Infinite Designs: The Interplay Between Results in the Finite and Infinite Case

Bridget S Webb
The Open University

5-9 December 2011 / 35ACCMCC Monash
1. **Introduction**
 - Examples
 - Definition

2. **Some Results**
 - Finite Type Concepts
 - Infinite Type Concepts
Definition

t-(v, k, λ) design

A (FINITE) *t-(v, k, λ)* design is a
- v-set of points *V*
- with a collection *B* of *k*-subsets called blocks

such that
- every *t*-subset of points is contained in precisely *λ* blocks

A Steiner system is a *t-(v, k, 1)* design
A 2-(v, k, 1) design is a linear space with constant line length
This is a $2-(2^\aleph_0, 2^\aleph_0, 1)$ design
Euclidean Disk

Another $2-(2^\aleph_0, 2^\aleph_0, 1)$ design
Strambach’s Linear Space

- All lines through \((0, 0)\)
- plus all the images of
 \[y = \frac{1}{x} \quad (x > 0) \]
 under \(SL_2(\mathbb{R})\).

Also a \(2-(2^{\aleph_0}, 2^{\aleph_0}, 1)\) design
(Strambach 1968)
Points: \mathbb{Q}, $+\infty$, $-\infty$

Triples: Let

$$f : \{ r \in \mathbb{Q} : 1/2 \leq |r| < 1 \} \mapsto \{-1, 1\}$$

- (x, y, z) where $x + y + z = 0$ and x, y, z unequal
- $((-2)^s r, (-2)^{s+1} r, (-1)^s f(r) \infty)$
- $(0, +\infty, -\infty)$

A $2-(\aleph_0, 3, 1)$ design

(Grannell, Griggs, Phelan 1987)
Given t and k with $t < k$

Start with a partial Steiner system
 - t points lie in at most 1 block
 - any block contains at most k points

Adjoin alternatively
 - new blocks incident with those t-tuples of points not already in a block
 - new points so each existing block has k points

After countably many steps we have a Steiner system
Triangular Lattice

A $2-(\mathbb{N}_0, 3, 2)$ design
A design with \(\nu > b \)

Points: unit circle
Blocks: indexed by
\[S = \{ e^{2\pi ip/q} : p, q \in \mathbb{N} \} \]

For each \(s \in S \)
- \(B_{1s} \) blue block
- \(B_{2s} \) purple block

This is a \(2-(2^{\aleph_0}, 2^{\aleph_0}, \aleph_0) \) design with \(b = r = \lambda = \aleph_0 \)

More correctly, it is a \(2-(\aleph_0, \aleph_0, \Lambda) \) design

(Cameron, BSW 2002)
General Definition

t-(v, k, Λ) design

A ν-set V of points and a collection of k-subsets B called blocks.

- $|V \setminus B| = \bar{k}$, for all $B \in B$, where $k + \bar{k} = v$

- For $0 \leq i + j \leq t$, the cardinality $\lambda_{i,j}$ of the set of blocks containing all of i points $x_1, \ldots x_i$ and none of j points $y_1, \ldots y_j$, depends only on i and j

- no block contains another block

$\Lambda = (\lambda_{i,j})$ is a $(t + 1) \times (t + 1)$ matrix

$$\lambda_{t,0} = \lambda, \quad \lambda_{1,0} = r \text{ and } \lambda_{0,0} = b$$

$0 < t \leq k \leq v$ ensures non-degeneracy

(Cameron, BSW 2002)
Finite t and λ

When t and λ are both FINITE:

- $\lambda_{t,0} = \lambda$
- $\lambda_{i,j} = v$, for all $i < t$, $0 \leq i + j \leq t$

We can write $t-(v, k, \lambda)$, as in the finite, case without ambiguity.

These designs are generally well behaved:

- Fisher’s Inequality $b \geq v$ holds since $v = b$

From now on t and λ will be assumed to be FINITE.
In contrast to the finite case, the existence problem for INFINITE t-designs is incomparably simpler — basically, they exist!

Existence with $t \geq 2$

k **FINITE**

- Cyclic $t-(\aleph_0, k, \lambda)$ (Köhler 1977)
- Large sets $t-(\infty, t + 1, 1)$ (Grannell, Griggs, Phelan 1991)
- Large sets $t-(\infty, k, 1)$ (Cameron 1995)
- t-fold transitive $t-(\aleph_0, t + 1, 1)$ (Cameron 1984)
- Uncountable family of rigid 2-$t-(\aleph_0, 3, 1)$ (Franek 1994)

k **not necessarily** **FINITE**

- Any $t-(\infty, k, 1)$ can be extended (Beutelspacher, Cameron 1994)
Block's Lemma (1967)

G any automorphism group of a (FINITE) t-(v, k, λ) design with m orbits on the v points and n on the b blocks

$$m \leq n \leq m + b - v$$

There is no infinite analogue of Block's Lemma

Examples of linear spaces: k INFINITE

$n = 1$ and $m = 2$
(Valette 1967)

$n = 2$ and $m = 3$
(Prazmowski 1989)
Steiner Triple Systems

A 2-$(v, 3, 1)$ design has at least as many block orbits as point orbits ($n \geq m$) (Cameron 1994)

2-(∞, k, λ) Designs

\[
n \geq \frac{m + \binom{m}{2}}{\binom{k}{2}}
\]

so $n \geq m$ if $n \geq k^2 - k$ (BSW 1997)

2-$(v, 3, \lambda)$ Designs

A 2-$(v, 3, \lambda)$ design has at least as many block orbits as point orbits ($n \geq m$) (BSW 1997)
Sketch Proofs

Let G be an automorphism group of a $2-(\infty, k, \lambda)$ design

Colour the m point orbits with m colours:

- λ blocks between any pair of points
- colours of blocks are G-invariant

only finitely many blocks through p and points of Q
but infinitely many through p with points of $P \setminus p$ and R
so infinite orbits with p' and r but not q

so to **minimise** n we can consider only infinite point orbits
Sketch Proofs

- Crude bound: \[n \geq m + \binom{m}{2} \cdot \binom{k}{2} \]

- So \(n \geq m \) holds if \(n \geq k^2 - k \)

- \(k = 3 \)

A 2-\((v, 3, \lambda)\) design has at least as many block orbits as point orbits
Designs with more point orbits than block orbits

Model Theoretic construction of Hrushovski (1993) used to construct
- \(2-(\aleph_0, 4, 14)\) design with \(n = 1\) and \(m = 2\) (Evans 1994?)
- \(2-(\aleph_0, k, k + 1)\) designs with \(k \geq 6\), \(n = 1\) and \(m = 2\) (Camina 1999)
- \(2-(\aleph_0, k, \lambda)\) designs with \(k \geq 4\), \(n = 1\) and \(m \leq k/2\) for some \(\lambda\) (BSW 1999)
- in particular a block transitive \(2-(\aleph_0, 4, 6)\) design with two point orbits
- \(2-(\aleph_0, 4, \lambda)\) designs with \(n \leq m\) (where \(n\) is feasible) for some \(\lambda\) (BSW 1999)
- \(t-(\aleph_0, k, 1)\) designs with \(k > t \geq 2\), \(n = 1\) and \(m \leq k/t\) (Evans 2004)
- in particular a block transitive \(2-(\aleph_0, 4, 1)\) design with two point orbits
Existential Closure Property

Block Intersection Graph of a Design \mathcal{D}

$G_\mathcal{D}$ has vertex set the blocks of \mathcal{D}
- two vertices are joined if the two blocks share at least one point

n-Existential Property of Graphs

A graph G is said to be n-existentially closed, or n-e.c., if
- for each pair (X, Y) of disjoint subsets of the vertex set $V(G)$ with $|X| + |Y| \leq n$
- there exists a vertex in $V(G) \setminus (X \cup Y)$ which is adjacent to each vertex in X but to no vertex in Y

(Erdős, Rényi 1963)
Existential closure number $\Xi(G)$, is the largest n for which G is n-e.c. (if it exists)

FINITE Steiner Triple Systems

- a $2-(v, 3, 1)$ design is 2-e.c. iff $v \geq 13$
- if a $2-(v, 3, 1)$ design is 3-e.c. then $v = 19$ or 21
 (Forbes, Grannell, Griggs 2005)

In fact, only 2 of the STS(19) are 3-e.c. and ‘probably’ none of the STS(21)

FINITE 2-(v, k, λ) Designs

- $\Xi(G_D) \leq k$, if $\lambda = 1$
- $\Xi(G_D) \leq \left\lfloor \frac{k + 1}{2} \right\rfloor$, if $\lambda \geq 2$
 (McKay, Pike 2007)
Existential Closure: INFINITE Designs

k FINITE

- \(\Xi(\mathcal{G}_D) = \min \{ t, \left\lfloor \frac{k-1}{t-1} \right\rfloor + 1 \} \) if \(\lambda = 1 \) and \(2 \leq t \leq k \)
- \(2 \leq \Xi(\mathcal{G}_D) \leq \min \{ t, \left\lceil \frac{k}{t} \right\rceil \} \) if \(\lambda \geq 2 \) and \(2 \leq t \leq k - 1 \)

(Pike, Sanaei 2011)

k INFINITE, \(k < v \)

- \(\Xi(\mathcal{G}_D) = t \), if \(t = 1 \) or \(\lambda = 1 \), but \((t, \lambda) \neq (1, 1) \)
- \(2 \leq \Xi(\mathcal{G}_D) \leq t \), if \(t \geq 2 \) and \(\lambda \geq 2 \)

(Horsley, Pike, Sanaei 2011)

k INFINITE, \(k = v \)

- \(t \) and \(\lambda \) positive integers such that \((t, \lambda) \neq (1, 1) \)
- there exists a \(t-(\infty, \infty, \lambda) \) design with \(\Xi(\mathcal{G}_D) = n \)
- there exists a \(t-(\infty, \infty, \lambda) \) design which is \(n\)-e.c.

for each non-neg integer \(n \)

(Horsley, Pike, Sanaei 2011)
A resolution class (parallel class) in a design is a set of blocks that partition the point set.

A design is resolvable if the block set can be partitioned into resolution classes.

The Euclidean Plane: $2-(2^\aleph_0, 2^\aleph_0, 1)$ is resolvable.

The Projective Plane: $2-(2^\aleph_0, 2^\aleph_0, 1)$ is NOT resolvable.

The Triangular Lattice: $2-(\aleph_0, 3, 2)$ design is resolvable.
Existence of Resolvable INFINITE Designs

$k < v$
- any $t-(\infty, k, \lambda)$ design is resolvable with v resolution classes of size v
 (Danziger, Horsley, BSW 2012?)

$k = v$
- There exists a $2-(\infty, \infty, 1)$ design with $\Xi(G_D) = 0$ iff there exists a resolvable $2-(\infty, \infty, 1)$ design
- A resolvable $t-(\infty, \infty, 1)$ design has v resolution classes of v blocks
 (Horsley, Pike, Sanaei 2011)
- A resolvable $t-(\infty, \infty, \lambda)$ design has v resolution classes of v blocks and up to $\lambda - 1$ short resolution classes with less than v blocks
 (Danziger, Horsley, BSW 2012?)

There exists a $2-(\aleph_0, \aleph_0, 2)$ design with \aleph_0 resolution classes of size \aleph_0 and one resolution class of 4 blocks
Sparse, Uniform and Perfect Triple Systems

An r-sparse STS contains no $(n, n + 2)$-configurations for $4 \leq n \leq r$

A uniform STS has all its cycle graphs $G_{a,b}$ isomorphic

A perfect STS has each cycle graph $G_{a,b}$ a single cycle of length $v - 3$

FINITE Steiner Triple Systems

- Infinitely many 4, 5 and 6-sparse systems but no non-trivial r-sparse systems known for $r \geq 7$
- Only finitely many uniform systems known, apart from the Affine, Projective, Hall and Netto triple systems
- Only finitely many perfect systems known

Countably INFINITE Steiner triple Systems

2^{\aleph_0} nonisomorphic CISTs that are

- r-sparse for all $r \geq 4$
- uniform

(Chicot, Grannell, Griggs, BSW 2009)
Universality and Homogeneity

A countable structure M is

- **universal** with respect to a class of structures C if M embeds every member of C
- **homogeneous** if every isomorphism between finite substructures can be extended to an automorphism of M

There is no universal countable Steiner Triple System (Franek 1994)

There is a unique (up to isomorphism) universal homogeneous **locally finite** Steiner Triple System, U (Cameron 2007?)

NOTE: In work on linear spaces, homogeneous as defined here is called ultrahomogeneous

The classification of ultrahomogeneous linear spaces (Devillers, Doyen 1998) does *not* extend to Steiner Systems
The Fraïssé Limit

Fraïssé’s Theorem

Suppose C is a class of finitely generated structures such that
- C is closed under isomorphisms
- C contains only countably many members up to isomorphism
- C has the Hereditary Property, HP
- C has the Joint Embedding Property, JEP
- C has the Amalgamation Property, AP

Then there is a countable homogeneous structure S
- which is universal for C
- unique up to isomorphisms

We call S the Fraïssé limit of C (Fraïssé 1954, Jónsson 1956)

Such a class is called an amalgamation class
Steiner Triple Systems

Regard an STS as a Steiner quasigroup

\[a \circ b = c \text{ iff } \{a, b, c\} \text{ is a block } \quad (\text{and } x \circ x = x) \]

Then substructures (in the sense of model theory) are subsystems

The class of all finite STS is an amalgamation class — the Fraïssé limit is the universal homogeneous locally finite STS, \(U \)

The class of all finitely generated STS is NOT an amalgamation class

The class of all affine triple systems is an amalgamation class — the Fraïssé limit is the countably infinite affine triple system, \(A \)

The class of all projective triple systems is an amalgamation class — the Fraïssé limit is the countably infinite projective triple system, \(P \)
A structure is \aleph_0-categorical if its automorphism group is oligomorphic. That is, it has finitely many orbits on n-tuples for each positive integer n.

- U is not \aleph_0-categorical.
- Λ and \mathcal{P} are both \aleph_0-categorical.

Let S and T be two \aleph_0-categorical STSs:

- The direct product $S \times T$ is \aleph_0-categorical — the direct product of oligomorphic groups is oligomorphic (Cameron, Gerwurz, Merola 2008).
- $d[S]$, the result of applying the doubling construction to S, is \aleph_0-categorical (Barbina, Chicot, BSW 201?).
In general countably infinite Steiner systems are quite well behaved

In general infinite designs exist

Other \textsc{finite} type concepts can be investigated for \textsc{infinite} designs

Work on \textsc{infinite} designs can lead to interesting new problems in the \textsc{finite} world

Keep t and λ \textsc{finite} to preserve your sanity!