (αN (v), t ) or (v, t ) 7→ (B v, t −1). Using the fact that Fix(G) = S̃ and

the definition of r̃ , one can then show that H×φ quotients down to a topological

conjugacy defined from M to MB . �

Lemma 8.9. Suppose J ⊂ S is an open interval such that ∂J ⊂ Fix( f )∩K . Then,
f |AC (J ) is an AI-system.

Proof. Let J̃ be a lift of J to S̃. Then, as f (J ) = J , f̃ ( J̃ ) = βk ( J̃ ) for some k ∈ Z. By

replacing the lift f̃ by f̃ βk , assume, without loss of generality that f̃ ( J̃ ) = J̃ . As

K =π(Fix(G)), ∂ J̃ ⊂ Fix( f̃ )∩Fix(G), and so by (7.8), AC ( J̃) projects to X on M̂ such

that the dynamics on X is an AI-system. As J̃ is contained in a fundamental do-

main of the covering S̃ → S, one can show that X is contained in a fundamental

domain of the covering M̂ → M . Therefore, the dynamics on π(AC ( J̃ )) = AC (J )

is an AI-system. �
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We now give a C 0 version of (5.3).

Lemma 8.10. There is a continuous surjection p : M → S1 such that p|S is a
homeomorphism, p|W c (x) is a covering for any center leaf W c (x) (x ∈ M) and p
is constant on each compact accessibility class.

Proof. Define p on S so that p|S maps S to S1 with constant speed along S. Ex-

tend p to AC (K )∪S by making p constant on accessibility classes. Then, for any

center leaf W c (x), let J be a connected component of W c (x)\AC (K ) and define p
on J so that J is mapped at constant speed to S1 and extends continuously to the

boundary ∂J ⊂ AC (K ). Transversality of the center foliation and us-lamination

implies that p is continuous. The other properties are easily verified. �

Compare this short C 0 proof to the C 1 proof in Section 12.

We now consider the cases of rational and irrational rotation of f |S separately

in the next two sections.

9. RATIONAL ROTATION

This section proves (2.7).

Assumption 9.1. Assume f is a non-accessible AB-system with at least one peri-
odic compact us-leaf.

Let S, K , and other objects be defined as in Section 8. By (8.7), all compact pe-

riodic leaves have the same period. Call this period n. Define Kn = K ∩Fix( f n) ⊂
S. By (8.4), Kn is closed. Let p : M → S1 be the projection given by (8.10) and

define U ⊂S1 as U =S1 \ p(Kn).

Note that if t ∉U , then p−1(t ) is an f n-invariant compact us-leaf. Moreover,

every such leaf is of this form. This proves the first part of (2.7).

To prove the rest of the theorem, replace f by its iterate f n and assume n = 1.

The new f is still an AB-system, albeit with a different “A” than before. Now

Kn = Fix( f )∩K ⊂ S. If I is a connected component of U ⊂S1, then p−1(I )∩S is

a connected component of S \ K1 and (8.9) implies that f restricted to p−1(I ) =
AC (π(J )) is an AI-system. Since J ∩Kn is empty, AC (J ) contains no invariant

compact us-leaves. Therefore, the AI-system falls into one of the cases given in

(7.1). As these cases correspond exactly to those given in (2.7), this concludes

the proof.

10. IRRATIONAL ROTATION

This section proves (2.8) and (2.9).

Assumption 10.1. Assume f is a non-accessible AB-system with no periodic com-
pact us-leaves.

Let S, K and other objects be defined as in Section 8. By (8.6), f |S has irra-

tional rotation number.
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Lemma 10.2. NW ( f |S) ⊂ K .

Proof. For any C 1 circle diffeomorphism with irrational rotation, the non-wander-

ing set is minimal. The result then follows from (8.5). �

Lemma 10.3. If I is a connected component of S \ NW ( f |S), then AC (I ) is a wan-
dering domain. That is, the sets f k (AC (I )) = AC ( f k (I )) are pairwise disjoint for
all k ∈Z.

Proof. Let J be the closure of I . Note that any compact leaf in AC (J ) must be

of the form AC (t ) for some t ∈ J . By the properties of circle diffeomorphisms,

the sets f k (J ) are pairwise disjoint. By the last lemma, ∂J ⊂ K . If AC (J ) inter-

sects AC ( f k (J )), then this intersection has a boundary consisting of compact

us-leaves. Such a compact leaf would intersect S in a point t ∈ J ∩ f k (J ), a con-

tradiction. �

Lemma 10.4. NW ( f ) = AC (NW ( f |S)).

Proof. The last lemma shows NW ( f ) ⊂ AC (NW ( f |S)).

To prove the other inclusion, suppose t ∈ NW ( f |S), x ∈ AC (t ) and V ⊂ M is a

neighbourhood of x. There is a sequence {nk } such that f nk (t ) converges to t . By

taking a further subsequence, assume f nk (x) converges to some point y ∈ AC (t ).

Let D ⊂ V be a small unstable plaque containing x. Then f nk (D) is a sequence

of ever larger unstable plaques, and

W u(y) ⊂
⋃

k
f nk (D).

Unstable leaves of the Anosov diffeomorphism A are dense in N [20]. Therefore,

by the leaf conjugacy, W u(y) is dense in AC (t ). This shows that some iterate

f nk (V ) intersects V . �

Now, let p : M →S1 be as in (8.10). We may assume p|S is a C 1-diffeomorphism.

Define r : S1 →S1 by r p(t ) = p f (t ) for all t ∈ S. Then, (2.8) can be proved from

the above lemmas. As r has irrational rotation number, it is semiconjugate to a

rigid rotation t 7→ t +θ. Using this and the leaf conjugacy, one can prove (2.9)

using an argument similar to the proof of (8.8).

11. PROVING THEOREMS (2.2), (2.4), AND (2.5)

This section gives the proofs of several of the theorems stated in Section 2

based on results proved in other sections.

The proof of (2.5) makes use of a result of Brin regarding transitivity [8]. The

following is an extension of this result to the non-compact case, though the

proof is in essence the same.

Proposition 11.1 (Brin). Suppose f is a partially hyperbolic diffeomorphism of a
(not necessarily compact) manifold M. If V is open and f (V ) =V ⊂ NW ( f ), then
V = AC (V ).

In particular, if f is accessible and NW ( f ) = M, then f is transitive.
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Proof. For ǫ> 0 and y ∈ M , let W u
ǫ (y) be the set of all points reachable from y by

a path tangent to E u of length less than ǫ.

If x ∈V , then x ∈ NW ( f ) implies there are sequences {xk } and {yk } both con-

verging to x and such that yk = f jk (xk ) for some non-zero jk ∈ Z. By swapping

xk with yk if necessary, assume every jk is positive. If jk is bounded, then x is

periodic, so we may freely assume that jk → +∞. As V is open, there is ǫ > 0

such that W u
ǫ (xk ) ⊂V for all large k. The uniform expansion of E u implies there

is rk →∞ such that W u
rk

(yk ) ⊂ f jk (W u
ǫ (xk )) ⊂ f jk (V ) = V and therefore the en-

tire unstable manifold W u(x) lies in the closure of V . This proves W u(V ) = V .

Similarly, W s(V ) =V and so AC (V ) =V . �

Proof of (2.5). By (11.1), any accessible f satisfies case (1) of (2.5). Therefore,

assume that f is non-accessible.

For now, assume f has no periodic compact us-leaves, so that (2.8) holds.

That theorem, with the assumption NW ( f ) = M , implies that NW (r ) = S1 and

that every point in M lies in a compact us-leaf. This shows that (8.8) holds and

the r in that lemma can be taken as the same r in (2.8). As NW (r ) = S1, r is

topologically conjugate to a rigid rotation t 7→ t +θ and therefore f satisfies case

(2) of (2.5).

For the remainder of the proof, assume f has a periodic compact us-leaf, so

that (2.7) holds. Let I be a connected component of U and g : p−1(I ) → p−1(I )

be as in (2.7). The condition NW ( f ) = M implies NW (g ) = p−1(I ). This is only

possible in the first of the three cases in (2.7), where g is accessible. Then, g is

transitive by (11.1).

If t ∈S1 \U , then f n restricted to p−1(I ) is topologically conjugate to a hyper-

bolic nilmanifold automorphism and is therefore transitive [20]. Hence, if U is

non-empty, the third case of (2.5) is satisfied.

If U is empty, then every p−1(t ) is an f n-invariant compact us-leaf and (8.8)

holds with r : S1 → S1 topologically conjugate to a rigid rational rotation t 7→
t +θ. This shows that f is in case (2) of (2.5). �

To prove ergodicity of the components of the decomposition given in (2.4),

we use results given in [12], [43], and in the classical work of Birkhoff and Hopf.

These results were formulated for systems on compact manifolds, but the proofs

are local in nature, involving short holonomies along stable and unstable man-

ifolds. The results, therefore, generalize to the non-compact case so long as the

measure is still finite.

Proposition 11.2. Let f be a homeomorphism of a (not necessarily compact)
manifold M and let C0(M) be the space of continuous functions M →R with com-
pact support. Suppose µ is an invariant measure with µ(M) = 1 and there is an
invariant closed submanifold S such that µ is equivalent to Lebesgue measure on
S.
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(1) For φ ∈C0(M) the limits

φs(x) = lim
n→∞

1

n

n
∑

k=1

φ f k (x) and φu(x) = lim
n→∞

1

n

n
∑

k=1

φ f −k (x)

exist and are equal µ-almost everywhere.
(2) There is a countable set {φ j }∞j=1

⊂C0(M) (depending only on M) such that

( f ,µ) is ergodic if and only if φs
j and φu

j are constant µ-almost everywhere

for every j .

Further, suppose f is a C 2 partially hyperbolic diffeomorphism with one dimen-
sional center.

(3) If φ ∈ C0(M), then φs is constant on stable leaves and φu is constant on
unstable leaves.

(4) If S = M, X s , X u ⊂ M are measurable, and

W s(X s) = X s , W u(X u) = X u and µ(X s△X u) = 0,

then there is X ⊂ M measurable such that

AC (X ) = X and µ(X s△X ) = 0 =µ(X u△X ).

(5) If S = M and f is accessible, then ( f ,µ) is ergodic.

Proof. Item (1) is a re-statement of the classic Birkhoff Ergodic Theorem.

To prove (2), let {φ j } be a countable set whose linear span is dense in C0(M)

with respect to the supremum norm. As any function in C0(S) may be extended

to a function in C0(M), the linear span of {φ j } is dense in L1(µ). Suppose the

bounded linear operator φ 7→φs on L1(µ) takes every element of {φ j } to the sub-

space of constant functions. By density, every φ ∈ L1(µ) is mapped to the same

subspace. Therefore ( f ,µ) is ergodic. The converse statement in (2) follows di-

rectly from the properties of ergodicity.

Proofs of (3)–(5) can be found in both [12] and [43]. �

Proof of (2.4). Asµ is a finite, f -invariant measure which is equivalent to Lebesgue,

NW ( f ) = M by Poincaré recurrence. Let p, n, and U then be given as in (2.5).

By (5.3), assume p∗µ= m where m is Lebesgue measure on S1. Without loss of

generality, assume n = 1.

For each connected component I of U , the set p−1(I ) is an accessibility class

and therefore ( f ,µI ) is ergodic by (11.2) where µI is as in (2.3).

Let {φ j }∞j=1
be as in (11.2) and for j ∈N and q ∈Qdefine X s

j ,q = {x ∈ M : φs
j (x) <

q}. Define X u
j ,q similarly. By items (3) and (4) of (11.2), there is X j ,q = AC (X j ,q )

equal mod zero to both X s
j ,q and X u

j ,q . Define a “bad” set Y by

Y =
⋃

j ,q

(

X s
j ,q△X j ,q ∪X u

j ,q△X j ,q
)

and note thatµ(Y ) = 0. Equation (2.3) implies that there is a “good” set Z ⊂S1\U
such that U ∪Z has full measure in S1 and µt (Y ∩p−1(t )) = 0 for all t ∈ Z where
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µt is given by the decomposition in (2.3). By (5.3), we may further assume that

µt is equivalent to Lebesgue measure on p−1(t ) for all t ∈ Z .

As p−1(t ) is an accessibility class, every X j ,q ∩p−1(t ) is either empty or all of

p−1(t ). Therefore for t ∈ Z , every X s
j ,q and X u

j ,q either has µt -measure equal to

zero or one, and item (2) of (11.2) implies that ( f ,µt ) is ergodic. Thus, modulo

a set of measures whose combined support has µ-measure zero, every measure

in (2.3) is ergodic. This shows that (2.3) is the ergodic decomposition of µ. �

One might be tempted to prove (2.4) by arguing that for t ∉U , f restricted to

p−1(t ) is an Anosov diffeomorphism and therefore the invariant measure µt is

ergodic. The problem is that we have only shown that p−1(t ) is a C 1 submani-

fold of M , which is not enough regularity to conclude ergodicity for an Anosov

system. Hence, the above proof.

Proof of (2.2). If f is in case (1) or (3) of (2.5), it is fairly easy to show that f is also

in the corresponding case of (2.2). Therefore, assume f is in case (2) of (2.5).

If θ is rational, then (v, t ) 7→ (Av, t +θ) is non-transitive and therefore f is not

ergodic.

Suppose θ is irrational and f is not ergodic. Then there are j ∈ N and q ∈ Q

such that the sets X s
j ,q , X u

j ,q , and X j ,q , defined as in the last proof, have neither

zero measure nor full measure with respect to the f -invariant measure µ. Write

X = X j ,q . As X = AC (X ), there is Y ⊂S1 such that X = p−1(Y ) and p∗µ= m im-

plies that m(Y ) is neither zero nor one. The condition p∗µ= m further implies

that p gives a semiconjugacy from f to a rigid irrational rotation Rθ(x) = x +θ

on S1. Then, f (X ) = X implies Rθ(Y ) = Y which contradicts the ergodicity of

(Rθ,m). �

12. REGULARITY

This section proves (2.10), showing that the us-lamination of a partially hy-

perbolic diffeomorphism is C 1 if the center is one-dimensional and the diffeo-

morphism is C 2.

Proposition 12.1. Suppose f : M → M is a C 2 dynamically coherent partially
hyperbolic diffeomorphism with one-dimensional center. Then any unstable ho-
lonomy h inside a cu-leaf is C 1. Moreover, the derivative of h tends uniformly to
one as the unstable distance between the point x and its image h(x) tends to zero.

Proof. That such a holonomy is C 1 is proved in an erratum [41] to the paper [40].

If y ∈W u(x) and h is the holonomy taking x to y , then adapting the argument in

§3 of [38] one can show that the norm of the derivative of h at x is given by

Jx y =
∞
∏

n=0

‖T c
f −n (y)

f ‖
‖T c

f −n (x)
f ‖

where T c
z f : E c

z → E c
f (z)

is the restriction of the derivative Tz f : Tz M → T f (z)M .

As f is C 2, the derivative Tz f is Lipschitz in z and the center bundle E c is Hölder
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by [27]. Therefore,

log Jx y ≤
∞
∑

n=0

L
[

dist( f −n(x), f −n(y))
]θ ≤

∞
∑

n=0

L
[

Cµ−n]θ[
dist(x, y)

]θ

for appropriate constants L,C ,µ > 1 and 0 < θ < 1. This shows that Jx y tends

uniformly to one as dist(x, y) tends to zero. �

Proposition 12.2. Suppose f : M → M is a C 2 dynamically coherent partially
hyperbolic diffeomorphism with one-dimensional center. Suppose L0 ⊂ M is a
compact interval inside a center leaf and g : L0 →R is C 1. Then g extends to a C 1

function defined on a neighbourhood of L0 which is constant on us-leaves.

Proof. Without loss of generality, assume g is defined so that |g (x)− g (y)| is the

arc length of the center segment between x and y . Any other C 1 function on L0

can be constructed by composition with this specific g .

By local product structure and the compactness of L0, one may construct a

compact set C ⊂ M containing L0 with the following properties:

• The interior of C contains the (one-dimensional) interior of L0.

• If W c (x) is a center leaf, then every connected component of W c (x)∩C
is a compact interval, called a “center segment.”

• If AC (y) is a us-leaf, then every connected component of AC (y)∩C is a

compact set homeomorphic to a closed ball and called a “us-plaque.”

• Each center segment intersects each us-plaque in exactly one point.

• L0 is a center segment.

By a C 1 change of coordinates, assume that C ⊂Rd .

Let Σ ⊂ C be the union of all us-plaques, and Σ
′ ⊂ Σ the union of all us-

plaques which are accumulated on by other us-plaques. If x ∈Σ
′, define

D(x) = lim
n→∞

‖σn ∩L0 −σ∩L0‖
‖σn ∩L−σ∩L‖

where L is the center segment through x, σ is the us-plaque through x, and σn

are us-plaques converging to σ. By (12.1), this limit exists, is independent of the

sequence σn tending to σ, and is non-zero. The C 1 regularity of the holonomies

also implies that if ρn is another sequence of us-plaques converging to σ, then

D(x) = lim
n→∞

‖σn ∩L0 −ρn ∩L0‖
‖σn ∩L−ρn ∩L‖

so long as σn 6= ρn for large n. Further, by (12.1), the ratio D(L1 ∩σ)/D(L2 ∩σ)

tends uniformly to one as dist(L1,L2) tends to zero. As D is continuous when re-

stricted to each center segment and uniformly continuous on each us-plaque σ,

it is therefore continuous on all of Σ′. Define D(x) = 1 for all x ∈ L0 and note that

this agrees with the above definition on the intersection Σ
′∩L0. Then, choose a

continuous positive extension D : Σ∪L0 →R.

Also extend g : L0 → R to a function g : Σ∪ L0 → R by making it constant

on each us-plaque. To further extend g to a C 1 function on all of C , we will
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define for each point x ∈ Σ∪L0 a candidate derivative d gx : Rd → R and show

that Whitney’s extension theorem applies. Choose an orientation for E c and for

each x ∈ Σ∪L0, let vc
x be the unique oriented unit vector in E c

x . Define d gx as

the unique linear map such that d gx (vc
x ) = D(x) and kerd gx = E u

x ⊕E s
x . As both

D(x) and the splitting E u
x ⊕E c

x ⊕E s
x are continuous in x, the linear map d gx is

continuous in x.

Define the function R : C ×C →R by

R(xn , yn) = 1

‖yn −xn‖

(

g (yn)− g (xn)−d gxn (yn −xn)
)

.

To apply Whitney’s extension theorem, one needs to show that for any two se-

quences {xn}∞n=1 and {yn}∞n=1 with ‖xn − yn‖ converging to zero, the sequence

R(xn , yn) also converges to zero. If this does not hold, there are sequences {xn}

and {yn} so that R(xn , yn) is bounded away from zero. Therefore, without loss

of generality, one may replace these sequences by subsequences and assume xn

and yn both converge to a point q ∈ C . We will also restrict to further subse-

quences as necessary later in the proof.

We prove the convergence in progressively more general cases.

Case 1. First, assume xn , yn , and q are all on the same center segment L 6= L0.

Let σn , ρn and σ be such that

σn ∩L = xn , ρn ∩L = yn , and σ∩L = q.

If σ ∉Σ
′, then xn = yn = q for large n. Therefore, assume σ ∈Σ

′. Then,

lim
n→∞

g (yn)− g (xn)

‖xn − yn‖
= lim

n→∞
‖σn ∩L0 −ρn ∩L0‖
‖σn ∩L−ρn ∩L‖

= D(q).

As both the candidate derivative d gx and the center direction vc
x are continuous

in x,

lim
n→∞

1

‖yn −xn‖
d gxn (yn −xn) =

(

lim
n→∞

d gxn

)(

lim
n→∞

yn −xn

‖yn −xn‖
)

= d gq (vc
q ) = D(q).

Therefore, limn→∞ R(xn , yn) = D(q)−D(q) = 0.

Case 2. Now, consider the case where xn and yn are on the same center seg-

ment Ln for each n. Define xc
n to be on the same us-plaque as xn and the same

center segment as q . Define yc
n similarly. Then,

g (xn)− g (yn) = g (xc
n)− g (yc

n).

By (12.1),

lim
n→∞

‖yn −xn‖
‖yc

n −xc
n‖

= 1.

Thus,

lim
n→∞

g (yn)− g (xn)

‖yn −xn‖
= lim

n→∞
g (yc

n)− g (xc
n)

‖yc
n −xc

n‖
= D(q)
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where the last equality is by the previous case. As before,

lim
n→∞

1

‖yn −xn‖
d gxn (yn −xn) = d gq (vc

q ) = D(q)

and therefore limn→∞ R(xn , yn) = 0.

Case 3. Now consider xn and zn as general sequences in Σ converging to q .

Define yn as the unique point lying on the same center segment as xn and the

same us-plaque as zn . By taking subsequences, assume

lim
n→∞

zn − yn

‖zn − yn‖
exists. By continuity of the partially hyperbolic splitting, this limit is in E u

q ⊕E s
q .

Therefore,

lim
n→∞

1

‖zn − yn‖
d gxn (zn − yn) =

(

lim
n→∞

d gxn

)(

lim
n→∞

zn − yn

‖zn − yn‖
)

= 0

implying, with g (zn) = g (yn), that

lim
n→∞

1

‖zn − yn‖
(

g (zn)− g (yn)−d gxn (zn − yn)
)

= 0.

By transversality of the foliations, there is a constant c1 > 0 such that ‖zn −xn‖ ≥
c1‖zn − yn‖ and therefore

lim
n→∞

1

‖zn −xn‖
(

g (zn)− g (yn)−d gxn (zn − yn)
)

= 0

as well. Again by transversality, there is c2 > 0 such that ‖zn − xn‖ ≥ c2‖yn − xn‖
and therefore by the previous case

lim
n→∞

1

‖zn −xn‖
(

g (yn)− g (xn)−d gxn (yn −xn)
)

= 0.

Added together, these limits show that limn→∞ R(xn , zn) = 0.

Case 4. Now consider the case where xn ∈ L0 and zn ∈ Σ for all n. Define yn

from xn and zn exactly as in the last case. Then,

R(xn , zn) = 1

‖zn −xn‖
(

g (zn)− g (yn)−d gxn (zn − yn)
)

+

1

‖zn −xn‖
(

g (yn)− g (xn)−d gxn (yn −xn)
)

and, similar to the previous case, both summands can be shown to converge to

zero. The case xn ∈Σ and zn ∈ L0 is almost identical.

Case 5. If both {xn} and {zn} are in L0, then limn→∞ R(xn , zn) = 0 simply by

the fact that g is C 1 when restricted to L0.

The general case. The final case to consider is where {xn} and {zn} are gen-

eral sequences in X = Σ∪ L0. By taking subsequences, one can assume each

sequence lies either entirely in L0 or entirely in Σ and therefore reduce to a pre-

vious case. �

We now prove the following restatement of (2.10).
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Corollary 12.3. If f : M → M is a non-accessible, partially hyperbolic C 2 diffeo-
morphism with one-dimensional center, the non-open accessibility classes form a
C 1 lamination. That is, around any point x ∈ M there is a neighbourhood V and
functions g : V → R and ψ : V → Rd−1 such that g ×ψ is a C 1 embedding and if
AC (y) is a us-leaf and σ a connected component of AC (y)∩V , then σ = g−1(t )

for some t ∈R.

Proof. Define a coordinate chart φ×ψ : V →R×Rd−1 such that the kernel of the

derivative dφ : Tx M →R at x is equal to E u
x ⊕E s

x . By (12.2), after replacing V by a

subset, there is a C 1 function g : V →R constant on us-plaques and such that g
and φ are equal on a center segment through x. Then, the derivative of g ×ψ is

invertible at x and so, after again replacing V by a subset, g ×ψ is the desired C 1

embedding. �

We now proceed to prove (5.3). Recall the definition of an AI-system from

Section 7.

Proposition 12.4. Let f : M̂ → M̂ be a C 2 AI-system and X ⊂ M̂ a compact us-
leaf. Then, there is a neighbourhood V of X , an open subset U ⊂ (0,1) and func-
tion p : V → (0,1) and ψ : V → X such that p ×ψ is a C 1 diffeomorphism and the
compact us-leaves in V are exactly of the form p−1(t ) for t ∉U .

Moreover, p restricted to each center segment L ⊂V is a C 1 diffeomorphism.

In this context, a center segment is a connected component of the intersec-

tion of V with a center leaf.

Proof. There is a neighbourhood V of X such that inside V each center segment

intersects each compact us-leaf in a unique point. Therefore, the proofs of the

previous results of this section hold as before with compact us-leaves now filling

the role of us-plaques. This gives the existence of p and ψ.

As the function D is positive in the proof of (12.2), for x ∈ X and unit vector

vc ∈ E c
x the derivative d px of p satisfies d px (vc ) 6= 0. By continuity, this property

holds for all x in a neighbourhood of X and so, by replacing V by a subset, the

restriction of p to any center segment L has non-zero derivative along all of L.

�

As it is a local result, (12.4) also holds for a compact us-leaf in an AB-system

instead of an AI-system. To go from the local to the global requires a technical

lemma which “fills in the gaps” between compact us-leaves.

Lemma 12.5. Let N be a C 1 manifold, and for 0 < ǫ< 1
2

define

Vǫ = N × ([0,ǫ)∪ (1−ǫ,1]) ⊂ N × [0,1].

If there are ǫ> 0 and a C 1 function g : Vǫ → [0,1] such that

• ∂g
∂t |(x,t ) > 0 for all (x, t ) ∈Vǫ, and

• g (x,0) = 0 and g (x,1) = 1 for all x ∈ N
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then there are δ> 0 and a C 1 function h : N × [0,1] → [0,1] such that

• h(x, t ) = g (x, t ) for all (x, t ) ∈Vδ,
• (x, t ) 7→ (x,h(x, t )) is a C 1 diffeomorphism of N × [0,1], and
• if x ∈ N satisfies g (x, t ) = t for all (x, t ) ∈ Vδ, then h(x, t ) = t for all t ∈

[0,1].

Proof. Pick δ > 0 small enough that there is a continuous function h0 : N ×
[0,1] → [0,1] which for each x ∈ N satisfies the following properties:

• t 7→ h0(x, t ) is strictly increasing and linear on each of the intervals [δ,3δ],

[3δ,1−3δ], and [1−3δ,1−δ]; and

• h0 agrees with g and
∂h0

∂t agrees with
∂g
∂t at the points of the form (x,δ)

and (x,1−δ).

Then, define h by h(x, t ) = g (x, t ) for (x, t ) ∈ Vδ, h(x, t ) = h0(x, t ) for (x, t ) ∈ V2δ \

Vδ, and h(x, t ) = 1
2δ

∫t+δ
t−δ h0(x, s)d s otherwise. �

Proposition 12.6. Let f : M̂ → M̂ be a C 2 AI-system, and J a compact interval
inside a center leaf such that its endpoints x0 and x1 lie inside compact us-leaves.
Then there are r : AC (J ) → AC (x0) and p : AC (J ) → [0,1] such that r ×p is a C 1

diffeomorphism and every compact us-leaf in AC (J ) is of the form p−1(t ) for some
t ∈ [0,1].

Proof. By approximating the center bundle E c by a C 1 vector field v , one may

define a C 1 flow taking points in AC (x0) to points in AC (x1). By rescaling v ,

assume the flow takes each point in AC (x0) to a point in AC (x1) in exactly one

unit of time. This flow then defines a C 1 diffeomorphism between AC (J ) and

AC (x0)× [0,1]. Therefore, we may assume our system is defined on a space of

the form N × [0,1] where N is a manifold C 1-diffeomorphic to AC (x0) and that

r : N ×[0,1] → N is given by projection onto the first coordinate. Further assume

that the flow v is tangent to E c on the center leaf containing J . Then, when

viewed as a subset of N × [0,1], J is of the form J = {x0}× [0,1].

By adapting the arguments in the proofs of (12.2) and (12.4), there is a C 1

function g : N × [0,1] → [0,1] which is constant on compact us-leaves and such

that g (x0, t ) = t for all t ∈ [0,1].

Let Σ ⊂ N × [0,1] be the union of all compact us-leaves. For a point z ∈ N ×
[0,1], let vc

z be the oriented unit vector in E c
z . Then, due to the construction of

g as in the proof of (12.2), d gz (vc
z ) is positive for all z ∈ Σ. As d g is continuous,

there is a C 1 vector field v̂ approximating vc such that d gz (v̂(z)) is positive for all

z ∈Σ. By another C 1 change of coordinates, assume v is equal to v̂ and therefore
∂g
∂t |(x,t ) = d g(x,t )(v(x, t )) for all (x, t ) ∈ N × [0,1]. By uniform continuity, there is

ǫ> 0 such that d gz (v(z)) > 0 for all z at distance at most ǫ from Σ. Hence, there

are at most a finite number of regions Xi ⊂ N × [0,1] such that

• the boundary of Xi is given by two compact us-leaves,

• there are no compact leaves in the interior of Xi , and
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• ∂g
∂t |(x,t ) ≤ 0 for some (x, t ) ∈ Xi .

By (12.5), define a C 1 function p : N × [0,1] → [0,1] which is equal to g every-

where outside of ∪i Xi and such that
∂p
∂t |(x,t ) > 0 for all (x, t ) ∈ N × [0,1].

Since both r and p are submersions, r ×p has an invertible derivative at every

point and is therefore a C 1 diffeomorphism. �

Corollary 12.7. In the setting of (12.6), if L ⊂ M̂ is a center leaf, then p and r may
be chosen so that p restricted to L∩ AC (J ) is a C 1 diffeomorphism onto [0,1].

Proof. Take J ⊂ L in the previous proof. �

Corollary 12.8. In the setting of (12.6), if µ is a probability measure given by a
continuous volume form on AC (J ), then p may be chosen so that p∗µ is Lebesgue
measure on [0,1].

Proof. Assume ρ : N × [0,1] →R is a positive density function such that

µ(X ) =
∫

X
ρdmN ×dm

where mN ×m is the product of the Lebesgue measures on N and [0,1].

If h : [0,1] → [0,1] is defined by h(t ) =µ
(

p−1([0, t ])
)

, then

dh

d t
=

∫

N×{t }
ρdmN

is continuous and positive, showing that h is a C 1 diffeomorphism. Replacing p
with the composition hp, the result is proved. �

Proof of (5.3). As noted in Section 8, every AB-system f : M → M lifts to an AI-

system f̂ : M̂ → M̂ . Moreover, if the AB-system has a compact us-leaf, the cover-

ing M̂ → M has a fundamental domain which is bounded between two compact

leaves AC (x) and β(AC (x)) where β is the deck transformation defined in Sec-

tion 8. Then, (12.6) applies where the region AC (J ) is exactly this fundamental

domain and therefore, there is a C 1 surjection p : AC (J ) → [0,1]. Moreover, the

candidate derivative in the application of Whitney’s extension theorem may be

chosen so that it agrees on AC (x) and β(AC (x)). Then, p quotients down to a C 1

function M →S1 as desired.

The other statements in (5.3) follow from the above two corollaries. �

13. SKEW PRODUCTS

This sections proves (4.3) showing that non-accessible skew products have

trivial fiber bundles.

Proof of (4.3). As the base map A has a fixed point, there is a fiber S such that

f (S) = S. By replacing f by f 2 if necessary, assume f preserves the orientation

of S. As π2(N ) is trivial (see, for instance, [20]), the long exact sequence of fiber
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bundles gives a short exact sequence 0 → Z → G → H → 0 where Z = π1(S),

G =π1(M), and H =π1(N ). By naturality, f induces the commutative diagram

0 −−−−→ Z −−−−→ G −−−−→ H −−−−→ 0




yid





y
f∗





y
A∗

0 −−−−→ Z −−−−→ G −−−−→ H −−−−→ 0.

As can be shown for any circle bundle with oriented fibers, the subgroup Z is

contained in the center of G . In this case, as H =G/Z is nilpotent, G is then also

nilpotent.

Skew products have global product structure. The proof is similar to that

given for AB-systems in Section 15 and we leave the details to the reader. Similar

to the case for AB-systems, we may then consider the universal cover M̃ of M , a

topological line S̃ ⊂ M̃ which covers S, and a lift f̃ : M̃ → M̃ such that f̃ (S̃) = S̃.

Let Λ ⊂ S̃ be the set of all points t ∈ M̃ such that AC (t ) is not open. Then G
induces an action on Λ.

Let z be a non-trivial element of Z . Then z may be regarded as a fixed-point

free homeomorphism of S̃. By (6.1) and (6.2), there is a homomorphism τ : G →
R such that τ(z) is non-zero. By (6.3), there is λ > 0 such that τ f∗(g ) = λτ(g )

for all g ∈ G . Since, f∗(z) = z, this implies that λ equals one. By rescaling τ,

assume τ(Z ) = Z. Then, τ : G → R quotients to a homomorphism τ̂ : H → R/Z

and τ̂A∗ = τ̂.

As A is hyperbolic, A∗ has no non-trivial fixed points and, by (6.4), no non-

trivial fixed cosets. As all of the cosets of ker τ̂ are fixed by A∗, it follows that

τ̂ = 0. That is, τ(G) = Z. One can then define a map which takes each g ∈ G
to the unique z ∈ Z such that τ(g ) = τ(z). This shows that the exact sequence

0 → Z → G → H → 0 splits. Then, G is isomorphic to H × Z and the bundle is

trivial.

In fact, one can find a compact us-leaf directly. Viewing H now as a subgroup

of G equal to the kernel of τ, choose a point x ∈ S̃ and define y = supg∈H g (x).

Then, with µ as in (6.1), µ[x, y) = 0 which implies y <+∞. In other words, y is a

well-defined point in S̃. Since y is in Fix(H) it projects to a point in M contained

in a compact us-leaf. �

14. INFRA-AB-SYSTEMS

We now consider infra-AB-systems as defined in Section 2.

First, recall the definition of an infranilmanifold. Let Ñ be a simply connected

nilpotent Lie group. A diffeomorphism φ : Ñ → Ñ is a (right) translation if there

is v ∈ Ñ such that φ(u) = u · v for all u ∈ Ñ . Let Trans(Ñ ) be the group of all

translations (which is canonically isomorphic to Ñ itself). Let Aut(Ñ ) be the

group of all automorphisms of Ñ . Then the group of affine diffeomorphisms,

Aff(Ñ ), is the smallest group containing both Trans(Ñ ) and Aut(Ñ ). Equivalently,
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ψ ∈ Aff(Ñ ) if and only if there is φ ∈ Aut(Ñ ) and v ∈ Ñ such that ψ(u) = φ(u) · v
for all u ∈ Ñ .

If a subgroup Γ < Aff(Ñ ) is such that Γ∩Trans(Ñ ) has finite index in Γ and

N0 := Ñ /Γ is a compact manifold, then N0 is a (compact) infranilmanifold. If

A ∈ Aff(Ñ ) quotients to a function A0 : N0 → N0 then A0 is also called affine.

Theorem 14.1. Suppose f0 is a conservative C 2 infra-AB-system. Then, either

(1) f0 is accessible and stably ergodic,
(2) E u and E s are jointly integrable and f0 is topologically conjugate to an

algebraic map, or
(3) there are n ≥ 1, a C 1 surjection p0 from M0 to either S1 or S1/Z2, and a

non-empty open subset U ( p0(M0) with the following properties.
If t ∉U then p−1

0 (t ) is an f n
0 -invariant compact us-leaf homeomorphic

to an infranilmanifold. Moreover, every f0-periodic compact us-leaf is of
this form.

If I is a connected component of U , then p−1
0 (I ) is f n

0 -invariant and
homeomorphic to a (possibly twisted) I-bundle over an infranilmanifold.

This theorem is proved at the end of the section and the exact nature of the

“algebraic map” in case (2) is given in the proof. Also, as will be evident from the

proof, if E c is orientable then p0(M0) = S1. Otherwise, p0(M0) = S1/Z2 which

is the 1-dimensional orbifold constructed by quotienting R by both Z and the

involution t 7→ −t . This orbifold is homeomorphic to a compact interval. A set

p−1(I ) will be twisted (as an I-bundle) if and only if I is homeomorphic to a half-

open interval.

The ergodic decomposition given in (2.4) also generalizes.

Theorem 14.2. Let f0 : M0 → M0 be a C 2 infra-AB-system and suppose there is a
smooth, f0-invariant, non-ergodic measure ζ supported on M0. Then, there are
n ≥ 1, a C 1 surjection p0 from M0 to either S1 or S1/Z2, and an open subset
U ( p0(M0) such that

(14.3) ζ=
∑

I
m(I )ζI +

∫

t∉U
ζt dm(t )

is the ergodic decomposition for ( f n
0 ,ζ).

Here, the components ζI and ζt of the decomposition are defined analogously

to (2.3).

Proof. Let π : M0 → M be the finite covering and f an AB-system such that

π f = f m
0 π for some m ≥ 1. Then, ζ lifts to a measure µ on M which (up to

rescaling the measure so that µ(M) = 1) satisfies the hypotheses of (2.4). If ζt

is a component of the decomposition (14.3), then its support is a single accessi-

bility class X0. If X is a connected component of π−1(X0) ⊂ M , then there is an

ergodic component ( f n ,µt ) of ( f n ,µ) where µt is supported on X and such that

π∗µt (up to rescaling) is equal to ζt . Ergodicity of ( f mn
0 ,ζt ) then follows from the
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ergodicity of ( f n ,µt ). Ergodicity of components of the form ζI can be proven

similarly. �

The theorems in Section 2 concerning non-conservative AB-systems may also

be generalized using techniques similar to those in the proof of (14.1) below. In

the interests of brevity, we leave the statements and proofs of these other results

to the reader. The following two known results about functions on infranilman-

ifolds will be useful.

Lemma 14.4. If N0 is an infranilmanifold, there is a nilmanifold N finitely cov-
ering N0 such that every homeomorphism of N0 lifts to N .

Proof. This follows from the fact that Γ∩Trans(Ñ ) is the unique maximal nor-

mal nilpotent subgroup of π1(M). A proof of this is given in [4], a paper which

also contains an infamously incorrect result about maps between infranilman-

ifolds. (See the discussion in [29].) However, the proof of the above fact about

Γ∩Trans(Ñ ) is widely held to be correct. �

Lemma 14.5. If a homeomorphism B on a compact infranilmanifold N0 com-
mutes with a hyperbolic affine diffeomorphism A, then B itself is affine.

Proof. This follows by a combination of the results of Mal’cev and Franks. First,

consider the case where N = N0 is a nilmanifold. Let x be a fixed point of A.

Then y := B(x) is also a fixed point of A. Using the standard definition of the

fundamental group for based spaces, the diagram

π1(N , x)
B∗−−−−→ π1(N , y)





y
A∗





y
A∗

π1(N , x)
B∗−−−−→ π1(N , y)

commutes. By [30], there is a unique affine map φ : (N , x) → (N , y) such that

φ∗ = B∗. (If x 6= y one shows this by considering two distinct lattices of the form

x̃Γx̃−1 and ỹΓỹ−1 on the Lie group Ñ in order to construct a Lie group homo-

morphism which quotients down to φ.)

As φ∗A∗ = A∗φ∗, the uniqueness given in [30] entails that φA = Aφ as func-

tions on N . As N is aspherical, φ is homotopic to B . Then, using that A is a

π1-diffeomorphism as defined in [20], it follows that φ and B are equal.

Now suppose N0 is an infranilmanifold. By (14.4), there is a nilmanifold N
and a normal finite covering N → N0 such that both A and B lift to functions

N → N . By abuse of notation, we still call these functions A and B . As the cov-

ering is finite, there is j ≥ 1 such that A jγ = γA j for every deck transformation

γ. In particular, there is a deck transformation γ : N → N such that A j B = B A jγ.

Then, A j k B = B(A jγ)k = B A j kγk for all k ∈ Z, and, taking k ≥ 1 such that γk

is the identity, A j k commutes with B and the problem reduces to the previous

case. �
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Proposition 14.6. Suppose f0 is a partially hyperbolic skew product where the
base map is a hyperbolic infranilmanifold automorphism and E c is one-dimensional.
If f0 is not accessible, it is an infra-AB-system.

Proof. Lift the fiber bundle projection π : M0 → N0 to π̃ : M̃ → Ñ where M̃ and Ñ
are the universal covers. Let G consist of those deck transformations α ∈π1(M0)

which preserve the orientation of the lifted center bundle and for which π̃α= γπ̃

for some γ ∈ Trans(Ñ ). Then, G is a finite index subgroup of π1(M0) defining a

finite cover M = M̃/G and one can show that f0 : M0 → M0 lifts to f : M → M
where the base map A0 : N0 → N0 lifts to the nilmanifold Ñ /π̃(G). If f0 is not

accessible, then f is not accessible. The fiber bundle on M is then trivial by (4.3),

implying that f 2, which preserves the orientation of E c , is an AB-system. �

We now prove (14.1).

Assumption 14.7. For the remainder of the section, assume f : M → M is a non-
accessible conservative C 2 AB-system, π : M → M0 is a (not-necessarily normal)
finite covering map and that f0 : M0 → M0 and m ≥ 1 are such that π f = f m

0 π.

Note this implies that f0 is partially hyperbolic and the splitting on the tan-

gent bundle T M0 lifts to the splitting for f on T M .

For now, make the following additional assumptions, which will be removed

later.

Assumption 14.8. Assume until the end of the proof of (14.10) that

• E c on M0 is orientable;
• f0 preserves the orientation of E c ; and
• m = 1, that is, π f = f0π.

By the assumption m = 1, both f0 and f can be lifted to the same map f̃ on

the universal cover M̃ .

As f is an AB-system defined by nilmanifold automorphisms A,B : N → N ,

there is a map H : M̃ → Ñ whose fibers are the center leaves of f and where Ñ
is the universal cover of N and therefore a nilpotent Lie group. Further, A lifts

to a hyperbolic automorphism of Ñ , which we also denote by A, and the leaf

conjugacy implies that H f̃ = AH .

Define S̃ = H−1({0}) where 0 is the identity element of the Lie group. Then

S̃ is an f̃ -invariant center leaf which covers a circle S ⊂ M and S further covers

a circle S0 ⊂ M0. By (2.2), there is a C 1 surjection p : M → S1 and a constant

θ ∈ S1 such that if x ∈ M has non-open accessibility class AC (x) then p is con-

stant on AC (x) and p f (x) = p(x)+θ. By (5.3), assume p restricted to S is a C 1

diffeomorphism. Using p and the covering π : M → M0, define a map

q : M0 →S1, x0 7→
∑

y∈π−1(x0)

p(y).
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It follows that if x0 ∈ M0 has non-open accessibility class AC (x0) then q is con-

stant on AC (x0) and q f0(x0) = q(x0)+θd where d is degree of the covering. Fur-

ther, q restricted to S0 is a C 1 covering from S0 to S1 (though not necessarily

of degree d). After lifting q to a map q̃ : M̃ → R, there is a homomorphism

q∗ : π1(M0) → Z such that q̃γ(x̃) = q̃(x̃)+ q∗(γ) for every x̃ ∈ M̃ and deck trans-

formation γ ∈π1(M0).

As the deck transformations preserve the lifted center foliation, for each γ ∈
π1(M0), there is a unique homeomorphism Bγ : Ñ → Ñ such that Hγ= BγH .

Lemma 14.9. Bγ ∈ Aff(Ñ ) for all γ ∈π1(M0).

Proof. We may view π1(M) as a finite index subgroup of π1(M0). The definition

of an AB-system implies that Bγ ∈ Aff(Ñ ) for all γ ∈π1(M).

Now consider the subgroups K3 < K2 < K1 <π1(M0) defined as follows:

K1 is the kernel of q∗,

K2 = K1 ∩π1(M), and

K3 = {α ∈ K2 : αβK2 =βK2 for all β ∈ K1}.

By its definition, K3 is a normal finite index subgroup of K1. The lift f̃ of f0

induces a homomorphism f∗ : π1(M0) → π1(M0) given by f∗(γ) = f̃ γ f̃ −1. There

is a constant c ∈R such that

q̃ f̃ (x̃) = q̃(x̃)+ c

for all x̃ ∈ M̃ with non-open accessibility class. This implies that f∗(K1) = K1.

From this, one can show that f∗(K2) = K2 and therefore f∗(K3) = K3.

Note that N3 := Ñ /{Bγ : γ ∈ K3} is a nilmanifold (which finitely covers the orig-

inal nilmanifold N ), and the hyperbolic Lie group automorphism A : Ñ → Ñ
descends to an Anosov diffeomorphism on N3.

Suppose γ ∈ K1. As f∗ permutes the cosets of K3, there is j ≥ 1 such that

f
j
∗ (γ)K3 = γK3. This implies that A j and Bγ descend to commuting diffeomor-

phisms on N3. Then, by (14.5), Bγ is affine. Thus, we have established the de-

sired result for all γ ∈ K1, and further shown that N1 := Ñ /{Bγ : γ ∈ K1} is an

infranilmanifold (finitely covered by the original nilmanifold N ).

Now suppose γ ∈π1(M0) is an arbitrary deck transformation. Then

q̃ f̃ γ f̃ −1γ−1(x̃) = q̃(x̃)

for all x̃ ∈ M̃ with non-open accessibility class. This implies that f∗(γ)K1 = γK1.

and so A and Bγ descend to commuting diffeomorphisms on N1. As A is hyper-

bolic, Bγ ∈ Aff(Ñ ) by (14.5). �

If f is accessible, then clearly f0 is accessible. Therefore to prove (14.1), it is

enough to consider f in cases (2) and (3) of (2.2).

Proposition 14.10. If f is in case (3) of (2.2) and f0 satisfies assumption (14.8),
then f0 is in case (3) of (14.1).
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Proof. By replacing f0, f , and f̃ by iterates, assume n = 1 in (2.2) and that the lift

f̃ was chosen so that f̃ (X̃ ) = X̃ for every accessibility class X̃ ⊂ M̃ .

The image of q∗ is equal to ℓZ for some ℓ ≥ 1. Then p̃0 := 1
ℓ q̃ quotients to a

function p0 : M0 →S1. As the original p : M →S1 was C 1, the functions q , q̃ , p̃0,

and p are also C 1. Also, p0 is constant on compact us-leaves and its restriction

to S0 is a C 1 covering. If, for some t ∈S1, X0 and Y0 are compact us-leaves in the

pre-image p−1
0 (t ), then they lift to closed us-leaves X̃ , Ỹ ⊂ M̃ such that p̃0(X̃ )−

p̃0(Ỹ ) is an integer. By the definition of p̃0, there is then a deck transformation

taking X̃ to Ỹ and so X0 = Y0. This shows that every compact us-leaf in M0 is of

the form p−1
0 (t ) for some t .

If X0 is instead an open accessibility class, then its boundary consists of two

compact us-leaves and from this one can show that p−1
0 (p0(X0)) = X0.

Note that every accessibility class X0 on M0 is the projection of an accessibil-

ity class X̃ on M̃ . As f̃ fixes accessibility classes, so does f0. Further, using K1

and N1 as in the proof of the lemma above, X0 is homeomorphic to X̃ /K1. If X̃ is

non-open, then X̃ /K1 is homeomorphic to the infranilmanifold N1. If X̃ is open,

then X̃ /K1 is an I-bundle over N1 where the fibers of the I-bundle are segments

of center leaves.

This shows that f0 satisfies case (3) of (14.1). �

We now remove the additional assumptions above and show that this result

still holds.

Proposition 14.11. If f is in case (3) of (2.2) and f0 does not satisfy assumption
(14.8), then f0 is in case (3) of (14.1).

Proof. In case (3) of (14.1), we are free to replace f0 by an iterate. By replacing f0

by f m
0 , one can assume m = 1. That is, π f = f0π. By replacing f0 by f 2

0 , one can

assume f0 preserves the orientation of any orientable bundle. Thus, the only

condition to test is when E c is non-orientable.

Any non-orientable bundle on a manifold lifts to an orientable bundle on a

double cover and any bundle-preserving diffeomorphism lifts as well. There-

fore, we are free to consider the following situation. As before, E c is orientable

and f0 preserves the orientation, but now there is an involution τ : M0 → M0,

such that τ reverses the orientation of E c and τ commutes with f0. As a con-

sequence of this commutativity, τ preserves the partially hyperbolic splitting

of f0. Choose a continuous function p1 : M0 → S1 which satisfies 2p1(x) =
p0(x)− p0τ(x). As τ2 is the identity, p1τ(x) = −p1(x) and so p1 descends to a

function p2 : M0/τ→S1/Z2.

Since S1 → S1, x 7→ −x has two fixed points, one can show that τ fixes ex-

actly two accessibility classes on M0. Let X0 be one of these two classes, and lift

τ and X0 to the universal cover to get X̃ and τ̃ such that τ̃(X̃ ) = X̃ . As f and τ

commute, it follows from an adaptation of (14.9) that Bτ̃ ∈ Aff(Ñ ). If X0 is com-

pact, then X0/τ is homeomorphic to an infranilmanifold. If instead X0 is open,
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then X0 is an I-bundle over N0 where the fibers are center segments, and τ re-

verses the orientation of these fibers. Therefore, X0/τ is a twisted I-bundle over

an infranilmanifold.

This shows that case (3) holds for the quotient of f0 to M0/τ where p0 and

U ⊂S1 are replaced by p2 and U /Z2 ⊂S1/Z2. �

Now consider the situation where f is in case (2) of (2.2). The following propo-

sition shows that f0 is “algebraic” as stated in case (2) and concludes the proof

of (14.1).

Proposition 14.12. Suppose f0 is an infra-AB-system and E u ⊕E s is integrable.
Then there is a lift f̃0 of f0 to the universal cover M̃ and a homeomorphism h :

M̃ → Ñ ×R such that
h f̃0h−1 ∈ Aff(Ñ )× Isom(R)

and
hγh−1 ∈ Aff(Ñ )× Isom(R)

for every deck transformation γ ∈π1(M0).

Here, Isom(R) is the group of functions of the form t 7→ t + c or t 7→ −t + c.

Proof. First consider the case where f0 satisfies assumption (14.8) and recall the

functions H : M̃ → Ñ and q̃ : M̃ → R defined earlier in this section. By global

product structure and the integrability of E u ⊕E s , H × q̃ is a homeomorphism.

The results already given in this section then show that h = H × q̃ satisfies the

conclusions of the lemma.

If f0 does not satisfy (14.8) and E c is orientable on M0, then there is m > 1

such that f m
0 satisfies (14.8). Let H and q̃ be given for f m

0 . Define a = +1 if f̃0

preserves the orientation of E c and a =−1 if f̃0 reverses the orientation. Define

r : M̃ →R by r (x) =∑m−1
k=0

ak q̃ f̃ k
0 (x) and take h = H × r .

If E c is non-orientable on M0, then f0 lifts to a double cover on which E c is

orientable. Then, let H and r be defined as in the previous case. Choose a deck

transformation τ̃ : M̃ → M̃ which reverses the orientation of E c on M̃ and define

a function s : M̃ →R by s(x) = r (x)− r τ̃(x) and take h = H × s. �

15. OPENNESS

This section establishes that AB-systems have global product structure and

form an open subset of the space of C 1 diffeomorphisms.

Lemma 15.1. Suppose G is a simply connected nilpotent Lie group. For any dis-
tinct u, v ∈ G, there is a unique one-dimensional Lie subgroup Gu,v such that
v−1u ∈Gu,v . (That is, u lies in the coset vGu,v .)

Proof. This follows from the fact that for such groups, the exponential map from

the Lie algebra to the Lie group is surjective [30]. �



ERGODIC COMPONENTS OF PARTIALLY HYPERBOLIC SYSTEMS 41

A right-invariant metric on such a group G is a metric d : G ×G → [0,∞) such

that d(u, v) = d(u · w, v · w) for all u, v, w ∈ G . For such a metric, we define a

function d1 : G ×G → [0,∞) where d1(u, v) is the length of the path from u to

v which lies in the coset vGu,v given by (15.1). Clearly, d(u, v) ≤ d1(u, v) for all

u, v ∈G . Further, d1 is continuous and the ratio d1(u, v)/d(u, v) tends uniformly

to one as d(u, v) tends to zero. Note that d1 is not a metric on G in general. (If

G =Rd is abelian, however, the coset uG1 is simply the line through u and v and

d = d1.)

If φ : G →G is an automorphism and G1 is a one dimensional subgroup, then

there is λ such that d1(φ(u),φ(v)) = λd1(u, v) for all u, v ∈ G with u ∈ vG1. This

follows because both G1 and φ(G1) are Lie groups isomorphic to R and d1 re-

stricts to a right-invariant metric on either of G1 or φ(G1).

Lemma 15.2. Suppose G is a simply connected nilpotent Lie group, d is a right-
invariant metric, {φk } is a sequence of Lie group automorphisms of G, G1 ⊂G is a
one-dimensional Lie subgroup, u0 ∈G, and v0 ∈ u0G1 with u0 6= v0.

(1) If limk→∞ d(φk (u0),φk (v0)) = 0, then
limk→∞ d(φk (u),φk (v)) = 0 for all u ∈G and v ∈ uG1.

(2) If a ≥ 1 and limk→∞ ak d(φk (u0),φk (v0)) = 0, then
limk→∞ ak d(φk (u),φk (v)) = 0 for all u ∈G and v ∈ uG1.

(3) If supk d(φk (u0),φk (v0)) <∞, then
supk d1(φk (u0),φk (v̂)) = 1 for some v̂ ∈ u0G1.

Proof. Let λk be such that d1(φk (u),φk (v)) = λk d1(u, v) when u ∈ vG1. Then

in the first item, the two limits hold if and only if λk → 0 and so one implies

the other. For the second item, consider akλk . For the final item, if the first

supremum is finite, then Λ := supk λk <∞ and one can take v̂ ∈ v0G1 such that

d1(v̂ , v0) = 1/Λ. �

We now show that every AB-system has global product structure.

Proof of (5.1). Let f : M̃ → M̃ be the lift of the AB-system to the universal cover

and h : M̃ → M̃B the lifted leaf conjugacy to the AB-prototype. The functions f
and h are written without tildes as all the analysis will be on the universal covers.

Measuring distances on the manifold M̃B requires care. The metric dM̃B
on

M̃B is defined by lifting a metric from MB . If pk = (uk , sk ), and qk = (vk , tk ) are

sequences in M̃B = Ñ ×R, then dM̃B
(pk , qk ) may not converge to zero, even if

both dÑ (uk , vk ) → 0 on Ñ and |sk − tk | → 0 on R. The convergence depends on

the exact nature of the automorphism B . If sk and tk are bounded sequences in

R, however, then one can show in this special case that dM̃B
(pk , qk ) → 0 if and

only if both dÑ (uk , vk ) → 0 on Ñ and |sk − tk |→ 0 on R.

There is a deck transformation β : M̃B → M̃B defined by β(v, t ) = (B v, t − 1)

which is an isometry with respect to dM̃B
. For general {pk } and {qk }, let {nk }

be the unique sequence of integers such that 0 ≤ |sk −nk | < 1 for all k. Then,
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βnk (pk ) ∈ Ñ × [0,1) for all k and

dM̃B
(pk , qk ) = dM̃B

(βnk (pk ),βnk (qk )) → 0

if and only if both

dÑ (B nk (uk ),B nk (vk )) → 0 and |sk − tk |→ 0.

In what follows, we write d without a subscript for the metrics on M̃ , M̃B , and

Ñ . There is no ambiguity as they are all treated as distinct manifolds. If Y is a

subset of one of these three manifolds, then

dist(x,Y ) := inf
y∈Y

d(x, y).

Also let ds(x, y) denote distance measured along the corresponding stable folia-

tion: W s
f if x, y ∈ M̃ , W s

A if x, y ∈ Ñ , and W s
A×id

if x, y ∈ Ñ ×R. Similarly for du and

dc .

The leaf conjugacy implies that every cs-leaf of f intersects a cu-leaf in a

unique center leaf. Therefore, establishing global product structure reduces to

showing existence and uniqueness of intersections inside the cs and cu leaves.

Uniqueness. Suppose x ∈ M̃ and x 6= y ∈W c
f (x)∩W s

f (x). Then as k →∞,

ds( f k (x), f k (y)) → 0 and dc ( f k (x), f k (y))9 0

since if both sequences tended to zero, local product structure would imply that

x and y were equal. Define pk = h f k (x) and qk = h f k (y). As the leaf conjugacy

is uniformly continuous, d(pk , qk ) → 0 and dc (pk , qk ) 9 0. If pk = (uk , sk ) and

qk = (vk , tk ), then, as noted above,

d(pk , qk ) → 0 ⇒ |sk − tk |→ 0 ⇒ dc (pk , qk ) → 0,

a contradiction.

Existence. Suppose x ∈ M̃ lies on a center leaf L0 and L1 ⊂W cs
f (x) is a distinct

center leaf. Then h(L0) = {v0}×R and h(L1) = {v1}×R for distinct points v0, v1 ∈
Ñ . As L0 and L1 are subsets of the same cs-leaf of f , v0 and v1 lie on the same

stable leaf of A. By (15.1), there is a one-dimensional subgroup Ñ1 ⊂ Ñ such that

v−1
0 · v1 ∈ Ñ1. By item (2) of (15.2), the coset v0Ñ1 is a subset of W s

A(v0).

If U s
f is a small neighbourhood of x in W s

f (x), then h(U s
f ) ⊂ W s

A(v0)×R and

the set h(W c
f (U s

f )) = W c
A×id

(h(U s
f )) is a neighbourhood of h(x) in W s

A(v0) ×R.

Therefore, if v ∈ W s
A(v0) is sufficiently close to v0, then there is y ∈ W s

f (x) such

that h(y) ∈ {v}×R. In particular, let v be such that v ∈ v0Ñ1 and fix such a point

y . See Figure 3. Let {nk } be such that βnk h f k (x) ∈ Ñ × [0,1) for all k. Then,

d( f k (x), f k (y)) → 0 ⇒

d(βnk h f k (x),βnk h f k (y)) → 0 ⇒

d(B nk Ak (v0),B nk Ak (v)) → 0

which by (15.2) implies d(B nk Ak (v0),B nk Ak (v1)) → 0.
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U s
f

L0

L1

x

y

v0 ×R

v ×R

v1 ×R

h(U s
f

)

h(x)

h(y)

h

FIGURE 3. A depiction of points and leaves occuring in the proof

of global product structure. In this figure, the stable direction

E s
f is shown as if it were two-dimensional and U s

f is drawn as

a small plaque tangent to E s
f . The entire left side of the figure

lies inside a three-dimensional cs-leaf of f and the right side lies

inside a cs-leaf of A× id.

Then, as h f k (L1) = {Ak (v1)}×R,

dist(βnk h f k (x),βnk h f k (L1)) → 0 ⇒

dist(h f k (x),h f k (L1)) → 0 ⇒

dist( f k (x), f k (L1)) → 0.

Thus, for sufficiently large k, W s
f ( f k (x)) intersects f k (L1) showing that W s

f (x)

intersects L1. �

A sequence {xk } is an ǫ-c-pseudoorbit if for each k ∈ Z the points f (xk ) and

xk+1 lie ǫ-close on the same center leaf. A partially hyperbolic system is plaque
expansive if there is ǫ > 0 such that if {xk } and {yk } are ǫ-c-pseudoorbits and

d(xk , yk ) < ǫ for all k ∈Z, then x0 and y0 are on the same local center leaf.

Theorem 15.3. Every AB-system is plaque expansive.

Since plaque expansive systems are open in the C 1 topology [27], this also

proves (5.2).

Proof. Let f : M → M be an AB-system. Let C > 1 be a constant to be defined

shortly. Since f expands in the unstable direction, there is ǫ0 > 0 such that if

points x, y, x ′, y ′ ∈ M satisfy

1

C
≤ du(x, y) ≤C , dc ( f (x), x ′) < ǫ0, and y ′ ∈W c ( f (y))∩W u(x ′)

then du(x, y) < (1− ǫ0)du(x ′, y ′). This result then also holds for points on the

universal cover M̃ where f for the remainder of the proof denotes the lift f :

M̃ → M̃ .
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Let h : M̃ → Ñ ×R be the lifted leaf conjugacy. Define sets

X = {(v, w) ∈ Ñ × Ñ : v ∈W u
A (w), d(v, w) ≤ 1}

and

X1 = {(v, w) ∈ Ñ × Ñ : v ∈W u
A (w), 1

2
≤ d1(v, w) ≤ 1}.

and a function

D : X × [−1,1] →R, (v, w, t ) 7→ du(h−1(v ×R), h−1(w × t )).

That is, D(v, w, t ) is the distance, measured along an unstable leaf of f , between

the center leaf h−1(v ×R) and the point h−1(w × t ). Such a function is well-

defined and continuous by global product structure.

If α : Ñ → Ñ is a deck transformation for the covering Ñ → N , then α× id

is a deck transformation for the covering M̃B → MB and one can verify that

D(α(v),α(w), t ) = D(v, w, t ). Using the compactness of N and [−1,1], there is

C > 1 such that

D(X × [−1,1]) ⊂ [0,C ] and D(X1 × [−1,1]) ⊂ [
1

C
,C ].

This defines the constant C used above.

For some ǫ > 0 let {xk } and {zk } be ǫ-c-pseudoorbits such that d(xk , zk ) < ǫ.

By increasing ǫ and by sliding the points zk along center leaves, assume, with-

out loss of generality, that there is a point yk for each k such that xk and yk

are connected by a short unstable segment and yk and zk are connected by a

short stable segment. By again increasing ǫ, one can show that {yk } is a ǫ-c-

pseudoorbit. We may freely assume that the original ǫ was chosen small enough

that dc ( f (xk ), xk+1) < ǫ0 for all k. We will show that x0 and y0 lie on the same

center leaf. An analogous argument holds for y0 and z0 which will complete the

proof.

Suppose x0 and y0 lie on distinct center leaves. Then, using β as in the previ-

ous proof, there are vx 6= vy ∈ Ñ and {nk } such thatβnk h(xk ) ∈ {B nk Ak vx }×(−1,1)

and βnk h(yk ) ∈ {B nk Ak vy }× (−1,1) for all k ∈Z. This implies that

sup
k

d(B nk Ak vx ,B nk Ak vy ) <∞.

Let Ñ1 ⊂ Ñ be a one-dimensional subgroup such that vy ∈ vx Ñ1. By (15.2), there

is v̂ ∈ vx Ñ1 such that

sup
k∈Z

d1(B nk Ak vx , B nk Ak v̂) = 1.

By the global product structure of f , there is a unique sequence {ŷk } in M̃ such

that h(ŷk ) ∈ {Ak v̂}×R and ŷk ∈ W u
f (xk ). Then, S = supk∈Z du(xk , ŷk ) satisfies

1
C ≤ S ≤ C . Let k ∈ Z be such that du(xk , ŷk ) > (1− ǫ0)S. The definition of ǫ0

implies that du(xk+1, ŷk+1) > S, a contradiction. �
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16. THE DYNAMICALLY-INCOHERENT EXAMPLE

This section gives a construction of the example due to Hertz, Hertz, and Ures

of a partially hyperbolic system on the 3-torus having an invariant cs-torus [46].

For this specific construction, E u and E s are jointly integrable and the tangent

foliation has exactly one compact leaf. The system therefore gives an example

of case (3) of (2.7). We use the following to prove the example is partially hyper-

bolic.

Proposition 16.1. Suppose f is a diffeomorphism of a compact manifold M,
T M = E s ⊕E c ⊕E u is an invariant splitting, and there is k > 1 such that

‖T f k v s
x‖ < ‖T f k vc

x‖ < ‖T f k vu
x ‖ and ‖T f k v s

x‖ < 1 < ‖T f k vu
x ‖

for all x ∈ NW ( f ) and unit vectors v∗
x ∈ E∗

x (∗= s,c,u). Then, f is partially hyper-
bolic.

To prove this, note that if the above inequalities hold on NW ( f ), they also

hold on a neighbourhood U of NW ( f ) and any orbit of f has a uniformly bounded

number of points which lie outside of U . The details are left to the reader.

Now, we return to constructing the example on T3. The example has a linear

stable bundle, so we first consider dynamics in dimension two. Define λ= 1
2

(1+p
5) and functions

ψ : R→R, x 7→ x + 2
3

sin x and g : R2 →R2, (x, y) 7→ (ψ(x),λy +cos x).

The derivative of g is

Dg =
(

ψ′(x) 0

−sin x λ

)

.

On the vertical line x = 0, there is an expanding fixed point for g . Through this

point is an invariant one-dimensional unstable manifold associated to the larger

eigenvalue of Dg . One can show that this unstable manifold may be expressed

as the graph of a function u : (−π,π) → R. For now, only consider u on [0,π). By

an invariant cone argument, one can show that u′(x) < 0 for all x ∈ (0,π). Using

that ψ′(x) <λ when x is close to π and that

|λt − sin x|
|ψ′(x)|

> λ

|ψ′(x)|
|t | > |t |,

for t < 0, one can show that limxրπ u′(x) =−∞.

Define a foliation W u on [0,π)×R by all graphs of functions of the form x 7→
u(x) + b for b ∈ R. This foliation is g -invariant. Reflecting about the y-axis,

extend this to a foliation on (−π,π)×R. By including the vertical lines on the

boundary, extend this foliation to [−π,π]×R and then, by 2π-periodicity in x, to

all of R2. Call this foliation W u and let E u be the C 0 line field tangent to it.

Now consider the hyperbolic fixed point of g on the line x =π. Part of the sta-

ble manifold of this point is given by the graph of a function c : (0,π] → R. One

can show that c ′(x) > 0 for all x ∈ (0,π) and, since ψ′(0) > λ, that limxց0 c ′(x) =
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+∞. From the definition of g , there is a constant C > 1 such that g−1 maps the

region [−C ,C ]× [0,π] into itself. The stable manifold given by graph(c) must

therefore be contained in this region, showing that c is a bounded function and

can be continuously extended to all of [0,π]. By reflection and periodicity, fur-

ther extend c to a continuous function R → R which is differentiable except

at 2πZ and such that g (graph(c)) = graph(c). By considering translates, x 7→
c(x)+b, define a foliation W c on R2 and let E c be the unique continuous line

field on R2 which is tangent to W c on (R \ 2πZ)×R. As u′ < 0 < c ′ on (0,π), E u

and E c are transverse.

The matrix
(

1 1

1 0

)

has eigenvalues λ= 1
2

(1+
p

5) and −λ−1. Therefore, there is a lattice Λ⊂Z2 such

that (y, z) 7→ (λy, −λ−1z) quotients to an Anosov diffeomorphism on the 2-torus

R2/Λ. Define f : R3 →R3 by

f (x, y, z) = (x + 2
3

sin x, λy +cos x, −λ−1z)

and a splitting E c ⊕E u ⊕E s by E s = ∂
∂z and where E c ⊕E u on each x y-plane is

given by the earlier splitting constructed for g . This splitting is f -invariant and

there is a foliation tangent to E u ⊕E s . Define M = (R×R2)/(2πZ×Λ). Both f and

the splitting descend to M . Here, NW ( f ) ⊂ M consists of two tori, one tangent

to E c ⊕E s and the other tangent to E u ⊕E s . Using (16.1), one can verify that f is

partially hyperbolic. It has a foliation tangent to E u ⊕E s with one compact leaf

and all other leaves are planes.

This is not an example of an AB-system as there is no invariant foliation tan-

gent to E c . In the above analysis, the crucial properties needed for the term

cos x in the formula λy +cos x for the second coordinate of g were that cos′ < 0

on (0,π) and cos′(π) ≤ 0 = cos′(0). Therefore, replace λy +cos x by λy + sin x − x
in all of the above analysis. As sin x−x is an odd function, the resulting function

c : R → R is odd and its graph is a C 1 submanifold in R2. Defining f : R3 → R3

now by

f (x, y, z) = (x + 2
3

sin x, λy + sin x −x, −λ−1z)

and quotienting by the lattice in R3 generated by {0}×Λ and (2π, 2π
λ−1

,0) one con-

structs a skew product on T3 having a foliation tangent to E u ⊕E s with exactly

one compact leaf.

APPENDIX A. DEFINITIONS

This appendix defines a number of notions in smooth dynamical theory.

All manifolds considered in this paper are Riemannian manifolds without

boundary. Suppose f is a C 1 diffeomorphism on a compact manifold and there

is a T f -invariant splitting T M = E u ⊕E c ⊕E s of the tangent bundle and k ≥ 1

such that ‖T f k v s‖ < 1 < ‖T f k vu‖ for all unit vectors v s ∈ E s and vu ∈ E u . If E c
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is the zero bundle, then f is an Anosov diffeomorphism. If E u , E c , and E s are

all non-zero and ‖T f k v s‖ < ‖T f k vc‖ < ‖T f k vu‖ for all p ∈ M and unit vectors

v s ∈ E s
p , vc ∈ E c

p , and vu ∈ E u
p then f is a partially hyperbolic diffeomorphism.

The notion of partially hyperbolicity is also extended to certain non-compact

manifolds in Section 7.

A C 1 flow is an Anosov flow if its time-one map is a partially hyperbolic diffeo-

morphism with a center bundle given by the direction of the flow.

A partially hyperbolic diffeomorphism f is dynamically coherent if there are

invariant foliations W cu and W cs tangent to E c ⊕ E u and E c ⊕ E s . As a con-

sequence, there is also an invariant center foliation W c tangent to E c . Global

product structure is defined in Section 5.

For homeomorphisms f : X → X and g : Y → Y , a topological semiconjugacy
is a continuous surjection h : X → Y such that h f = g h. If h is a homeomor-

phism, it is a topological conjugacy.

Partially hyperbolic diffeomorphisms f and g are leaf conjugate if they are dy-

namically coherent and there is a homeomorphism h such that for every center

leaf L of f , h(L) is a center leaf of g and h f (L) = g h(L).

A homeomorphism f : M → M is (topologically) transitive if every non-empty

open f -invariant subset of M is dense in M .

For a homeomorphism f : M → M , a Borel measure µ is invariant if µ(X ) =
µ( f (X )) for every measurable set X ⊂ M . The pair ( f ,µ) is ergodic if µ is f -

invariant and either µ(X ) = 0 or µ(X ) = 1 for every f -invariant measurable X ⊂
M . We often write that f is ergodic or µ is ergodic if the context is clear. For

brevity, we sometimes say that a system f with a finite non-probability measure

µ is ergodic when, to be precise, we should actually say that the pair ( f , 1
µ(M)

µ) is

ergodic. A homeomorphism f is conservative if it has an invariant measure given

by a smooth volume form on M . A conservative C 2 diffeomorphism is stably er-
godic if it has a neighbourhood U in the C 1 topology of C 1 diffeomorphisms

such that every conservative C 2 diffeomorphism in U is also ergodic. For a dis-

cussion of why the quirky combination of C 1 and C 2 regularity is necessary, see

[48].

If Ñ is a simply connected nilpotent Lie group and Γ is a discrete subgroup

such that N := Ñ /Γ is a compact manifold, then N is called a (compact) nil-
manifold [30]. If Ã : Ñ → Ñ is a Lie group automorphism which descends to

A : N → N , then A is a nilmanifold automorphism (also called a toral automor-

phism when N = Td ). If A is Anosov, it is called hyperbolic. Infranilmanifolds

and their automorphisms are defined in Section 14.

If f : M → N is a continuous function and πM : M̂ → M and πN : N̂ → N are

covering maps, then a lift of f is a function f̂ : M̂ → N̂ such that πN f̂ = f πM .

Note that if πM and πN are universal covering maps, then at least one such lift

exists, but is not unique in general.
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APPENDIX B. ERRATUM

This erratum addresses two issues with the proofs in the paper. The first is-

sue is that proposition (6.4) as stated is not correct.1 For instance, the automor-

phism Z2 →Z2, (x, y) 7→ (5x+2y,2x+y) gives a counterexample as it fixes a coset

of Z×2Z. The flaw in the proof is that it confuses invertibility in GL(n,Z) with in-

vertibility in GL(n,R) and the notions are not equivalent. In fact, the proposition

holds in the following revised version.

Proposition B.1. Let G be a torsion-free, finitely-generated, nilpotent group and
suppose φ ∈ Aut(G) is such that φ(g ) 6= g for all non-trivial g ∈G. If H is a normal,
φ-invariant subgroup, then φ fixes at most finitely many cosets of H.

We prove this revised version below. The original proposition (6.4) is used

in only two places in the proofs of theorem (4.3) and lemma (6.5) and we show

below how to use the revised version of the proposition to recover the proofs of

those two results.

The other issue to address in the original paper comes at the start of section

8 which deals with AB-systems. That section states that h f h−1 is homotopic to

f AB and uses this to lift h f h−1 a map on N ×R. In fact, the two functions are not

homotopic in general. For instance, for the linear partially hyperbolic maps on

the 3-torus T3 =R3/Z3 given by the matrices




5 2 0

2 1 0

0 0 1



 and





5 2 0

2 1 0

1 0 1





both have vertical center foliations and the identity map is a leaf conjugacy be-

tween the two systems. The two systems are not homotopic to each other and

attempting to lift the two systems to AI-system on T2 ×R as in section 8 will not

work. To fix this, we amend the definition of an AB-system to add the homo-

topy as an assumption. That is, a partially hyperbolic diffeomorphism f is an

AB-system if

(1) it preserves the orientation of the center bundle E c ,

(2) there is a leaf conjugacy h between f and an AB-prototype f AB , and

(3) h f h−1 is homotopic to f AB .

This additional assumption can always be achieved by lifting f and f AB to finite

covers:

Proposition B.2. If a partially hyperbolic diffeomorphism f satisfies conditions
(1) and (2) above, then a lift of f to a finite cover satisfies all of (1), (2), and (3).

The proof of this is given in the final section of this erratum.

1Note that the numbering of sections in some preprint versions may differ from the published

version.
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For those readers interested only in the case where the nilmanifold N is a

torus Td , we have structured the proofs below so that most of the details specific

to the non-toral case may be skipped over.

Erratum acknowledgements. The author wishes to thank Danijela Damjanovic,

Amie Wilkinson, and Disheng Xu for bringing these issues to his attention and

for helpful input. He also thanks Jonathan Bowden, Davide Ravotti, Heiko Deitrich,

and Santiago Barrera Acevedo for helpful conversations.

Karel Dekimpe was also very helpful and suggested an alternative method to

establish proposition B.1. Instead of proving the proposition directly, one can

instead show the following fact, from which the proposition follows as a corol-

lary:

Let G be a finitely generated nilpotent torsion free nilpotent group

and ϕ ∈ Aut(G) be fixed point free. Assume that H is a ϕ invari-

ant subgroup of G such that G/H is torsion free. Then it follows

that the induced automorphism on G/H is also fixed point free.

PROOF OF PROPOSITION B.1

This section gives a proof of proposition B.1. We first prove this in the abelian

case and then use induction on the nilpotency class to handle the non-abelian

case.

Lemma B.3. Let G be isomorphic to Zd and suppose φ ∈ Aut(G) is such that
φ(g ) 6= g for all non-trivial g ∈G. If H is a normal, φ-invariant subgroup, then φ

fixes at most finitely many cosets of H.

Proof. Assume G =Zd and define a linear map A : Qd →Qd such that Az =φ(z)

for all z ∈ Zd . If A had an eigenvalue of 1, the corresponding eigenspace would

intersect Zd in a non-trivial fixed point φ(z) = z ∈ Zd . Hence, 1 is not an eigen-

value of A.

Let V ⊂Qd be the set of all Q-linear combinations of elements of H . We may

assume H has infinite index in Zd , and so V is a proper A-invariant subspace

of Qd . It induces a linear map Ā on the quotient space Qd /V. If z ∈ Zd is such

that φ(z + H) = z + H , then Ā(z +V ) = z +V and so Ā and therefore A has an

eigenvalue of 1. �

Lemma B.4. Let φ : G → G be a group automorphism and let X be a normal φ-
invariant subgroup. If φ|X has at most finitely many fixed points and φ fixes at
most finitely many cosets of X , then φ itself has finitely many fixed points.

Proof. If φ(g ) = g and φ(g ′) = g ′ are fixed points in the same coset g X = g ′X ,

then φ(g ′g−1) = g ′g−1 is a fixed point in X . Hence, each of the finitely many

fixed cosets has finitely many fixed points. �

Corollary B.5. Suppose φ is an automorphism of a group G with center Z , and
H is a φ-invariant normal subgroup of G . If the induced maps on Z /(H ∩Z ) and
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G/H Z have finitely many fixed points, then the induced map on G/H has finitely
many fixed points.

Proof. Apply the previous lemma to the quotient

0 → Z /(H ∩Z ) →G/H →G/H Z → 0 �

Lemma B.6. Suppose G is a finitely generated torsion free nilpotent group and
let φ : G → G be an automorphism. Let Z denote the center of G . If there is a
non-trivial fixed coset φ(g Z ) = g Z , then φ has a non-trivial fixed point.

Proof. By the properties of such groups [14], Z is isomorphic to Zd and G/Z is

torsion free. Suppose φ(g Z ) = g Z is a non-trivial fixed coset. Let Y be the sub-

group generated by g and Z . Then Y is isomorphic to Zd+1 and within Y , there

are infinitely many fixed cosets: φ(g k Z ) = g k Z for k ∈Z. Lemma B.3 implies that

φ|Y has a non-trivial fixed point. �

Proof of proposition B.1. We prove this by induction on the length of the upper

central series of G . The abelian base case is given by lemma B.3. Assume now

that G is non-abelian with center Z and that proposition B.1 is already known to

hold for the quotient map Φ : G/Z →G/Z .

Since φ|Z has no non-trivial fixed points, lemma B.3 implies that φ|Z fixes at

most finitely many cosets of H ∩Z . Lemma B.6 implies that Φ has no non-trivial

fixed points. By the inductive hypothesis, Φ fixes at most finitely many cosets of

H Z /Z . Then corollary B.5 implies that φ (on all of G) fixes at most finitely many

cosets of H . �

REVISED PROOF OF LEMMA (6.5)

The incorrect proposition (6.4) is used in the proof of (6.5) only to establish

λ 6= 1. Recall in that proof that there is F ∈ Aut(G) with no non-trivial fixed points

and a non-zero homomorphism τ : G →R such that τF =λτ. Define H ⊂G to be

the kernel of τ. Note that the cosets of H are exactly the level sets of τ. If λ = 1,

then every level set of τ is fixed by F. Since τ is non-zero, there are infinitely many

such level sets and proposition B.1 above gives a contradiction.

CIRCLE BUNDLES OVER NILMANIFOLDS

Before revising the proof of (4.3), we first prove the following.

Proposition B.7. Suppose M is a circle bundle with oriented fibers over a nil-
manifold N . If M has a compact horizontal submanifold Σ, then M is a trivial
bundle.

Remark. We consider everything in the C 0 setting here. The circle bundle is

defined by a C 0 map p : M → N and a compact horizontal submanifold Σ is

a codimension one C 0 submanifold such that p|Σ : Σ → N is a covering map

of finite degree. To show that M is trivial, it enough to find another horizontal
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submanifold Σ1 such that p|Σ1
: Σ1 → N is a homeomorphism. To simplify the

proof, we assume that the circle fibers are tangent to a C 0 vector field as is the

case for the center leaves of a partially hyperbolic skew product.

Proof. Assume Σ intersects each fiber in exactly k points. We may define a met-

ric on each fiber such that the length of every fiber is exactly one and that its

points of intersection with Σ are equally spaced; that is, the distance between

one point of intersection and the next is exactly 1
k . We may choose these metrics

to vary continuously along M .

Let π : M̃ → M be the universal covering map. We may assume that M̃ = Ñ ×R

where Ñ is the nilpotent Lie group covering N and such that the fibers of M lift

to lines of the form v×R with v ∈ Ñ . We further assume that the metric on a fiber

of M lifts to a metric on v ×R which is equal to the standard Euclidean metric

given by R. In particular, π−1(Σ) intersects each fiber v ×R in a set of points of

the form

{ (v,σ(v)+ t ) : t ∈ 1
k Z }

for some σ(v) depending on v. We may assume σ : Ñ → R is continuous. To

see this, choose a connected component Σ̃ of π−1(Σ) and define σ(v) to be the

unique intersection of v ×R with Σ̃.

Write G = π1(M), and H = π1(N ). The bundle projection p : M → N induces

a surjective homomorphism p∗ : G → N . We now use Σ̃ to define a homomor-

phism τ : G → 1
k Z. Without loss of generality, assume σ(e) = 0 where e is the

identity element of Ñ . For a deck transformation g ∈ G , let τ(g ) be such that

(e,τ(g )) is the unique intersection of g (Σ̃) with e ×R. Similar to lemma (7.6) in

the original paper, one may show that τ : G → 1
k Z is a homomorphism. We claim

the following.

Claim. There is a (not necessarily unique) homomorphism

ψ : H → 1
k Z such that ψp∗(g )−τ(g ) ∈Z for all g ∈G .

We leave the proof of this to the end and first show that this gives the desired

result. By the properties of nilmanifolds [?], ψ determines a Lie group homo-

morphism ψ : Ñ →R where if we regard H as a discrete subgroup of Ñ then this

is an extension of ψ from H to all of Ñ . Define a submanifold Σ̃1 as the graph of

σ−ψ; that is, (v, t ) ∈ Σ̃1 if and only if t = σ(v)−ψ(v). By the above claim, for all

deck transformations g ∈G , the intersection of g (Σ̃1) with e ×R lies inside e ×Z.

Hence Σ̃1 quotients down to a compact horizontal submanifold Σ1 ⊂ M which

intersects each fiber exactly once and therefore shows that the circle bundle is

trivial

It remains to prove the claim. We first consider the abelian case where H is

isomorphic to Zd . Let {h1, . . .hd } be a generating set for H and choose elements

gi ∈G such that p∗(gi ) = hi . Let z ∈G be the deck transformation (v, t ) 7→ (v, t +
1) corresponding to going once around a fiber of the circle fibering. Note that

τ(z) = 1. As explained in the original proof of (4.3), 〈z〉 is the kernel of p∗, and so
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{z, g1, . . . gd } is a generating set for G . Define ψ : H → 1
k Z by ψ(hi ) = τ(gi ). Then

ψp∗(z)−τ(z) =−1 and ψp∗(gi )−τ(gi ) = 0. As ψp∗−τ takes integer values on a

generating set for G , it must take integer values on all of G .

We now extend this argument to the non-abelian case. Note that both M and

N are nilmanifolds. Consider the root set G1 of the commutator subgroup of

G . That is g ∈ G1 if and only if g k ∈ [G ,G] for some k ≥ 1. Such sets are dis-

cussed in detail in Chapter 1 of [14] (where the notation there is G
√

γ2(G) instead

of G1). In particular, G1 is a normal subgroup and any homomorphism from G
to a torsion-free abelian group R is identically zero on G1 and so factors through

G →G/G1 → R We can therefore define a homomorphism τ1 : G/G1 → 1
k Z as the

quotient of τ.

Similarly write H1 for the root set of [H , H ]. Then H/H1 is a torsion-free

abelian group homomorphic to Zd for some d [14], and p∗ : G → H descends

to a map p1 : G/G1 → H/H1. Adapting the argument above, we may define a

map ψ1 : H/H1 → 1
k Z such that ψ1p1 − τ1 takes integer values on all of G/G1.

Then ψ1 determines a map ψ : H → 1
k Z as desired. �

REVISED PROOF OF THEOREM (4.3)

This section revises the proof of theorem (4.3) to use proposition B.1 above in

place of the incorrect proposition (6.4) of the original paper. By virtue of propo-

sition B.7 above, we need only show that the partially hyperbolic system has a

compact us-leaf.

The proof of (4.3) is unchanged up to the definition of τ̂ : G →R/Z and the first

use of (6.4). Using instead proposition B.1 above, the most we can say is that τ̂

has a finite image. In other words, there is an integer k ≥ 1 such that τ(G) = 1
k Z.

The existence of τ is given by (6.1) and (6.2). From the proofs of those results,

we can see that then there is a measure µ on S̃ invariant under the action of G
and such that τ(g ) =µ[x, g (x)) for any x ∈Λ and g ∈G . Here, Λ is the intersection

of the non-open accessibility classes Γ with S̃. Choose some point x0 ∈Λ and for

each t ∈ 1
k Z, define a set X t ⊂Λ by

X t = {x ∈Λ : µ[x0, x) = t }.

The sets X t are disjoint and the action of g ∈ G on Λ takes X t to X t+τ(g ). Define

yt = sup X t where we are identifying S̃ with R in order to define the supremum.

Then {yt : t ∈ 1
k Z} is a discrete subset of Λ which is invariant under the action of

G . This implies that for any point yt , its accessibility class AC (yt ) ⊂ M̃ quotients

down to a compact us-leaf on M .

PROOF OF PROPOSITION B.2

We now prove proposition B.2. Assume f : M → M is a partially hyperbolic

diffeomorphism which preserves the orientation of E c and h : M → MB is a leaf

conjugacy to f AB : MB → MB . We want to show that after lifting f and f AB to
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maps f̂ and f ÂB̂ on finite covers M̂ of M and MB̂ of MB that there is a leaf conju-

gacy ĥ : M̂ → MB̂ such that ĥ f̂ ĥ−1 and f ÂB̂ are homotopic. As all of the manifolds

involved are Eilenberg-MacLane spaces of type K (π,1), the existence of such a

homotopy is purely a question involving the actions of the functions on the fun-

damental groups of the manifolds. (See, for instance, Propositions 1.33 and 1B.9

of [26].) In particular, we do not need to use the smoothness of f in any way.

Therefore, we may replace f by h f h−1 and assume without loss of generality

that M = MB and that h is the identity map.

In this section, we write G for the simply connected nilpotent Lie group and

Γ for the cocompact lattice such that N = Γ\G is the nilmanifold. Then quoti-

enting G by [G ,G] yields an abelian Lie group isomorphic to Rd for some d . This

defines a projection from G to Rd , and for x ∈G , we write x̄ ∈Rd for its image un-

der the projection. This projection may further be chosen such that Γ is mapped

to Zd . (If the nilmanifold is a torus N =Zd \Rd , then the projection G →Rd is the

identity map and all of the overlines in what follows may be safely ignored.)

Let A, B : G → G be the commuting Lie group automorphisms defining the

AB-prototype. These induce linear automorphisms Ā and B̄ on Rd with the

property that A(x) = Ā(x̄) and B(x) = B̄(x̄).

The universal cover of MB is G ×R. Define β(x, t ) = (B(x), t −1). For γ ∈ Γ, de-

fine τγ(x, t ) = (γ·x, t ). Note that βτγ = τB(γ)β and that every deck transformation

may be written in the form τγβ
n for γ ∈ Γ and n ∈Z.

Lift f to a diffeomorphism f̃ : G ×R→G ×R such that f̃ (0×R) = 0×R where 0

is the identity element of G . Such a lift exists because of the leaf conjugacy. This

lift then determines an automorphism f∗ of the fundamental group π1(MB ) de-

fined by the property f∗(τ)◦ f̃ = f̃ ◦τ for all deck transformations τ. Since 0×R

projects to an f -invariant circle in MB , one can show that f∗(β) = β. By the leaf

conjugacy, f̃ (x×R) = A(x)×R for all x ∈G , and so for each γ ∈ Γ, there is an inte-

ger L(γ) such that f∗(τγ) = τA(γ)β
L(γ). Using that f∗ is a group homomorphism,

one can show that L(γ1 ·γ2) = L(γ1)+L(γ2) and A(γ1 ·γ2) = A(γ1)B L(γ1) A(γ2) for

all γ1,γ2 ∈ Γ. This implies that L : Γ → Z is a group homomorphism and that

there is k ≥ 0 such that L(Γ) = kZ and B k is the identity map on G . If k = 0, then

f induces the same action on π1(MB ) as the AB-prototype f AB and this would

imply the desired result. Therefore, we assume in what follows that k ≥ 1.

By the properties of nilmanifolds [?], L extends to a Lie group homomorphism

L : G → R. Since R is abelian, L|[G ,G] ≡ 0 and there is a linear map L̄ : Rd → R

such that L̄(x̄) = L(x) for all x ∈ G . Let I denote the identity map on Rd . As Ā is

hyperbolic, Ā − I is invertible. Define S̄ : Rd → R by S̄ = L̄(Ā − I )−1 and S : G →
R by S(x) = S̄(x̄). By Cramer’s rule, S̄(mZd ) ⊂ kZ where m = det(Ā − I ). Using

f∗(βτγ) = f∗(τB(γ)β), one can show LB(γ) = L(γ) for all γ ∈ Γ. Hence, LB = L as

functions on G and one may use this to show L̄B̄ = L̄, S̄B̄ = S̄, and SB = S.
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Define Γ0 ⊂ Γ by γ ∈ Γ0 if and only if γ̄ ∈ mZd . Since Ā(mZd ) = mZd and

B̄(mZd ) = mZd , it follows that A(Γ0) = Γ0 and B(Γ0) = Γ0. Hence, A and B de-

fine commuting automorphisms Â and B̂ of a nilmanifold N̂ = Γ0\G that finitely

covers N . Using this we define a new AB-prototype f ÂB̂ on a new suspension

manifold MB̂ which finitely covers the original. Further, f̃ quotients to a func-

tion f̂ : MB̂ → MB̂ which is a lift of the original f .

Define h̃ : G ×R→G ×R by h̃(x, t ) = (x, t +S(x)). If γ ∈ Γ0, then S(γ) ∈ kZ and

since B k is the identity, it follows that βS(γ)(x, t ) = (x, t−S(γ)) which may be used

to show that h̃τγ = τγβ
−S(γ)h̃. This implies that h̃ quotients to a diffeomorphism

ĥ on MB̂ and that induced action on π1(MB̂ ) satisfies ĥ∗(β) = β and ĥ∗(τγ) =
τγβ

−S(γ) for all γ ∈ Γ0. Further note that ĥ is a leaf conjugacy between f̂ and f ÂB̂ .

Since

ĥ∗ f̂∗ĥ−1
∗ (τγ) = ĥ∗ f∗ĥ−1

∗ (τγ) = τA(γ)β
−S A(γ)βL(γ)βS(γ) = τA(γ),

it follows that ĥ f̂ ĥ−1 and f ÂB̂ have the same action on π1(MB̂ ) and so are homo-

topic.
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