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ABSTRACT. This paper gives a classification of partially hyperbolic systems in
dimension 3 which have at least one torus tangent to the center-stable bundle.

1. INTRODUCTION

A long-standing question in the study of partially hyperbolic dynamical sys-
tems was whether a system with one-dimensional center possessed a foliation
tangent to that center direction. This question was recently answered by Ro-
driguez Hertz, Rodriguez Hertz, and Ures, who constructed a partially hyper-
bolic diffeomorphism on the 3-torus without such a center foliation [RHRHU16].
Crucial to their construction is a 2-torus embedded in the manifold tangent
to the center-stable direction. In this paper, we give a classification of all 3-
dimensional partially hyperbolic systems with center-stable tori.

Previous classification results relied on the notion of a leaf conjugacy between
the center foliations of two different partially hyperbolic systems [HP17]. In cer-
tain manifolds, such as the 3-torus, the presence of a center-stable or center-
unstable torus is the only potential obstruction to having an invariant center
foliation [Pot15]. In the current setting, the lack of a center foliation in general
means that it is not possible to use a global leaf conjugacy to classify the dy-
namics. Instead, we first remove all of the center-stable and center-unstable tori
from the system leaving dynamics defined on an open manifold. Looking at the
dynamics on each of the connected components, we show that it has the form
of a topological skew product.

Before giving the full result, we state the definitions of partial hyperbolicity
and related concepts. A diffeomorphism f of a closed connected manifold M is
partially hyperbolic if there is a splitting of the tangent bundle

T M = E s
⊕E c

⊕E u

such that each subbundle is non-zero and invariant under the derivative D f and

‖D f v s
‖ < ‖D f vc

‖ < ‖D f vu
‖ and ‖D f v s

‖ < 1 < ‖D f vu
‖

for all x ∈ M and unit vectors v s ∈ E s(x), vc ∈ E c (x), and vu ∈ E u(x). There exist
unique foliations W s and W u tangent to E s and E u , but in general there does not
exist a foliation tangent to E c . A center-stable torus is an embedded torus tangent
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2 A. HAMMERLINDL AND R. POTRIE

to E cs = E c ⊕E s , and a center-unstable torus is an embedded torus tangent to
E cu = E c ⊕E u . We also refer to these objects as cs and cu-tori.

The definition of partial hyperbolicity above is sometimes called pointwise

partial hyperbolicity, in comparison to a stricter condition called absolute partial
hyperbolicity. In dimensional three, it is not possible for an absolutely partially
hyperbolic system to have a cs or cu-torus [BBI09, HP15]. Therefore, this paper
only uses the pointwise definition of partial hyperbolicity.

Theorem 1.1. Suppose f is a partially hyperbolic diffeomorphism of a closed,

oriented 3-manifold M which has at least one center-stable or center-unstable

torus. Then,

(1) there is a finite and pairwise disjoint collection {T1,T2, . . . ,Tn} of all center-

stable and center-unstable tori,

(2) every connected component Ui of M \ (T1 ∪ . . .∪Tn) is homeomorphic to

T
2 × (0,1),

(3) there is k ≥ 1 such that f k maps each Ti to itself and each Ui to itself, and

(4) for each Ui ⊂ M, there is an embedding h : Ui → T
2 ×R such that the

homeomorphism h ◦ f k ◦h−1 from h(Ui ) to itself is of the form

h f k h−1(v, s) = (A(v),φ(v, s))

where A : T2 →T
2 is a hyperbolic toral automorphism and φ : h(Ui ) → R

is continuous. Moreover, if v ∈T
2, then

(a) h−1(v ×R) is a curve tangent to E c
f

,

(b) h−1(W s
A

(v)×R) is a surface tangent to E cs
f

, and

(c) h−1(W u
A

(v)×R) is a surface tangent to E cu
f

.

The first three items of the theorem state previously known results. The proof
of item (1) is given in [Ham16b] and item (2) is a restatement of the work of
Rodriguez Hertz, Rodriguez Hertz, and Ures to classify which 3-manifolds allow
tori with hyperbolic dynamics [RHRHU11]. Item (3) follows as a consequence
of items (1) and (2). Therefore, the substance and novelty of theorem 1.1 lies in
item (4).

The theorem shows that there is a form of conjugacy between the dynamics
on a region Ui , and a skew product over an Anosov map on T

2. However, this
is complicated by the fact that the dynamics on the cs and cu-tori may not be
Anosov in general and could contain sinks or sources [Ham16a]. In such cases,
the boundary components of h(Ui ) will not be the graphs of continuous func-
tions from T

2 to R. The map h might be thought of as a “ragged leaf conjugacy”
between f and A × id since h maps the smooth subset Ui of M to a subset of
T

2 ×R with a ragged boundary. See figure 1. Nevertheless, the center direction
E c may still be accurately described in a neighbourhood of a cs or cu-torus. See
section 7 for details.
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FIGURE 1. The “ragged leaf conjugacy” given by theorem 1.1.
The left side of the figure depicts curves tangent to the center
direction E c in a region Ui as they approach a cs-torus which
has a sink. This cs-torus is depicted by a thick line at the bottom
of the left side. Each center curve is mapped by h to a vertical
segment in T

2 ×R and these segments are shown at right. As a
consequence of results in section 7, the center curves must “skip
over” the basin of the sink as they approach the cs-torus, and for
a point x ∈Ui , the distance along the center curve from x to the
torus is discontinuous in x. As a result, the lengths of the vertical
segments are also discontinuous.

Also note that the curves and surfaces given in item (4) are incomplete with
respect to the Riemannian metric induced from M .

At a coarse level, the main steps of proving theorem 1.1 are similar those of
previous classification results [Ham13a, Ham13b, HP14]. (See also the recent
survey [HP17].) By the work of Brin, Burago, and Ivanov, there are branching
foliations tangent to E cs and E cu on M [BI08, BBI09]. We restrict these branching
foliations to one of the components Ui and consider the center curves given by
intersecting leaves of the two branching foliations. By analyzing the interaction
of the dynamics with the branching foliations, we show that these center curves
correspond to fibers of the semiconjugacy given by Franks [Fra70]. Then, using
an averaging method along center leaves, we construct the function h.

Two major complications to applying these steps in the current context are
that Ui is not compact, and that the leaves of the branching foliations have tan-
gencies with the boundary of Ui . To handle these complications, we consider
the dynamics and the branching foliations both on the closure of Ui and on
compact subsets in the interior of Ui . We also lift these compact subsets to the
universal cover and mainly do analysis there.

To begin, section 2 gives a detailed description of the 2-dimensional dynam-
ics possible on a cs or cu-torus. Section 3 introduces branching foliations and
states a number of properties which hold for all partially hyperbolic systems in
dimension three. Section 4 states properties specific to systems containing a cs

or cu-torus and introduces a number of important propositions which are then
proved in sections 5, 6, and 7. Section 8 then uses these to prove theorem 1.1. As
part of the overall proof, we need a result on the structure of branching foliations
on T

2 × [0,1] and this is given in an appendix.
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2. DYNAMICS IN DIMENSION TWO

In order to understand 3-dimensional systems with cs and cu-tori, it is nec-
essary to fully understand the 2-dimensional dynamics acting on these tori. In
this section, assume g : T2 → T

2 is a weakly partially hyperbolic diffeomor-
phism with a splitting of the form TT

2 = E c ⊕ E s . To be precise, each of the
one-dimensional subbundles E c and E s is invariant under the derivative Dg and

‖Dg v s
‖ < ‖Dg vc

‖ and ‖Dg v s
‖ < 1

hold for all x ∈T
2 and unit vectors v s ∈ E s(x) and vc ∈ E c (x).

Lift g to a map on the universal cover. By a slight abuse of notation, we also
denote the lifted map R

2 → R
2 by the letter g . For the remainder of the section,

we only consider the lifted dynamics on R
2. This type of dynamical system is

analyzed in detail in [Pot12, Section 4.A] and proofs of the next four propositions
may be found there.

Proposition 2.1. There is a hyperbolic linear map A : R2 → R
2 at finite distance

from g .

Proposition 2.2. There is a unique Z
2-invariant, g -invariant foliation W c

g tan-

gent to E c
g .

Let H : R2 →R
2 be the Franks semiconjugacy [Fra70]. That is, H is the unique

continuous surjective map such that AH(x) = H g (x) and H(x+z) = H(x)+z for
all x ∈ R

2 and z ∈ Z
2. This implies that H is a finite distance from the identity

map.

Proposition 2.3. For x, y ∈R
2, y ∈W c

g (x) if and only if H(y) ∈W u
A

(H(x)).

Proposition 2.4. For x, y ∈ R
2, the curves W c

g (x) and W s
g (y) intersect in exactly

one point.

The next result concerns unique integrability of the center and is proved in
[PS07].

Proposition 2.5. Any curve tangent to E c
g lies inside a leaf of W c

g .

Remark. The proof given in [PS07] has a small typo which could be a source of
confusion to the reader. In the equation f −n(J1) ⊂ W s

K
( f −n(J1)) near the end of

section 4.2 of that paper, the J1 on the left should actually be J2.

We now state and prove several additional results which will be needed later
in this paper.

Proposition 2.6. For x, y ∈R
2, if y ∈W s

g (x), then H(y) ∈W s
A

(H(x)).

Proof. As H is uniformly continuous, d(g n(x), g n(y)) → 0 implies that

d(An H(x), An H(y)) = d(H g n(x), H g n(y)) → 0.

This occurs exactly when H(y) ∈W s
A

(H(x)). �
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Note that proposition 2.3 has an “if and only if” condition and proposition 2.6
does not.

Let πu ,πs : R2 →R be linear maps such that kerπu is the stable leaf of A which
passes through the origin and kerπs is the unstable leaf. Define H u =πu ◦H and
H s =πs ◦H .

Proposition 2.7. For any stable leaf L of g , the restriction of H s to L is a homeo-

morphism from L to R.

Proof. Using propositions 2.3 and 2.4 for x, y ∈ L,

H s(y) = H s(x) ⇔ H(y) ∈W u
A (H(x)) ⇔ y ∈W c

g (x) ⇔ y = x.

This shows that H s |L is injective. If L accumulated on a point y ∈R
2, then W c

g (y)
would intersect L in multiple points, contradicting proposition 2.4. Hence, L

is properly embedded. If {xn} is a sequence in L such that ‖xn‖ → ∞, then
‖H xn‖ →∞. As proposition 2.6 implies that H u xn is constant, it must be that
|H s xn |→∞. From this, one may show that H s |L is surjective. �

In general, the restriction of H u to a center leaf will not be a homeomorphism.
However, it is still monotonic, as we show after first establishing a few lemmas.

Lemma 2.8. There is R > 0 such that for any x ∈ R
2, the set R2 \ W s

g (x) has con-

nected components S−
x and S+

x satisfying

{y ∈R
2 : H u(y) < H u(x)−R} ⊂ S−

x and {y ∈R
2 : H u(y) > H u(x)+R} ⊂ S+

x .

Proof. By proposition 2.6 and the fact that H is a finite distance from the identity,
there is a uniform constant R0 > 0 such that |πu(p)−πu(q)| < R0 for any two
points p, q on the same stable leaf of g . Hence, the components S−

x and S+
x may

be labelled so that

{y ∈R
2 : πu(y) <πu(x)−R0} ⊂ S−

x and {y ∈R
2 : πu(y) >πu(x)+R0} ⊂ S+

x .

As H u is a finite distance from πu , the desired result holds. �

Lemma 2.9. If k > 0 is even, then f k (S−
x ) = S−

f k (x)
and f k (S+

x ) = S+

f k (x)
.

Proof. Let λ denote the unstable eigenvalue of A. Then AH = H g implies that
λH u = H u g . As λk > 1 and H is surjective, there is a point y ∈R

2 such that both
H u(y) > H u(x)+R and λk H u(y) >λk H u(x)+R. Then g k (S+

x ) and S+

g k (x)
intersect

at g k (y) and the two sets are therefore equal. �

Lemma 2.10. If y ∈ S+
x , then H u(y) ≥ H u(x).

Proof. Suppose y ∈ S+
x and δ := H u(x)−H u(y) > 0. Then g k (y) ∈ S+

g k (x)
and

H u(y) = H u(x)−λkδ> H u(x)−R

for large positive even k. This gives a contradiction. �
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Proposition 2.11. Let α : R→R
2 be a parameterization of a center leaf of g . Then

H u ◦α is monotonic. That is, up to possibly replacing α with the reverse parame-

terization, H uα(s) ≤ H uα(t ) holds for all s ≤ t .

Proof. This follows from proposition 2.4 and lemma 2.10. �

Corollary 2.12. For each v ∈R
2, H−1(v) is either a point or a compact curve lying

inside a center leaf.

Proof. This follows from propositions 2.3 and 2.11, and the fact that H is a finite
distance from the identity. �

3. BRANCHING FOLIATIONS

We now list a number of properties which hold for all partially hyperbolic
diffeomorphisms in dimension 3. These properties follow from the branching
foliation theory developed by Brin, Burago, and Ivanov [BBI04, BI08, BBI09].

A branching foliation on a Riemannian 3-manifold M is a collection F0 of
immersed surfaces called leaves such that

(1) every leaf is complete under the Riemannian metric pulled back from
M ,

(2) no two leaves topologically cross,
(3) if a sequence of leaves converges in the compact-open topology, then

the limit surface is also a leaf, and
(4) through every point of M there is at least one leaf.

Theorem 3.1. Let f be a partially hyperbolic diffeomorphism of a closed 3-manifold

M such that E u , E c , and E s are oriented and f preserves these orientations. Then

there is a branching foliation F
cs
0 on M such that each leaf is tangent to E cs .

See [BI08] for further details and the proof of theorem 3.1. In the setting of the
theorem, let M̃ be the universal cover of M . Lift the branching foliation F

cs
0 on

M to a branching foliation F
cs on M̃ by taking every possible lift of every leaf.

In this paper, we almost exclusively work with the lifted branching foliation on
the universal cover and theorem 3.1 may be restated as follows.

Corollary 3.2. Let f be the lift of a partially hyperbolic diffeomorphism to the

universal cover M̃. Then there is a branching foliation F
cs tangent to E cs on M̃

such that if a deck transformation γ : M̃ → M̃ preserves the orientations of E u , E c ,

and E s as bundles over M̃, then γ takes leaves to leaves. Similarly, if f preserves

these orientations, then f maps leaves to leaves.

The branching foliation on M̃ has the following properties, as proved in [BBI09,
Section 3].

Proposition 3.3. Each leaf L ∈F
cs is saturated by stable leaves. That is, if x ∈ L,

then W s(x) is a subset of L.
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Proposition 3.4. Each leaf L ∈F
cs is a properly embedded plane which separates

M̃ into two half spaces. That is, M̃ \ L has two connected components L+ and L−.

Proposition 3.5. Each leaf of F
cs intersects an unstable leaf in at most one point.

Proposition 3.6. There is a uniform constant C > 0 such that if J is an unstable

segment, then volumeU1(J ) ≥C · length(J ).

Here U1(J ) consists of all points in M̃ at distance less than 1 from J .
Applying theorem 3.1 to f −1, there is also a branching foliation tangent to

E cu . Let F
cu denote the lifted branching foliation on M̃ .

Proposition 3.7. If Lcs is a leaf of F
cs and Lcu is a leaf of F

cu , then any connected

component of the intersection Lcs ∩Lcu is a topological line which is properly em-

bedded in M̃.

See [HP15, Lemma 6.1] for a proof of proposition 3.7.

Proposition 3.8. There is a uniform constant C > 0 such that if J is a center seg-

ment lying inside a leaf of F
cs , then volumeU1(J ) ≥C · length(J ).

Proof. Suppose J is a compact curve tangent to E c lying in a leaf L of F
cs . Fur-

ther suppose J intersects a stable leaf in two distinct points. Then there is a circle
which is the concatenation of a center segment and a stable segment, and as L is
diffeomorphic to R

2, the Jordon curve theorem implies that this circle bounds a
disk, D . We may assume that E s is oriented so that everywhere along the bound-
ary of D , E s is either tangent to the boundary or transerve to the boundary and
pointing into D . Then, as in the proof of the Poincaré–Bendixson theorem, one
can show that the flow along the stable direction either has a closed orbit or a
fixed point in D . Since the stable foliation only consists of lines, this gives a con-
tradiction.

Hence, J ∩W s(x) = {x} for all x ∈ J . By proposition 3.5,

J ∩
⋃

y∈W s (x)
W u(y) = {x}

for all x ∈ J as well. Using this, one may adapt the proof of proposition 3.6 given
in [BBI09] to apply to center segments. �

4. REGIONS BETWEEN TORI

From now on, assume that f : M → M is a partially hyperbolic diffeomor-
phism on a closed oriented 3-manifold and that there is at least one cs or cu-
torus. We first consider dynamics on the closed manifold M , but later in this
section we lift to the universal cover.

Proposition 4.1. No cs-torus intersects a cu-torus.

Proof. As E cs and E cu are transverse, such an intersection would consist of cir-
cles tangent to E c . A center circle is ruled out by proposition 2.3. �
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Proposition 4.2. No two distinct cs-tori intersect.

Note that since E cs is not uniquely integrable, it is a priori possible for two
cs-tori to intersect without coinciding. This possibility is explored in [Ham16b]
where a proof of proposition 4.2 is given. The proof relies heavily on branch-
ing foliations and other tools specific to dimension three, and is much more in-
volved than the simple proof of proposition 4.1 above.

Let T ⊂ M be the union of all cs and cu-tori. By the above propositions, T

consists of disjoint tori and [Ham16b] shows that there are only finitely many.
Let {Mi } be the collection of compact manifolds with boundary obtained by cut-
ting M along T . Since f (T ) =T , there is an iterate of f k which maps each Mi

to itself and each torus in T to itself. For simplicity, we replace f by an iterate
and assume k = 1. Throughout the proof of theorem 1.1, we freely replace f by
an iterate when convenient.

Proposition 4.3. Each Mi is diffeomorphic to T
2 × [0,1].

Proof. This is basically a restatement of the main result of [RHRHU11]. Since M

supports a partially hyperbolic diffeomorphism, it is irreducible. Hence, Mi is
irreducible. Let T be a boundary component of Mi . Proposition 2.1 implies that
f |T is homotopic to a hyperbolic toral automorphism and [RHRHU11, Theorem
2.2] implies that T is incompressible. As such, f |Mi

and T satisfy the conditions
of [RHRHU11, Theorem 1.2], which implies that Mi is diffeomorphic to T

2 ×

[0,1]. �

We have now established items (1)–(3) of theorem 1.1. The rest of the paper
focuses on proving item (4). To do this, we lift to the universal cover M̃ . Let
Ω ⊂ M̃ be a closed 3-dimensional submanifold with boundary such that each
boundary component of Ω quotients down to a cs or cu-torus in M and such
that no surface which intersects the interior of Ω quotients down to a cs or cu-
torus. This submanifold may then be thought of as a covering space for one of
the Mi . Proposition 4.3 implies that Ω is diffeomorphic to R

2× I where I ⊂R is a
compact interval.

It will at times be convenient to use coordinates on Ω and discuss linear maps
from Ω to R. Therefore, we simply assume that Ω is equal to R

2 × I . That is, we
treat R2 × I as a subset of M̃ denoted by Ω. The Riemannian metric on M̃ inher-
ited from M may differ from the standard Euclidean metric on R

2 × I . How-
ever, distances and volumes measured with respect to the two metrics differ
by at most a constant factor. Therefore, in our analysis, we freely assume that
Ω=R

2 × I is equipped with the Euclidean metric.
Since Z

2 acts on Ω via deck transformations, we adopt the following notation:
if p = (v, s) ∈R

2 × I and z ∈Z
2, then p + z = (v, s)+ z = (v + z, s).

As we are assuming f : M → M maps each Mi to itself, it follows that there is a
lift of f to the universal cover which leaves Ω invariant. We also denote this lifted
map M̃ → M̃ by the letter f . Since f |Ω quotients down to a map on Mi , there is a
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linear map A : R2 →R
2 such that if p ∈R

2×I and z ∈Z
2, then f (p+z) = f (p)+Az.

By proposition 2.1, A is hyperbolic. This implies that there is a semiconjugacy
between f |Ω and A [Fra70]. We list several properties of this semiconjugacy.

Proposition 4.4. There is a unique continuous surjective map H : R2 × I → R
2

and a constant C > 0 such that if p = (v, s) ∈R
2 × I and z ∈Z

2 then

(1) H f (p) = AH(p),

(2) H(p + z) = H(p)+ z, and

(3) ‖H(p)− v‖ <C .

As in section 2, let πu : R2 → R be a linear map such that kerπu is the stable
leaf of A which passes through the origin. Define H u =πu ◦H .

Now consider a branching foliation F
cs on M̃ as in corollary 3.2. We only

know a priori that F
cs is invariant under those deck transformations which pre-

serve the orientations of the subbundles. In particular, for a full-rank subgroup
Z0 ⊂ Z

2 it holds that for any z ∈ Z0, there is a deck transformation γz : M̃ → M̃

which preserves the orientations of the subbundles and such that γz (p) = p + z

for all p ∈ R
2 × I =Ω. Therefore if L is a leaf of F

cs , then γz (L) is a leaf of F
cs as

well. Replacing f by an iterate, we may freely assume that f preserves the orien-
tations of the subbundles on M̃ . Then the branching foliation F

cs is invariant
under f .

Let Ω◦ denote the interior of Ω. A major step is to relate the branching folia-
tion F

cs to the semiconjugacy H for points in Ω
◦.

Proposition 4.5. For p, q ∈Ω
◦, H u(p) = H u(q) if and only if there is L ∈F

cs such

that p, q ∈ L.

This is proved first in section 5 for the specific case where at least one compo-
nent of ∂Ω is tangent to E cu . Section 6 proves the result in the case where both
components of ∂Ω are tangent to E cs . The proof of the latter case relies on the
proof of the former, and this significantly complicates the exposition. However,
we know of no simpler method to establish proposition 4.5.

An analogous statement also holds for H s =πs◦H and any branching foliation
F

cu tangent to E cu .

Corollary 4.6. For p, q ∈ Ω
◦, H s(p) = H s(q) if and only if there is L ∈ F

cu such

that p, q ∈ L.

After these results are established, they are used in section 7 to prove the fol-
lowing.

Proposition 4.7. If γ : M̃ → M̃ is a deck transformation such that γ(Ω) =Ω, then

γ preserves the orientations of E u , E c , and E s as bundles over M̃.

This shows that Z0 above may be taken as equal to Z
2. Section 7 also proves

the following characterization of the fibers of the semiconjugacy.



10 A. HAMMERLINDL AND R. POTRIE

Proposition 4.8. For every v ∈ R
2, the pre-image H−1(v) is a compact segment

tangent to E c . Moreover, H−1(v) intersects each boundary component of Ω in

either a point or a compact segment.

Section 8 uses this to construct the topological conjugacy given in theorem 1.1.

5. CENTER-STABLE LEAVES

This section gives the proof of proposition 4.5 under certain assumptions.
These assumptions are removed in the next section. Let f , Ω, H , and F

cs be
as in the previous section. By abuse of notation, we consider πu and πs as both
linear maps from R

2 to R and as maps from Ω = R
2 × I to R which depend only

on the R
2 coordinate.

Proposition 5.1. For any constant D > 0, there is ℓ > 0 such that any unstable

curve J ⊂Ω of length at least ℓ contains points p and q with |πu(p)−πu(q)| > D.

Proof. This result is analogous to [Ham13b, Lemma 4.7] and the proof given
there applies here with only minor modifications. �

Define ∂cs
Ω as the union of those components of ∂Ω which are tangent to E cs .

Let du be distance measured along an unstable leaf and define K u as the largest
subset of Ω for which the following property holds: if p ∈ K u , q ∈ W u(p), and
du(p, q) < 1, then q ∉ ∂cs

Ω. In other words, K u is the set of points at distance at
least 1 from ∂cs

Ω where the distance is measured along the unstable direction.
Note that there are three possibilities. If both components of ∂Ω are tangent

to E cs , then E u is transverse to ∂Ω and K u lies in the interior Ω
◦ of Ω. If both

components of ∂Ω are tangent to E cu , then ∂cs
Ω is empty and K u =Ω. Finally, if

one component of ∂Ω is tangent to E cu and the other is tangent to E cs , then K u

contains one boundary component and not the other. Fortunately, most of the
arguments in the remainder of the paper do not depend on which case we are
in.

One can verify that K u is a closed subset of Ω and is invariant under any deck
transformation which fixes Ω. As f increases distances measured along the un-
stable direction, it follows that f (K u) ⊂ K u . Note that if J is a compact subset of
Ω

◦, then there is an integer N (J ) such that f n(J ) ⊂ K u for all n > N (J ).
We now consider the intersection of K u with the leaves of the branching foli-

ation F
cs .

Proposition 5.2. There is a non-zero map π : Ω → R of the form π = aπu +bπs

with constants a,b ∈R such that if L ∈F
cs and p, q ∈ K u∩L then |π(p)−π(q)| < 1.

We prove this by adapting techniques presented in [BBI09, HP14]. The proof
is largely topological in nature, instead of involving the dynamics acting on Ω.
Therefore, we defer the proof of proposition 5.2 to the appendix.

Lemma 5.3. No stable or unstable leaf intersects both boundary components of

Ω.
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Proof. Note that there is a uniform lower bound on the distance between points
in the two boundary components of Ω. If a stable or unstable segment J had
endpoints on both boundary components, one could find n ∈ Z such that the
length of f n(J ) was smaller than this lower bound, and this would give a contra-
diction. �

Lemma 5.4. If ∂cs
Ω 6= ∂Ω, then for any c > 0, there is L ∈ F

cs and p, q ∈ K u ∩L

such that |πs(p)−πs(q)| > c.

Proof. If ∂cs
Ω 6= ∂Ω, then Ω has a boundary component S tangent to E cu . By

lemma 5.3, S is contained in K u . For any x ∈ S, there is a leaf L ∈F
cs through x.

By proposition 2.5 where g is given by the restriction of f −1 to S, the intersection
of S and L contains W c

g (x). The result then follows by proposition 2.3 �

Assume for the remainder of the section that the conclusion of lemma 5.4
holds.

Proposition 5.5. There is R > 0 such that if L ∈F
cs and p, q ∈ K u ∩L then

|πu(p)−πu(q)| < R.

Proof. Define a linear map πA : Ω→R by

πA(v, s) =π(A(v), s)

for (v, s) ∈Ω=R
2 × I where π is given by proposition 5.2.

If L ∈ F
cs and p, q ∈ K u ∩L, then f (K u) ⊂ K u implies that f (p), f (q) ∈ K u ∩

f (L) and therefore |π f (p)−π f (q)| < 1. Since f is a finite distance from A × id
on Ω, there is C > 0 such that |πA(p)−πA(q)| < C for all such p and q . If both
constants a and b are non-zero in proposition 5.2, then π and πA are linearly
independent and πu is a linear combination of π and πA . From this, the result
would follow and therefore we may assume that one of a or b is zero. The con-
clusion of lemma 5.4 implies that the latter case must hold. �

For a point p ∈Ω, define

K −(p) = {q ∈ K u : πs(q) ≤πs(p)−R}

and
K +(p) = {q ∈ K u : πs(q) ≥πs(p)+R}.

Replacing f by f 2 if necessary, we assume that A has positive eigenvalues. The
fact that f is at finite distance from A× id then implies that K +( f n(p)) intersects
f n(K +(p)) for all n.

Proposition 5.6. If L ∈F
cs and p ∈ K u∩L, then M̃ \L has connected components

L− and L+ such that K −(p) ⊂ L− and K +(p) ⊂ L+.

Proof. Proposition 5.5 shows that L is disjoint from both K −(p) and K +(p). There-
fore, it is enough to show that each of L− and L+ intersects at least one of K −(p)
or K +(p).
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Suppose instead that K −(p)∪K +(p) ⊂ L−. Then for any n ≥ 0, K +( f n(p)) in-
tersects f n(K +(p)) and is therefore a subset of f n(L−). Similarly for K −( f n(p)).
Since p ∈ K u ∩L, the open set Ω◦∩L+ is non-empty. Let J be a small unstable
segment lying in Ω

◦∩L+. Then f n(J ) ⊂ K u for all large n. Since f n(J )∩ f n(L−) is
empty, the length of πu f n(J ) is bounded by 2R for all large n. However, proposi-
tion 5.1 shows that there is no uniform bound on the length of πu f n(J ) and gives
a contradiction. �

Proposition 5.7. For p, q ∈ K u , the following are equivalent:

• supn≥0 |π
u f n(p)−πu f n(q)| <∞, and

• there is L ∈F
cs such that p, q ∈ L.

Proof. One direction follows from proposition 5.5 and the fact that f (K u) ⊂ K u .
To prove the other direction, suppose p ∈ Lp ∈F

cs and q ∈ Lq ∈F
cs . Let L−

p and
L+

p be as in the previous proposition and let L−
q and L+

q be the corresponding
sets associated to Lq . Assume q does not lie on Lp . Then q lies either in L−

p or
L+

p . Without loss of generality, assume q ∈ L−
p . Since Lq is the boundary of L+

q ,
it follows that L−

p ∩L+
q ∩Ω

◦ is a non-empty open set. Consider a small unstable
curve J in this set. Then f n(J ) ⊂ K u and

f n(J )∩
(

K +( f n(p))∪K −( f n(q))
)

=∅

for all large n. The assumption that |πu f n(p)−πu f n(q)| is uniformly bounded
implies that the length of πu f n(J ) is uniformly bounded. Proposition 5.1 again
gives a contradiction. �

Proof of proposition 4.5. By the properties of the semiconjugacy,

H u(p) = H u(q) ⇔ sup
n≥0

|πu An H(p)−πu An H(q)| <∞

⇔ sup
n≥0

|πu f n(p)−πu f n(q)| <∞.

Since f n(p) and f n(q) are in K u for all large n, the result follows from proposi-
tion 5.7. �

This proof was conditional on the conclusion of lemma 5.4 and therefore we
have only established proposition 4.5 in the case where ∂cs

Ω 6= ∂Ω. The next
section gives a replacement for lemma 5.4 in the case where ∂cs

Ω= ∂Ω and will
therefore finish the proof of proposition 4.5.

6. FINDING A HIDDEN TORUS

The goal of this section is to prove the following.

Lemma 6.1. If ∂cs
Ω = ∂Ω, then for any c > 0, there is L ∈ F

cs and p, q ∈ K u ∩L

such that |πs(p)−πs(q)| > c.

Note that up to replacing f with f −1, lemma 6.1 is equivalent to the following.
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Lemma 6.2. If ∂cs
Ω =∅, then for any c > 0, there is L ∈ F

cu and x, y ∈ K s ∩L

such that |πu(x)−πu(y)| > c.

Here, K s is the set of points at distance at least 1 from ∂Ω where distance
is measured along the stable direction. The advantage in proving lemma 6.2
in place of lemma 6.1 is that, since ∂cs

Ω = ∅, all of the results of the previous
section are known to hold for F

cs and we may use those properties of F
cs when

proving results for F
cu .

We prove lemma 6.2 by contradiction. Therefore, for the remainder of the
section, assume that ∂Ω is tangent to E cu , that F

cu is a branching foliation tan-
gent to E cu , and that there is D0 > 0 such that if L ∈ F

cu and x, y ∈ K s ∩L, then
|πu(x)−πu(y)| < D0. We will use a result in [Ham16b] to establish the existence
of a surface lying in Ω

◦ which quotients down to a cs-torus in the original com-
pact 3-manifold M . Since Ω was chosen so that no such torus exists, this will
provide the needed contradiction.

Lemma 6.3. There is D > 0 such that if L ∈F
cu and x, y ∈ K s ∩L, then |H u(x)−

H u(y)| < D.

Proof. This follows from the inequality with D0 above and the fact that H u and
πu are at finite distance. �

Lemma 6.4. There is ℓ> 0 such that if x ∈Ω
◦, y ∈ W u(x), and du(x, y) > ℓ, then

|H u(x)−H u(y)| > D.

Proof. Let C > 1 be such that for any x ∈Ω and y ∈ W u(x), there is an integer k

such that 1 ≤ du( f k (x), f k (y)) ≤C . Define

X = {(x, y) : x ∈Ω, y ∈W u(x), and 1 ≤ du(x, y) ≤C }.

Under the assumptions of the current section, ∂cs
Ω =∅ and therefore the last

section shows that the conclusions of proposition 4.5 hold for F
cs . As such,

proposition 3.5 implies that H u(x)−H u(y) is non-zero for all (x, y) ∈ X . As X may
be quotiented down to a compact set, there is δ> 0 such that |H u(x)−H u(y)| > δ

for all (x, y) ∈ X .
The semiconjugacy relation H f = AH implies that H u( f (x)) =λH u(x) where

λ > 1 is the unstable eigenvalue of A. Choose n such that λnδ > D . Then
|H u(x)− H u(y)| > δ implies |H u f n(x)− H u f n(y)| > λnδ > D . To conclude the
proof, choose ℓ> 0 so that du(x, y) > ℓ implies du( f −n(x), f −n(y)) > 1. �

Corollary 6.5. If x ∈ K s , y ∈W u(x), and du(x, y) > ℓ, then y ∉ K s .

Proof. Otherwise, the results above give D < |H u(x)−H u(y)| < D . �

Lemma 6.6. There is a continuous function g : Ω→ [0,1] such that

(1) g is invariant under deck transformations;

(2) g (∂Ω) = {0,1}; and

(3) if 0 < g (x) < 1, then x ∈ K s .
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Proof. Let S0 and S1 be the two boundary components of Ω. Define

Ki = {x ∈W s(y)∩Ω : y ∈ Si , ds(x, y) ≤ 1}.

By lemma 5.3, no stable manifold intersects both S0 and S1 and therefore K0 and
K1 are disjoint. Define

g (x) =
dist(x,K0)

dist(x,K0)+dist(x,K1)
. �

Now Ω quotients down to a subset M0 ⊂ M and g quotients down to a func-
tion from M0 to [0,1]. Applying [Ham16b, Theorem 2.5], there is a compact cs-
submanifold in the interior of M0. This contradicts the assumptions on Ω given
in section 4 and completes the proof of lemma 6.2. Since the two statements
are equivalent, this also proves lemma 6.1. Now, substituting lemma 6.1 in place
of lemma 5.4 in the previous section, one sees that proposition 4.5 holds in full
generality.

7. FIBERS OF THE SEMICONJUGACY

This section gives the proofs of propositions 4.7 and 4.8. Let f , Ω, and H be
as in section 4. Recall that ∂cs

Ω is the union of those boundary components of
Ω which are tangent to E cs .

Lemma 7.1. An unstable curve intersects ∂cs
Ω in at most one point.

Proof. Suppose J is an unstable segment which intersects ∂cs
Ω at both end-

points. By lemma 5.3, both endpoints must lie on the same boundary com-
ponent. Then for large n, f −n(J ) would be an arbitrarily small unstable curve
connecting two points on the same center-stable surface. This is ruled out by
the uniform transversality of E cs and E u . �

Lemma 7.2. If J is an unstable curve in Ω, then H u |J is a homeomorphism to its

image.

Here, the curve J may be bounded or unbounded and may or may not include
its endpoints.

Proof. First, consider the case where J is in the interior of Ω. By proposition 4.5,
the fibers of H u are cs-leaves and, by proposition 3.5, each cs-leaf intersects an
unstable leaf at most once, so H u |J is injective. Since H u is continuous, this
implies that H u |J is a homeomorphism to its image.

Note that if φ : [0,1) →R is a continuous function and φ|(0,1) is an embedding,
then φ itself must also be an embedding. Therefore, in the case where J inter-
sects ∂Ω in a point, the fact that the restriction of H u to J \∂Ω is injective implies
that H u is injective on all of J .

The last possibility is if J lies in a component of ∂Ω which is tangent to E cu .
This case follows from proposition 2.7. �
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Proof of proposition 4.7. For a point x ∈ Ω
◦, let J ⊂ Ω

◦ be a short unstable seg-
ment passing through x. Using that H u |J is injective, define the orientation for
E u near x so that H u increases along J . This gives a well-defined continuous
orientation of E u on all of Ω◦.

Suppose γ : M̃ → M̃ is a deck transformation mapping Ω=R
2 × I to itself. By

the properties of the semiconjugacy, there is z ∈ Z
2 such that Hγ(x) = H(x)+ z

for all x ∈Ω
◦. Hence, γ preserves the orientation of E u . An analogous argument

shows that γ preserves the orientation of E s . By assumption, the original closed
3-manifold M is orientable. Therefore, γ preserves the orientation of T M̃ and
must also preserve the orientation of E c . �

Lemma 7.3. For x ∈ ∂cs
Ω, the set H u(W u(x)∩Ω) is equal either to (−∞, H u(x)]

or [H u(x),+∞).

Proof. For x ∈ ∂cs
Ω, let J1(x) be the compact unstable segment which starts at x,

is directed into Ω, and has length exactly one. By lemma 7.2, H u(J1(x)) always
has positive length. By a compactness argument, there is δ > 0 such that the
length of H u(J1(x)) is greater than δ for all x. As in the proof of lemma 6.4, one
may show that

length H u f n J1(x) >λnδ

for all x ∈ ∂cs
Ω and n ≥ 0 where λ> 1 is the unstable eigenvalue of A. Lemma 7.1

implies that f n J1( f −n(x)) is a subset of W u(x)∩Ω for all n. Thus, the length of
H u(W u(x)∩Ω) is unbounded. �

Lemma 7.4. Let S be a connected component of ∂cs
Ω and let

U =Ω∩
⋃

x∈S

W u(x).

For any v ∈R
2, H−1(v)∩U is a topological ray. That is, there is a proper topologi-

cal embedding β : [0,+∞) →U such that the image is H−1(v)∩U .

Proof. First, note that H−1(v) = (H u)−1(q)∩ (H s)−1(r ) for some pair of numbers
q,r ∈ R. By corollary 4.6, there is a leaf Lcu ∈ F

cu such that (H s)−1(r )∩U =

Lcu ∩U . Therefore, we may restrict our attention to this leaf.
Consider the intersection of Lcu and S. The semiconjugacy H : Ω→R

2 when
restricted to S agrees with the semiconjugacy, also denoted H , studied in sec-
tion 2. In particular, H |S is surjective. This implies that Lcu ∩ S is non-empty.
Every connected component of Lcu ∩S is a center line. By proposition 2.4, any
stable leaf lying in S intersects every connected component of Lcu∩S. By propo-
sition 3.5, Lcu intersects a stable curve in at most one point and so Lcu ∩S has
exactly one connected component. Thus, Lcu ∩S is a properly embedded center
curve and may be parameterized by a function α : R→ Lcu ∩S.

As S is connected, exactly one of the two cases in lemma 7.3 holds for all x ∈ S.
Without loss of generality, assume the case H u(W u(x)∩Ω) = (−∞, H u(x)] holds.
By proposition 2.11, α is monotonic. Up to composing α by an affine map on R,
we may assume α is defined so that H uα(t ) ≥ q exactly when t ≥ 0. Define a map
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β : [0,+∞) →U by setting β(t ) to be the unique point in W u(α(t )) which satisfies
H uβ(t ) = q . Proving that β is continuous reduces to proving the following claim.

Claim. Suppose h : [0,+∞)× [0,+∞) → R is a continuous func-
tion with the properties that x1 ≤ x2 implies h(x1,0) ≤ h(x2,0)
and y1 < y2 implies h(x, y2) < h(x, y1). Then, any level set of h is
the graph of a continuous function.

The proof of the claim is left to the reader. In fact, the proof is highly similar in
form to steps used in proving the implicit function theorem.

It is clear that β is injective. Suppose a sequence {tk } tending to +∞ is such
that β(tk ) converges to a point x ∈U . Since W u(x) intersects S, one may use an
unstable foliation chart in a neighbourhood of x, to derive a contradiction. This
shows that β is proper. �

Proof of proposition 4.8. Consider v ∈ R
2. By lemma 7.4, there is at least one

point x ∈ Ω
◦ such that H(x) = v . Let Lcs be a leaf of F

cs passing through x

and Lcu a leaf of F
cu . Let L be the connected component of Lcs ∩ Lcu which

passes through x. By proposition 3.7, L is a properly embedded line. Since H

is proper, H−1(v) is a compact subset of Ω, and the ends of L must eventually
leave the interior of Ω. As such, there is a compact center segment J ⊂ L such
that the endpoints of J lie on ∂Ω and all other points of J lie in the interior of
Ω. Lemma 7.4 then describes the exact shape of J near the boundary of Ω. In
particular, one sees that the two endpoints of J cannot lie on the same boundary
component, and so each of the two boundary components contains exactly one
endpoint of J .

Now suppose another connected component of Lcs ∩Lcu intersected the in-
terior of Ω. This would lead to a center segment J ′ disjoint from J but such that
H(J ) = H(J ′) and where each boundary component of Ω contained exactly one
endpoint of J ′. Lemma 7.4 would then imply that J and J ′ coincide near the
boundary of Ω, a contradiction. Thus H−1(v) consists of J together with the
pre-images of v on the two boundary components of Ω. By corollary 2.12 and
lemma 7.4, the result follows. �

Corollary 7.5. There is a uniform upper bound on the length of a fiber H −1(v).

Proof. As H is proper and commutes with deck transformations, there is a uni-
form upper bound on the diameter H −1(v) independent of v ∈R

2. There is then
a uniform upper bound on the volume of U1(H−1(v)) and the result follows from
proposition 3.8. �

8. BUILDING THE RAGGED LEAF CONJUGACY

Lemma 8.1. There is a continuous function p : Ω◦ → (0,1) such that for any cen-

ter segment of the form J = H−1(v)∩Ω
◦, the restriction p|J is a C 1 embedding.

Moreover, with respect to arc length, p|J has a uniform speed independent of the

choice of J .
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Proof. Let S0 and S1 be the two boundary components of Ω. For x ∈Ω
◦, define

p0(x) =
dist(x,S0)

dist(x,S0)+dist(x,S1)
.

Extend p0 to a continuous function p0 : M̃ → [0,1] by requiring it to be locally
constant outside of Ω.

Now suppose x ∈ Ω
◦ and let Lcs ∈ F

cs and Lcu ∈ F
cu be leaves of the folia-

tions such that x ∈ Lcs ∩Lcu . Let α : R→ Lcs ∩Lcu be a parameterization by arc
length of this center curve. By proposition 3.7, α(R) is a complete curve properly
embedded in M̃ . Let T > 0 be the upper bound given by corollary 7.5 and for any
t ∈R, define

p(α(t )) =
1

2T

∫t+T

t−T
p0(α(s))d s.

If α(t ) ∈Ω
◦, then neither α(t −T ) nor α(t +T ) lies in Ω

◦. Up to possibly reversing
the parameterization, it follows that α(t −T ) = 0 and α(t +T ) = 1 and by the
Fundamental Theorem of Calculus

d

d t
p(α(t )) =

1

2T
. �

Lemma 8.2. If x, y, z ∈ Ω
◦ with y ∈ W u(x) and z ∈ W s(y), then H(x) = H(z) if

and only if x = y = z.

Proof. Assume H(x) = H(z). By proposition 4.5, x and z lie on the same leaf L of
F

cs . By proposition 3.3, L is saturated by stable curves and therefore the point
y also lies in L. The uniqueness given by proposition 3.5 implies that x = y . A
similar argument shows that y = z. �

Proof of theorem 1.1. Define h = H ×p : Ω◦ → R
3. This is a continuous map and

injective by proposition 4.8 and lemma 8.1. We now show that h is an open
map. Consider x ∈Ω

◦ and assume that E u , E c , and E s are oriented. With respect
to these orientations, define unit speed flows ϕs and ϕu along the stable and
unstable directions. Define ϕc as the unit speed flow along the fibers of H with
the direction given by the orientation of E c . Define i : [−ǫ,ǫ]3 →Ω

◦ by

i (t1, t2, t3) =ϕc
t3
ϕs

t2
ϕu

t1
(x)

where ǫ is small enough that the range of i is contained in Ω
◦. By lemmas 8.1

and 8.2, the range of h ◦ i contains h(x) in its interior. Taking ǫ to zero, one
can show that for any neighbourhood V of x, h(V ) is a neighbourhood of h(x)
and therefore h is open. It follows that h is a homeomorphism to its image,
U := h(Ω◦).

As H is a semiconjugacy, the homeomorphism h f h−1 : U →U is of the form

h f h−1(v, s) = (A(v),φ(v, s))

where A : R2 →R
2 is the hyperbolic linear map andφ : U →R is some continuous

function. By construction, the maps H , p, and therefore h are Z
2-equivariant.
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Thus, h quotients down to an embedding Ui →T
2 ×R which satisfies the prop-

erties listed in item (4) of theorem 1.1. �

APPENDIX A. BOUNDS ON FOLIATIONS

This appendix proves proposition 5.2. Let F
cs , Ω= R

2 × I , and Z0 ⊂ Z
2 be as

in section 4. Let S be a leaf of F
cs which intersects the interior Ω◦ of Ω. Here,

we use S instead of L to keep closer to the notation of [BBI09]. As S is properly
embedded, the complement M̃ \ S consists of two open connected components
S+ and S− where the oriented E u bundle points into S+. Define S++Z0 = {p+z :
p ∈ S+, z ∈ Z0} and similarly for S−+Z0.

Lemma A.1. The set Ω\∂cs
Ω is contained in both S++Z0 and S−+Z0.

Proof. As the branching foliation is complete in the compact-open topology,
one can show that the boundary ∂X̃ of X̃ = S++ Z0 is a union of leaves of F

cs .
(See the proof of Lemma 3.10 in [BBI09] for details.)

Consider the manifold M̂ defined by the quotient M̃/Z0. Then X̃ quotients
down to a subset X̂ ⊂ M̂ and ∂X̃ quotients down to ∂X̂ . In particular, ∂X̂ is
closed subset of M̂ and the orientation of E u shows that ∂X̂ does not accumulate
on itself.

Let Ω̂ be the quotient of Ω to M̂ . Its boundary consists of two tori. We claim
that each torus is either contained in X̂ or disjoint from X̂ . Indeed, let T be one
of the tori and suppose X̂ ∩T is a non-empty proper subset. If T is tangent to
E cs , then X̂ ∩T is saturated by stable leaves. If T is tangent to E cu , then X̂ ∩T is
saturated by center leaves. In either case, the results in section 2 imply that ∂X̂

contains a topological line immersed in T . This line accumulates on itself and
gives a contradiction.

Hence, if ∂X̂ intersects the interior of Ω̂, it must have a connected component
lying entirely in Ω̂. This component would be a cs-torus, which would contra-
dict the assumptions given on Ω in section 4. This shows that X̃ contains Ω◦. As
X̃ is saturated by stable leaves, it also contains any component of ∂Ω tangent to
E cu . �

Lemma A.2. There is a non-zero linear map π : R2 →R such that π(z) ≥ 0 implies

S++ z ⊂ S+ and π(z) ≤ 0 implies S+ ⊂ S++ z for z ∈ Z0.

Proof. This is shown by adapting the proofs of Lemmas 3.8 to 3.12 in [BBI09]. �

The set K u defined in section 5 is a closed subset of Ω \ ∂cs
Ω. Let Q be the

compact set defined by intersecting K u with a cube of the form [0, N ]× [0, N ]× I

for some large N . Since Z0 is a full rank subgroup of Z2, N may be chosen large
enough that any x ∈ K u can be written as x = q + z with q ∈Q and z ∈ Z0.

Lemma A.3. There is z0 ∈ Z0 such that Q ⊂ S+− z0 and Q ⊂ S−+ z0.
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Proof. By lemma A.1, {S+− z : z ∈ Z0} is an open cover of K u , and so some finite
subset {S+− z1, . . . ,S+− zn} covers the compact set Q. Take z0 such that π(z0) ≥
π(zi ) for all i . The case for S− is analogous. �

By abuse of notation, if p = (v, s) ∈R
2 × I define π(p) =π(v).

Lemma A.4. There is r > 0 such that π(x) > r implies x ∈ S+ and π(x) < −r im-

plies x ∈ S− for all x ∈ K u .

Proof. Choose r > 0 such that r −π(q) > π(z0) for all q ∈ Q. Any x ∈ K u may be
written as x = q + z with q ∈ Q and z ∈ Z0. If π(x) > r , then π(z − z0) ≥ 0 and
x ∈Q + z ⊂ S+− z0 + z ⊂ S+. �

Lemma A.5. There is R > 0 such that if p, q ∈ K u lie on the same leaf of F
cs , then

|π(p)−π(q)| < R.

Proof. Without loss of generality, shift p and q by an element of Z0 and assume
q ∈Q. Let S′ be the leaf containing both p and q . Since S′ intersects S+− z0 and
leaves do not topologically cross, S′ is disjoint from S−− z0 and so π(p),π(q) >
−r −π(z0). Similarly, π(p),π(q) < r +π(z0). Take R = 2(r +π(z0)). �

Up to rescaling π so that R < 1, this concludes the proof of proposition 5.2.
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