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A defining set for a design is a subset of the design which
determines it uniquely.

A Latin square of order n is an n×n array with each symbol
from a set of size n once per row and once per column.

Example 1. The following partially filled-in Latin square has
precisely one completion to a Latin square of order 6.

0 1 2 3
1 2
2

3
3 4

→

0 1 2 3 4 5
1 2 3 4 5 0
2 3 4 5 0 1
3 4 5 0 1 2
4 5 0 1 2 3
5 0 1 2 3 4



A defining set for a design is a subset of the design which
determines it uniquely.

A Latin square of order n is an n×n array with each symbol
from a set of size n once per row and once per column.

Example 1. The following partially filled-in Latin square has
precisely one completion to a Latin square of order 6.

0 1 2 3
1 2
2

3
3 4

→

0 1 2 3 4 5
1 2 3 4 5 0
2 3 4 5 0 1
3 4 5 0 1 2
4 5 0 1 2 3
5 0 1 2 3 4



Example 2. The following is a defining set for a (0,1)-matrix

with constant row and column 3.

0 0 0 1
0 0
0

1
1 1

→

0 0 0 1 1 1
0 0 1 1 1 0
0 1 1 1 1 0
1 1 1 0 0 0
1 1 0 0 0 1
1 0 0 0 1 1



Example 2. The following is a defining set for a (0,1)-matrix

with constant row and column 3.

0 0 0 1
0 0
0

1
1 1

→

0 0 0 1 1 1
0 0 1 1 1 0
0 1 1 1 0 0
1 1 1 0 0 0
1 1 0 0 0 1
1 0 0 0 1 1



A frequency square F (n;λ1, λ2, . . . , λα) is an n×n array with

symbol i occuring λi times in each row and column.

Example 3. The following is a defining set for F (6; 2,2,2).

(Fitina, Seberry, Sarvate, 1999)

0 1 1 2
1 1
1

2
2 2

→

0 1 1 2 2 0
1 1 2 2 0 0
1 2 2 0 0 1
2 2 0 0 1 1
2 0 0 1 1 2
0 0 1 1 2 2



A frequency square F (n;λ1, λ2, . . . , λα) is an n×n array with

symbol i occuring λi times in each row and column.

Example 3. The following is a defining set for F (6; 2,2,2).

(Fitina, Seberry, Sarvate, 1999)

0 1 1 2
1 1
1

2
2 2

→

0 1 1 2 2 0
1 1 2 2 0 0
1 2 2 0 0 1
2 2 0 0 1 1
2 0 0 1 1 2
0 0 1 1 2 2



A critical set for a design is a minimal defining set. That is,

a defining set is a critical set if the removal of any element

results in more than one completion. Each of the above

defining sets are also critical sets.



0 1 2 3
1 2
2

3
3 4

↗

0 1 2 3 4 5
1 2 3 4 5 0
2 3 4 5 0 1
3 4 5 0 1 2
4 5 0 1 2 3
5 0 1 2 3 4

↘

0 1 5 3 4 2
1 2 3 4 5 0
2 3 4 5 0 1
3 4 2 0 1 5
4 5 0 1 2 3
5 0 1 2 3 4



0 0 0 1
0 0
0

1
1 1

↗

0 0 0 1 1 1
0 0 1 1 1 0
0 1 1 1 0 0
1 1 1 0 0 0
1 1 0 0 0 1
1 0 0 0 1 1

↘

0 0 1 1 1 0
0 0 1 1 1 0
0 1 1 1 0 0
1 1 0 0 0 1
1 1 0 0 0 1
1 0 0 0 1 1



0 1 1 2
1 1
1

2
2 2

↗

0 1 1 2 2 0
1 1 2 2 0 0
1 2 2 0 0 1
2 2 0 0 1 1
2 0 0 1 1 2
0 0 1 1 2 2

↘

0 1 0 2 2 1
1 1 2 2 0 0
1 2 2 0 0 1
2 2 1 0 1 0
2 0 0 1 1 2
0 0 1 1 2 2



Trades.

A trade in a design D is a subset T ⊆ D for which there exists

a disjoint mate T ′ such that T ′ ∩ T = ∅ and (D \ T ) ∪ T ′ is a

design with the same paramaters (or type) as D. Together

(T, T ′) is called a bitrade.

If the design is some kind of array, T and T ′ occupy the same

set of cells and each row and column contains the same set

of entries, but in a different order.



Observations:

1. D ⊂ L is a defining set for a design L if and only if for

every trade T ⊆ L, D ∩ T 6= ∅;

2. D is a critical set for a design L if and only if it is:

(a) a defining set for L and

(b) for each element e ∈ D there is a trade T ⊂ L such

that T ∩D = {e}.



Given a design D, we define sds(D) to be the size of the

smallest defining set in D and

µ(= µ(D)) =
sds(D)

|D|
.

For each of the above designs, µ = 1/4.



The following Latin squares have µ = 5/16, µ = 6/25 and

µ = 7/25 (Adams, Khodkar, 2001), respectively.

0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0

0 1 2 3 4
1 2 3 4 0
2 3 4 0 1
3 4 0 1 2
4 0 1 2 3

0 1 2 3 4
1 0 3 4 2
2 3 4 0 1
3 4 1 2 0
4 2 0 1 3

1 2 3
1 0 2
2 3 0
3 1 0

3 1 2
2 1 0
3 0 2
1 0 3



The following Latin squares have µ = 5/16, µ = 6/25 and

µ = 7/25 (Adams, Khodkar, 2001), respectively.

0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0

0 1 2 3 4
1 2 3 4 0
2 3 4 0 1
3 4 0 1 2
4 0 1 2 3

0 1 2 3 4
1 0 3 4 2
2 3 4 0 1
3 4 1 2 0
4 2 0 1 3

1 2 3
1 0 2
2 3 0
3 1 0

3 1 2
2 1 0
3 0 2
1 0 3



For a design D of some order n and “type” T

(e.g. T ∈ {“Latin square”,”frequency square”}),

µ(T, n) := min{µ(D) | D is a design of type T and order n}.

We also define the surety of type T to be the following limit

(if it exists):

lim
n→∞µ(T, n).



Surety is a potentially interesting measure because:

• Surety is an indication of both the storability and the

security of a design.

• Algebraic objects typically have surety 0.

• Purely combinatorial objects typically have surety 1.

• Designs are “interesting” as they often have non-trivial

surety (strictly between 0 and 1).



Surety (or an equivalent concept) has been considered for

various designs:

• member defining sets for Steiner designs (Gray and Ram-

say, 1999),

• projective planes (Gray, Hamilton, O’Keefe (1997)),

• Hadamard designs (Seberry (1992), Sarvate and Seberry

(1994)).



Let T (F ) be the type n×n frequency square, with no symbol

occuring more than n/2 times in each row/column.

The Conjecture.

µ(T (F ), n) =

{
1/4 if n is even;
bn2/4c/n2 if n is odd.

If The Conjecture is true, the surety of type T (F ) is equal

to 1/4.



Let scs(n) be the size of the smallest critical set in any Latin

square of order n.

Sub-conjecture. For each integer n ≥ 1, scs(n) = bn2/4c.

This conjecture is true for

• n ≤ 5: Curran and van Rees (1978)

• n = 6,7: Adams and Kohdkar (2001)

• n = 8: Bean (2005)



Best known upper and lower bounds for general n:

For each n ≥ 1, scs(n) ≤ bn2/4c. (Cooper, Donovan, Se-

berry (1991,1996)).

On the other hand, for all n ≥ 1, scs(n) ≥ nb(logn)1/3/2c
(Cavenagh, 2007).



Next consider a 2m×2m (0,1)-matrix with constant row and
column sum m. (Equivalently, a frequency square F (2m;m,m).)

Theorem. (Fitina, Seberry, Sarvate, 1999)

µ(F (2m;m,m)) ≤ 1/4.

Theorem. (Cavenagh, 2011)

µ(F (2m;m,m)) = 1/4.

Hence the surety of frequency squares of the form F (2m;m,m)
is 1/4.

Why is The Conjecture tractible for (0,1)-matrices, yet un-
verified for Latin squares?



Trades in (0,1)-matrices.

Here we consider a (0,1)-matrix with fixed row and column
sums. Since only two symbols are allowed, a trade T in a
(0,1)-matrix has a unique disjoint mate T ′.

0 1 1 0
1 0 0 1
1 0

0 1
0 1 1 0

T

1 0 0 1
0 1 1 0
0 1

1 0
1 0 0 1

T ′

Moreover, each row and column must have the same number
of 0’s and 1’s.



Trades in Latin squares.

A trade in a Latin square may have more than one disjoint

mate:

0 1 2 3
4 5 2 3
2 0

3 1
3 2 5 4

T

3 2 0 1
2 3 5 4
0 2

1 3
4 5 2 3

T ′

2 3 0 1
3 2 5 4
0 2

1 3
4 5 2 3

T ′



Lemma.

Let M be a partially filled-in (0,1)-matrix such that each

row and column of M has at least one 0 and at least one 1.

Then M contains a trade.



Theorem. Any trade in a (0,1)-matrix can be partitioned

into disjoint minimal trades (which are alternating 0 − 1-

cycles):

0 1 1 0
1 0 0 1
1 0

0 1
0 1 1 0

T

1 0 0 1
0 1 1 0
0 1

1 0
1 0 0 1

T ′



Lemma. Suppose D is a defining set for a (0,1)-matrix M

and D ⊂M . Then M \D must have either a row or column

containing only 0’s or only 1’s.

Consequence: Completing defining sets for (0,1)-matrices

is easy (can be done in polynomial time), a rather boring

Sudoku puzzle!!!



Theorem. (Colbourn, 1984) Deciding whether a partial

Latin square is completable is NP-complete, even if there

are no more than 3 unfilled cells in each row and column.

In the following critical set, no missing entry is directly

“forced”:

4
0 3

2
3 1

1



Theorem. Let D be a critical set for a (0,1)-matrix M .

Then D contains no trades. On the surface this theorem is

non-intuitive!!!

Corollary. The complement of a critical set in a (0,1)-matrix

is always a defining set.



Th following is a critical set for a Latin square of order 4. It

contains a trade; thus its complement is not a defining set.

0 1 2 3
1 0
2 0
3



Theorem. Any defining set for a 2m×2m (0,1)-matrix with

constant row and columns sum m has size at least m2.

Proof by coin-flipping.



Corollary. Any critical set for a 2m × 2m (0,1)-matrix with

constant row and columns sum m has size at most 3m2.

Open problem: Do there exist critical sets which meet this

bound? Not for small orders...



... but we can come close for large orders.

Lemma. For each m ≥ 2, there exists a critical set in F (2m;m,m)
of size 3m2 − 8m+ 8.

For m = 5:

0 0 0 1 1 1 0 0
0 0 0 1 1 1 0
0 0 0 1 1 1 0
1 1 1 1
1 1 1 1
1 1 1 1

1 1 1

0 0 0 0 0
0 0



We can exactly describe the structure of critical sets in

F (2m;m,m) of minimal size.

Theorem. (Gale-Ryser, Walkup, Brualdi) A rectangular ar-

ray on symbols 0 and 1 has no trades if and only if the

rows and columns can be arranged so that a line with non-

negative gradient can be drawn with only 1’s below the line

and only 0’s above the line.


0 0 0 0
0 0 1 1
0 1 1 1
1 1 1 1





Theorem. Let D be a defining set for a matrix M ∈ F (2m;m,m)

with size m2. Then M may be split into four quadrants:

M =

[
E F
G H

]
such that each quadrant has no trades, E = H, F = G.

Moreover D contains every 0 from quadrant E and every 1

from quadrant H and no other symbols.



Example. A defining set in F (8; 4,4):

0 0 0 0 1 1 1 1
0 0 1 1 1 1 0 0
0 1 1 1 1 0 0 0
1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0
1 1 0 0 0 0 1 1
1 0 0 0 0 1 1 1
0 0 0 0 1 1 1 1



So we know all about the size of minimum defining sets for

(0,1)-matrices (in this special case)... but not yet for Latin

squares.

Next steps:

• Look at frequency squares with at most 3 distinct sym-

bols.

• Are there other designs with surety equal to 1/4???



Summary

• The surety for Latin squares and certain (0,1)-matrices

with constant row and column sum appears to be the

same (i.e. 1/4).

• This is perhaps because they can both belong to a

broader class of frequency squares with constant surety.

• Current methods only handle special cases of “The Con-

jecture”.



• Surety is a tool for comparing the structure of designs,

and may unearth new connections between different types

of designs.



The idea of surety can be generalized. We can also consider:

• The size of the largest critical set in any design of a
given type and order.

• The design of a given type and order which has the
largest smallest critical set size (inf). For Latin squares,

n2 − (e+ o(1))n5/3 ≤ inf ≤ n2 −O(n3/2)

(Ghandehari, Hatami, Mahmoodian, 2005)

• The design of a given type and order which has the
smallest largest critical set size (sup).


