MTH 41041 (Semester 1, 2017) Assignment 3

Important

- (a) The assignment is due at 11:30 am on Friday, 24 March, 2017. You can either hand your assignment in at the start of class, hand it to me in person beforehand, or slip it under my office door.
- (b) You can talk with the other students and with me about the problems, but you must write up and hand in your own work.
- (c) We expect that you will put enough thought and effort into the presentation of your solutions so that they are neat, clear, and concise. Poorly presented assignments will be penalized.

Problem 1 Thinking of the n-sphere $S^n = \{x \in \mathbb{R}^{n+1} | ||x|| = 1\}$ as a hypersurface in \mathbb{R}^{n+1} , the tangent plane to a point $x \in S^n$ can be defined as

$$\mathcal{T}_x S^n = \{ v \in \mathbb{R}^{n+1} \, | \, \langle v | x \rangle = 0 \},\$$

where $\langle \cdot | \cdot \rangle$ is the standard Euclidean inner product on \mathbb{R}^{n+1} . Show that $\mathcal{T}_p S^n$ is naturally isomorphic to the abstract definition of the tangent plane $T_p S^n$ from class. (*Hint:* Associate to each $v \in \mathcal{T}_x S^n$ a curve $\gamma_v(t) \in \mathbb{R}^{n+1}$ such that $\gamma_v(t) \in$ S^n for each t, $\frac{\partial}{\partial t}|_{t=0} \gamma_v(t) = v$, and $\gamma_v(0) = x$. Next, consider having v "act" on smooth functions $f \in C^{\infty}(S^n)$, which are just the smooth functions on \mathbb{R}^{n+1} restricted to S^n , by defining $v(f) := \frac{\partial}{\partial t}|_{t=0} f(\gamma_v(t))$.)

Problem 2 Let $\mathbb{B}^n = \{ x \in \mathbb{R}^n \mid |x| < 1 \}$ denote the open ball in \mathbb{R}^n . Show that \mathbb{B}^n and \mathbb{R}^n are diffeomorphic.