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AbstractÐIn the previous work of two of the authors, a generalized micromechanics constitutive model
was developed to describe thermoelastic martensitic transformation. In order to verify the theory and to in-
vestigate basic properties of thermoelastic martensitic transformation in shape memory alloys (SMA), uni-
axial and biaxial loading tests under di�erent combined loads at a constant temperature were performed
on cruciform specimens of a SMA CuAlNi single crystal. The crystallographic theory for martensitic trans-
formation has been employed to calculate the orientations of martensite variants and the transformation
plastic strain. Experimental data were compared with theoretical calculation by the generalized constitutive
model based on micromechanics. The results show that the constitutive theory can describe the complex
thermodynamic processes, such as the forward transformation, reverse transformation and reorientation
happening simultaneously, and the theoretical predictions consist well with experiments. # 1998 Acta
Metallurgica Inc. Published by Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

Martensitic transformation can be induced by the

application of stress as well as by change in tem-

perature. When the shape and volume change pro-

duced by the martensite transformation is

accommodated through elastic deformation, this

transformation is called thermoelastic martensitic

transformation. An important characteristic of

shape memory alloys (SMA) is the ability to

undergo such a di�usionless, structural and revers-

ible thermoelastic matensitic transformation [1].

Detailed investigations on thermoelastic martensitic

transformation have been done in the ®elds of phy-

sics and materials science and a quite complete

theoretical system, which includes the transform-

ation crystallographic theory and thermodynamics

etc., has been established by Wechsler et al. [2],

Wayman [3], Bowles and Mackenzie [4], Delaey et

al. [5], Christian [6], James [7], Ball and James [8],

Bhattacharya [9], Abeyaratne et al. [10, 11], and

many others. With the increasing application of

SMA and structural ceramics, the study on the con-

stitutive relation of the materials with thermoelastic

martensitic transformation attracts interest of the

researchers of solid mechanics and a lot of work

has been done by Falk [12], Patoor et al. [13],

Abeyaratne et al. [10, 11], Muller and Xu [14], Chu

and James [15], Tanaka et al. [16, 17], Liang et

al. [18], Sun and Hwang [19, 20], Fischer et

al. [21, 22], Yan et al. [23±25], Song et al. [26], Chen

et al. [27, 28], Lu and Weng [29] and many others.

In the light of the directions of the process and

the change in material microstructures, thermoelas-

tic martensitic transformation can be divided into

three kinds [5]: the forward transformation (p4 m,

i.e. the transformation from parent phase to mar-

tensite), the reverse transformation (m4 p, i.e. the

transformation from martensite to parent phase)

and the reorientation (m4 m) between di�erent

kinds of martensite habit plane variants. These

changes in microstructures lead to various macro-

scopic phenomena such as pseudoelasticity, shape

memory e�ect, etc. Therefore, in order to under-

stand the transformation constitutive behavior more

clearly, it is necessary to study it in such a ®ner

scale as the scale of variants. In the previous work

(see Sun and Hwang [19, 20], Yan et al. [23±25],

Chen et al. [27, 28]), the constitutive models of

SMA and ceramics were developed under complex

thermomechanical conditions and these theories

were applicable directly (see, for instance, Stam et

al. [30], Chen et al. [27, 28]). However, due to lack

of test data for SMA single crystals subject to

multi-axial loading, the constitutive model for SMA

single crystals has only been compared with the

available experiments under uniaxial loading.

The pseudoelastic phenomena of SMA single

crystals under uniaxial loading have been investi-

gated by many authors, such as Okamoto et al. [31],

Horikawa et al. [32], Shield [33], and many others.
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Some researchers (for instance, Sittner et al. [34],
Tokuda et al. [35]) have experimentally investigated

the constitutive behavior of the TiNi polycrystals
under combined tension and torsion. Chu and
James [15] did nice work to build biaxial setup for

SMA single crystals, and observed the microstruc-
tural changes relative to the hysteresis, evolution of
twins and metastability of SMA, without strain

measurement. For combined tension±torsion tests
of anisotropic tubular specimens cut from a single
crystal rod, there arises di�culty that the strain

®elds are nonuniform in the circumferential direc-
tion. The biaxial test has the advantage of keeping
the directions of principal stresses unchanged rela-
tive to the material. However, to the best knowl-

edge of the authors, it seems that there have been
no stress±strain tests under biaxial loading on the
SMA single crystals. In this investigation, in order

to verify the developed constitutive theory and to
understand basic properties of thermoelastic mar-
tensitic transformation in SMA single crystals, uni-

axial and biaxial loading tests under di�erent
combined loads at a constant temperature were per-
formed on cruciform specimens of a SMA CuAlNi

single crystal. The crystallographic theory for mar-
tensitic transformation developed by Wechsler et
al. [2] has been employed to calculate the orien-
tations of martensite variants and the transform-

ation plastic strain. It was shown in Ref. [36] that
the generalized micromechanics constitutive model
proposed by Yan et al. [23±25] and Song et al. [26]

can predict very well the di�erent tensile curves as
well as the kinds of martensite variants occurring in
uniaxial tensile loading along di�erent crystallo-

graphic directions of the CuAlNi SMA single crys-
tal. In this paper experimental data of biaxial
loading will be compared with theoretical predic-
tions based on the same constitutive model. The ex-

perimental results agreed favorably with theoretical
predictions.
The plan of the rest of the paper is as follows.

Section 2 introduces the biaxial setup and the ex-
perimental procedure. The experimental results and
discussions are demonstrated in Section 3. In

Section 4, the results of the orientations and trans-
formation plastic strain of 24 martensite variants
calculated by means of the crystallographic theory

for martensitic transformation are presented. For
the completeness of the paper, in Section 4, the pro-
posed micromechanics constitutive model is brie¯y
introduced. The comparison of the theoretical pre-

dictions and experimental data is made in Section
5. The conclusions are given in Section 6.

2. EXPERIMENTAL PROCEDURE

The schematic structure of the biaxial loading tes-
ter designed by the authors is shown in Fig. 1. The
special design of the biaxial testing device can make
sure that the specimen is subjected to pure biaxial

loading. The possible loads are such that the princi-
pal stresses are positive and their directions remain

constant. For this test the tester requires two linear
jacks placed 908 apart. The weight of two balances

equals that of the middle frame, so that the middle
frame can move freely in the vertical direction. The

inner frame is hung on the main frame by a soft
string. The string is vertical and the inner frame can
move freely in the horizontal direction. The two

degrees of freedom in the horizontal and vertical
directions ensure that the cruciform specimen is

subjected to pure biaxial loading. If any bending or
shearing is applied to the specimen, the movement

of the specimen, the inner frame, and the middle
frame will ®nally eliminate the bending or shearing

e�ect. This special design makes it possible to get
experimental results under biaxial tensile loading.

Although there do exist e�ects of the grips on the
deformation, by using the MoireÂ interference tech-

nique, we found that the deformation ®eld in the
central area is approximately uniform.

The composition of our specimen is Cu±13.7%,
Al±4.18%, Ni±wt%. The single crystal rod was pro-

duced in the shape of a slightly-tapered cylinder
with a diameter of about 23 mm and a length of

about 65 mm. The cruciform specimen is obtained
by cutting the cylinder transversely. The specimens

were prepared in the following way. They were ®rst
heated to 8508C and kept at this temperature for

5 min, then drenched in the solution of 10% NaOH
at room temperature (26.58C) for 30 min. The
values of transformation temperature were deter-

mined by di�erential scanning calorimeter (DSC) as
Ms=ÿ 208C, Mf=ÿ 498C, As=ÿ 198C, Af=08C.
Therefore, the specimen is autensitic at room tem-
perature. The geometry of the single crystal

Fig. 1. Schematic structure of the biaxial tester.
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specimen is shown in Fig. 2(a). The orientations of
the specimens were detected by the X-ray back

re¯ection Laue method. The orientations of the

loading axes and the normal of the surface of the
specimens relative to the parent phase can be rep-

resented by points in a stereographic projection as

shown in Fig. 2(b). We specify the horizontal load-

ing axis as the x direction, the vertical loading axis
as the y direction and the normal of the surface of

the specimen as the z direction. The applied loads

in two directions were measured by the load cells.
The stress distribution (sx, sy) in the test section of

the cruciform specimen is di�erent from the applied

nominal stresses (sx, sy), which are obtained
through dividing the two applied loads in x and y

directions by the corresponding cross-sectional area

of the arm of the cruciform specimen. There have
been great e�orts (e.g. [37, 38]), such as presenting a

series of limbs separated by slots, extending from

each edge of a uniformly thinned square-shaped
central region and optimizing the geometry of the

cruciform specimen, aiming at homogeneity of the

stress state (sx, sy) in the test region and at the
same time sx1sx and sy1sy, at least for elastic case.

For the specimen geometry shown in Fig. 2(a),

®nite element calculations show that in an isotropic
elastic case (Poisson's ratio n = 0.3) there is a

region of size of about 6 mm at least at the test sec-
tion where the stress state (sx, sy) is rather uniform
with the error of 5% and the values of the stress
(sx, sy) are related to the nominal stress (sx, sy) by
the relation:

sx � 0:8908sx ÿ 0:1616sy

sy � ÿ0:1616sx � 0:8908sy: �1�
We have tried both comparing sx±ex curves as
shown in Fig. 3 and comparing the theoretically

predicted and the measured sx±ex curves as shown
in Figs 7 and 8. We will show the experimental
results in the former set of data in Section 3 and
the comparison of theoretical calculation and exper-

iment in the latter set of data in Section 5. We
found that both ways of comparing lead to all the
same conclusions about agreement of theoretical

predictions and experiment. This is why we avoided
the di�cult task of analyzing the stress distribution
in the test region of the cruciform specimen with

accompanying martensite transformation.
The overall strains in the x and y directions were

measured simultaneously by two metal foil strain

gages bounded to the specimen. One is to measure
the strain in the x direction and the other in the y
direction. The strain gages were attached to the spe-
cimen with a special glue and by means of a special

heat treatment, which can make sure that the strain
gages can measure large strain accurately up to
12% in elongation. Two types of loading programs

are used in our experiments. Figure 4(a) shows the
loading path A: y loading 4x loading 4y unload-
ing 4x unloading, and Fig. 4(b) illustrates the

loading path B: x loading 4y loading 4x unload-
ing 4y unloading.

3. EXPERIMENTAL RESULTS

The measured stress±strain curves in x direction
subjected to several prescribed constant preloadings

in y direction are shown in Fig. 3. A hysteresis loop
of the stress±strain curve appears during loading

Fig. 2. (a) Geometry of the ¯at cruciform specimen. (b)
Loading directions shown using a stereographic projection.
The x direction is the horizontal loading axis, the y direc-
tion is the vertical loading axis and the z direction is the

normal of the specimen.

Fig. 3. Measured stress±strain curves at di�erent values of
sy under biaxial loading.
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and unloading processes. The area surrounded by

the hysteresis loop represents the dissipated strain

energy, and the area below the unloading curve cor-

responds to the recoverable strain energy. One of

the main purposes of our experiments is to ®gure

out how signi®cantly the preload imposed in the y

direction in¯uences the stress±strain curves in the x

direction. The loading process is speci®ed as: a ten-

sile preload is ®rstly applied in the y direction of

the cruciform specimen until it reaches a designated

value, and then it keeps constant. Furthermore, a
tensile load is applied in the x direction. We

recorded the stress±strain curves in the x direction

at di�erent values of sy (=0, 40, 80, 120, 160, 200

MPa). It can be found that the transformation

stresses at which the transformation starts are

increased as the values of load sy are increased.

When sy is zero, the loading is uniaxial. When sy is

not too high, the shape of the stress±strain curves

has no substantial change relative to the stress±

strain curve of uniaxial loading, except that there is

an elastic contraction before loading in the x direc-

tion. The curves are mainly linear below the trans-

formation stress. The curve shows a clear plateau at
the transformation stress. This is due to the trans-

formation from autensite to matensite. When the
stress induced martensitic transformation ®nishes,

the slope of the curve begins to increase again.
However, when sy is high enough, the shape of the
curve changes signi®cantly, as shown in Fig. 3. It is

found that ex has very high initial values about
ÿ6% before the stress in the x direction is applied.
This is because the high preload in the y direction

has caused phase transition before the load in the x
direction is applied. Then, if we apply a load in the
x direction, a small load can lead to a plateau due

to reorientation of martensite variants. A second
¯at plateau appears when sx reaches another critical
value. It is important to point out that the trans-
formation mechanism in the case of applying a low

sy is quite di�erent from that in the case of applying
a high sy. In the case of a low sy, only one ¯at pla-
teau is caused by the forward and reverse matensite

transformations, while both of two ¯at plateaus in
the case of a high sy are caused by the reorientation
among martensite variants. From Fig. 3 we can

also ®nd that the deformation is anisotropic
because the transformation stress in the y direction
is much higher than that in the x direction under

uniaxial loading. For example, when sy=0, the
value of stress sx at start of transformation under
uniaxial tension in the x-direction equals 102 MPa.
When sy=120 MPa, there is no martensitic trans-

formation in the y direction, but the transformation
appears when sy=160 MPa. This means that the
value of uniaxial tension loading sy at start of trans-

formation is larger than 120 MPa but less than 160
MPa and is not equal to the value of uniaxial ten-
sion loading sx at start of transformation.

4. MICROSCOPIC TRANSFORMATION INDUCED
STRAIN

In the proposed micromechanics constitutive

model, the microscopic transformation plastic strain
has to be calculated at ®rst. By use of the crystallo-
graphic theory for martensitic transformation devel-
oped by Wechsler et al. [2] and Bowles and

Mackenzie [4], and in terms of the measured lattice
values of CuAlNi, the habit planes of the 24 var-
iants and the transformation induced strains for the

24 variants can be predicted by calculation.
According to the crystallographic theory, the mar-
tensitic transformation is realized through an invar-

iant plane strain, which is a terminology of
materials science and is actually a kind of defor-
mation gradient tensor in the light of continuum

mechanics. As shown in Fig. 5, the invariant plane
strain (i.e. deformation gradient tensor) D can be
expressed by

D � I� gen �2�
where I is the identity tensor of rank two, e is the
unit vector along displacement direction of the
invariant plane, n is the unit vector normal to the

Fig. 4. (a) Stress path for loading path A with loading
order: y loading4 x loading4 y unloading4 x unload-
ing; (b) stress path for loading path B with loading order:

x loading4 y loading4 x unloading4 y unloading.
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invariant plane, and g is the displacement magni-
tude of the invariant plane per unit length along the
normal n. According to the small deformation the-
ory, the corresponding transformation strain ep can

be easily written as

ep � 1

2
g�en� ne�: �3�

We de®ne

R � 1

2
�en� ne� �4�

where R is called the orientation tensor of the mar-
tensite variant. In terms of the crystallographic the-

ory for martensitic transformation, we can
determine all the possible kinds of martensite var-
iants with di�erent orientations. The orientation

tensor Rs of the sth kind of variants (crystallogra-
phically permissive) can be obtained by equation (4).
Thus, we can calculate the microscopic transform-

ation strain corresponding to the sth kind of var-
iants by

eps � gRs � 1

2
g�esns � nses� �s � 1; . . . ;N� �5�

where N is the number of kinds of variants. Table 1
gives the normals of the habit planes of the 24

kinds of variants expressed in the crystallographic
directions of the parent phase. Table 2 gives the
transformation strains of the 24 kinds of variants
expressed in the crystallographic directions of the

parent phase as well.

5. A CONSTITUTIVE MODEL FOR SINGLE
CRYSTAL SMA

In the next section our experimental results will
be compared with the constitutive models proposed

by Yan et al. [23±25], and Song et al. [26]. It must
be pointed out that due to the possibility of trans-
formation softening, the general constitutive re-

lation was given only in strain space in the
formulation of Yan et al. Therefore, in this section
we shall formulate the stress±strain relation in stress

space in order to compare the theoretical prediction
with the experiments. Referring the details to the
original papers, the basic assumptions and the main
formulation of the theory are presented below.

In order to establish the transformation constitu-

tive model, a representative material sample (consti-
tutive element) with volume V shown in Fig. 6 is

taken from a single crystalline bulk. A temperature

T is uniformly distributed everywhere in the element
and the external macroscopic stress S or strain E is

applied on the boundary. With the change of tem-
perature T or stress S or strain E, the transform-

ation and/or variant reorientation may happen.

Some kinds of martensitic variants with di�erent
orientations will emerge in the element during trans-

formation and some di�erently oriented martensitic

variants will coalesce when reorientation happens.
Due to the incompatibility of the transformation

strain of the variants with the surrounding elastic
parent matrix, internal stress will be aroused and

elastic strain energy will be stored in a constitutive

element. Many investigators (e.g. [3, 39]) showed
that such kind of elastic strain energy plays a very

important role in the thermodynamics and kinetics
of thermoelastic martensitic transformation. For

example, the stored elastic energy usually opposes

the forward transformation and assists the reverse
transformation (as the driving force). In the pro-

posed model, in order to analyze the elastic strain

energy in the constitutive element, a concept of in-
clusion was used. Inclusions are de®ned as the very

small transformed martensite variants. A lot of
micrographs show that a martensite variant appears

in a shape of plate or blade, so the geometric shape

of a variant inclusion may be approximated as an
oblate spheroid. We further assume that the short

axis of the spherical inclusion is normal to the
invariant plane of the variant. So di�erent kinds of

variants are represented by inclusions with di�erent

orientations of the short axes. A constitutive el-
ement is composed of the parent phase and a large

number of inclusions, and the inclusions are con-

sidered to be located stochastically as the external

Fig. 5. Illustration of an invariant plane strain.

Fig. 6. Illustration of a constitutive element with elliptic
shaped martensite leaves.
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stress or strain is homogeneous. Therefore, the for-

ward transformation is just the process in which the

number of inclusions or the total volume fraction

of all various N kinds of inclusions increase con-

tinuously, while the reverse transformation is the

process with the number of inclusions decreasing

and the reorientation is the process with the change

of volume fractions between di�erent kinds of var-

iants.

Denote the volume occupied by the sth kind of

variants (s= 1, . . . ,N) by Vs, and the corresponding

volume fraction by fs(=Vs/V). The total volume of

transformed variants Vi, total volume fraction f and

the volume of the parent phase Vp are:

Vi �
XN
s�1

Vs f �
XN
s�1

fs Vp � Vÿ Vi : �6�

Under the applied global macroscopic stress S and

temperature T, the microscopic stress and strain in

the element are expressed by ss and ee. Then there

exists the relation between ss and SS,

Fig. 7. Comparison of the calculated stress±strain curve
and measured stress±strain curve. (a) sy=0, (b) sy=40
MPa, (c) sy=160 MPa. The calculations were made by
the model without considering the surface energy change.

Fig. 8. Comparison of the calculated stress±strain curve
and measured stress±strain curve (a)sy=0, (b) sy=40
MPa, (c) sy=160 MPa. The calculations were made by

the model considering the surface energy change.
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SSS � hsssiV �
1

V

Z
V

sss dV

�
XN
s�1

fshsssiVs
� �1ÿ f �hsssiVp

�7�

where h i denotes volume average over the volume

indicated by the subscript. The microscopic and

macroscopic strains are assumed to be small and

can therefore be decomposed into elastic and plastic

parts:

E � heeeeiV � heeepiV � Ee � Ep �M:SSS� Ep �8�
where M is the elastic compliance tensor. According

to the crystallographic theory of martensitic trans-

formation, we have

Ep �
XN
s�1

fs eeeps � g
XN
s�1

fsRs: �9�

By using Mori±Tanaka mean ®eld theory [40], the

elastic strain energy induced by internal stress in a

unit volume of the element can be calculated [41] as

W � � ÿ 1

2

XN
s�1

fs eeeps : L : �Ss ÿ I� : eeeps

� 1

2

XN
s�1

XN
t�1

fs ft eeeps : L : �St ÿ I� : eeeps �10�

Table 1. Normal directions of the habit planes of the 24 variants

Variant no. n1 n2 n3

1 4.98019940224e-02 6.83513821586e-01 7.28236649100e-01
2 4.98019940224e-02 ÿ6.83513821586e-01 7.28236649100e-01
3 ÿ4.98019940224e-02 6.83513821586e-01 7.28236649100e-01
4 ÿ4.98019940224e-02 ÿ6.83513821586e-01 7.28236649100e-01
5 4.98019940224e-02 7.28236649100e-01 6.83513821586e-01
6 4.98019940224e-02 ÿ7.28236649100e-01 6.83513821586e-01
7 ÿ4.98019940224e-02 7.28236649100e-01 6.83513821586e-01
8 ÿ4.98019940224e-02 ÿ7.28236649100e-01 6.83513821586e-01
9 6.83513821586e-01 4.98019940224e-02 7.28236649100e-01
10 6.83513821586e-01 ÿ4.98019940224e-02 7.28236649100e-01
11 ÿ6.83513821586e-01 4.98019940224e-02 7.28236649100e-01
12 ÿ6.83513821586e-01 ÿ4.98019940224e-02 7.28236649100e-01
13 6.83513821586e-01 7.28236649100e-01 4.98019940224e-02
14 6.83513821586e-01 ÿ7.28236649100e-01 4.98019940224e-02
15 ÿ6.83513821586e-01 7.28236649100e-01 4.98019940224e-02
16 ÿ6.83513821586e-01 ÿ7.28236649100e-01 4.98019940224e-02
17 7.28236649100e-01 4.98019940224e-02 6.83513821586e-01
18 7.28236649100e-01 ÿ4.98019940224e-02 6.83513821586e-01
19 ÿ7.28236649100e-01 4.98019940224e-02 6.83513821586e-01
20 ÿ7.28236649100e-01 ÿ4.98019940224e-02 6.83513821586e-01
21 7.28236649100e-01 6.83513821586e-01 4.98019940224e-02
22 7.28236649100e-01 ÿ6.83513821586e-01 4.98019940224e-02
23 ÿ7.28236649100e-01 6.83513821586e-01 4.98019940224e-02
24 ÿ7.28236649100e-01 ÿ6.83513821586e-01 4.98019940224e-02

Table 2. Transformation strains of the 24 variants

Variant no. ep11 ep12 ep22 ep13 ep23 ep33

1 4.61625e-04 ÿ6.86274e-04 ÿ1.05792e-01 6.84996e-03 ÿ8.66572e-03 1.01624e-01
2 4.61625e-04 6.86274e-04 ÿ1.05792e-01 6.84996e-03 8.66572e-03 1.01624e-01
3 4.61625e-04 6.86274e-04 ÿ1.05792e-01 ÿ6.84996e-03 ÿ8.66572e-03 1.01624e-01
4 4.61625e-04 ÿ6.86274e-04 ÿ1.05792e-01 ÿ6.84996e-03 8.66572e-03 1.01624e-01
5 4.61625e-04 6.84996e-03 1.01624e-01 ÿ6.86274e-04 ÿ8.66572e-03 ÿ1.05792e-01
6 4.61625e-04 ÿ6.84996e-03 1.01624e-01 ÿ6.86274e-04 8.66572e-03 ÿ1.05792e-01
7 4.61625e-04 ÿ6.84996e-03 1.01624e-01 6.86274e-04 ÿ8.66572e-03 ÿ1.05792e-01
8 4.61625e-04 6.84996e-03 1.01624e-01 6.86274e-04 8.66572e-03 ÿ1.05792e-01
9 ÿ1.05792e-01 ÿ6.86274e-04 4.61625e-04 ÿ8.66572e-03 6.84996e-03 1.01624e-01
10 ÿ1.05792e-01 6.86274e-04 4.61625e-04 ÿ8.66572e-03 ÿ6.84996e-03 1.01624e-01
11 ÿ1.05792e-01 6.86274e-04 4.61625e-04 8.66572e-03 6.84996e-03 1.01624e-01
12 ÿ1.05792e-01 ÿ6.86274e-04 4.61625e-04 8.66572e-03 ÿ6.84996e-03 1.01624e-01
13 ÿ1.05792e-01 ÿ8.66572e-03 1.01624e-01 ÿ6.86274e-04 6.84996e-03 4.61625e-04
14 ÿ1.05792e-01 8.66572e-03 1.01624e-01 ÿ6.86274e-04 ÿ6.84996e-03 4.61625e-04
15 ÿ1.05792e-01 8.66572e-03 1.01624e-01 6.86274e-04 6.84996e-03 4.61625e-04
16 ÿ1.05792e-01 ÿ8.66572e-03 1.01624e-01 6.86274e-04 ÿ6.84996e-03 4.61625e-04
17 1.01624e-01 6.84996e-03 4.61625e-04 ÿ8.66572e-03 ÿ6.86274e-04 ÿ1.05792e-01
18 1.01624e-01 ÿ6.84996e-03 4.61625e-04 ÿ8.66572e-03 6.86274e-04 ÿ1.05792e-01
19 1.01624e-01 ÿ6.84996e-03 4.61625e-04 8.66572e-03 ÿ6.86274e-04 ÿ1.05792e-01
20 1.01624e-01 6.84996e-03 4.61625e-04 8.66572e-03 6.86274e-04 ÿ1.05792e-01
21 1.01624e-01 ÿ8.66572e-03 ÿ1.05792e-01 6.84996e-03 ÿ6.86274e-04 4.61625e-04
22 1.01624e-01 8.66572e-03 ÿ1.05792e-01 6.84996e-03 6.86274e-04 4.61625e-04
23 1.01624e-01 8.66572e-03 ÿ1.05792e-01 ÿ6.84996e-03 ÿ6.86274e-04 4.61625e-04
24 1.01624e-01 ÿ8.66572e-03 ÿ1.05792e-01 ÿ6.84996e-03 6.86274e-04 4.61625e-04
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where I is the identity tensor, L is the constant

elastic sti�ness tensor of the element and St is

the Eshelby tensor for tth kind of variant

(t= 1,2, . . . ,N), determined by elastic constants and

the shape parameters. De®ning

Ws � ÿ 1

2
eeeps : L : �Ss ÿ I� : eeeps �11�

Wst � ÿ 1

2
eeeps : L : �St ÿ I� : eeept �12�

we have

W � �
XN
s�1

fsWs ÿ
XN
s�1

XN
t�1

fs ftWst: �13�

For any two kinds of variants s and t, usually

Wst$Wts (s,t= 1,2, . . . ,N). For convenience in

mathematical treatment, we de®ne a symmetric

matrix as

~Wst � 1

2
�Wst �Wts�: �14�

When s= t, we have

Wss �Ws �Wt �s; t � 1; . . . ;N�: �15�

Assume the elastic sti�ness tensor L is isotropic,

then Ws (s= 1,2, . . . ,N) are all equal and can be

denoted by Wi (subscript i for ``inclusion'').

Equation (13) can be rewritten as

W � �Wi

XN
s�1

fs ÿ
XN
s�1

XN
t�1

fs ft ~Wst: �16�

The total elastic strain energy W per unit volume of

the constitutive element can be expressed by

W � 1

2
S : M : S�W �

� 1

2
Eÿ

XN
s�1

eeeps fs

 !
: L : Eÿ

XN
s�1

eeeps fs

 !

�Wi

XN
s�1

fs ÿ
XN
s�1

XN
t�1

fs ft ~Wst: �17�

As all the p±m and m±m interfaces are coherent

during martensitic transformation, the surface

energy change is ignored. The total change in

chemical free energy DGchem for unit volume of the

constitutive element is

DGchem � DG
V

XN
s�1

Vs

� DG
XN
s�1

fs1K�Tÿ T0�
XN
s�1

fs �18�

where T0 is the equilibrium temperature of the two

phases and k is a positive material constant. The

Helmholtz free energy F and the complementary

free energy C of the constitutive element per unit

volume can be formulated, respectively, as

FFF�E;T; f1; . . . ; fN� �W� DGchem

� 1

2
Eÿ

XN
s�1

eeeps fs

 !
: L : Eÿ

XN
s�1

eeeps fs

 !

� �Wi � DG�
XN
s�1

fs ÿ
XN
s�1

XN
t�1

fs ft ~Wst �19�

CCC�S;T; f1; . . . ; fN�
� ÿ�W� DGchem ÿ S : E�

� 1

2
S : M : S� S :

XN
s�1

eeeps fs

ÿ �Wi � DG�
XN
s�1

fs �
XN
s�1

XN
t�1

fs ft ~Wst: �20�

In order to determine the transformation yield

condition and the reorientation yield condition, it is

necessary to analyze the energy dissipation during

transformation and reorientation. The total energy

dissipation WdÇ of unit volume of the constitutive el-

ement is the summation of the energy dissipation

Wtr
d per unit volume of the constitutive element

during the forward and/or reverse transformation

and the energy dissipation Wre
d per unit volume of

the constitutive element during the reorientation.

We assumed that Wtr
d is proportional to the accu-

mulated volume fraction of transformation and Wre
d

proportional to the accumulated volume fraction of

reorientation. Then, we have:

Wd �W tr
d �W re

d � Dtrf tr
cu �Dvef re

cu

� Dtr
XN
s�1

�fs0
0

jd fs0j � 1

2
Dre

XN
s�1

XN
t�1
t6�s

�fst
0

jd fstj �21�

where Dtr, Dre can be considered, respectively, as

generalized frictional resistance to the p±m and the

m±m interface motion, and they are assumed to be

material constants. _fs0=dfs0/dt is the rate of change

of the volume fraction of the sth kind of variants

from the parent phase ( _fs0>0 for forward and _fs0
for reverse transformation), and _fst(s$ t) is the rate

of change of the volume fraction of the sth kind of

variants reoriented from the tth kind of variants

( _fst=ÿ_fts). Denoting the thermodynamic force con-

jugate to the internal variable fs by Fs, then

Fs=@C/@fs. According to the thermodynamics,

_CjS;T �
XN
s�1

@C
@fs

_fs � _Wd: �22�

FANG et al.: SHAPE MEMORY ALLOY276



Substituting equation (20) for C and equation (21)

for Wd in equation (22), and equating the coe�-

cients of nonvanishing rates of change of volume

fractions, we can get the following forward and

reverse transformations yield conditions Ys0 for the

sth kind of martensite variants and the reorienta-

tion conditions Yst for the tth kind of variants to be

reoriented to the sth variants. They are expressed

by

Ys0�S;T; f1; . . . ; fN� �

eeeps : S� 2
XN
n�1

~Wsn fn ÿ �Wi � DG�3Dtr � 0

�s � 1; . . . ;N� �23�

Yst�S;T; f1; . . . ; fN� �

�eeeps ÿ eeept � : S� 2
XN
n�1
� ~Wsn ÿ ~Wtn� fn ÿDre � 0

�s � 1; . . . ;N;

t � 1; . . . ; sÿ 1; s� 1; . . . ;N�: �24�

In equation (23) the upper (lower) sign corresponds

to the forward (reverse) transformation. According

to the internal variable theory [42], the constitutive

relation can be expressed by

_E �M : _SSS�
XN
s�1

@Fs

@SSS
_fs �M : _SSS�

XN
s�1

eeeps _fs

�s � 1; . . . ;N� �25�

where

_fs � _fs0 � _fs1 � � � � � _fs�sÿ1� � _fs�s�1� � � � � � _fsN

�s � 1; . . . ;N�: �26�

In order for the processes of forward transform-

ation, reverse transformation and reorientation to

happen simultaneously, the macroscopic stress rate
_SSS, the temperature rate _T and the volume fraction

rates _fn must satisfy the following consistency

equations:

_Ys0 �0
_Yst �0 �27�

or

eeeps : _SSSÿ k _T �

ÿ 2
XN
n�1

~Wsn
_fn0 �

X
q 2 fBng

� ~Wsn ÿ ~Wsq� _fnq
0@ 1A

�s 2 fAg� �28�

�eeepsÿeeept � : _SSS � ÿ2
XN
n�1
� ~Wsn ÿ ~Wtn� _fn0

ÿ
XN
n�1

X
q 2 fBng

� ~Wsn ÿ ~Wtn ÿ ~Wsq � ~Wtq� _fnq

�s � 1; . . . ;N; t 2 fBsg� �29�
where {A} is the set {s; _fs0$0} of the active kinds
of variants with forward or reverse transformation

happening and {Bs} is the set of {t;t$s and _fst$0}
of the active kinds of variants which are reoriented
to or from the sth kind of variants. After calculat-

ing _fs (s= 1, . . . ,N) from equation (26), we can
obtain the macroscopic strain rate _E by using
equation (25).

6. COMPARISON OF THE THEORY AND
EXPERIMENTS

Now we turn to the calculation of the overall
stress±strain curve by use of the above theory. Yan
et al. [23±25] assumed that Dtr, Dre are material
constants and can be calculated from the area of

the domain encircled by the pseudoelastic hysteresis
curves. They have proved that Dtr equals the half of
the area of the domain encircled by the pseudoelas-

tic hysteresis loop measured during the forward and
reverse transformation, as shown by solid lines in
Fig. 7(a) or 7(b), and Dre is equal to the half of the

area of the domain encircled by the pseudoelastic
hysteresis loop measured during reorientation, as
shown in Fig. 7(c). All the material parameters

are deduced from relevant test results: Dtr=
0.28 MPa, Dre=0.16 MPa, k= 0.23 MPa/8C [32],
Ms=ÿ 208C, Mf=ÿ 498C, As=ÿ 198C, Af=08C,
T0=(Ms+As)/2 =ÿ 19.58C. The shape of trans-

formed inclusions is assumed to be ¯at ellipsoid.
The transformation strains for 24 martensitic
variants are listed in Table 2. The elastic com-

pliance constants are M1111=4.49� 10ÿ5/MPa,
M1122=ÿ2.12�10ÿ5/MPa, M1212=0.51�10ÿ5/MPa.
Relative to the crystallographic directions of the

parent phase, the loading directions are (ÿ0.0925,
0.3698, 0.9245) along the x axis and (0.4268, 0.8536,
ÿ0.2988) along the y axis, respectively.
Figure 7 shows the comparison between the

theoretical results (dotted line) and the experimental
data (solid line). Figure 7(a) is the case for sy=0,
and theoretical result shows that variant no. 9

appears during loading in the x axis (p4 m(9)) and
variant no. 9 disappears during unloading in the x
axis (m(9) 4 p). Variant no. 9 has such a normal of

the habit plane listed in Table 1 as (0.68351382,
0.04980199, 0.72823665) with regard to the crystal-
lographic direction of the parent phase (p), and its

transformation strains are listed in the ninth line of
Table 2. In Fig. 7(b), sy=40 MPa, we can ®nd that
the value of sy is not large enough to produce the
transformation, so that there is still an elastic stage
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during loading in x-direction. The theoretical calcu-

lation also predicts that no variant appears during

loading in the y axis, but variant no. 9 appears

during loading in the x axis (p 4 m(9)) and dis-

appears during unloading in the x axis (m(9) 4 p).

The calculation indicates that when sy is small, the

pseudoelasticity of the single crystal is due mainly

to the transformation between autensite and mar-

tensite. In this case, only one variant appears

during the loading and unloading processes. In

Fig. 7(c), sy=160 MPa, it is obvious that the value

of sy is large enough to produce the transformation,

so that in the sy0ey diagram (not shown here in

the ®gure) there appears a plateau of the pseudoe-

lastic hysteresis loop before loading in the x direc-

tion. The theoretical prediction indicates that

variant no. 5 appears during loading in the y axis

(p4 m(5)). During loading and unloading in the

x axis, the following transformation sequence

occurs: m(5)4 m(14), m(14)4 m(15), m(15)4 m(9),

m(9) 4 m(15), m(15)4 m(14), m(14) 4 m(5). The

normal of the habit planes and the transformation

strains for variant no. 5, 9, 14 and 15 are listed in

Table 1, respectively. Variant no. 5 ®nally disap-

pears during unloading in the y axis (m(5) 4 p).

This means that when sy is as large as to induce

transformation, the pseudoelasticity in the x direc-

tion is mostly related to the reorientation among

martensite variants. That is, the theory predicts the

appearance of more than two variants in the history

of loading and unloading, and this agrees with the

experimentally observed two ¯at plateaux in the

stress±strain curve. From the comparison shown in

Fig. 7, it may be concluded that the theory is accep-

table because theoretical results are close to exper-

imental data.

As mentioned before, Yan et al. ignored the sur-

face energy change in their model since they

assumed that all the p±m and m±m interfaces are

coherent for martensitic transformation. However,

we ®nd from Fig. 7 that the calculated hysteresis

loop curves are almost horizontal at the values of

transformation stress, which does not agree with

the experiments showing signi®cant hardening when

the strain is larger than 8%. We try to examine the

e�ect of the surface energy change. Following Song

et al. [26], denote WG as the surface energy between

the interface of the parent phase and martensite

variants:

WG � �h0 � hf m� �30�
where f is the volume fraction of inclusions, h0, h

are material constants, and h = k(MsÿMf). Then,

the complementary free energy C of the constitutive

element per unit volume given in equation (20) is

rewritten as

C�SSS;T; f1; . . . ; fN� �
ÿ �W� DGchem �WG ÿ SSS : E�: �31�

Following the above procedure, we can also predict

the overall stress±strain relation. In the calculation,

we can use h0=0, m = 5 as Song et al. [26] did,

and other material constants are the same as before,

for instance, k = 0.23 MPa/8C, and Ms=ÿ 208C
and Mf=ÿ 498C, we get h = 6.67 MPa. Figure 8

shows the comparison of the calculated results and

the measured data. We ®nd that when we consider

the surface energy change in our model, the for-

ward and reverse transformation will be a�ected,

while the surface energy change does not a�ect the

reorientation process. This is reasonable because, as

well-known, the m±m interfaces are coherent while

the p±m interfaces actually are not coherent for

martensitic transformation.

We have investigated the strain paths under two

types of loading paths as shown in Fig. 4. Figure

9(a) and (b) demonstrate the comparison of the cal-

culated and measured strain paths corresponding to

the loading path A and the loading path B, shown

in Fig. 4(a) and (b), respectively. It can be found

that the shapes of strain-paths of Fig. 9(a) and (b)

seem similar, but the slopes of corresponding seg-

ments of loops are di�erent. This is because the

kinds of martensite variants occurring in loading

paths A and B are di�erent. We can conclude that

the formation and reorientation of the martensite

Fig. 9. Comparison of the calculated strain path and
measured strain path: (a) corresponding to the loading
path A as shown in Fig. 4(a); (b) corresponding to the

loading path B as shown in Fig. 4(b).
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variants are dependant upon the loading path so
that the strain path relies on the loading path too.

7. CONCLUSIONS

The biaxial loading tests for SMA single crystals
are very useful for revealing the basic characteristics
of thermoelastic martensite transformation induced
by stress and for verifying the constitutive models.

By applying di�erent combined loading histories on
cruciform specimens, some new phenomena were
observed. When the nominal loading stress sy is not

too high, the transformation stresses in the x-axis
direction increase as the values of stress sy increase,
and the shape of the stress±strain curves has no

substantial change relative to the stress±strain curve
of uniaxial loading, except that there is an elastic
contraction before loading in the x direction. When

sy is small, only the forward and reverse transform-
ation will occur. However, when sy is high enough
to induce the transformation, the shape of the
stress±strain curve for the x-axis direction changes

signi®cantly. Once sy is over the value correspond-
ing to the start of transformation, the reorientation
takes place in the process of sx loading. The results

also indicate that the pseudoelasticity is so anisotro-
pic that the transformation stress in the y direction
is larger than that in the x direction. In addition,

by use of the crystallographic theory for martensitic
transformation, the habit planes of the 24 variants
and the transformation plastic strain for the 24 var-

iants of the CuAlNi single crystal are predicted.
Experimental data are compared with theoretical
calculation based on the generalized micromecha-
nics constitutive model. It can be found that the

model [23±26] can predict the evolutions of variants
both in the forward/reverse transformation and in
the reorientation of martensite variants. In the

model, the surface energy change only a�ects the
forward and reverse transformation while the reor-
ientation process is not a�ected. The constitutive

model proposed is found acceptable since the theor-
etical results are close to experimental data.

AcknowledgementsÐSupport from the National Natural
Science Foundation of China under NNSFC grants
]19672026 and ]19891180 and from the State Education
Commission of China under the grant ]9400365 is grate-
fully acknowledged. Japan Society for the Promotion of
Science (JSPS ID No. S-97341) is acknowledged for sup-
port to KCH. The authors also thank the technical assist-
ance from Z. J. Zhao, G. Xu, T. Xu and X. Y. Zhang in
early stages of the work.

REFERENCES

1. Otsuka, K. and Shimizu, K., Trans. JIM, 1974, 15,
201.

2. Wechsler, M.S., Lieberman, D.S. and Read, T.A.,
Trans. AIME, 1953, 197, 1503.

3. Waman, C. M. 1964. in Introduction to the
Crystallography of Martensite Transformation.
Macmillan, New York.

4. Bowles, J.S. and Mackenzie, J.K., Acta metall., 1954,
2, 129.

5. Delaey, L., Krishnan, R.V., Tas, H. and Warlimont,
H., J. Mater. Sci., 1974, 9, 1521.

6. Christian, J.W., Metall. Trans. A, 1982, 13A, 509.
7. James, R.D.J., Mech. Phys. Solids, 1986, 34, 359.
8. Ball, J.M. and James, R.D., Arch. Rat. Mech. Anal.,

1987, 100, 13.
9. Bhattacharya, K., Acta metall., 1991, 39, 2431.
10. Abeyaratne, R. and Knowles, J.K., J. Mech. Phys.

Solids, 1993, 41, 541.
11. Abeyaratne, R., Chu, C. and James, R.D., ASME

Appl. Mech. Div., 1994, 189, 85.
12. Falk, F., Acta metall., 1980, 28, 1773.
13. Patoor, E., Eberhardt, A. and Berveiller, M., Arch.

Mech., 1988, 40, 775.
14. Muller, I. and Xu, H., Acta metall., 1991, 39, 263.
15. Chu, C. and James, R.D., ASME Appl. Mech. Div.,

1993, 181, 61.
16. Tanaka, K., Oberaigner, E. R. and Fischer, F. D., in

Mechanics of Phase Transformations and Shape
Memory Alloys, Vol. AMD-Vol.189/PVP-Vol.292.
ASME, ed. L. C. Brinson and B. Moran, 1994, p. 151.

17. Tanaka, K., Nishimura, F., Fischer, F. D. and
Oberaigner, E. R., in Proc. MECAMAT 95, J.
Physique, Coll. 1, Suppl. J. Physique III, Vol. 6, ed. C.
Lexcellent, E. Patoor and E. Gautier. Les Editions De
Physique, Les Ulis, 1996, pp. C1±455.

18. Liang, C. and Rogers, C.A., J. Engng. Math., 1992,
26, 429.

19. Sun, Q.P. and Hwang, K.C., J. Mech. Phys. Solids,
1993, 41, 1.

20. Sun, Q.P. and Hwang, K.C., Adv. Appl. Mech., 1994,
31, 249.

21. Fischer, F.D., Sun, Q.P. and Tanaka, K., ASME
Appl. Mech. Rev., 1996, 49, 317.

22. Fischer, F.D., Oberaigner, E.R., Tanaka, K. and
Nishimura, F., Int. J. Solids Struct., in press.

23. Yan, W., Sun, Q. P. and Hwang, K. C., in Proc. 3rd
Asia-Paci®c Symp. Advances in Engineering Plasticity
and Its Application, Japan, 1996, p. 9.

24. Yan, W., Sun, Q.P. and Hwang, K.C., Int. J. Plastic.,
1997, 13, 201.

25. Yan, W., Sun, Q.P. and Hwang, K.C., Sci. China,
1998, A28, 275.

26. Song, G. Q., Sun, Q. P. and Hwang, K. C. 1998.
IUTAM Symp. Variational Domain and Free-
Boundary Problems in Solid Mechanics. Paris, France.
Kluwer Academic, Amstedam.

27. Chen, X., Fang, D.N. and Hwang, K.C., Smart
Mater. Struct., 1997, 6, 145.

28. Chen, X., Fang, D.N. and Hwang, K.C., Acta mater.,
1997, 45, 3181.

29. Lu, Z.K. and Weng, G.J., J. Mech. Phys. Solids, 1997,
45, 1905.

30. Stam, G.ThM, v.d.Giessen, E. and Meijers, P., Int. J.
Solids Struct., 1994, 31, 1923.

31. Okamoto, K., Ichinose, S., Morii, K., Otsuka, K. and
Shimizu, K., Acta metall., 1986, 34, 2065.

32. Horikawa, H., Ichinose, S., Morii, K., Miyazaki, S.
and Otsuka, K., Metall. Trans. A, 1988, A19, 915.

33. Shield, T.W., J. Mech. Phys. Solids, 1995, 43, 869.
34. Sittner, P., Hara, Y. and Tokuda, M., Metall. Mater.

Trans., 1995, 26A, 2923.
35. Tokuda, M., Sittner, P., Takakura, M. and Ye, M.,

Mater. Sci. Res. Int., 1995, 1, 260.
36. Lu, W., Fang, D. N. and Hwang, K. C. to be sub-

mitted.
37. Dommerle, S. and Boehler, J.P., J. Mech. Phys.

Solids, 1993, 41, 143.
38. Boehler, J.P., Demmerle, S. and Koss, S., Exp. Mech.,

1994, 1.

FANG et al.: SHAPE MEMORY ALLOY 279



39. Olson, G.B. and Cohen, M., Metall. Trans., 1976, 7A,
1894.

40. Mori, T. and Tanaka, K., Acta metall., 1973, 21, 571.

41. Mura, T., in Micromechanics of Defects in Solids.
Nijho�, Dordrecht, 1987.

42. Rice, J.R., J. Mech. Phys. Solids, 1971, 19, 433±455.

FANG et al.: SHAPE MEMORY ALLOY280


