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Conjectures are true when dim(E c) = 1

(Rodriguez-Hertz, Rodriguez-Hertz, Ures).
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From now on, assume dim(E u) = dim(E c) = dim(E s) = 1.

•Accessibility is open-dense.

•Accessibility implies ergodicity.

Conjecture (RHRHU). If f is not ergodic, then:

(1) the manifold M is one of three specific types

(all of which have solvable fundamental group).

(2) there is a periodic torus T tangent to E u
⊕E s.

They also showed that (2) implies (1).

Question. How does this relate to classification results?
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3.

As the action f∗ on π1(T3) ∼=Z
3 is hyperbolic

there cannot be a periodic 2-torus tangent to E u
⊕E s.

Conjecture. All such systems are ergodic.

Theorem (H,Ures). If f is homotopic to an Anosov map A

and f is not accessible,

then f is topologically conjugate to A.
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2 is a diffeomorphism, it defines a manifold MB by

R
2
×R

(B v, t )∼ (v, t +1),

and a suspension flow: φt (v, s) = (v, s + t ).

If B is an Anosov diffeomorphism, φ is an Anosov flow.

Then the diffeo φt is ergodic if and only if t is irrational.

Theorem (H, Potrie).

If f : MB → MB is partially hyperbolic, and B is Anosov,

the center foliation of f is equivalent to the orbits of φ

and there is n such that f n fixes every center leaf.
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• f is topologically conjugate to an affine map.

•There is n ≥ 1, a continuous map p : M →S
1,

and a closed subset K ⊂S
1, such that

•If t ∈ K , then

p−1(t ) is an f n-invariant torus tangent to E u
⊕E s

•If U is a connected component of S1 \ K , then

p−1(U ) is an ergodic component of f n

and is homeomorphic to T
2
×U .
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