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ABSTRACT. These notes give a classification of certain invariant annuli for

partially hyperbolic endomorphisms.

1. INTRODUCTION

This document establishes the following result stated in [HH20].

Theorem 1.1. Suppose f is a partially hyperbolic endomorphism of a closed, ori-

ented surface M and that there is an invariant annulus M0 with the following

properties:

(1) f k (M0) = M0 and f k restricted to M0 is a covering map;

(2) the boundary components of M0 are circles tangent to the center direction;

(3) no circle tangent to the center direction intersects the interior U0 of M0.

Then, there is an embedding h : U0 → S1 ×R such that the homeomorphism h ◦

f k ◦h−1 from h(U0) to itself is of the form

h f k h−1(v, s) = (A(v),φ(v, s))

where A : S1 → S1 is an expanding linear map and φ : h(U0) → R is continuous.

Moreover, if v ∈T
2, then h−1(v ×R) is a curve tangent to E c

f
.

Roughly speaking, the proof is achieved by adapting the proof given in [HP19]

by removing the stable direction from all of the arguments. As much as possible,

the structure of the proofs including the numbering of propositions and lemmas

was left unchanged.

There are a few subtleties introduced by moving to the endomorphism set-

ting. As explained in [HH18], a partially hyperbolic endomorphism f0 defined

on M =T
2 lifts to a diffeomorphism f defined on the universal cover M̃ =R

2 and

the diffeomorphism has an invariant splitting T M̃ = E u ⊕E c . The center bun-

dle E c is invariant under deck transformations and there is a branching foliation

tangent to E c . There is an f -invariant unstable foliation W u on the universal

cover. In general, the unstable bundle E u and foliation W u are not invariant

under deck transformations.

In this document, an unstable leaf always refers to a leaf of the foliation W u

and an unstable segment or unstable curve always refers to a curve inside of an

unstable leaf. Only briefly in section 7 do we define and use “unstable cone
1



2 LAYNE HALL AND A. HAMMERLINDL

curves” which are more general and defined with respect to the unstable cone

family.

2. DYNAMICS IN DIMENSION TWO

In the original paper, this covers properties of partially hyperbolic surface dif-

feomorphisms. The results are not needed in the current setting.

3. BRANCHING FOLIATIONS

We now list a number of properties which hold for all partially hyperbolic en-

domorphisms in dimension 2. These properties follow by adapting the branch-

ing foliation theory developed by Brin, Burago, and Ivanov [BBI04, BI08, BBI09].

A branching foliation on a Riemannian surface M is a collection F0 of im-

mersed curves called leaves such that

(1) every leaf is complete under the Riemannian metric pulled back from

M ,

(2) no two leaves topologically cross,

(3) if a sequence of leaves converges in the compact-open topology, then

the limit surface is also a leaf, and

(4) through every point of M there is at least one leaf.

Theorem 3.1. Let f be a partially hyperbolic endomorphism of a closed surface

M such that the unstable cone family C
u and the center direction E c are oriented

and f preserves these orientations. Then there is a branching foliation F
c
0 on M

such that each leaf is tangent to E c .

See [BI08] for further details and the proof of theorem 3.1. In the setting of the

theorem, let M̃ be the universal cover of M . Lift the branching foliation F
c
0 on

M to a branching foliation F
c on M̃ by taking every possible lift of every leaf. In

this paper, we almost exclusively work with the lifted branching foliation on the

universal cover and theorem 3.1 may be restated as follows.

Corollary 3.2. Let f be the lift of a partially hyperbolic endomorphism to the

universal cover M̃. Then there is a branching foliation F
c tangent to E c on M̃

such that if a deck transformationγ : M̃ → M̃ preserves the orientations of C
u and

E c on M̃, then γ takes leaves to leaves. Similarly, if f preserves these orientations,

then f maps leaves to leaves.

Note that for a (weakly) partially hyperbolic endomorphism in dimension

two, M = T
2, and the endomorphism lifts to a diffeomorphism on the univer-

sal cover M̃ =R
2.

The branching foliation on M̃ has the following properties.

Proposition 3.3. Not applicable to the two-dimensional setting.

Proposition 3.4. Each leaf L ∈F
c is a properly embedded curve which separates

M̃ into two half spaces. That is, M̃ \ L has two connected components L+ and L−.
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Proposition 3.5. Each leaf of F
c intersects an unstable leaf in at most one point.

Proposition 3.6. There is a uniform constant C > 0 such that if J is an unstable

segment, then volumeU1(J ) ≥C · length(J ).

Here U1(J ) consists of all points in M̃ at distance less than 1 from J .

Proposition 3.7. Not applicable to the two-dimensional setting.

Proposition 3.8. There is a uniform constant C > 0 such that if J is a center seg-

ment lying inside a leaf of F
c , then volumeU1(J ) ≥C · length(J ).

These can be proved using the Poincaré-Bendixson theorem and adapting

arguments proved in [BBI09, Section 3] to the two-dimensional case. See also

[HH18, Proposition 2.8].

4. REGIONS BETWEEN CURVES

From now on, assume that f : M → M is a partially hyperbolic endomorphism

on a surface such that there is an invariant annulus M0 with the following prop-

erties:

(1) f (M0) = M0 and f restricted to M0 is a covering map;

(2) the boundary components of M0 are circles tangent to the center direc-

tion;

(3) no circle tangent to the center direction intersects the interior of M0.

We lift to the universal cover M̃ = R
2. Let Ω ⊂ M̃ be a closed 2-dimensional

submanifold with boundary such that each boundary component of Ω quo-

tients down to a circle in M = T
2 tangent to a center circle and such that no

curve which intersects the interior of Ω quotients down to a center circle. This

submanifold may then be thought of as a covering space for the annulus M0.

Then,Ω is diffeomorphic to R× I where I ⊂R is a compact interval.

It will at times be convenient to use coordinates onΩ and discuss linear maps

from Ω to R. Therefore, we simply assume that Ω is equal to R× I . That is, we

treatR×I as a subset of M̃ denoted byΩ. The Riemannian metric on M̃ inherited

from M may differ from the standard Euclidean metric on R× I . However, dis-

tances and volumes measured with respect to the two metrics differ by at most

a constant factor. Therefore, in our analysis, we freely assume that Ω = R× I is

equipped with the Euclidean metric.

Since Z acts onΩ via deck transformations, we adopt the following notation:

if p = (v, s) ∈R× I and z ∈Z, then p + z = (v, s)+ z = (v + z, s).

As we are assuming f : M → M maps the annulus to itself, it follows that there

is a lift of f to the universal cover which leaves Ω invariant. We also denote this

lifted map M̃ → M̃ by the letter f . Since f |Ω quotients down to a map on the

annulus, there is a linear map A : R → R such that if p ∈ R× I and z ∈ Z, then

f (p + z) = f (p)+ Az. By mapping an unstable segment forward by f inside of

Ω, one can use a length versus volume argument to show that A is expanding.
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That is, there is an integer λ such that |λ| > 1 and Av = λv for all v ∈ R. This

implies that there is a semiconjugacy between f |Ω and A [Fra70]. We list several

properties of this semiconjugacy.

Proposition 4.1. There is a unique continuous surjective map H : R× I → R and

a constant C > 0 such that if p = (v, s) ∈R× I and z ∈Z then

(1) H f (p) = AH(p),

(2) H(p + z) = H(p)+ z, and

(3) ‖H(p)− v‖ <C .

Let π : R× I →R be the projection onto the first coordinate. We can also write

this as π :Ω→R.

Now consider a branching foliation F
c on M̃ as in corollary 3.2. We only

know a priori that F
c is invariant under those deck transformations which pre-

serve the orientations of C
u and E c . In particular, for a full-rank subgroup

Z0 ⊂ Z it holds that for any z ∈ Z0, there is a deck transformation γz : M̃ → M̃

which preserves the orientations of C
u and E c and such that γz (p) = p + z for

all p ∈R
2 × I =Ω. Therefore if L is a leaf of F

c , then γz (L) is a leaf of F
c as well.

Replacing f by an iterate, we may freely assume that f preserves these orienta-

tions. Then the branching foliation F
c is invariant under f .

Let Ω◦ denote the interior of Ω. A major step is to relate the branching folia-

tion F
c to the semiconjugacy H for points inΩ◦.

Proposition 4.2. For p, q ∈ Ω◦, H(p) = H(q) if and only if there is L ∈ F
c such

that p, q ∈ L.

Corollary 4.3. Not applicable to the two-dimensional setting.

After these results are established, they are used in section 7 to prove the fol-

lowing.

Proposition 4.4. If γ : M̃ → M̃ is a deck transformation such that γ(Ω) =Ω, then

γ preserves the orientations of C
u and E c .

This shows that Z0 above may be taken as equal to Z. Section 7 also proves

the following characterization of the fibers of the semiconjugacy.

Proposition 4.5. For every v ∈ R, the pre-image H−1(v) is a compact segment

tangent to E c . Moreover, H−1(v) intersects each boundary component of Ω in

either a point or a compact segment.

Section 8 uses this to construct the topological conjugacy given in theorem 1.1.

5. CENTER LEAVES

This section gives the proof of proposition 4.2. Let f , Ω, H , and F
c be as in

the previous section.
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Proposition 5.1. For any constant D > 0, there is ℓ > 0 such that any unstable

curve J ⊂Ω of length at least ℓ contains points p and q with |π(p)−π(q)| > D.

Proof. This follows from proposition 3.6. �

Let du be distance measured along an unstable leaf and define K u as the

largest subset ofΩ for which the following property holds: if p ∈ K u , q ∈W u(p),

and du(p, q) < 1, then q ∉ ∂Ω. In other words, K u is the set of points at distance

at least 1 from ∂Ωwhere the distance is measured along the unstable direction.

One can verify that K u is a closed subset of Ω. In the lifted endomorphism

setting, since the unstable foliation W u is not in general invariant under deck

transformations, the set K u is not invariant either.

As f increases distances measured along the unstable direction, it follows that

f (K u) ⊂ K u . Note that if J is a compact subset ofΩ◦, then there is an integer N (J )

such that f n(J ) ⊂ K u for all n > N (J ).

We now consider the intersection of K u with the leaves of the branching foli-

ation F
c .

Proposition 5.2. There is R > 0 such that if L ∈F
c and p, q ∈ K u ∩L then |π(p)−

π(q)| < R.

We prove this by adapting techniques presented in [BBI09, HP14]. The proof

is largely topological in nature, instead of involving the dynamics acting on Ω.

Therefore, we defer the proof of proposition 5.2 to the appendix. Some adjust-

ments to the proof were made due to the fact that K u is not invariant under deck

transformations.

Lemma 5.3. No unstable leaf intersects both boundary components ofΩ.

Proof. Note that there is a uniform lower bound on the distance between points

in the two boundary components ofΩ. If an unstable segment J had endpoints

on both boundary components, one could find n such that the length of f −n(J )

was smaller than this lower bound, and this would give a contradiction. �

Lemma 5.4. This lemma is not needed in the two-dimensional setting.

Proposition 5.5. In the two-dimensional setting, this is simply a restatement of

proposition 5.2: there is R > 0 such that if L ∈F
c and p, q ∈ K u ∩L then

|π(p)−π(q)| < R.

For a point p ∈Ω, define

K −(p) = {q ∈ K u : π(q) ≤π(p)−R}

and

K +(p) = {q ∈ K u : π(q) ≥π(p)+R}.

Replacing f by f 2 if necessary, we assume that A has a positive eigenvalue. The

fact that f is at finite distance from A× id then implies that K +( f n(p)) intersects

f n(K +(p)) for all n.
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Proposition 5.6. If L ∈F
c and p ∈ K u ∩L, then M̃ \L has connected components

L− and L+ such that K −(p) ⊂ L− and K +(p) ⊂ L+.

Proof. Proposition 5.5 shows that L is disjoint from both K −(p) and K +(p). There-

fore, it is enough to show that each of L− and L+ intersects at least one of K −(p)

or K +(p).

Suppose instead that K −(p)∪K +(p) ⊂ L−. Then for any n ≥ 0, K +( f n(p)) in-

tersects f n(K +(p)) and is therefore a subset of f n(L−). Similarly for K −( f n(p)).

Since p ∈ K u ∩L, the open set Ω◦∩L+ is non-empty. Let J be a small unstable

segment lying inΩ◦∩L+. Then f n(J ) ⊂ K u for all large n. Since f n(J )∩ f n(L−) is

empty, the length of π f n(J ) is bounded by 2R for all large n. However, proposi-

tion 5.1 shows that there is no uniform bound on the length of π f n(J ) and gives

a contradiction. �

Proposition 5.7. For p, q ∈ K u , the following are equivalent:

• supn≥0 |π f n(p)−π f n(q)| <∞, and

• there is L ∈F
c such that p, q ∈ L.

Proof. One direction follows from proposition 5.5 and the fact that f (K u) ⊂ K u .

To prove the other direction, suppose p ∈ Lp ∈ F
c and q ∈ Lq ∈ F

c . Let L−
p and

L+
p be as in the previous proposition and let L−

q and L+
q be the corresponding

sets associated to Lq . Assume q does not lie on Lp . Then q lies either in L−
p or

L+
p . Without loss of generality, assume q ∈ L−

p . Since Lq is the boundary of L+
q ,

it follows that L−
p ∩L+

q ∩Ω◦ is a non-empty open set. Consider a small unstable

curve J in this set. Then f n(J ) ⊂ K u and

f n(J )∩
(

K +( f n(p))∪K −( f n(q))
)

=∅

for all large n. The assumption that |π f n(p) −π f n(q)| is uniformly bounded

implies that the length of π f n(J ) is uniformly bounded. Proposition 5.1 again

gives a contradiction. �

Proof of proposition 4.2. By the properties of the semiconjugacy,

H(p) = H(q) ⇔ sup
n≥0

|πAn H(p)−πAn H(q)| <∞

⇔ sup
n≥0

|π f n(p)−π f n(q)| <∞.

Since f n(p) and f n(q) are in K u for all large n, the result follows from proposi-

tion 5.7. �

6. FINDING A HIDDEN TORUS

This section is not needed in the two-dimensional setting.

7. FIBERS OF THE SEMICONJUGACY

This section gives the proofs of propositions 4.4 and 4.5. Let f , Ω, and H be

as in section 4.
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Lemma 7.1. An unstable curve intersects ∂Ω in at most one point.

Proof. Suppose J is an unstable segment which intersects ∂Ω at both endpoints.

By lemma 5.3, both endpoints must lie on the same boundary component. Then

for large n, f −n(J ) would be an arbitrarily small unstable curve connecting two

points on the same center curve. This is ruled out by the uniform transversality

of E c and E u . �

Lift the unstable cone family C
u to M̃ = R

2. We call a C 1 curve J an unstable

cone curve if its tangent vectors lie inside this cone family.

Since F
c is a (branching) foliation by lines, a Poincaré-Bendison argument

shows that any curve transverse to the center direction must intersect a center

leaf in at most one point. This generalizes proposition 3.5.

Lemma 7.2. If J is an unstable cone curve inΩ, then H |J is a homeomorphism to

its image.

Here, the curve J may be bounded or unbounded and may or may not include

its endpoints.

Proof. First, consider the case where J is in the interior ofΩ. By proposition 4.2,

the fibers of H are center leaves and, by the argument above, each center leaf

intersects an unstable cone curve at most once, so H |J is injective. Since H is

continuous, this implies that H |J is a homeomorphism to its image.

Note that if φ : [0,1) →R is a continuous function and φ|(0,1) is an embedding,

then φ itself must also be an embedding. Therefore, in the case where J inter-

sects ∂Ω in a point, the fact that the restriction of H to J \∂Ω is injective implies

that H is injective on all of J .

�

Proof of proposition 4.4. For a point x ∈Ω◦, let J ⊂Ω◦ be a short unstable cone

curve passing through x. Using that H |J is injective, define the orientation for

E u near x so that H increases along J . This gives a well-defined continuous

orientation of E u on all ofΩ◦.

Suppose γ : M̃ → M̃ is a deck transformation mapping Ω = R× I to itself. By

the properties of the semiconjugacy, there is z ∈Z such that Hγ(x) = H(x)+z for

all x ∈Ω◦. Hence, γ preserves the orientation of E u . By assumption, the original

closed manifold M is orientable. Therefore, γ preserves the orientation of T M̃

and must also preserve the orientation of E c . �

Lemma 7.3. For x ∈ ∂Ω, the set H(W u(x)∩Ω) is equal either to (−∞, H(x)] or

[H(x),+∞).

Proof. On the closed manifold M , the set of unstable cone curves of length ex-

actly one is a compact set under the C 1 topology. For x ∈ ∂Ω, let J1(x) ⊂ W u(x)

be the compact unstable segment which starts at x, is directed into Ω, and has

length exactly one. By lemma 7.2, H(J1(x)) always has positive length. By the
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compactness above, one can further show that there is δ> 0 such that the length

of H(J1(x)) is greater than δ for all x. One may show that

length H f n J1(x) >λnδ

for all x ∈ ∂Ω and n ≥ 0 where λ> 1 is the unstable eigenvalue of A. Lemma 7.1

implies that f n J1( f −n(x)) is a subset of W u(x)∩Ω for all n. Thus, the length of

H(W u(x)∩Ω) is unbounded. �

Lemma 7.4. Let S be a connected component of ∂Ω and let

U =Ω∩
⋃

x∈S

W u(x).

For any v ∈R, H−1(v)∩U is a topological ray. That is, there is a proper topological

embedding β : [0,+∞) →U such that the image is H−1(v)∩U .

Proof. Since S is invariant under deck transformations, if t ∈ H(S), then t + z ∈

H(S) for all z ∈ Z. Using this, one may show that H |S is surjective. This implies

that H−1(v)∩U is non-empty. Let S be parameterized by a function α : R→ S.

As S is connected, exactly one of the two cases in lemma 7.3 holds for all x ∈ S.

Without loss of generality, assume the case H(W u(x)∩Ω) = (−∞, H(x)] holds.

The Franks semiconjugacy H |S ◦α from R to R is monotonic (in the non-strict

sense); this holds because it is constructed as the C 0 limit of monotonic func-

tions [Fra70]. That is, up to composing α by an affine map on R, we may assume

α is defined so that Hα(t ) ≥ v exactly when t ≥ 0. Define a map β : [0,+∞) →U

by setting β(t ) to be the unique point in W u(α(t )) which satisfies Hβ(t ) = v .

Proving that β is continuous reduces to proving the following claim.

Claim. Suppose h : [0,+∞)× [0,+∞) → R is a continuous func-

tion with the properties that x1 ≤ x2 implies h(x1,0) ≤ h(x2,0)

and y1 < y2 implies h(x, y2) < h(x, y1). Then, any level set of h is

the graph of a continuous function.

The proof of the claim is left to the reader. In fact, the proof is highly similar in

form to steps used in proving the implicit function theorem.

It is clear that β is injective. Suppose a sequence {tk } tending to +∞ is such

that β(tk ) converges to a point x ∈U . Since W u(x) intersects S, one may use an

unstable foliation chart in a neighbourhood of x, to derive a contradiction. This

shows that β is proper. �

Proof of proposition 4.5. Consider v ∈R. By lemma 7.4, there is at least one point

x ∈Ω◦ such that H(x) = v . Let L be a leaf of F
c passing through x. By proposi-

tion 3.4, L is a properly embedded line. Since H is proper, H−1(v) is a compact

subset of Ω, and the ends of L must eventually leave the interior of Ω. As such,

there is a compact center segment J ⊂ L such that the endpoints of J lie on ∂Ω

and all other points of J lie in the interior of Ω. Lemma 7.4 then describes the

exact shape of J near the boundary of Ω. In particular, one sees that the two
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endpoints of J cannot lie on the same boundary component, and so each of the

two boundary components contains exactly one endpoint of J .

Now suppose another connected component of L ∩Ω intersected the inte-

rior of Ω. This would lead to a center segment J ′ disjoint from J but such that

H(J ) = H(J ′) and where each boundary component of Ω contained exactly one

endpoint of J ′. Lemma 7.4 would then imply that J and J ′ coincide near the

boundary of Ω, a contradiction. Thus H−1(v) consists of J together with the

pre-images of v on the two boundary components of Ω. Since H restricted to

a boundary component S is a proper monotonic map, the pre-image H |−1
S (v) is

either a point or a compact segment. Using lemma 7.4, the result follows. �

Corollary 7.5. There is a uniform upper bound on the length of a fiber H−1(v).

Proof. As H is proper and commutes with deck transformations, there is a uni-

form upper bound on the diameter of H−1(v) independent of v ∈ R. There is

then a uniform upper bound on the volume of U1(H−1(v)) and the result follows

from proposition 3.8. �

8. BUILDING THE RAGGED LEAF CONJUGACY

Lemma 8.1. There is a continuous function p :Ω◦ → (0,1) such that for any cen-

ter segment of the form J = H−1(v)∩Ω◦, the restriction p|J is a C 1 embedding.

Moreover, with respect to arc length, p|J has a uniform speed independent of the

choice of J .

Proof. Let S0 and S1 be the two boundary components ofΩ. For x ∈Ω◦, define

p0(x) =
dist(x,S0)

dist(x,S0)+dist(x,S1)
.

Extend p0 to a continuous function p0 : M̃ → [0,1] by requiring it to be locally

constant outside ofΩ.

Now suppose x ∈Ω◦ and let L ∈F
c be the center leaf through x. Let α : R→ L

be a parameterization by arc length of this center curve. By proposition 3.7, α(R)

is a complete curve properly embedded in M̃ . Let T > 0 be the upper bound

given by corollary 7.5 and for any t ∈R, define

p(α(t )) =
1

2T

∫t+T

t−T
p0(α(s))d s.

If α(t ) ∈Ω◦, then neither α(t −T ) nor α(t +T ) lies inΩ◦. Up to possibly reversing

the parameterization, it follows that α(t −T ) = 0 and α(t +T ) = 1 and by the

Fundamental Theorem of Calculus

d

d t
p(α(t )) =

1

2T
. �

Lemma 8.2. If x, y ∈Ω◦ with y ∈W u(x), then H(x) = H(y) if and only if x = y.

Proof. Assume H(x) = H(y). By proposition 4.2, x and y lie on the same leaf L of

F
c . The uniqueness given by proposition 3.5 implies that x = y . �
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Proof of theorem 1.1. Define h = H ×p :Ω◦ → R
2. This is a continuous map and

injective by proposition 4.5 and lemma 8.1. We now show that h is an open

map. Consider x ∈ Ω◦ and assume that E u , and E c are oriented. With respect

to these orientations, define unit speed flow ϕu along the unstable direction.

Define ϕc as the unit speed flow along the fibers of H with the direction given by

the orientation of E c . Define i : [−ǫ,ǫ]2 →Ω
◦ by

i (t1, t2) =ϕc
t2
ϕu

t1
(x)

where ǫ is small enough that the range of i is contained in Ω◦. By lemmas 8.1

and 8.2, the range of h ◦ i contains h(x) in its interior. Taking ǫ to zero, one

can show that for any neighbourhood V of x, h(V ) is a neighbourhood of h(x)

and therefore h is open. It follows that h is a homeomorphism to its image,

U := h(Ω◦).

Note that we used E u here, which in the endomorphism case is not invariant

under deck transformations. However, E u is only used to establish that h is open

and does not affect the proof that h is invariant under deck transformations.

As H is a semiconjugacy, the homeomorphism h f h−1 : U →U is of the form

h f h−1(v, s) = (A(v),φ(v, s))

where A : R→ R is the expanding linear map and φ : U → R is some continuous

function. By construction, the maps H , p, and therefore h are Z-equivariant.

Thus, h quotients down to an embedding U0 →T
2 ×R which satisfies the prop-

erties listed in item (4) of theorem 1.1. �

APPENDIX A. BOUNDS ON FOLIATIONS

This appendix proves proposition 5.2. Let F
c , Ω = R× I , and Z0 ⊂ Z be as

in section 4. Let S be a leaf of F
c which intersects the interior Ω◦ of Ω. Here,

we use S instead of L to keep closer to the notation of [BBI09]. As S is properly

embedded, the complement M̃ \ S consists of two open connected components

S+ and S− where the oriented E u bundle points into S+. Define S++Z0 = {p+z :

p ∈ S+, z ∈ Z0} and similarly for S−+Z0.

Lemma A.1. The setΩ\∂Ω is contained in both S++Z0 and S−+Z0.

Proof. As the branching foliation is complete in the compact-open topology,

one can show that the boundary ∂X̃ of X̃ = S++ Z0 is a union of leaves of F
c .

(See the proof of Lemma 3.10 in [BBI09] for details.)

Consider the manifold M̂ defined by the quotient M̃/Z0. Then X̃ quotients

down to a subset X̂ ⊂ M̂ and ∂X̃ quotients down to ∂X̂ . In particular, ∂X̂ is

closed subset of M̂ and the orientation of E u shows that ∂X̂ does not accumulate

on itself.

Let Ω̂ be the quotient ofΩ to M̂ . Its boundary consists of two center circles.
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The boundary of the intersection Ω̂∩ X̂ is tangent to the center direction and

consists of circles. If a boundary component intersects the interior of Ω̂, this

would contradiction the assumption onΩ.

Note that M̂ may be a finite cover of M , but an embedded circle tangent to the

center direction will quotient down to an immmersed circle on M that contains

and embedded center circle as a subset. �

Lemma A.2. Up to a change of orientation, we may assume that π(z) ≥ 0 implies

S++ z ⊂ S+ and π(z) ≤ 0 implies S+ ⊂ S++ z for z ∈ Z0.

Proof. This is shown by adapting the proofs of Lemmas 3.8 to 3.12 in [BBI09]. �

At this point, we need to adjust the proof slightly due to the fact that K u may

not be invariant under deck transformations. However, one can see from the

definition of K u given in section 5 that there is a uniform lower bound on the

distance between points in K u and ∂Ω. Consequently, the closed set defined by

K = K u +Z satisfies K u ⊂ K ⊂ Ω \ ∂Ω and is invariant under deck transforma-

tions.

Let Q be the compact set defined by intersecting K with a set of the form

[0, N ] × I for some large N . Since Z0 is a full rank subgroup of Z, N may be

chosen large enough that any x ∈ K can be written as x = q + z with q ∈ Q and

z ∈ Z0.

Lemma A.3. There is z0 ∈ Z0 such that Q ⊂ S+− z0 and Q ⊂ S−+ z0.

Proof. By lemma A.1, {S+− z : z ∈ Z0} is an open cover of K , and so some finite

subset {S+− z1, . . . ,S+− zn} covers the compact set Q. Take z0 such that π(z0) ≥

π(zi ) for all i . The case for S− is analogous. �

By abuse of notation, if p = (v, s) ∈R× I define π(p) =π(v).

Lemma A.4. There is r > 0 such that π(x) > r implies x ∈ S+ and π(x) < −r im-

plies x ∈ S− for all x ∈ K .

Proof. Choose r > 0 such that r −π(q) > π(z0) for all q ∈ Q. Any x ∈ K may be

written as x = q + z with q ∈ Q and z ∈ Z0. If π(x) > r , then π(z − z0) ≥ 0 and

x ∈Q + z ⊂ S+− z0 + z ⊂ S+. �

Lemma A.5. There is R > 0 such that if p, q ∈ K lie on the same leaf of F
c , then

|π(p)−π(q)| < R.

Proof. Without loss of generality, shift p and q by an element of Z0 and assume

q ∈Q. Let S′ be the leaf containing both p and q . Since S′ intersects S+− z0 and

leaves do not topologically cross, S′ is disjoint from S−− z0 and so π(p),π(q) >

−r −π(z0). Similarly, π(p),π(q) < r +π(z0). Take R = 2(r +π(z0)). �

This concludes the proof of proposition 5.2.
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