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However, “most” perturbations [ ~ fq are ergodic.

Why? Partial hyperbolicity.
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Among C? partially hyperbolic diffeomorphisms preserving a
smooth measure:

Pugh-Shub Conjecture 1 Ergodicity is open and dense.
Pugh-Shub Conjecture 2 Accessibility is open and dense.
Pugh-Shub Conjecture 3 Accessibility implies ergodicity.

Long history of related work by

Birkhoff, Hopf, Anosov, Sinai, Brin, Pesin, Grayson, Pugh, Shub,
Burns, Dolgopyat,Wilkinson, Rodriguez-Hertz, Rodriguez-Hertz,
Ures, Avila, Crovisier, and others.
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Example system: fy(x,7,2) = (2x+y,x+y,z) on T°.
Ergodicity is open and dense in a neighbourhood of fj.
Can we say exactly when ergodicity holds here? Yes.

Four ways to perturb:

(1) Rotate by a small rational 8 € S' = R/Z to get

fo(x,1,2) =2x+y,x+y,z+0).

(2) Perturb on a set of the form T2 x U.
(3) Compose by a diffeo of the form (x, y, z) — (¢(x, y, 2), 2).
(4) Conjugate by a map h to get

g = h~lo fyo hwhere g is at least C?.

In some sense, these are the only ways to construct non-ergodic
perturbations.
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systems with one-dimensional center E°.

Question. What are all of the non-ergodic partially hyperbolic
systems with one-dimensional center?

I won't answer this question, but I'll give what could be an
answer.

Idea: generalize the previous example.

Consider the product A x id defined on N x S!
where A is an arbitrary Anosov diffeomorphism

defined on a nilmanifold V.

(One can think of A as a hyperbolic toral automorphism on N = T% = R?¢/74 for
simplicity.)

Also want to include suspensions of Anosov diffeomorphisms.



AB-prototypes

Suppose A, B: N — N are commuting nilmanifold
automorphisms and A is hyperbolic.



AB-prototypes

Suppose A, B: N — N are commuting nilmanifold
automorphisms and A is hyperbolic.

(One can think of A, B as toral automorphisms defined by commuting n by n matrices.)



AB-prototypes

Suppose A, B: N — N are commuting nilmanifold
automorphisms and A is hyperbolic.

(One can think of A, B as toral automorphisms defined by commuting n by n matrices.)

Then A and B define a diffeomorphism

fap: Mp— Mp, (v, t)— (Av, 1)

on the manifold

_ NxI0,1]
Mp = %v, 1) ~ (Bv,0),



AB-prototypes

Suppose A, B: N — N are commuting nilmanifold
automorphisms and A is hyperbolic.

(One can think of A, B as toral automorphisms defined by commuting n by n matrices.)

Then A and B define a diffeomorphism

fap: Mp— Mp, (v, t)— (Av, 1)

on the manifold

_ Nx[0,1]
Mp = %v, 1) ~ (B1,0),

For a product, A x id on N x S!, B is the identity.



AB-prototypes

Suppose A, B: N — N are commuting nilmanifold
automorphisms and A is hyperbolic.

(One can think of A, B as toral automorphisms defined by commuting n by n matrices.)

Then A and B define a diffeomorphism

fap: Mp— Mp, (v, t)— (Av, 1)

on the manifold

_ Nx[0,1]
Mp = %v, 1) ~ (B1,0),

For a product, A x id on N x S!, B is the identity.

For a suspension, B = A.



AB-prototypes

Suppose A, B: N — N are commuting nilmanifold
automorphisms and A is hyperbolic.

(One can think of A, B as toral automorphisms defined by commuting n by n matrices.)

Then A and B define a diffeomorphism

fap: Mp— Mp, (v, t)— (Av, 1)

on the manifold

_ Nx[0,1]
Mp = %v, 1) ~ (B1,0),

More general examples exist. Say where A, B on N = T given by

(1 -1 0) (2 0 -1)
-1 2 -1 and O 1 1].
\ 0 -1 2} \—1 1 2}




AB-prototypes

Suppose A, B: N — N are commuting nilmanifold
automorphisms and A is hyperbolic.

(One can think of A, B as toral automorphisms defined by commuting n by n matrices.)

Then A and B define a diffeomorphism

fap: Mp— Mp, (v, t)— (Av, 1)

on the manifold

_ NxI0,1]
Mp = %v, 1) ~ (Bv,0),

Note that every AB-prototype is a volume-preserving
non-ergodic partially hyperbolic system.
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(4) Apply aconjugacy: g=h"lo fyoh.

These need to be included in our taxonomy.

11



AB-prototype: fap(v, 1) = (Av, t) defined on

_ NxI0,1]
Mp = Av, 1) ~ (Bv,0),

We want a large open family which includes every known
non-ergodic example with one-dimensional center.

12



AB-prototype: fap(v, 1) = (Av, t) defined on

_ Nx[0,1]
Mp = Av, 1) ~ (Bu,0),

We want a large open family which includes every known
non-ergodic example with one-dimensional center.

Definition. [ :M — M is an AB-system if it is

partially hyperbolic and leaf conjugate to an AB-prototype.

12



AB-prototype: fap(v, 1) = (Av, t) defined on

_ Nx[0,1]
Mp = Av, 1) ~ (Bu,0),

We want a large open family which includes every known
non-ergodic example with one-dimensional center.

Definition. [ :M — M is an AB-system if it is

partially hyperbolic and leaf conjugate to an AB-prototype.

That is, there is a foliation Wj‘i tangent to E jﬁ and a
homeomorphism /i : M — Mp such that

Le W]f = h(L)EW]fAB and fagh(L)=hf(L).

12



AB-prototype: fap(v, 1) = (Av, t) defined on

_ Nx[0,1]
Mp = Av, 1) ~ (Bu,0),

We want a large open family which includes every known
non-ergodic example with one-dimensional center.

Definition. [ :M — M is an AB-system if it is
partially hyperbolic and leaf conjugate to an AB-prototype.

That is, there is a foliation Wj‘i tangent to E jﬁ and a
homeomorphism /i : M — Mp such that

Le W]f = h(L)EW]fAB and fagh(L)=hf(L).

Leaf conjugacy is a technical but natural notion due to
Hirsch-Pugh-Shub.
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an iterate f" (n = 1) which lifts to an AB-system on a finite cover.

Question. Is every non-ergodic partially hyperbolic system with
one-dimensional center necessarily an infra-AB-system?

Open question, so far as I know.

Further, we can classify the ergodic properties of AB-systems and
infra-AB-systems completely.
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every partially hyperbolic system is an AB-system.

Theorem. Suppose f is a volume-preserving partially hyperbolic
skew product over a nilmanifold and dim E¢ = 1.

If f is not ergodic, then it is an infra-AB-system.

Theorem. Suppose [ is leaf conjugate to the time-one map of an
Anosov flow with dim E** = 1.

If f is not ergodic, then it is an AB-system.
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Then, one of the following occurs.
e f is accessible and stably ergodic.

e ¥ and E° are jointly integrable and f is topologically
conjugate to Mg — Mgp, (v, t) — (Av, t +0) for some 0.

eThere are n =1, a C! surjection p: M — S,
and an open subset U c S!, such that

oIf ze S\ U, then

p_l (z) is an f"-invariant submanifold tangent to
EY o E°.
If I is a connected component of U then

p~1(I) is an ergodic component of f™

and is homeomorphic to N x I.
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