MTH 41041 (Semester 1, 2017) Assignment 4

Important

- (a) The assignment is due at 11:30 am on Friday, 31 March, 2017. You can either hand them in at the start of class, hand them to me in person beforehand, or slip it under my office door.
- (b) You can talk with the other students and with me about the problems, but you must write up and hand in your own work.
- (c) We expect that you will put enough thought and effort into the presentation of your solutions so that they are neat, clear, and concise. Poorly presented assignments will be penalized.

Let $U \subset \mathbb{R}$ be open and let $f : U \to \mathbb{R}$ be a smooth function. We say that f is *flat* at a point $p \in U$ if $f^{(k)}(p) = 0$ for all derivatives $f^{(k)}$ of all orders k > 0.

- (1) For smooth functions $f, g : \mathbb{R} \to \mathbb{R}$, show that
 - (a) if f and g are flat at p, then f + g is flat at p;
 - (b) if *f* is flat at *p*, then the product $f \cdot g$ is flat at *p*;
 - (c) if f is flat at p and g is positive, then $\frac{f}{g}$ is flat at p.
- (2) Suppose $U \subset \mathbb{C}$ is open and connected and $f: U \to \mathbb{C}$ is an analytic function such that the restriction of f to $U \cap \mathbb{R}$ is a real-valued function which is flat at a point $p \in U \cap \mathbb{R}$. Show that f is constant.
- (3) Show that there is a smooth function $\rho : \mathbb{R} \to \mathbb{R}$ such that $\rho(0) = 0$, $\rho(x) > 0$ for all $x \neq 0$, and ρ is flat at 0.
- (4) For real numbers a < b, show that there is a smooth function $g : \mathbb{R} \to \mathbb{R}$ such that g(x) = 0 for all $x \le a$ and g(x) = 1 for all $x \ge b$.
- (5) Suppose $U \subset \mathbb{R}^d$ is open and $p \in U$. Show that there is a smooth function $h : \mathbb{R}^d \to [0, 1]$ such that the support of *h* is a compact subset of *U* and there is a neighbourhood *V* of *p* such that h(x) = 1 for all $x \in V$.