MTH 41041 (Semester 1, 2017) Assignment 2

Important

- (a) The assignment is due at 11:30 am on Friday, 17 March, 2017. You can either hand your assignment in at the start of class, hand it to me in person beforehand, or slip it under my office door.
- (b) You can talk with the other students and with me about the problems, but you must write up and hand in your own work.
- (c) We expect that you will put enough thought and effort into the presentation of your solutions so that they are neat, clear, and concise. Poorly presented assignments will be penalized.

Problem 1 Let \mathbb{RP}^n be the quotient space of $\mathbb{R}^{n+1}_{\times}$ by the following equivalence relation: for $x, y \in \mathbb{R}^{n+1}_{\times}$, $x \approx y \Leftrightarrow x = \lambda y$ for some $\lambda \neq 0$.

(i) Let $\pi : \mathbb{R}^{n+1}_{\times} \to \mathbb{RP}^n$ be the canonical projection map, that is

$$\pi(x^0, x^1, \dots, x^n) := [x^0, x^1, \dots, x^n],$$

where $[x^0, x^1, \ldots, x^n]$ denotes the equivalence class of the point

$$(x^0, x^1, \dots, x^n) \in \mathbb{R}^{n+1}_{\times}$$

For i = 0, ..., n, let $U_i = \{ [x^0, x^1, ..., x^n] \in \mathbb{RP}^n | x^i \neq 0 \}$ and define $\phi_i : U_i \to \mathbb{R}^n$ by

$$\phi_i([x^0, x^1, \dots, x^n]) = \left(\frac{x^0}{x^i}, \frac{x^1}{x^i}, \dots, \frac{\widehat{x^i}}{x^i}, \dots, \frac{x^n}{x^i}\right),$$

where $\frac{\widehat{x}^i}{x^i}$ means it is omitted. Show that ϕ_i is a well-defined bijection. (ii) For $i, j \in \{0, ..., n\}$ $i \neq j$, compute the transition maps

$$\phi_j \circ \phi_i^{-1} : \phi_i(U_i \cap U_j) \longrightarrow \phi_j(U_i \cap U_j)$$

and show that they are smooth (in the usual sense as maps between open sets of \mathbb{R}^n).

- (iii) Show that $\mathcal{A} = \bigcup_{i=0}^{n} \{ (U_i, \phi_i) \}$ is an atlas for \mathbb{RP}^n , and hence, that \mathbb{RP}^n is an n-dimensional, smooth manifold, known as real projective n-space .
- (iv) Show that the projection $\pi : \mathbb{R}^{n+1}_{\times} \to \mathbb{RP}^n$ is smooth.

Problem 2 Let $F : \mathbb{R}^{n+1}_{\times} \longrightarrow \mathbb{R}^{m+1}_{\times}$ be a smooth function, and suppose that for some $k \in \mathbb{Z}$, $F(\lambda x) = \lambda^k F(x)$ for all $x \in \mathbb{R}^{n+1}_{\times}$ and $\lambda \in \mathbb{R}_{\times}$. Show that the map $f : \mathbb{RP}^n \longrightarrow \mathbb{RP}^m$ defined by f([x]) := [F(x)] is well-defined and smooth.

¹Here, we are using the notation $V_{\times} := V \setminus \{0\}$, where V is a vector space.