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Abstract. We show that the LASH-x hash function is vulnerable to
attacks that trade time for memory, including collision attacks as fast
as 2(4x/11) and preimage attacks as fast as 2(4x/7). Moreover, we briefly
mention heuristic lattice based collision attacks that use small memory
but require very long messages that are expected to find collisions much
faster than 2x/2. All of these attacks exploit the designers’ choice of an
all zero IV.
We then consider whether LASH can be patched simply by changing the
IV. In this case, we show that LASH is vulnerable to a 2(7x/8) preimage
attack. We also show that LASH is trivially not a PRF when any subset
of input bytes is used as a secret key. None of our attacks depend upon
the particular contents of the LASH matrix – we only assume that the
distribution of elements is more or less uniform.
Additionally, we show a generalized birthday attack on the final com-

pression of LASH which requires O
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≈ O(x2x/4) time and

memory. Our method extends the Wagner algorithm to truncated sums,
as is done in the final transform in LASH.

1 Introduction

The LASH hash function [2] is based upon the provable design of Gol-
dreich, Goldwasser, and Halevi (GGH) [6], but changed in an attempt to
make it closer to practical. The changes are:

1. Different parameters for the m×n matrix and the size of its elements
to make it more efficient in both software and hardware.

2. The addition of a final transform [7] and a Miyaguchi-Preneel struc-
ture [9] in attempt to make it resistant to faster than generic attacks.

The LASH authors note that if one simply takes GGH and embeds it in a
Merkle-Damg̊ard structure using parameters that they want to use, then



there are faster than generic attacks. More precisely, if the hash output
is x bits, then they roughly describe attacks which are of order 2x/4 if n
is larger than approximately m2, or 2(7/24)x otherwise3. These attacks
require an amount of memory of the same order as the computation
time. The authors hope that adding the second changes above prevent
faster than generic attacks. The resulting proposals are called LASH-x,
for LASH with an x bit output.

Although related to GGH, LASH is not a provable design: no security
proof has been given for it. Both the changes of parameters from GGH
and the addition of the Miyaguchi-Preneel structure and final transform
prevent the GGH security proof from being applied.

Our Results. In this paper, we show:

– LASH-x is vulnerable to collision attacks which trade time for memory
(Sect. 4). This breaks the LASH-x hash function in as little as 2(4/11)x

work (i.e. nearly a cube root attack). Using similar techniques, we can
find preimages in 2(4/7)x operations. These attacks exploit LASH’s all
zero IV, and thus can be avoided by a simple tweak to the algorithm.

– Even if the IV is changed, the function is still vulnerable to a short
message (1 block) preimage attack that runs in time/memory O(2(7/8)x)
– faster than exhaustive search (Sect. 5). Our attack works for any
IV.

– LASH is not a PRF (Sect. 3.1) when keyed through any subset of
the input bytes. Although the LASH authors, like other designers
of heuristic hash functions, only claimed security goals of collision
resistance and preimage resistance, such functions are typically used
for many other purposes [5] such as HMAC [1] which requires the PRF
property.

– LASH’s final compression (including final transform) can be attacked

in O

(

x2
x

2(1+ 107
105 )

)

≈ O(x2x/4) time and memory. To do this, we adapt

Wagner’s generalized birthday attack [12] to the case of truncated
sums (Sect. 6). As far as we are aware, this is the fastest known attack
on the final LASH compression.

We also explored collision attacks for very long messages using lat-
tice reduction techniques; experiments for LASH-160 suggest that such
attacks can find collisions for LASH-160 in significantly less than 280 time

3 The authors actually describe the attacks in terms of m and n. We choose to use x

which is more descriptive.



and with very little memory. Due to lack of space, we could not include
these results here – refer to Sect. 6.2 for a brief summary.

Before we begin, we would like to make a remark concerning the use of
large memory. Traditionally in cryptanalysis, memory requirements have
been mostly ignored in judging the effectiveness of an attack. However,
recently some researchers have come to question whether this is fair [3,
4, 13]. To address this issue in the context of our results, we point out
that the design of LASH is motivated by the assumption that GGH is
insufficient due to attacks that use large memory and run faster than
generic attacks [2]. We are simply showing that LASH is also vulnerable
to such attacks so the authors did not achieve what motivated them to
change GGH. We also remark that a somewhat more efficient cost-based
analysis is possible [11], but page limits prevent us from providing the
analysis here.

After doing this work, we have learnt that a collision attack on the
LASH compression function was sketched at the Second NIST Hash Work-
shop [8]. The attack applies to a certain class of circulant matrices. How-
ever, after discussions with the authors [10], we determined that the four
concrete proposals of x equal to 160, 256, 384, and 512 are not in this
class (although certain other values of x are). Furthermore, the attack is
on the compression function only, and does not seem to extend to the full
hash function.

We remark that our zero IV attacks apply also to the FFT hash
function4 [8] if it were to be used in Merkle-Damg̊ard mode with a zero
IV, giving collisions/preimages with complexity O(2x/3)/O(2x/2), even if
the internal state is longer than output length x. However, our preimage
attack for non zero IV would not apply due to the prime modulus.

2 Description of LASH

2.1 Notation

Let us define rep(·) : Z256 → Z
8
256 as a function that takes a byte and

returns a sequence of elements 0, 1 ∈ Z256 corresponding to its binary
representation in the order of most significant bit first. For example,
rep(128) = (1, 0, 0, 0, 0, 0, 0, 0). We can generalize this notion to sequences
of bytes. The function Rep(·) : Z

m
256 → Z

8·m
256 is defined as Rep(s) =

rep(s1)|| . . . ||rep(sm), e.g. Rep((192, 128)) = (1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,

4 The proposal only specified the compression function and not the full hash function.



0, 0, 0). Moreover, for two sequences of bytes we define ⊕ as the usual
bitwise XOR of the two bitstrings.

We index elements of vectors and matrices starting from zero.

2.2 The LASH-x Hash Function

The LASH-x hash function maps an input of length less than 22x bits to
an output of x bits. Four concrete proposals were suggested in [2]: x =
160, 256, 384, and 512.

The hash is computed by iterating a compression function that maps
blocks of n = 4x bits to m = x/4 bytes (2x bits). The measure of n in
bits and m in bytes is due to the original paper. Always m = n/16. Below
we describe the compression function, and then the full hash function.

Compression Function of LASH-x. The compression function is of
the form f : Z

2m
256 → Z

m
256. It is defined as

f(r, s) = (r ⊕ s) + H · [Rep(r)||Rep(s)]T , (1)

where r = (r0, . . . , rm−1) and s = (s0, . . . , sm−1) are column vectors5

belonging to Z
m
256. The vector r is called the chaining variable. The ma-

trix H is a circulant matrix of dimensions m × (16m) defined as Hj , k =
a (j−k) mod 16m, where ai = yi mod 28, and yi is defined as y0 = 54321,
yi+1 = y2

i + 2 (mod 231 − 1) for i > 0. Our attacks do not use any prop-
erties of this sequence. In some cases, our analysis will split the matrix
H into a left half HL and a right half HR (each of size m × 8m), where
HL is multiplied by the bits of Rep(r) and HR by the bits of Rep(s).

A visual diagram of the LASH-160 compression function is given in
Figure 1, where t is f(r, s).

The Full Function. Given a message of l bits, padding is first applied
by appending a single ‘1’-bit followed by enough zeros to make the length
a multiple of 8m = 2x. The padded message consists of κ = ⌈(l + 1)/8m⌉
blocks of m bytes. Then, an extra block b of m bytes is appended that
contains the encoded bit-length of the original message, bi = ⌊l/28i⌋
(mod 256), i = 0, . . . ,m − 1.

Next, the blocks s(0), s(1), . . . , s(κ) of the padded message are fed to the
compression function in an iterative manner as follows: r(0) := (0, . . . , 0)
and then r(j+1) := f(r(j), s(j)) for j = 0, . . . , κ. The r(0) is called the IV.

5 In this paper, we sometimes abuse notation when there is no confusion in the text:
r and s can be both sequences of bytes as well as column vectors.
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Fig. 1. Visualizing the LASH-160 compression function.

Finally, the last chaining value r(κ+1) is sent through a final transform
which takes only the 4 most significant bits of each byte to form the final
hash value h. Precisely, the ith byte of h is hi = 16⌊r2i/16⌋ + ⌊r2i+1/16⌋
(0 ≤ i < m/2).

3 Initial Observations

3.1 LASH is Not a PRF

In some applications (e.g. HMAC) it is required that the compression
function (parameterized by its IV) should be a PRF. Below we show that
LASH does not satisfy this property by exhibiting a differential that holds
with probability 1, independent of the IV.

Assume that r is the secret parameter fixed beforehand and unknown
to us. We are presented with a function g(·) which may be f(r, ·) or a
random function and by querying it we have to decide which one we have.

First we write H = [HL||HR] and so (1) can be rewritten as

f(r, s) = (r ⊕ s) + HL · Rep(r)T + HR · Rep(s)T .

Setting s = 0, we get f(r, 0) = r+HL·Rep(r)T . Now, for s′ = (128, 0, . . . , 0)
we have Rep(s′) = 100 . . . 0 and so

f(r, s′) = (r0 ⊕ 128, r1, . . . , rm−1) + HL · Rep(r)T + HR[·, 0] ,

where HR[·, 0] denotes the first column of the matrix HR. One can readily
compute the difference between f(r, s′) and f(r, 0):

f(r, s′) − f(r, 0) = HR[·, 0] + (128, 0, . . . , 0)T .

Regardless of the value of the secret parameter r, the output difference
is a fixed vector equal to HR[·, 0] + (128, 0, . . . , 0)T . Thus, using only two



queries we can distinguish with probability 1− 2−8m the LASH compres-
sion function with secret IV from a randomly chosen function.

The same principle can be used to distinguish LASH even if most of
the bytes of s are secret as well. In fact, it is enough for us to control only
one byte of the input to be able to use this method and distinguish with
probability 1 − 2−8.

3.2 Absorbing the Feed-Forward Mode

According to [2], the feed-forward operation is motivated by Miyaguchi-
Preneel hashing mode and is introduced to thwart some possible attacks
on the plain matrix-multiplication construction. In this section we show
two conditions under which the feed-forward operation can be described
in terms of matrix operations and consequently absorbed into the LASH
matrix multiplication step to get a simplified description of the compres-
sion function. The first condition requires one of the compression function
inputs to be known, and the second requires a special subset of input mes-
sages.

First Condition: Partially Known Input. Suppose the r portion of
the (r, s) input pair to the compression function is known and we wish

to express the output g(s)
def
= f(r, s) in terms of the unknown input s.

We observe that each (8i + j)th bit of the feedforward term r ⊕ s (for
i = 0, . . . ,m − 1 and j = 0, . . . , 7) can be written as

Rep(r ⊕ s)8i+j = Rep(r)8i+j + (−1)Rep(r)8i+j · Rep(s)8i+j .

Hence the value of the ith byte of r ⊕ s is given by

7∑

j=0

(

Rep(r)8i+j + (−1)Rep(r)8i+j · Rep(s)8i+j

)

· 27−j =





7∑

j=0

Rep(r)8i+j · 27−j



 +





7∑

j=0

(−1)Rep(r)8i+j · Rep(s)8i+j · 27−j



 .

The first integer in parentheses after the equal sign is just the ith byte
of r, whereas the second integer in parentheses is linear in the bits of s
with known coefficients, and can be absorbed by appropriate additions
to elements of the matrix HR (defined in Section 2.2). Hence we have an
‘affine’ representation for g(s):

g(s) = (D′ + HR) · Rep(s)T + r + HL · Rep(r)T
︸ ︷︷ ︸

m × 1 vector

, (2)



where

D′ =










J0 08 . . . 08 08

08 J1 . . . 08 08
...

...
. . .

...
...

08 08 . . . Jm−2 08

08 08 . . . 08 Jm−1










.

Here, for i = 0, . . . ,m−1, we define the 1×8 vectors 08 = [0, 0, 0, 0, 0, 0, 0, 0]
and

Ji = [27·(−1)Rep(r)8i , 26·(−1)Rep(r)8i+1 , . . . , 21·(−1)Rep(r)8i+6 , 20·(−1)Rep(r)8i+7 ] .

Second Condition: Special Input Subset. Observe that when bytes
of one of the input sequences (say, r) are restricted to values {0, 128} only
(i.e. only MS bit in each byte can be set), the XOR operation behaves
like the byte-wise addition modulo 256. In other words, if r∗ = 128 · r′
where r′ ∈ {0, 1}m then

f(r∗, s) = r∗ + s + H · [Rep(r∗)||Rep(s)]T

= (D + H) · [Rep(r∗)||Rep(s)]T . (3)

The matrix D recreates values of r∗ and s from their representations,
similarly to matrix D′ above. Then the whole compression function has
the linear representation f(r′, s) = H ′ ·[r′||Rep(s)]T for a matrix H ′ which
is matrix D+H after removing 7m columns corresponding to the 7 LS bits
of r for each byte. The resulting restricted function compresses m + 8m
bits to 8m bits using only matrix multiplication without any feed-forward
mode.

4 Attacks Exploiting Zero IV

Collision Attack. In the original LASH paper, the authors describe a
“hybrid attack” against LASH without the appended message length and
final transform. Their idea is to do a Pollard or parallel collision search
in such a way that each iteration forces some output bits to a fixed value
(such as zero). Thus, the number of possible outputs is reduced from
the standard attack. If the total number of possible outputs is S, then a
collision is expected after about

√
S iterations. Using a combination of

table lookup and linear algebra, they are able to achieve S = 2(14m/3) in
their paper. Thus, the attack is not effective since a collision is expected in
about 2(7m/3) = 2(7x/12) iterations, which is more than the 2x/2 iterations



one gets from the standard birthday attack on the full LASH function
(with the final output transform).

Here, exploiting the zero IV, we describe a similar but simpler at-
tack on the full function which uses table lookup only. Our messages will
consist of a number of all-zero blocks followed by one “random” block.
Regardless of the number of zero blocks at the beginning, the output
of the compression function immediately prior to the length block being
processed is determined entirely by the one “random” block. Thus, we
will be using table lookup to determine a message length that results in a
hash output value which has several bits in certain locations set to some
predetermined value(s).

Refer to the visual diagram of the LASH-160 compression function in
Fig. 1. Consider the case of the last compression, where the value of r is
the output from the previous iteration and the value of s is the message
length being fed in. The resulting hash value will consist of the most-
significant half-bytes of the bytes of t. Our goal is to quickly determine a
value of s so that the most significant half-bytes from the bottom part of
t are all approximately zero.

Our messages will be long but not extremely long. Let α be the max-
imum number of bytes necessary to represent (in binary) any s that we
will use. So the bottom 40−α bytes of s are all 0 bytes, and the bottom
320 − 8α bits of Rep(s) are all 0 bits. As before, we divide the matrix
H into two halves, HL and HR. Without specifying the entire s, we can
compute the bottom 40−α bytes of (r⊕s)+HL ·Rep(r). Thus, if we pre-
computed all possibilities for HR ·Rep(s), then we can use table lookup to
determine a value of s that hopefully causes h (to be chosen later) most-
significant half-bytes from the bottom part of t to be 0. See the diagram
in Fig. 2. The only restriction in doing this is α + h ≤ 40.

We additionally require dealing with the padding byte. To do so, we
restrict our messages to lengths congruent to 312 mod 320. Then our “ran-
dom” block can have anything for the first 39 bytes followed by 0x80 for
the 40th byte which is the padding. We then ensure that only those lengths
occur in our table lookup by only precomputing HR · Rep(s) for values
of s of the form 320i + 312. Thus, we have α = ⌈ log 320+c

8 ⌉ assuming we
take all values of i less than 2c. We will aim for h = c/4, i.e. setting the
bottom c/4 half-bytes of t equal to zero. The condition α+h ≤ 40 is then
satisfied as long as c ≤ 104, which will not be a problem.

Complexity. Pseudocode for the precomputation and table lookup
can be found in Table 1 of [11]. With probability 1 − 1

e ≈ 0.632, we
expect to find a match in our table lookup. Assume that is the case.
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Fig. 2. Visualizing the final block of the attack on the LASH-160 compression function.
Diagram is not to scale. Table lookup is done to determine the values at the positions
marked with ℓ. Places marked with 0 are set to be zero by the attacker (in the t vector,
this is accomplished with the table lookup). Places marked with ‘.’ are outside of the
attacker’s control.

Due to rounding error, each of the bottom c/4 most significant half-bytes
of t will either be 0 or −1 (0xf in hexadecimal). Thus there are 2c/4

possibilities for the bottom c/4 half-bytes, and the remaining m − c/4 =
x/4−c/4 half-bytes (x−c bits) can be anything. So the size of the output
space is S = 2x−c+c/4 = 2x−3c/4. We expect a collision after we have
about 2x/2−3c/8 outputs of this form. Note that with a Pollard or parallel
collision search, we will not have outputs of this form a fraction of about
1/e of the time. This only means that we have to apply our iteration a
fraction of 1/(1 − 1

e ) ≈ 1.582 times longer, which has negligible impact
on the effectiveness of the attack. Therefore, we ignore such constants.
Balancing the Pollard search time with the precomputation time, we get
an optimal value with c = (4/11)x, i.e. a running time of order 2(4/11)x

LASH-x operations. The lengths of our colliding messages will be order
≤ 2c+log 2x bits. For instance, this attack breaks LASH-160 in as few as
258 operations using 258 storage. The lengths of our colliding messages
will be order ≤ 2c+log 2x bits.

Experimental Results. We used this method to find collisions in LASH-
160 truncated to the first 12 bytes of the hash: see [11]. The result took
one week of cpu time on a 2.4GHz PC with c = 28.

Preimage Attack. The same lookup technique can be used for preimage
attacks. One simply chooses random inputs and hashes them such that
the looked up length sets some of the output hash bits to the target. This
involves 2c precomputation, 2c storage, and 2x−3c/4 expected computation
time, which balances time/memory to 2(4x/7) using the optimal parameter
setting c = 4x/7.



5 Short Message Preimage Attack on LASH with

Arbitrary IV

The attacks in the previous section crucially exploit a particular parame-
ter choice made by the LASH designers, namely the use of an all zero Ini-
tial Value (IV) in the Merkle-Damg̊ard construction. Hence, it is tempting
to try to ‘repair’ the LASH design by using a non-zero (or even random)
value for the IV. In this section, we show that for any choice of IV, LASH-
x is vulnerable to a preimage attack faster than the desired security level
of O(2x). Our preimage attack takes time/memory O(2(7x/8)), and pro-
duces preimages of short length (2x bits). We give a general description
of the attack below with parameter choices for LASH-160 in parentheses.
Figure 3, which illustrates the attack for LASH-160, will be particularly
useful in understanding our algorithm. For ease of description, we ignore
the padding bit, but the reader should be able to see that this can be
dealt with as well.

The Attack. Let f : Z
2m
256 → Z

m
256 denote the internal LASH com-

pression function and fout : Z
2m
256 → Z

m
16 denote the final compression

function, i.e. the composition of f with the final transform applied to the
output of f . Given a target value tout whose LASH preimage is desired,
the inversion algorithm finds a single block message sin ∈ Z

m
256 hashing

to tout, i.e. satisfying

f(rin, sin) = rout (first compression)

and
fout(rout, sout) = tout (final compression) ,

where sout is the 8m-bit (320-bit for LASH-160) binary representation of
the length block, and rin = IV is an arbitrary known value. The inversion
algorithm proceeds as follows:

Step 1: Find 2m (240 for LASH-160) inverses of the final compression.
Using the precomputation-based preimage attack on the final com-
pression function fout described in the previous section (with straight-
forward modifications to produce the preimage using bits of rout rather
than sout and precomputation parameter cout = (20/7)m (cout ≈ 114
for LASH-160)), compute a list L of 2m preimage values of rout satis-
fying fout(rout, sout) = tout.

Step 2: Search for a preimage sin that maps to tout. Let c = 3.5m
(c = 140 for LASH-160) be a parameter (later we show that choosing
c = 3.5m is optimal). Split the 8m-bit input sin to be determined into



two disjoint parts sin(1) (of length 6m − c bit) and sin(2) (of length
2m + c bit), i.e. sin = sin(1)||sin(2) (For LASH-160, we have sin(1)
of length 100 bits and sin(2) of length 220 bits). We loop through
all possibilities for the list L and the set of inputs sin(1) (a total
of 2m · 26m−c = 27m−c possibilities, or 2140 possibilities for LASH-
160). For each such possibility, we run the internal compression func-
tion ‘hybrid’ partial inversion algorithm described below to compute a
matching ‘partial preimage’ value for sin(2), where by ‘partial preim-
age’ we mean that the compression function output f(rin, sin) matches
target rout on a fixed set of m+c = 4.5m bits (180 bits for LASH-160).
We leave the remaining 3.5m bits (140 bits for LASH-160) to chance.
Thus, for each such computed partial preimage sin = sin(1)||sin(2)
and corresponding rout value, we check whether sin is a full preimage,
i.e. whether f(rin, sin) = rout holds, and if so, output desired preimage
sin.

ff

M
S
B

4

tout

fout

sout (fixed length block)

routrin (fixed IV)

sin

sin(1) (100 b)

sin(2) (220 b)

sin(2, 1)

sin(2, 2)

sin(2, 3)

1
4
0

b

tin

Fig. 3. Illustration of the preimage attack applied to LASH-160.

Internal Compression Function ‘Hybrid’ Partial Inversion Algo-

rithm. For integer parameter c, the internal compression function ‘hy-
brid’ partial inversion algorithm is given a 8m-bit target value tin (= rout),
an 8m-bit input rin, and the (6m − c)-bit value sin(1), and computes a
(2m + c)-bit value for sin(2) such that f(rin, sin) matches tin on the top



c/7 bytes as well as on the LS bit of all remaining bytes. Hence, it matches
on a total of m + c bits. (For LASH-160, both tin and rin are 320 bits,
sin(1) is 100 bits, sin(2) is 220 bits, and f(rin, sin) matches tin on all of
the bytes in the top half of tin as well as all least significant bits). Some
preliminaries are necessary before we explain the algorithm.

From Section 3.2 we know that for known rin, the Miyaguchi-Preneel
feedforward term (rin ⊕ sin) can be absorbed into the matrix by appro-
priate modifications to the matrix and target vector, i.e. the inversion
equation

(rin ⊕ sin) + H · [Rep(rin)||Rep(sin)]T = tin mod 256, (4)

where H is the LASH matrix, can be reduced to an equivalent linear
equation

H ′ · [Rep(sin)]T = t′in mod 256, (5)

for appropriate matrix H ′ and vector t′in easily computed from the known
H, tin, and rin.

We require some notation and a one-time precomputation. We divide
sin(2) into 3 parts s(2, 1) (length m bits = 40 bits for LASH-160), s(2, 2)
(length c bits = 140 bits for LASH-160) and s(2, 3) (length m bits = 40
bits for LASH-160). For i = 1, 2, 3 let H ′(2, i) denote the submatrix of
matrix H ′ from (5) consisting of the columns indexed by the bits in s(2, i)
(e.g. H ′(2, 1) consists of the m columns of H ′ indexed by the m bits of
s(2, 1)). Similarly, let H ′(1) denote the submatrix of H ′ consisting of the
columns of H ′ indexed by the m bits of sin(1).

The one-time precomputation pairs up values of s(2, 2) with s(2, 3)
such that, after multiplying by the corresponding columns of H, the result
has 0’s in all m least significant bits. To do this, for each of 2c possible
values of s(2, 2), we find by linear algebra over GF (2), a matching value
for s(2, 3) such that

[H ′(2, 2) H ′(2, 3)] · [Rep(s(2, 2))||Rep(s(2, 3))]T = [0m]T mod 2. (6)

The entry s(2, 2)||s(2, 3) is stored in a hash table, indexed by the string
of c bits obtained by concatenating 7 MS bits of each of the top c/7 bytes
of vector y.

We are now ready to describe the internal compression function ‘hy-
brid’ partial inversion algorithm, based on [2] (a combination of table
lookup and linear algebra), to find sin(2) such that the left and right
hand sides of (5) match on the desired m + c bits (180 bits for LASH-
160). The gist of the algorithm is to use linear algebra to match the least
significant bits and table lookup to match other bits. It works as follows:



– Solving Linear Equations: Compute s(2, 1) such that

H ′(2, 1) · [Rep(s(2, 1))]T = t′in − H ′(1) · [Rep(sin(1))]T mod 2. (7)

Note that adding (6) and (7) implies that H ′ ·
[Rep(sin(1))||Rep(sin(2))]T = t′in mod 2 with sin(2) =
s(2, 1)||s(2, 2)||s(2, 3) for any entry s(2, 2)||s(2, 3) from the hash
table. In other words, all least significant bits will be matched
regardless of which entry is taken from the hash table.

– Lookup Hash Table: Find the s(2, 2)||s(2, 3) entry indexed by the
c-bit string obtained by concatenating the 7 MS bits of each of
the top c/7 bytes of the vector t′in − H ′(2, 1) · [Rep(s(2, 1))]T −
H ′(1) · [Rep(sin(1))]T mod 256. This implies that vector H ′ ·
[Rep(sin(1))||Rep(sin(2))]T matches t′in on all top c/7 bytes, as well
as on the LS bits of all bytes, as required.

Correctness of Attack. For each of 2m target values rout from list L,
and each of the 22.5m possible values for sin(1), the partial preimage inver-
sion algorithm returns sin(2) such that f(rin, sin) matches rout on a fixed
set of m + c bits. Modelling the remaining bits of f(rin, sin) as uniformly
random and independent of rout, we conclude that f(rin, sin) matches rout

on all 8m bits with probability 1/28m−(m+c) = 1/27m−c = 1/23.5m (using
c = 3.5m) for each of the 22.5m × 2m = 23.5m runs of the partial inversion
algorithm. Assuming that each of these runs is independent, the expected
number of runs which produce a full preimage is 23.5m×1/23.5m = 1, and
hence we expect the algorithm to succeed and return a full preimage.

Complexity. The cost of the attack is dominated by the second step,
where we balance the precomputation time/memory O(2c) of the hybrid
partial preimage inversion algorithm with the expected number 27m−c

of runs to get a full preimage. This leads (with the optimum parameter
choice c = 3.5m) to time/memory cost O(23.5m) = O(2(7x/8)), assuming
each table lookup takes constant time. To see that second step dominates
the cost, we recall that the first step with precomputation parameter
cout uses a precomputation taking time/memory O(2cout), and produces
a preimage after an expected O(24m−3cout/4) time using cout + (4m −
3cout/4) = 4m+ cout/4 bits of rout. Hence, repeating this attack 2m times
using m additional bits of rout to produce 2m distinct preimages is ex-
pected to take O(max(2cout, 25m−3cout/4)) time/memory using 5m+cout/4
bits of rout. The optimal choice for cout is cout = (20/7)m ≈ 2.89m, and
with this choice the first step takes O(2(20/7)m) = o(23.5m) time/memory
and uses (40/7)m < 8m bits of rout (the remaining bits of rout are set to
zero).



6 Attacks on the Final Compression Function

This section presents collision attacks on the final compression function
fout (including the output transform). For a given r ∈ Z

m
256, the attacks

produce s, s′ ∈ Z
m
256 with s 6= s′ such that fout(r, s) = fout(r, s

′). To
motivate these attacks, we note that they can be converted into a ‘very
long message’ collision attack on the full LASH function, similar to the
attack in Sect. 4. The two colliding messages will have the same final
non-zero message block, and all preceding message blocks will be zero. To
generate such a message pair, the attacker chooses a random (8m−8)-bit
final message block (common to both messages), pads with a 0x80 byte,
and applies the internal compression function f (with zero chaining value)
to get a value r ∈ Z

m
256. Then using the collision attack on fout the attacker

finds two distinct length fields s, s′ ∈ Z
m
256 such that fout(r, s) = fout(r, s

′).
Moreover, s, s′ must be congruent to 8m−8 (mod 8m) due to the padding
scheme. For LASH-160, we can force s, s′ to be congruent to 8m − 8
(mod 64) by choosing the six LS bits of the length, so this leaves a 1/52

chance that both inputs will be valid.
The lengths s, s′ produced by the attacks in this section are very long

(longer than 2x/2). However, we hope the ideas here can be used for future
improved attacks.

6.1 Generalized Birthday Attack on the Final Compression

The authors of [2] describe an application of Wagner’s generalized birth-
day attack [12] to compute a collision for the internal compression func-
tion f using O(22x/3) time and memory. Although this ‘cubic root’ com-
plexity is lower than the generic ‘square-root’ complexity of the birthday
attack on the full compression function, it is still higher than the O(2x/2)
birthday attack complexity on the full function, due to the final trans-
formation outputting only half the bytes. Here we describe a variant of
Wagner’s attack for finding a collision in the final compression including
the final transform (so the output bit length is x bits). The asymptotic

complexity of our attack is O

(

x2
x

2(1+ 107
105 )

)

time and memory – slightly

better than a ‘fourth-root’ attack. For simplicity, we can call the running
time O(x2x/4).

The basic idea of our attack is to use the linear representation of fout

from Sect. 3.2 and apply a variant of Wagner’s attack [12], modified to
carefully deal with additive carries in the final transform. As in Wagner’s
original attack, we build a binary tree of lists with 8 leaves. At the ith



level of the tree, we merge pairs of lists by looking for pairs of entries (one
from each list) such that their sums have 7 − i zero MS bits in selected
output bytes, for i = 0, 1, 2. This ensures that the list at the root level
has 4 zero MS bits on the selected bytes (these 4 MS bits are the output
bits), accounting for the effect of carries during the merging process. More
precise details are given below.

The attack. The attack uses inputs r, s for which the internal com-
pression function f has a linear representation absorbing the Miyaguchi-
Preneel feedforward (see Section 3.2). For such inputs, which may be of
length up to 9m bit (recall: m = x/4), the final compression function
f ′ : Z

9m
256 → Z

m
16 has the form

f ′(r) = MS4(H
′ · [Rep(r)]T ), (8)

where MS4 : Z
m
256 → Z

m
16 keeps only the 4 MS bits of each byte of its

input, concatenating the resulting 4 bit strings (note that we use r here
to represent the whole input of the linearised compression function f ′

defined in Section 3.2). Let Rep(r) = (r[0], r[1], . . . , r[9m − 1]) ∈ Z
9m
256

with r[i] ∈ {0, 1} for i = 0, . . . , 9m − 1. Let ℓ ≈ ⌊ 4m
2(1+107/105) ⌋ (notice

that 8ℓ < 9m). We refer to each component r[i] of r as an input bit.
We choose a subset of 8ℓ input bits from r and partition the subset into
8 substrings ri ∈ Z

ℓ
256 (i = 1, . . . , 8) each containing ℓ input bits, i.e.

r = (r1, r2, . . . , r8). The linearity of (8) gives

f ′(r) = MS4(H
′
1 · [r1]T + · · · + H ′

8 · [r8]T ),

where, for i = 1, . . . , 8, H ′
i denotes the m×ℓ submatrix of H ′ consisting of

the ℓ columns indexed (i−1) · ℓ, (i−1) · ℓ+1, . . . , i · ℓ−1 in H ′. Following
Wagner [12], we build 8 lists L1, . . . , L8, where the ith list Li contains

all 2ℓ possible candidates for the pair (ri, yi), where yi def
= H ′

i · [ri]T (note
that yi can be easily computed when needed from ri and need not be
stored). We then use a binary tree algorithm described below to gradually
merge these 8 lists into a single list L3 containing 2ℓ entries of the form
(r, y = H ′ · [r]T ), where the 4 MS bits in each of the first α bytes of y are
zero, for some α, to be defined below. Finally, we search the list L3 for
a pair of entries which match on the values of the 4 MS bits of the last
m − α bytes of the y portion of the entries, giving a collision for f ′ with
the output being α zero half-bytes followed by m−α random half-bytes.

The list merging algorithm operates as follows. The algorithm is given
the 8 lists L1, . . . , L8. Consider a binary tree with c = 8 leaf nodes at level
0. For i = 1, . . . , 8, we label the ith leaf node with the list Li. Then, for



each jth internal node ni
j of the tree at level i ∈ {1, 2, 3}, we construct

a list Li
j labelling node ni

j, which is obtained by merging the lists Li−1
A ,

Li−1
B at level i − 1 associated with the two parent nodes of ni

j. The list

Li
j is constructed so that for i ∈ {1, 2, 3}, the entries (r′, y′) of all lists at

level i have the following properties:

– (r′, y′) = (r′A||r′B , y′A + y′B), where (r′A, y′A) is an entry from the left
parent list Li−1

A and (r′B , y′B) is an entry from the right parent list
Li−1

B .

– If i ≥ 1, the ⌈ℓ/7⌉ bytes of y′ at positions 0, . . . , ⌈ℓ/7⌉ − 1 each have
their (7 − i) MS bits all equal to zero.

– If i ≥ 2, the ⌈ℓ/6⌉ bytes of y′ at positions ⌈ℓ/7⌉ , . . . , ⌈ℓ/7⌉+ ⌈ℓ/6⌉− 1
each have their (7 − i) MS bits all equal to zero.

– If i = 3, the ⌈ℓ/5⌉ bytes of y′ at positions ⌈ℓ/7⌉ + ⌈ℓ/6⌉ , . . . , ⌈ℓ/7⌉ +
⌈ℓ/6⌉+ ⌈ℓ/5⌉− 1 each have their (7− i) = 4 MS bits all equal to zero.

The above properties guarantee that all entries in the single list at
level 3 are of the form (r, y = H ′ · [Rep(r)]T ), where the first α = ⌈ℓ/7⌉+
⌈ℓ/6⌉ + ⌈ℓ/5⌉ bytes of y all have 7 − 3 = 4 MS bits equal to zero, as
required.

To satisfy the above properties, we use a hash table lookup procedure,
which aims, when merging two lists at level i, to fix the 7 − i MS bits of
some of the sum bytes to zero. This procedure runs as follows, given two
lists Li−1

A , Li−1
B from level i− 1 to be merged into a single list Li at level

i:

– Store the first component r′A of all entries (r′A, y′A) of Li−1
A in a hash

table TA, indexed by the hash of:

• If i = 1, the 7 MS bits of bytes 0, . . . , ⌈ℓ/7⌉ − 1 of y′A, i.e. string
(MS7(y

′
A[0]), . . . ,MS7(y

′
A[⌈ℓ/7⌉ − 1])).

• If i = 2, the 6 MS bits of bytes ⌈ℓ/7⌉ , . . . , ⌈ℓ/7⌉+ ⌈ℓ/6⌉ − 1 of y′A,
i.e. string (MS6(y

′
A[⌈ℓ/7⌉]), . . . ,MS6(y

′
A[⌈ℓ/7⌉ + ⌈ℓ/6⌉ − 1])).

• If i = 3, the 5 MS bits of bytes ⌈ℓ/7⌉+ ⌈ℓ/6⌉ , . . . , α− 1 of y′A, i.e.
string (MS5(y

′
A[⌈ℓ/7⌉ + ⌈ℓ/6⌉]), . . . ,MS5(y

′
A[α − 1])).

– For each entry (r′B , y′B) of Li−1
B , look in hash table TA for matching

entry (r′A, y′A) of Li−1
A such that:

• If i = 1, the 7 MS bits of corresponding bytes in positions
0, . . . , ⌈ℓ/7⌉−1 add up to zero modulo 27 = 128, i.e. MS7(y

′
A[j]) ≡

−MS7(y
′
B [j]) mod 27 for j = 0, . . . , ⌈ℓ/7⌉ − 1.

• If i = 2, the 6 MS bits of corresponding bytes in positions
⌈ℓ/7⌉ , . . . , ⌈ℓ/7⌉ + ⌈ℓ/6⌉ − 1 add up to zero modulo 26 = 64, i.e.



MS6(y
′
A[j]) ≡ −MS6(y

′
B[j]) mod 26 for j = ⌈ℓ/7⌉ , . . . , ⌈ℓ/7⌉ +

⌈ℓ/6⌉ − 1.

• If i = 3, the 5 MS bits of corresponding bytes in positions ⌈ℓ/7⌉+
⌈ℓ/6⌉ , . . . , α−1 add up to zero modulo 25 = 32, i.e. MS5(y

′
A[j]) ≡

−MS5(y
′
B [j]) mod 25 for j = ⌈ℓ/7⌉ + ⌈ℓ/6⌉ , . . . , α − 1.

– For each pair of matching entries (r′A, y′A) ∈ Li−1
A and (r′B , y′B) ∈ Li−1

B ,
add the entry (r′A‖r′B , y′A + y′B) to list Li.

Correctness. The correctness of the merging algorithm follows from
the following simple fact:

Fact If x, y ∈ Z256, and the k MS bits of x and y (each regarded as the
binary representation of an integer in {0, . . . , 2k − 1}) add up to zero
modulo 2k, then the (k − 1) MS bits of the byte x + y (in Z256) are
zero.

Thus, if i = 1, the merging lookup procedure ensures, by the Fact
above, that the 7 − 1 = 6 MS bits of bytes 0, . . . , ⌈ℓ/7⌉ − 1 of y′A + y′B
are zero, whereas for i ≥ 2, we have as an induction hypothesis that the
7 − (i − 1) MS bits of bytes 0, . . . , ⌈ℓ/7⌉ − 1 of both y′A and y′B are zero,
so again by the Fact above, we conclude that the 7 − i MS bits of bytes
0, . . . , ⌈ℓ/7⌉ − 1 of y′A + y′B are zero, which proves inductively the desired
property for bytes 0, . . . , ⌈ℓ/7⌉−1 for all i ≥ 1. A similar argument proves
the desired property for all bytes in positions 0, . . . , α− 1. Consequently,
at the end of the merging process at level i = 3, we have that all entries
(r, y) of list L3 have the 7 − 3 = 4 MS bits of bytes 0, . . . , α − 1 being
zero, as required.

Asymptotic Complexity. The lists at level i = 0 have |L0| = 2ℓ entries.
To estimate the expected size |L1| of the lists at level i = 1, we model the
entries (r0, y0) of level 0 lists as having uniformly random and independent
y0 components. Hence for any pair of entries (r0

A, y0
A) ∈ L0

A and (r0
B , y0

B) ∈
L0

B from lists L0
A L0

B to be merged, the probability that the 7 MS bits of
bytes 0, . . . , ⌈ℓ/7⌉− 1 of y0

A and y0
B are negatives of each other modulo 27

is 1
2⌈ℓ/7⌉×7 . Thus, the total expected number of matching pairs (and hence

entries in the merged list L1) is

|L1| =
|L0

A| × |L0
B |

2⌈ℓ/7⌉×7
=

22ℓ

2⌈ℓ/7⌉×7
= 2ℓ+O(1).

Similarly, for level i = 2, we model bytes ⌈ℓ/7⌉ , . . . , ⌈ℓ/7⌉ + ⌈ℓ/6⌉ − 1 as
uniformly random and independent bytes, and with the expected sizes
|L1| = 2ℓ+O(1) of the lists from level 1, we estimate the expected size |L2|



of the level 2 lists as:

|L2| =
|L1

A| × |L1
B |

2⌈ℓ/6⌉×6
= 2ℓ+O(1),

and a similar argument gives also |L3| = 2ℓ+O(1) for the expected size of
the final list. The entries (r, y) of L3 have zeros in the 4 MS bits of bytes
0, . . . , α − 1, and random values in the remaining m − α bytes. The final
stage of the attack searches |L3| for two entries with identical values for
the 4 MS bits of each of these remaining m − α bytes. Modelling those
bytes as uniformly random and independent we have by a birthday para-
dox argument that a collision will be found with high constant probability
as long as the condition |L3| ≥

√
24(m−α) holds. Using |L3| = 2ℓ+O(1) and

recalling that α = ⌈ℓ/7⌉ + ⌈ℓ/6⌉ + ⌈ℓ/5⌉ = (1/7 + 1/6 + 1/5)ℓ + O(1) =
107
210ℓ + O(1), we obtain the attack success requirement

ℓ ≥ 4m

2(1 + 107
105 )

+ O(1) ≈ x

4
+ O(1).

Hence, asymptotically, using ℓ ≈ ⌊ x
2(1+107/105) ⌋, the asymptotic mem-

ory complexity of our attack is O(x2
x

2(1+ 107
105 ) ) ≈ O(x2x/4) bit, and the

total running time is also O(x2
x

2(1+ 107
105 ) ) ≈ O(x2x/4) bit operations. So

asymptotically, we have a ‘fourth-root’ collision finding attack on the fi-
nal compression function.

Concrete Example. For LASH-160, we expect a complexity in the or-
der of 240. In practice, the O(1) terms increase this a little. Table 1 sum-
marises the requirements at each level of the merging tree for the attack
with ℓ = 42 (note that at level 2 we keep only 241 of the 242 number of
expected list entries to reduce memory storage relative to the algorithm
described above). It is not difficult to see that the merging tree algo-
rithm can be implemented such that at most 4 lists are kept in memory
at any one time. Hence, we may approximate the total attack memory
requirement by 4 times the size of the largest list constructed in the
attack, i.e. 248.4 bytes of memory. The total attack time complexity is
approximated by

∑3
i=0 |Li| ≈ 243.3 evaluations of the linearised LASH

compression function f ′, plus
∑3

i=0 23−i|Li| ≈ 246 hash table lookups.
The resulting attack success probability (of finding a collision on the 72
random output bits among the 237 entries of list L3) is estimated to be
about 1 − e−0.5·237(237−1)/2160−88 ≈ 0.86. The total number of input bits
used to form the collision is 8ℓ = 336 bit, which is less than the num-
ber 9m = 360 bit available with the linear representation for the LASH
compression function.



Table 1. Concrete Parameters of an attack on final compression function of LASH-
160. For each level i, |Li| denotes the expected number of entries in the lists at level i,
’Forced Bytes’ is the number of bytes whose 7−i MS bits are forced to zero by the hash
table lookup process at this level, ‘Zero bits’ is four times the total number of output
bytes whose 4 MS bits are guaranteed to be zero in list entries at this level, ‘Mem/Item’
is the memory requirement (in bit) per list item at this level, ‘log(Mem)/List’ is the
base 2 logarithm of the total memory requirement (in bytes) for each list at this level
(assuming that our hash table address space is twice the expected number of list items).

Level (i) log(|Li|) Forced Bytes Zero bits Mem/Item, bit log(Mem)/List, Byte

0 42 6 0 42 45.4
1 42 7 24 84 46.4
2 41 9 52 168 46.4
3 37 88 336 43.4

6.2 Heuristic Lattice-Based Attacks on the Final Compression

We investigated the performance of two heuristic lattice-based methods
for finding collisions in truncated versions of the final compression func-
tion of LASH. The first reduces finding collisions to a lattice Shortest
Vector Problem (SVP). The second uses the SVP as a preprocessing stage
and applies a cycling attack with a lattice Closest Vector Problem (CVP)
solved at each iteration. Due to lack of space, a detailed description of
these attacks and the experimental results obtained can be found else-
where [11]. The lattice-based attacks have the advantage of requiring very
little memory. Preliminary experimental results for LASH-160 [11] give
a time complexity estimate below 268 for the CVP-based attack, signifi-
cantly lower than the desired 280. Using our SVP-based attack, we found
a collision in the final LASH-160 compression function truncated to 120
bits, with time complexity below 236 (much less than the expected 260).

7 Conclusions

The LASH-x hash function was constructed by taking the GGH provable
design [6] and duct taping on components that were intended for heuristic
hashing. It is thus a combination of several techniques which are individ-
ually sound when applied to ideal components. Our work illustrates that
this design strategy does not necessarily yield a secure result when applied
to concrete components. In summary, we showed that LASH-x does not
meet the designers’ security goals nor does it meet other security goals
that are typically assumed in heuristic hashing [5].
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