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Abstract. In this paper we investigate the differential properties of block ciphers in hash
function modes of operation. First we show the impact of differential trails for block ciphers
on collision attacks for various hash function constructions based on block ciphers. Further, we
prove the lower bound for finding a pair that follows some truncated differential in case of a
random permutation. Then we present open-key differential distinguishers for some well known
round-reduced block ciphers.
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1 Introduction

Block ciphers play an important role in symmetric cryptography providing the basic tool for encryp-
tion. They are the oldest and most scrutinized cryptographic tool. Consequently, they are the most
trusted cryptographic algorithms that are often used as the underlying tool to construct other cryp-
tographic algorithms. One such application of block ciphers is for building compression functions for
the hash functions.

There are many constructions (also called hash function modes) for turning a block cipher into a
compression function. Probably the most popular is the well-known Davies-Meyer mode. Preneel et
al. in [27] have considered all possible modes that can be defined for a single application of n-bit block
cipher in order to produce an n-bit compression function. They have found that there are 12 modes
that are resistant against generic attacks. Later these findings have been formally proven in [7]. To
make hash functions resistant against the birthday-paradox attack, it is better to use double-block
modes. Basic double-block modes have been proposed in [8, 14, 20]. Note that the Tandem-DM mode
has been proven to be collision resistant in [12], while a weakness in MDC-2 was found in [17].

Proofs of security of the above modes are performed under the assumption that the underlying
block cipher is ideal. This assumption is not satisfied if the cipher is used to build hash functions. Note
that the ideal cipher is related to the concept of pseudo-random permutation, where the adversary
does not know the cryptographic key. Clearly, for hash function constructions based on block ciphers,
the adversary fully controls the key.

Biham and Shamir introduced differential analysis in [3] and successfully analyzed DES. The
idea is to follow the propagation of a difference in the state of the cipher throughout consecutive
rounds. When the input-output differences can be predicted with a sufficiently high probability, then
the cipher can be distinguished from a pseudo-random permutation. This concept can trivially be
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adjusted for the case, where the adversary knows/controls the key of the cipher (open-key differential
distinguishers). The goal of adversary in this case would be to find an input-output pair of differences
for the cipher that can be predicted with a probability higher than in a random permutation.

Unlike in the secret-key model, where the complexity of an attack is usually bounded by the size
of the key space (i.e. 2% for a k-bit key), the attacks in the open-key model are bounded by the size of
the state space (i.e. 2" for an n-bit state). Therefore, some of the published attacks in the secret-key
model (precisely, the attacks with a complexity higher than 2™) become worse than simple generic
attacks, when applied in the open-key model.

Our Contributions. We investigate the impact of block cipher open-key differential distinguishers on
hash function modes of operation. Our main contributions can be summarized as follows:

1. For a variety of hash function modes based on block-ciphers, we determine which collision finding
attack variants (collisions, pseudo collisions, semi-free start collisions, or free start collisions) are
feasible, assuming that the adversary is given a specific differential trail for the underlying block
cipher in the open-key model. We target all Preneel-Govaerts-Vandewalle (PGV) single-block-
length compression modes, as well as four double-block-length modes.

2. We examine several well known block ciphers (Crypton, Hierocrypt-3, SAFER++, Square, and
generic Feistel ciphers) and for each of them, we present new known-key and chosen-key differential
distinguishers - see Table 1. Our distinguishers use the rebound attack [25] as a starting point,
but we obtain substantial improvements in the number of attacked rounds by exploiting some
cipher-specific properties that allow us to manipulate bits of the subkeys (a similar technique
was used in the context of analysing the Whirlpool function [21]). In the chosen-key model, for
substitution-permutation (SP) ciphers, we obtain an explicit formula for the number of additional
rounds that can be attacked for free, when the cipher has an invertible key schedule.

Table 1. Summary of attacks on the ciphers examined in the paper. The “Encryptions” column gives the
expected number of encriptions in the case of a SP cipher, while the “Lower bound” column — the expected
number of encryptions required in the case of a random permutation. In case of n-bit Feistel cipher r is a
number of covered rounds, and 2°¢ is the complexity of some differential attack.

Cipher Distinguisher Rounds | Encryptions | Lower bound | Reference
Crypton Known-key 7 2T8 201 Section 5.1
Chosen-key 9 248 261 Section 5.1
Hierocrypt-3 | Known-key 3.5 218 261 Section 5.1
Chosen-key 4.5 248 261 Section 5.1
SAFER++ | Known-key 6.5 2120 2128 Section 5.2
Chosen-key 6.5 o112 2128 Section 5.2
Square Known-key 7 278 201 Section 5.1
Chosen-key 8 248 261 Section 5.1

n-bit Feistel | Differential attack r 2¢
with k-bit key | Known-key r+2 2¢ Section 5.3
Chosen-key T+ | 2] 2¢ Section 5.3

3. To show the efficiency of our distinguishers, we give a proof of a lower bound on the complexity
of differential distinguishers in the case of a black-box random permutation. Although this bound
has been used for a while (mainly as an upper bound, e.g. in [13] it is called a limited-birthday
distinguisher), as far as we know, it has never been formally proved.

Organization. The paper is organized as follows. In Section 2 we define the open-key distinguishers
and review techniques for constructing differential trails. In Section 3, we present our findings about
the impact of block cipher differential trails on the security of hash function modes. Section 4 contains



our lower bound on the complexity of differential distinguishers for black-box random permutations.
In Section 5, we present our cipher specific known-key and chosen-key differential distinguishers for
various block ciphers. Section 6 concludes the paper.

2 Preliminaries

2.1 Open-key Distinguishers for Block Ciphers

A distinguisher is one of the weakest cryptographic attacks that can be launched against a secret-key
cipher. In this attack, there are two oracles: one that simulates the cipher for which the cryptographic
key has been chosen at random and the other simulates a truly random permutation. The adversary
can query both oracles and their task is to decide which oracle is the cipher (or random permutation).
The attack is considered to be successful if the number of queries required to make a correct decision
is below a well defined level.

The idea of open-key distinguishers was introduced by Knudsen and Rijmen in [18] for analysis of
AES and a class of Feistel ciphers. They examined the security of these block ciphers in a model where
the adversary knows the key. Later, the same approach was used in the attack on 8-round reduced
AES-128 [13] and for analysis of Rijndael with large blocks [26], where the authors defined a new
security notion for a known-key cipher. The idea of chosen-key distinguishers was introduced in the
attack on the full-round AES-256 [5]. This time the adversary is assumed to have a full control over
the key. A chosen-key attack was launched on 8-round reduced AES-128 in [6].

Both the known-key and chosen-key distinguishers are collectively known open-key distinguishers.
The adversary has the knowledge of the key or even can choose a value of the key. To succeed, the
adversary has to discover some property of the attacked cipher that holds with a probability higher
than for a random permutation.

Differential distinguishers in the open-key model are defined in similar way as in the secret-key
model. The adversary builds a differential trail (Ap, Ag) — Ay for the block cipher Ex(P). In
other words, he finds a pair* of plaintexts (P;,P) and a pair of keys (K1, K3), together known as a
differential pair, such that Py & P, = Ap, K1 ® Ko = Ak and FEk, (P1) @ Exk,(P2) = As. The pair
(Ap, Ak) is the input difference, while A, is the output difference. At least one of Ap and Ag has
to be non-zero. For example, the trails given in [6, 13, 26] have differences only in the plaintext, while
the trail from [5] has differences in both the key and the plaintext.

2.2 Design of Differential Distinguishers for Block Ciphers

We will focus our analysis on substitution-permutation (SP) block ciphers. Each round of such ciphers
consists of two types of transformations: 1) a non-linear layer of S-boxes, and 2) a linear-diffusion layer
(LD). The non-linear layer operates on bytes, i.e. the inputs to the S-boxes are bytes of the state. The
linear-diffusion layer may apply different transformations such as multiplications of the columns/rows
of the state matrix by a fixed diffusion matrix, transpositions of rows/columns, rotations of elements
of the state matrix, subkey additions, and others.

Differential trails for ciphers are given as a sequence of input-output word differences of each
transformation of the state. Since SP ciphers are usually byte-oriented, these trails can be given as
a sequence of active bytes, i.e. bytes that have differences. Depending on the properties of the S-box
layer and the linear-diffusion layer, the adversary can built two types of trails.

The first type is a standard differential trail, where the exact values of the input-output differences
for each layer and for each round of the trail are fixed. The probability of these trails depends on the
differential properties of the S-boxes, i.e. the probability that a given input difference to the S-box

4 Actually the adversary can build many pairs of plaintexts and keys.



will produce a given output difference. Note that when these differences are fixed, then the trail in
the linear-diffusion layer holds with probability 1.

The second type is a truncated differential trail [16]. In this trail only the position of the active
bytes is important, while the actual difference values are ignored. Since, the S-box operates on a single
byte, it means it cannot change an active byte to a non-active and vice-versa. Hence the adversary
concentrates only on the linear-diffusion layer and finds the probability of a particular configuration
of input-output active bytes.

Although for SP ciphers the truncated differential approach is common, further in our analysis we
will use both types of differential trails, together with trails with a difference in the plaintext only.

2.3 Techniques for Differential Trail Constructions

A major improvement in the analysis of SP cryptographic algorithms was the introduction of the
rebound attack [25]. The idea is as follows. If we assume that the adversary controls the input to the
S-boxes, then any input-output difference ® to this layer can be obtained for free (simple table lookups).
In other words, when Ay, Ay are fixed, then it is easy to find x such that S(x + A1) @ S(z) = A,.
In two consecutive middle rounds the adversary first fixes both the input differences of the LD layer
in the first round, and the output differences of the LD layer of the second round. Then he goes
forward through the first LD layer and backwards through the second LD layer. He ends up with fully
determined differences, since the layers are linear. In between there is only one S-box layer (composed
of a number of S-boxes), which can be passed for free when the adversary fixes the values, i.e. when
he finds the proper solutions x of the above equation. Therefore, at the beginning of the first, and at
the end of the second middle round, not only the differences, but now also the values have been fixed.
The rounds that precede and follow the two middle rounds are passed probabilistically.

The technique of the rebound attack was improved with the Super-Sbox cryptanalysis [11, 13, 21].
When the round diffusion is incomplete then two layers of S-boxes can be passed for free using a
precomputed lookup tables. The idea is similar to the one of the original rebound attack, but bigger
lookup tables are used.

The key can be used to gain an additional degree of freedom, which in X
return can lead to more S-box layers passed for free. When the adversary Sty
controls the key, then the rebound attack can be extended to one or two A
additional rounds, depending on the size of the key. The subkey (roundkey) I:E}|3
is xored in each round of the cipher. The first S-box layer can be passed for b,
free using the previous rebound technique (by fixing not only the difference, . }
but the exact values as well). The second S-box layer can be passed for free ¥l
as well if the adversary controls the input values to this layer by solving the [‘:rl)
appropriate equations. These values can be manipulated with the subkey, Y

i.e. the adversary can choose a proper subkey such that the inputs to the
S-box layer can be of arbitrary value (yet, their difference is fixed). Hence,
the adversary can pass the second S-box layer for free if he controls the
subkey of this round. Let us explain the idea on an example (See Fig.1).
Let Ay — Ay — Az be an arbitrary two-round differential trail. First the
adversary finds (with the rebound attack) a pair of states that satisfies the differential trail of the first
round, i.e. he finds a pair (A, A @ A;) that produces (B, B @ Az) on the output. Then independently,
he finds a pair of states for the second round, i.e. he finds (C,C @& A,) that produces the output
(D,D @ As). In the last step he has to fix a proper subkey k;y; for the second round, which will
connect the output of the first round and the input of the second round. To do so, the adversary fixes

Fig. 1. Chosen-key
distinguisher for SP
ciphers.

5 Only half of the input-output differences are possible, but for each of them there are two different input
values, hence on average it is true.



ki1 = B® C, and as the result he obtains a pair of states (A @ k;, A ® k; & A;) that satisfy the two
round differential trail.

Similarly, the adversary can pass more S-box layers when he controls the subkeys of these layers.
An obvious requirement for the subkeys of these additional rounds is that they need to be independent.
Otherwise, a change in a subkey in one round will change the value of a subkey in another round, which
might lead to incorrect input values for the S-box layer of this second round. A second requirement
is an invertible key schedule. Since the adversary controls the values of the subkeys of some middle
rounds, he has to be able to produce the values of the subkeys of the rounds that precede and follow
these rounds, hence he has to find the master key from the fixed subkeys. It is important to notice
that this technique requires a negligible memory.

2.4 Building the Differential Trails

For each of the techniques discussed above, the adversary first builds a trail that may have a plenty
of active S-boxes in some middle rounds and a few at the ends of the trail. Then, a pair of values that
follows the differential trail only in these middle rounds is found with complexity 1. The rest of the
rounds, before and after the middle rounds, are covered probabilistically since the adversary has no
degree of freedom left.

Finding the optimal differential trails with no difference in the key can be done automatically since
the ciphers considered in this paper are byte-oriented with a block size of 16 bytes. This leads to a
search space of 216 possible starting values.

Some of the ciphers are based on the so-called wide trail strategy [10], and provide an efficient
method for estimating the probability of the best round-reduced standard differential trails. These
estimation are based on the differential properties of the S-boxes and the diffusion properties of the
LD layers, which are often maximum distance separable mappings.

3 Impact of Block Cipher Known Key Differential Trails on Hash Modes

The most popular design of cryptographic hash is based on iterative use of a compression function.
This construction is also known as the Merkle-Damgard (MD) structure. Early compression functions
were using block ciphers as the main building block. Assume that we have a single instance of a block
cipher Ex (P) and wish to design a compression function that takes a 2n-bit input (H, M) and outputs
a n-bit string F(H, M). This problem has been investigated in [7,27] and it has been shown that
there are 12 structures (modes) that are secure. An example of one such structure is the well-known
Davies-Meyer (DM) mode that is defined as F(H, M) = Ep(H) @ H (see mode 5 in Table 2), where
H and M are the chaining value and the message, respectively.
In this work, we consider four types of collision attacks against the compression functions:

1. Collisions - for a fixed chaining value Hy, the adversary tries to find two distinct messages M7, My
such that F(Ho, Ml) = F‘(I’I()7 Mg)

2. Pseudo collisions - for a message M, the adversary wishes to find two distinct chaining values
Hy, Hy such that F(Hy, M) = F(Hy, M).

3. Semi-free start collisions - the adversary attempts to find two distinct messages M;, My and a
chaining value H such that F(H, M) = F(H, M,).

4. Free start collisions - the adversary tries to find two distinct chaining values Hi, Hs, and two
distinct messages M7, My such that F(Hy, M) = F(Hs, M>).

We investigate the resistance of compression functions based on block ciphers against the attacks
described above. We assume that the adversary can build a differential trail for the cipher with
differences not only in the plaintext, or in the key, but also in both the plaintext and the key. For



example, for the DM compression function, this means the adversary can find a pair of chaining values
(H1, H2) and a pair of messages (M7, Mz) (possibly in one of the pairs the two values are equal) such
that H1 & Hy = Ay, M, & My = Ay and F(Hl,Ml) S>) F(HQ,MQ) = Ay & A,. Hence, when the
adversary can build some trail, i.e. when he cannot control the exact values of the differences Ag, Ao,
then he can find a differential distinguisher for the DM compression function. On the other hand,
when the adversary can build a specific trail for the cipher with a difference in the plaintext (H is
the plaintext input to the cipher), such that Ay @ Ay = 0, then he can find: 1) free-start collisions,
if Ay, Ag # 0, 2) pseudo-collisions, if Ay =0, Ay # 0, 3) collisions or semi-free start collisions, if
Ap # 0, Ay = Ay = 0 (note that this implies that there are key collisions in the cipher since in DM,
the message is the key).

The same approach can be applied to the other 11 modes. We try to find the all possible collision
attacks under the assumption that the adversary can control the relation between the input and the
output differences of a trail in the cipher. Our findings are presented in Table 2.

Table 2. The first column consists of numbers from [7]. The entries in the columns plaintext, key, plaintext
and key show the best collision attacks for the modes when there is difference only in the plaintext, only in the
key or both in the plaintext and key, respectively. The abbreviations C, PC, SFSC, FSC stand for collision,
pseudo-collision, semi-free start collision, free start collision, respectively.

m((;;ie I plaintext key I:E(linii;t
1 En(m)®m C, SFSC PC* FSC
2 |En(h@®m)®h@m|C, SFSC|  PC PC, FSC
3 | En(m)@hom |C,SFSC| PC FSC
4 Epn(h®m)®m |C, SFSC PC PC, FSC
5 PNOED PC |C%, SFSC?|  FSC
6 [Em(h@®m)®hdm| PC FSC |G, SFSC, FSC
7 E.(h)y®hdm PC C, SFSC FSC
8 | Em(h@m)@h | PC FSC |G, SFSC, FSC
9 | Enem(m)@m | FSC | PC* |C, SFSC, FSC
10 Ergm(h) @ h FSC |C? SFSC*| PC, FSC
1 | Erem(m)®h | FSC PC|C, SFSC, FSC
12 | Erem(h)®m | FSC | C, SFSC | C, PC, FSC

% When key collisions exist in the cipher.

Often the block size of a cipher is too small to be secure in the compression mode. Hence, there is
a class of compression functions, also called double-block-length ones, whose output size is two times
bigger than the block size of the underlying cipher. We investigate the security of such functions
proposed by Lai-Massey in [20], Hirose in [14] and Bracht et al. in [8]. Our results are presented in
Table 3.

Although we have analyzed the collision resistance of the above modes, the differential trails for
the underlying ciphers in the open-key model can be used as a standalone cryptanalytical result for
the compression functions.



Table 3. In the first column A-DM, T-DM, DBL and MDC-2 are abbreviations of Abrest DM, Tandem DM,
Double-Block-Length and Modification Detection Code 2 respectively (see [20] for the first two, [14] for the
third and [8] for the last). The abbreviations C, PC, SFSC, FSC stand for collision, pseudo-collision, semi-free

start collision, free start collision, respectively.

ro . plaintext
mode (h',q") plaintext key and key
I __
A-DM W= Bgm(h) © h FSC C.SFSC  |PC, FSC
g =Enn(@ Dy
I __
T-DM = Bgm(h) ©h FSC C,SFSC  |PC, FSC
=Eme,.n(9) Dy
I
DBL W =Enm(g@c)®ge PC |C, PC, SFSC, FSC|PC, FSC
g = Ehn?(g) Dy -
h" = (En(m) @ m)™ || (Eg(m) ®m)™
MDC-2| ", a C, SFSC PC® FSC
g = (Eg(m) ®@m)" || (En(m) & m)"

% When key collisions exist in the cipher.

4 Lower Bound on Complexity of Differential Distinguisher for Random
Permutations

In this section we present a lower bound on the complexity of differential distinguishers for a black-box
random permutation. This allows us to fairly compare our cipher-specific distinguisher complexities
in Section 2.2 to the best possible black-box distinguisher. Although a similar upper bound has been
used before (see, e.g. [13]), our result proves that it is indeed close to the best possible. To our
knowledge, such a lower bound has not been published before, and may be of independent interest.

When the key is fixed, a block cipher becomes a permutation. An open-key differential distinguisher
with no difference in the key is valid if the complexity of finding a differential pair is less than the
complexity of finding such pair in a random permutation. When the input and output differences are
fully fixed, in n-bit random permutation the complexity of finding a differential pair is 2", hence any
differential distinguisher with a probability higher than 27" is valid. When the input difference is
fixed, and the output difference can take values from a set of the cardinality 2¢, then for a random
permutation, a differential pair can be found after performing 2"~ ¢ encryptions. The general case
when both the input and the output differences are taken from sets of fixed cardinalities, is discussed
in the following lemma.

Lemma 1. Let Dy, Do denote subsets of {0,1}™, which are closed under &, i.e. x &y € Dy (respec-
tively Do) for x,y € Dy (resp. Do ). For any attacker making queries to a random n-bit permutation
7 and its inverse 1, the complexity (measured in expected number of oracle queries) of finding a
pair of inputs (x,y), where x ®y € Dy, |Di| = 2%, such that n(x) ® 7(y) € Do, |Do| = 2°°, is lower
bounded as @ > min(2% ~2, 27~ (crteo)=3),

Proof. Since Dy and Do are closed under @, we may partition {0,1}" into input sets Aj,..., An,
where each |A;| = |Dy| =27, N = \gZI =2"7¢ guch that x ®y € Dy for x,y € A; fori =1,...,N.
Similarly, we have a partition into output sets Bi,..., By where |Bj| = |Dg| = 2°°, M = ‘g;
2n=¢ forallj=1,..., M.

Let us define the following game Gj: attacker A has an access to a random permutation oracle
7:{0,1}" — {0,1}" and its inverse 7!, making a total of ¢ queries to these oracles.

In the following games Gy, (k = 0,1,2), let Ej be the following event: A finds x # y with z,y € A;
and 7(z), m(y) € B; for some i, j while interacting with game Gy.




We show below the following upper bound:

2

q q
Pr(Eo) < of + o (coten) (1)

Before we explain the formal proof, we remark that the intuition for this result is as follows. The first
term g—i is the upper bound on the collision probability error due to the fact that we simplify the
problem by replacing the random permutation 7 with a random function. The last term arise because
at each query to 7 (resp. 7 ') which is in some input set A; (resp. output set B;) there are at most
2¢ points in A; whose image under 7 is already defined (resp. at most 2°¢ points in B; whose image
under 7~ is already defined), thus occupying at most 2°7 out of the 2" ~¢0 output sets (resp. at most
2¢0 out of the 2"¢! input sets).

We first show that (1) implies the claimed expected complexity bound. In game Gy, let T' denote
the random variable defined as the number of oracle queries until the event Ejy occurs. We lower
bound the expected value Q = E(T) as follows. Let p(q) denote the right hand side of (1), and let ¢*

be such that p(q*) = % Since Pr(T < ¢q) < p(q), we have

Q= ZPT(T=Q)-qu*-Pr(T>q*)Z%- (2)

q>q*

Now, for ¢ € {1,2}, let ¢; denote the value of ¢ such that the ith term on the right hand side of (1)
is equal to i. Since there are 2 terms in (1), we may take min(q1,¢g2) as lower bound for ¢*. Since
¢ =221 and ¢o = 27 (e1tc0)=2 the claimed lower bound on Q follows.

It remains to prove (1). We will do this by building a chain of games, starting with Gy, which are
similar until bad is set (for further details of this methodology see for example [2]).

First define a game G to be similar to G except that the permutation 7 is replaced by a relation
P c {0,1}" x {0,1}" that is injective and functional, but not necessary defined in whole domain.
According to naming convention in [2] relation P is called partial permutation, whereas injectivity and
functional conditions together are named “permutation constraint”. Initially P is empty and through
execution of GGy its values are being sampled randomly with respect to “permutation constraint”.
Whenever P(z) (resp. P~1(y)) is needed first it is checked if P (resp. P~1) is defined on x (resp. y). If
this is the case then appropriate value is returned, otherwise P(z) (resp. P~*(y)) is sampled uniformly
at random from img(P) (resp. img(P~1)), where img(P) is complement of image of P. Because the
sampling is the same as in Game G, we have

PI’(E()) = PI‘(El) (3)

Next we define game G2 which is the same as G except “permutation constraint” for P does
not need to be fulfilled. That means the values P(x) (resp. P~!(y)) are sampled at random from
{0,1}", but the game stops immediately when the “permutation constraint” is not satisfied. Unless
the “permutation constraint” is violated by the occurrence of a collision between a new output value
returned by P and a previous output value of P or input value queried to P~! (resp. a collision
between a new output value returned by P~' and an previous output value of P~! or input value
queried to P), the games G; and G2 proceed identically. Since at each query there are at most ¢
previous P (resp. P~1) output values already defined, we have

2
| Pr(Ey) — Pr(Ey)| < . (4)
At this stage we stop building chain of games and we upper bound the probability Pr(FEs) directly.
We claim that

q



Let = denote the qth query of the attacker, define the following variables for ¢ = 1,..., N and
j=1,...,M:

— af’ = number of P oracle queries made so far which are in A;,

— alR = number of P~! oracle answers given so far which fell in A;,
— bf = number of P~ oracle queries made so far which are in Bj,

— bf” = number of P oracle answers given so far which fell in B;.

Suppose that x is a query to P and that z € A; for some i. We have so far al’ + af* points in 4;
whose Bj; sets are already defined. Hence the event E will occur only if the uniformly random (in
{0,1}™) answer of P falls in one of those output sets, so it will happen in this query with probability

< witel oDl 1 ing af + af < |Dy| (since th did not stop so far). Similarl
< St < S = gierreoys wsing @i + @t < Dyl (since the game did not stop so far). Similarly,
if z is a query to P~! and = € B; for some j, then E; will occur in this query with probability

F R
< bithi o Dol _ m It follows that E5 occurs among the first ¢ queries with probability

= =N
bounded by (5), as claimed. This completes the proof of the Lemma. |

5 Differential Trails for Specific Block Ciphers

We have searched for differential trails in the following ciphers: Crypton, Hierocrypt-3, SAFER++,
and Square. Specifically, we have tried to build standard and/or truncated trails, which can be used in
a rebound-type attack. For some of the ciphers, the probabilities for the both standard and truncated
differential trails were higher than in a random permutation. In this case, only the trails (which are
usually truncated) with higher probability are presented.

The trails for the chosen-key distinguishers were built upon the trails for the known-key distin-
guishers by increasing the number of the full active middle rounds which can be covered for free when
a proper subkey is fixed. When n-bit key is used, with an invertible key schedule that produces s-bit
subkeys, then the chosen-key distinguisher has || more rounds then the known-key distinguisher.

Due to space limitation, we will not give a full description of the attacked ciphers, but rather,
introduce them briefly using the original notions and definitions from the source papers.

5.1 Crypton, Hierocrypt-3 and Square

Crypton [22], Hierocrypt-3 [28], and Square [9] are 128-bit SP block ciphers and have a various number
of internal rounds depending on the length of the key. The best published attacks in the secret-key
model are on 8 rounds of Crypton [15], 3-3.5 rounds of Hierocrypt-3 [1], and 8 rounds of Square [19].

The internal state of each cipher can be seen as 4 x 4 matrix of bytes, while a round consists of three
types of transformations of the state: 1) byte-wise application of a non-linear S-box, 2) matrix-wise
linear-diffusion (LD) layer that applies different linear transformations of various bytes of the matrix
to introduce a sufficient diffusion among the bytes of the state, 3) subkey addition — a simple xor of the
round key to the matrix. A round of Crypton consists of an S-box layer 7, LD layer composed of two
transforms 7 and 7, and subkey addition ¢. Hierocrypt-3 has six round transforms: two S-box layers
[S], two LD layers [M DSy] and [M DSg], and two subkey additions [AK]. A round of Square consists
of four transforms: S-box layer v, LD layer with two transforms € and 7, and a subkey addition o.
It is important to notice that all three ciphers have a non-linear, but invertible, key schedule. The
256-bit key versions of Crypton and Hierocrypt-3, have a key schedule such that each two consecutive
128-bit subkeys are independent.

For each cipher, we can build 7-round truncated differential trails (7 S-box layer trail in case of
Hierocript), that have a full active state in the middle round, but only a few active S-boxes in the



rest of the 3+3 rounds (S-box layers of Hierocript). These trails can be used to construct known-
key distinguishers on 7 rounds of the ciphers, based on the rebound technique. Since the ciphers
have invertible key schedules, we can increase the number of attacked rounds by switching from the
known-key to the chosen-key attacks and using the degrees of freedom of the subkeys. Hence, we
can construct a chosen-key differential distinguisher on 8 rounds of Crypton with 128-bit keys, and 9
rounds of Crypton with 256-bit keys (the additional round comes from extra 128-bit freedom of the
key; the chosen-key has L%j = 2 more rounds than the known-key, see Section 2.3). For Hierocrypt-
3, the result is a chosen-key distinguisher on 8 S-box layers = 4 rounds for 128-bit keys, and on 9
S-box layers=4.5 rounds for 256-bit keys. Square only supports 128-bit keys, hence the chosen-key
distinguisher works on 8 rounds, which is indeed the total number of rounds of this cipher.

The trails used in the chosen-key distinguishers for 9, 4.5 and 8 rounds of Crypton, Hierocrypt-3,
and Square, respectively are given in the Appendix A. Since the middle full-active state round(s)
are covered by the rebound attack and by fixing the subkeys used in these rounds, we can assume
that the probability of the trails in these rounds is 1. Hence, we count only the probability of the
rest of the rounds. In each of the three trails, we have twice 2724 — that is the probability that the
linear-diffusion transformation will turn four active bytes into one active byte. The probability of
the trail in the rest of the layers is 1. Therefore, to find pairs of plaintexts and ciphertexts that will
follow the truncated differential trails, one has to start with 248 pairs of states that pass the middle
rounds (each pair can be build with negligible complexity). Out of 24® pairs, 224 will produce four-
to-one active byte in the first half of the trail, leading to a plaintext difference as the one in the trail.
Out of these 224, one will produce four-to-one active in the second half of the trail and a ciphertext
difference as the one in the trail. Now, let us try to compare our complexity of 248 encryptions to
the complexity in a case of a random permutation. By Lemma 1, to find this complexity we have to
find the cardinalities of the plaintext and the ciphertext differences in the truncated trails. Although
some of the plaintext/ciphertext differences in the trails have full active states, they are obtained by
a linear transformation of some state with a four active bytes. Hence the cardinalities in all cases are
248 = 232 and the complexity of producing a pair for a random permutation, that follows the trails,
is at least min(23° ~2,2128-(324+32)=3) — 961 cperyptions.

To test the correctness of our results, we have constructed a chosen-key distinguisher on mCryp-
ton [23], which has the same design as Crypton, but instead of bytes (8-bit words), it works with
nibbles (4-bit words), and uses a non-invertible key schedule. The above distinguishers for Crypton
can easily be applied to a modified version of mCrypton with a (invertible) key schedule identical
to the one of Crypton. The chosen-key distinguisher for 9 rounds of this modified mCrypton was
implemented on a PC, and a differential pair was found. The results are given in Appendix B.

5.2 SAFER++

SAFER++ [24] is a 128-bit SP block cipher. The version with 128-bit key has 7 rounds and the best
published attack works for 5.5 rounds [4]. A round of SAFER++ counsists of: 1) a byte-wise subkey
addition, 2) a byte-wise S-box layer, 3) a byte-wise subkey addition, and 4) a state-wise linear-diffusion
layer in the form of four 4-PHT. The subkey additions are modular and xor, and two different S-boxes
are used. After the last round, there is an extra subkey addition. The key schedule is linear.

When the subkeys are fixed, then the S-box layer can be merged with the subkey additions to
form another S-box layer, with the same input and output size. In other words, the subkey addition
together with S-box and the subkey addition can be seen simply as some S-box (since the bytes of
the subkeys are different, the S-boxes are also different). Hence, we can assume that a round of the
cipher is composed of an S-box layer and a linear-diffusion layer, and all the additions in the cipher
are modular.

Our automatic search for the best round-reduced standard differentials has found that there exist
only two three-round trails with 10 active S-boxes (the rest of the trails have more than 10 active



S-boxes). The first trail has 4,2,4 while the second has 2,3, and 5 active S-boxes in the first, the
second, and the third round, respectively. We have used two 4-2-4 trails in our standard differential
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Fig. 2. Standard differential trail for 6.5 rounds of SAFER++ for the chosen-key distinguisher and 128-bit
key. The first round is without the S-box layers, crossed square represents fixed 8-bit difference. The detailed
trail is given in Fig.7 of the Appendix A.

attack (see Fig.2). We attack 6.5 rounds of SAFER++, which is the full cipher, except for the first
round, where the three transforms: subkey addition, S-box and subkey addition, are missing. As far
as we know this is the first rebound attack with standard differentials. Therefore, we will describe it
in more details.

First, to cancel the effects of the last extra subkey addition, we fix the MSB of the bytes 1, 3, 9, 12,
13, 14, 15, 16 of the last subkey to zero, while the values for the other bits of the subkey are randomly
chosen. Then, from the mentioned subkey, we find the value of the master key, and the values for all
remaining subkeys. Now we are ready to start the rebound attack.

We assign differences to the bytes 2, 3, 5, 13 (and no difference to other bytes) of the state before
the linear layer in round 3. The differences should be such that after the linear layer all bytes are
active (this holds for almost any assigned values). Similarly, we assign differences to the bytes 2, 4, 9,
12 of the state after the linear layer in round 4, go backwards through the linear layer and obtain a
full active state. In between the top and the bottom active states, there is only the S-box layer, hence
we match the differences through this layer, i.e. we fix the values of the bytes such that all the input
differences produce all the output differences. Since the values of the full state have been fix, the rest
of the rounds are passed probabilistically. There are 2, 4, 4, 2, 4 active S-boxes (16 in total) in the
rounds 2, 3, 5, 6, 7, respectively.

If we assume that the differential propagation through all of the S-boxes occurs with the probability
277 then the complexity of the whole attack is 2716 = 2112 encryptions. Note that for a fixed key,
we have 264 starting values for the rebound attack. We can choose different keys (such that the last
subkey has the MSB of the mentioned above bytes fixed to zero) to get the necessary number of
starting pairs for the differential attack. Since the input and output differences of the differential pair
are fully fixed, such a pair in a random permutation can be found with 2'28 encryptions.

5.3 Feistel Ciphers

Feistel ciphers with a SP round function can have a number of rounds covered for free in the known
and chosen-key differential attacks. When the key is known, the S-box layers of two consecutive rounds



can be attacked independently since the round function uses only half of the input. For a given two-
round differential, first a pair of input states that satisfy the differential of the first round function
is fixed, and then a pair of states of the second round function. Therefore, in an known-key attack,
any differential trail can be extended by two additional rounds (this should not be confused with the
distinguishers on 7-round Feistel ciphers proposed in [18]).

Assume that the adversary can control the key in a Feistel cipher. As .
the size of the input to the round function and the size of the round key are
(usually) half as big as in the SP ciphers, the number of rounds that can X B¢
be attacked for free is twice as big as for the SP ciphers. Let us examine k

2
the possibility of obtaining a pair of states for a three-round differential. ) 7 ‘_
Let n-bit Feistel cipher has an invertible key schedule that generates 5-bit D [

subkeys. To find a pair of states that follows some three-round differential: :
3> F b
(A}, AT) - (A5, AF) - (4%, Af) - (A}, AD) b

L R

(the pair of states is (L, R), (L ® AY, R & AR)), the adversary builds, as in
the rebound attack, three pairs of states, separately for each round, that

satisfy the one-round differentials, i.e. he finds the values A, C, E, such that Fig. 3. Chosen-key

F(A)@o F(A® AF) = Al g AL distinguisher for 3-
F(O)® F(Ca ALy = AE g Aé, round Feistel ciphers.
F(E)® F(E® AY) = Al o AL

Let F(A) = B,F(C) = D,F(E) = G. Then, in order to connect these three one-round differentials,
the following conditions for the subkeys k1, ko2, k3 apply:

Lok =A,
R®B®ky=C,
LeDeks=E.

From the first and the third equation, we get the relation k1 ® ks = A D@ E (note that the adversary
does not control the values of A, D, E because they are fixed by the rebound attack). To satisfy this
relation, the keys ki, k3 have to be independent (or be linearly dependent — but this is not common
for ciphers). Once this is satisfied, the solution (L, R, k1, ko, k3) for the system can be found in linear
time. Hence in general, the master key has to be at least %"—bit long.

A similar analysis applies to cases when a higher number of rounds has to be covered for free. The
only difference is that the resulting system has more equations. When r rounds are fixed, the system
has r equation and r + 2 unknowns: L, R, k1, ..., k.. In order to find the solution in linear time, for
any invertible key schedule, the subkeys have to be independent. Hence, to attack an additional r

rounds of a n-bit Feistel cipher the key has to be at least 5*-bit long.

6 Conclusions

We have examined the application of the differential trails in analysis of ciphers that are used for
compression function constructions. We have considered both the known-key and chosen-key models.
Specifically, we have analyzed the collision resistance of all compression functions based on single block
ciphers as well as the four known double-block compression functions, when specific differential trails
for the underlying ciphers can be built. Furthermore, we have presented differential distinguishers
for Crypton, Hierocrypt-3, SAFER++, and Square. For these ciphers, we have shown that when the
attack model is switched from secret-key to open-key, the number of rounds that can be attacked



increases. We have given as well a formal proof of lower bound of constructing pair that follow a
truncated trail in the case of a random permutation. Our results are summarized in Table 1.

The area of open-key distinguishers is largely unexplored. Finding similar distinguishers based on
related-key differentials remains an open problem.
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A Differential Trails for Crypton, Hierocrypt-3, SAFER++ and Square
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Fig. 4. Truncated differential trail for 9 rounds of Crypton for chosen-key distinguisher and 256-bit key.
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Fig. 5. Truncated differential trail for 4.5 rounds of Hierocrypt for chosen-key distinguisher and 256-bit key.
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Fig. 6. Truncated differential trail for 8 rounds of Square for chosen-key distinguisher (¢’ = o(8(ko))).
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B Truncated Differential Trail for Modified mCrypton

The key scheduling in the test implementation of mCrypton has been adopted from Crypton and has
following way:

Let K be a 128-bit encryption key and K = kg ... k3; where each k; is four-bit nibble for ¢ = 0, ..., 31.
At first two temporal values U and V are derived from K so that Uli] = ks;ksitoksitaksite and
V0i] = ksit1ksitsksitsksitr for i = 0,1,2,3. Next for U' = y(U) and V' = 4(V) the eight expanded
keys are evaluated as:

i = U] Eli+4 =P V'[j]
b VE)

for i = 0,1, 2,3 with use of which the 13 subkeys for each encryption round are generated according
to the following procedure:

1. for the first and the second round:
K,[i) = Eli] ® C[0] ® MC; Ky =E[i+4] @ C[l]® MC;

fori=0,1,2,3,
2. for the remaining eleven rounds (r = 2,...,12) two steps are executed alternatively:
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Fig. 7. Standard differential trail for 6.5 rounds of SAFER++ for chosen-key distinguisher and 128-bit key.

(a) for r even:

{B[0), E[1), Bl2), B[]} + {E[1)", E2<5, B3<°, B0},

K.[i|=E[i|® C[r]® MC;,

(b) for r odd:

{EM4], B[5], E[6], E[T]} « {E[7]<*", B4, B3], E[0] <},

K.[i]=E[i+4®Clr]® MC,,

for i =0,1,2,3,

where C[0] = £53a, C[k] = C[k — 1] + £372 mod 2'6 for k = 1,...,12, MCy = acac, MCj, = MC="!

for i = 0,1,2,3 and <** represents bit-left-rotation by a bits within each four-bit nibble.

Example of a differential trail for mCrypton:
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Fig. 8. The columns in the table represent: i - round number, A[i] - value of the state in round 7, D[i] -

difference between two states in round ¢, D,[i] - difference between two states after v in round 4, Droy[i] -

difference between two states after o~ in round 4, D;oro~[i] - difference between two states after 7 om o~ in
round 4, K[i] - subkey in round i. The trail was obtained for K = 679££202d5834e529d9c£7013a4d8218.



