Ergodicity and Classification of Partially Hyperbolic Systems Andy Hammerlindl UNSW and USyd

June 10, 2013

1

Tf-invariant splitting $TM = E^u \oplus E^c \oplus E^s$

 E^u expanding, E^s contracting, E^c dominated.

In this talk, all diffeomorphisms considered are

Tf-invariant splitting $TM = E^u \oplus E^c \oplus E^s$

 E^u expanding, E^s contracting, E^c dominated.

In this talk, all diffeomorphisms considered are

 C^2

Tf-invariant splitting $TM = E^u \oplus E^c \oplus E^s$

 E^u expanding, E^s contracting, E^c dominated.

In this talk, all diffeomorphisms considered are

 C^2

partially hyperbolic, and

Tf-invariant splitting $TM = E^u \oplus E^c \oplus E^s$

 E^u expanding, E^s contracting, E^c dominated.

In this talk, all diffeomorphisms considered are

C² partially hyperbolic, and preserve a smooth measure.

Tf-invariant splitting $TM = E^u \oplus E^c \oplus E^s$

 E^u expanding, E^s contracting, E^c dominated.

In this talk, all diffeomorphisms considered are

C² partially hyperbolic, and preserve a smooth measure.

Pugh-Shub Conjecture.

Tf-invariant splitting $TM = E^u \oplus E^c \oplus E^s$

 E^u expanding, E^s contracting, E^c dominated.

In this talk, all diffeomorphisms considered are

C² partially hyperbolic, and preserve a smooth measure.

Pugh-Shub Conjecture.

Stable ergodicity is open and dense.

Pugh-Shub Conjecture 1

Pugh-Shub Conjecture 1 Stable ergodicity is open-dense.

Pugh-Shub Conjecture 1 Stable ergodicity is open-dense.Pugh-Shub Conjecture 2Pugh-Shub Conjecture 3

Pugh-Shub Conjecture 1 Stable ergodicity is open-dense.
Pugh-Shub Conjecture 2 Accessibility is open-dense.
Pugh-Shub Conjecture 3

 $TM = E^u \oplus E^c \oplus E^s$

 $TM = E^u \oplus E^c \oplus E^s$ There are foliations tangent to E^u and E^s . Accessibility:

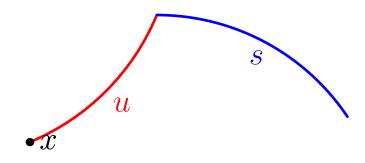
•*y*

 $\bullet\, \mathcal{X}$

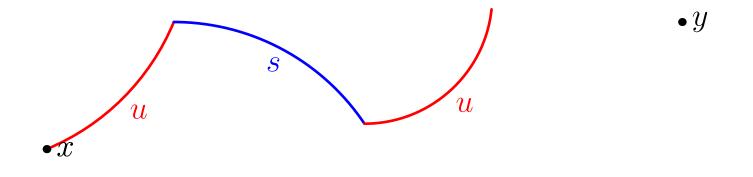
 $TM = E^u \oplus E^c \oplus E^s$ There are foliations tangent to E^u and E^s . Accessibility:

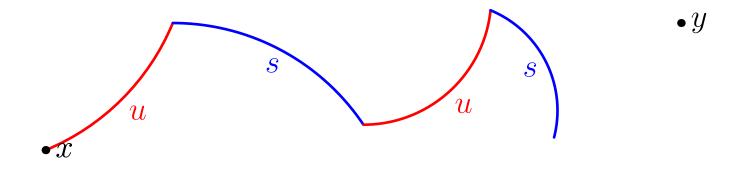
•*y*

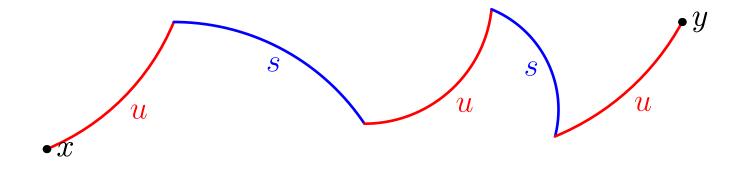
 $TM = E^u \oplus E^c \oplus E^s$ There are foliations tangent to E^u and E^s . Accessibility:



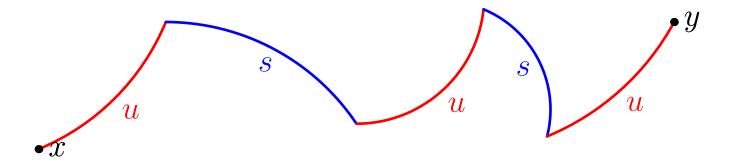
•*y*





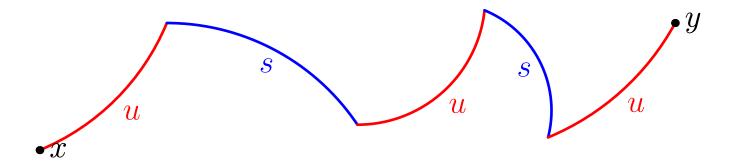


 $TM = E^u \oplus E^c \oplus E^s$ There are foliations tangent to E^u and E^s . Accessibility:



Conjectures are true when $\dim(E^c) = 1$

 $TM = E^u \oplus E^c \oplus E^s$ There are foliations tangent to E^u and E^s . Accessibility:



Conjectures are true when $\dim(E^c) = 1$

(Rodriguez-Hertz, Rodriguez-Hertz, Ures).

- •Accessibility is open-dense.
- •Accessibility implies ergodicity.

- •Accessibility is open-dense.
- •Accessibility implies ergodicity.

Conjecture (RHRHU). If *f* is **not** ergodic, then:

- •Accessibility is open-dense.
- •Accessibility implies ergodicity.

Conjecture (RHRHU). If *f* is **not** ergodic, then:

(1) the manifold *M* is one of three specific types

- •Accessibility is open-dense.
- •Accessibility implies ergodicity.

Conjecture (RHRHU). If *f* is **not** ergodic, then:

(1) the manifold *M* is one of three specific types

(all of which have solvable fundamental group).

- •Accessibility is open-dense.
- •Accessibility implies ergodicity.

Conjecture (RHRHU). If *f* is not ergodic, then:
(1) the manifold *M* is one of three specific types
(all of which have solvable fundamental group).
(2) there is a periodic torus *T* tangent to E^u ⊕ E^s.

•Accessibility is open-dense.

•Accessibility implies ergodicity.

Conjecture (RHRHU). If f is **not** ergodic, then: (1) the manifold M is one of three specific types (all of which have solvable fundamental group). (2) there is a periodic torus T tangent to $E^u \oplus E^s$.

They also showed that (2) implies (1).

- •Accessibility is open-dense.
- •Accessibility implies ergodicity.

Conjecture (RHRHU). If f is **not** ergodic, then: (1) the manifold M is one of three specific types (all of which have solvable fundamental group). (2) there is a periodic torus T tangent to $E^u \oplus E^s$.

They also showed that (2) implies (1).

Question. How does this relate to classification results?

There are four types of systems (H,Potrie):

There are four types of systems (H,Potrie):

• Derived-from-Anosov systems

There are four types of systems (H,Potrie):

- Derived-from-Anosov systems
- skew-products with non-trivial bundles

There are four types of systems (H,Potrie):

- Derived-from-Anosov systems
- skew-products with non-trivial bundles
- skew-products with trivial bundles

There are four types of systems (H,Potrie):

- Derived-from-Anosov systems
- skew-products with non-trivial bundles
- skew-products with trivial bundles
- "suspension-like" systems

There are four types of systems (H,Potrie):

- Derived-from-Anosov systems
- skew-products with non-trivial bundles
- skew-products with trivial bundles
- "suspension-like" systems
- non-dynamically coherent systems with attracting or repelling invariant tori

There are four types of systems (H,Potrie):

- Derived-from-Anosov systems
- skew-products with non-trivial bundles
- skew-products with trivial bundles
- "suspension-like" systems
- non-dynamically coherent systems with attracting or repelling invariant tori

Such non-dynamically coherent examples exist [RHRHU],

There are four types of systems (H,Potrie):

- Derived-from-Anosov systems
- skew-products with non-trivial bundles
- skew-products with trivial bundles
- "suspension-like" systems
- non-dynamically coherent systems with attracting or repelling invariant tori

Such non-dynamically coherent examples exist [RHRHU], but not in the conservative case.

There are four types of systems (H,Potrie):

- Derived-from-Anosov systems
- skew-products with non-trivial bundles
- skew-products with trivial bundles
- "suspension-like" systems
- non-dynamically coherent systems with attracting or repelling invariant tori

Such non-dynamically coherent examples exist [RHRHU], but not in the conservative case.

These are partially hyperbolic diffeomorphisms $f : \mathbb{T}^3 \to \mathbb{T}^3$

These are partially hyperbolic diffeomorphisms $f : \mathbb{T}^3 \to \mathbb{T}^3$ where *f* is homotopic to a linear Anosov map $A : \mathbb{T}^3 \to \mathbb{T}^3$.

These are partially hyperbolic diffeomorphisms $f : \mathbb{T}^3 \to \mathbb{T}^3$ where *f* is homotopic to a linear Anosov map $A : \mathbb{T}^3 \to \mathbb{T}^3$.

As the action f_* on $\pi_1(\mathbb{T}^3) \cong \mathbb{Z}^3$ is hyperbolic there cannot be a periodic 2-torus tangent to $E^u \oplus E^s$.

These are partially hyperbolic diffeomorphisms $f : \mathbb{T}^3 \to \mathbb{T}^3$ where *f* is homotopic to a linear Anosov map $A : \mathbb{T}^3 \to \mathbb{T}^3$.

As the action f_* on $\pi_1(\mathbb{T}^3) \cong \mathbb{Z}^3$ is hyperbolic there cannot be a periodic 2-torus tangent to $E^u \oplus E^s$.

Conjecture. All such systems are ergodic.

These are partially hyperbolic diffeomorphisms $f : \mathbb{T}^3 \to \mathbb{T}^3$ where *f* is homotopic to a linear Anosov map $A : \mathbb{T}^3 \to \mathbb{T}^3$.

As the action f_* on $\pi_1(\mathbb{T}^3) \cong \mathbb{Z}^3$ is hyperbolic there cannot be a periodic 2-torus tangent to $E^u \oplus E^s$.

Conjecture. All such systems are ergodic.

Theorem (H,Ures). If *f* is homotopic to an Anosov map *A*

These are partially hyperbolic diffeomorphisms $f : \mathbb{T}^3 \to \mathbb{T}^3$ where *f* is homotopic to a linear Anosov map $A : \mathbb{T}^3 \to \mathbb{T}^3$.

As the action f_* on $\pi_1(\mathbb{T}^3) \cong \mathbb{Z}^3$ is hyperbolic there cannot be a periodic 2-torus tangent to $E^u \oplus E^s$.

Conjecture. All such systems are ergodic.

Theorem (H,Ures). If f is homotopic to an Anosov map A and f is **not** accessible,

These are partially hyperbolic diffeomorphisms $f : \mathbb{T}^3 \to \mathbb{T}^3$ where *f* is homotopic to a linear Anosov map $A : \mathbb{T}^3 \to \mathbb{T}^3$.

As the action f_* on $\pi_1(\mathbb{T}^3) \cong \mathbb{Z}^3$ is hyperbolic there cannot be a periodic 2-torus tangent to $E^u \oplus E^s$.

Conjecture. All such systems are ergodic.

Theorem (H,Ures). If f is homotopic to an Anosov map A and f is **not** accessible,

then *f* is topologically conjugate to *A*.

M is a 3-manifold with a (continuous) bundle map $p: M \to \mathbb{T}^2$,

M is a 3-manifold with a (continuous) bundle map $p: M \to \mathbb{T}^2$, the fibers of *p* are compact center leaves, and

M is a 3-manifold with a (continuous) bundle map $p: M \to \mathbb{T}^2$, the fibers of *p* are compact center leaves, and there is a Anosov map $A: \mathbb{T}^2 \to \mathbb{T}^2$ such that

 $p \circ f = A \circ p.$

M is a 3-manifold with a (continuous) bundle map $p: M \to \mathbb{T}^2$, the fibers of *p* are compact center leaves, and there is a Anosov map $A: \mathbb{T}^2 \to \mathbb{T}^2$ such that

$$p \circ f = A \circ p.$$

Example: $f \text{ on } \mathbb{T}^3 = \mathbb{T}^2 \times \mathbb{S}^1$, $f(v, t) = (Av, t + \theta)$.

M is a 3-manifold with a (continuous) bundle map $p: M \to \mathbb{T}^2$, the fibers of *p* are compact center leaves, and there is a Anosov map $A: \mathbb{T}^2 \to \mathbb{T}^2$ such that

 $p \circ f = A \circ p.$

Example: f on $\mathbb{T}^3 = \mathbb{T}^2 \times \mathbb{S}^1$, $f(v, t) = (Av, t + \theta)$. Ergodic if and only if θ defines an irrational rotation.

M is a 3-manifold with a (continuous) bundle map $p: M \to \mathbb{T}^2$, the fibers of *p* are compact center leaves, and there is a Anosov map $A: \mathbb{T}^2 \to \mathbb{T}^2$ such that

 $p \circ f = A \circ p.$

Example: f on $\mathbb{T}^3 = \mathbb{T}^2 \times \mathbb{S}^1$, $f(v, t) = (Av, t + \theta)$. Ergodic if and only if θ defines an irrational rotation.

The bundle is trivial if and only if *M* is the 3-torus.

M is a 3-manifold with a (continuous) bundle map $p: M \to \mathbb{T}^2$, the fibers of *p* are compact center leaves, and there is a Anosov map $A: \mathbb{T}^2 \to \mathbb{T}^2$ such that

 $p \circ f = A \circ p.$

Example: f on $\mathbb{T}^3 = \mathbb{T}^2 \times \mathbb{S}^1$, $f(v, t) = (Av, t + \theta)$. Ergodic if and only if θ defines an irrational rotation.

The bundle is trivial if and only if *M* is the 3-torus.

Theorem (RHRHU). If f is defined on a non-trivial bundle,

M is a 3-manifold with a (continuous) bundle map $p: M \to \mathbb{T}^2$, the fibers of *p* are compact center leaves, and there is a Anosov map $A: \mathbb{T}^2 \to \mathbb{T}^2$ such that

 $p \circ f = A \circ p.$

Example: f on $\mathbb{T}^3 = \mathbb{T}^2 \times \mathbb{S}^1$, $f(v, t) = (Av, t + \theta)$. Ergodic if and only if θ defines an irrational rotation.

The bundle is trivial if and only if *M* is the 3-torus.

Theorem (RHRHU). If f is defined on a non-trivial bundle, then f is accessible and ergodic.

There are four types of systems (H,Potrie):

- Derived-from-Anosov systems
- skew-products with non-trivial bundles
- skew-products with trivial bundles
- "suspension-like" systems

If $B : \mathbb{T}^2 \to \mathbb{T}^2$ is a diffeomorphism, it defines a manifold M_B by

$$\mathbb{R}^2 \times \mathbb{R} / (Bv, t) \sim (v, t+1),$$

If $B : \mathbb{T}^2 \to \mathbb{T}^2$ is a diffeomorphism, it defines a manifold M_B by

$$\mathbb{R}^2 \times \mathbb{R} / (Bv, t) \sim (v, t+1),$$

and a suspension flow: $\phi_t(v, s) = (v, s + t)$.

If $B : \mathbb{T}^2 \to \mathbb{T}^2$ is a diffeomorphism, it defines a manifold M_B by

$$\mathbb{R}^2 \times \mathbb{R} / (Bv, t) \sim (v, t+1),$$

and a suspension flow: $\phi_t(v, s) = (v, s + t)$.

If *B* is an Anosov diffeomorphism, ϕ is an Anosov flow.

If $B : \mathbb{T}^2 \to \mathbb{T}^2$ is a diffeomorphism, it defines a manifold M_B by

$$\mathbb{R}^2 \times \mathbb{R} / (Bv, t) \sim (v, t+1),$$

and a suspension flow: $\phi_t(v, s) = (v, s + t)$.

If *B* is an Anosov diffeomorphism, ϕ is an Anosov flow. Then the diffeo ϕ_t is ergodic if and only if *t* is irrational.

If $B : \mathbb{T}^2 \to \mathbb{T}^2$ is a diffeomorphism, it defines a manifold M_B by

$$\mathbb{R}^2 \times \mathbb{R} / (Bv, t) \sim (v, t+1),$$

and a suspension flow: $\phi_t(v, s) = (v, s + t)$.

If *B* is an Anosov diffeomorphism, ϕ is an Anosov flow. Then the diffeo ϕ_t is ergodic if and only if *t* is irrational.

Theorem (H, Potrie).

If $B : \mathbb{T}^2 \to \mathbb{T}^2$ is a diffeomorphism, it defines a manifold M_B by

$$\mathbb{R}^2 \times \mathbb{R} / (Bv, t) \sim (v, t+1),$$

and a suspension flow: $\phi_t(v, s) = (v, s + t)$.

If *B* is an Anosov diffeomorphism, ϕ is an Anosov flow. Then the diffeo ϕ_t is ergodic if and only if *t* is irrational.

Theorem (H, Potrie).

If $f: M_B \rightarrow M_B$ is partially hyperbolic, and *B* is Anosov,

If $B : \mathbb{T}^2 \to \mathbb{T}^2$ is a diffeomorphism, it defines a manifold M_B by

$$\mathbb{R}^2 \times \mathbb{R} / (Bv, t) \sim (v, t+1),$$

and a suspension flow: $\phi_t(v, s) = (v, s + t)$.

If *B* is an Anosov diffeomorphism, ϕ is an Anosov flow. Then the diffeo ϕ_t is ergodic if and only if *t* is irrational.

Theorem (H, Potrie).

If $f: M_B \to M_B$ is partially hyperbolic, and *B* is Anosov, the center foliation of *f* is equivalent to the orbits of ϕ

If $B : \mathbb{T}^2 \to \mathbb{T}^2$ is a diffeomorphism, it defines a manifold M_B by

$$\mathbb{R}^2 \times \mathbb{R} / (Bv, t) \sim (v, t+1),$$

and a suspension flow: $\phi_t(v, s) = (v, s + t)$.

If *B* is an Anosov diffeomorphism, ϕ is an Anosov flow. Then the diffeo ϕ_t is ergodic if and only if *t* is irrational.

Theorem (H, Potrie).

If $f: M_B \to M_B$ is partially hyperbolic, and *B* is Anosov, the center foliation of *f* is equivalent to the orbits of ϕ and there is *n* such that f^n fixes every center leaf.

• *f* is accessible and stably ergodic.

- *f* is accessible and stably ergodic.
- *f* is topologically conjugate to an affine map.

- *f* is accessible and stably ergodic.
- *f* is topologically conjugate to an affine map.
- There is $n \ge 1$, a continuous map $p: M \to \mathbb{S}^1$,

and a closed subset $K \subset \mathbb{S}^1$, such that

- *f* is accessible and stably ergodic.
- *f* is topologically conjugate to an affine map.
- There is $n \ge 1$, a continuous map $p: M \to \mathbb{S}^1$,

and a closed subset $K \subset \mathbb{S}^1$, such that

• If $t \in K$, then

 $p^{-1}(t)$ is an f^n -invariant torus tangent to $E^u \oplus E^s$

- *f* is accessible and stably ergodic.
- *f* is topologically conjugate to an affine map.
- There is $n \ge 1$, a continuous map $p: M \to \mathbb{S}^1$,

and a closed subset $K \subset \mathbb{S}^1$, such that

• If $t \in K$, then

 $p^{-1}(t)$ is an f^n -invariant torus tangent to $E^u \oplus E^s$

• If *U* is a connected component of $\mathbb{S}^1 \setminus K$, then

 $p^{-1}(U)$ is an ergodic component of f^n

and is homeomorphic to $\mathbb{T}^2 \times U$.