
How to Strengthen any Weakly Unforgeable

Signature into a Strongly Unforgeable Signature

Ron Steinfeld1, Josef Pieprzyk1, and Huaxiong Wang1,2

1 Centre for Advanced Computing – Algorithms and Cryptography (ACAC)
Dept. of Computing, Macquarie University, North Ryde, Australia

2 Nanyang Technological University, Singapore
{rons,josef,hwang}@comp.mq.edu.au
http://www.ics.mq.edu.au/acac/

Abstract. Standard signature schemes are usually designed only to
achieve weak unforgeability – i.e. preventing forgery of signatures on
new messages not previously signed. However, most signature schemes
are randomised and allow many possible signatures for a single message.
In this case, it may be possible to produce a new signature on a previ-
ously signed message. Some applications require that this type of forgery
also be prevented – this requirement is called strong unforgeability.
At PKC2006, Boneh Shen and Waters presented an efficient transform
based on any randomised trapdoor hash function which converts a weakly
unforgeable signature into a strongly unforgeable signature and applied it
to construct a strongly unforgeable signature based on the CDH problem.
However, the transform of Boneh et al only applies to a class of so-
called partitioned signatures. Although many schemes fall in this class,
some do not, for example the DSA signature. Hence it is natural to
ask whether one can obtain a truly generic efficient transform based
on any randomised trapdoor hash function which converts any weakly
unforgeable signature into a strongly unforgeable one. We answer this
question in the positive by presenting a simple modification of the Boneh-
Shen-Waters transform. Our modified transform uses two randomised
trapdoor hash functions.

Key Words: Digital signature, strong unforgeability, trapdoor hash
function, provable security, transform.

1 Introduction

Background. Standard signature schemes are usually designed only to achieve
weak unforgeability – i.e. preventing forgery of signatures on new messages not
previously signed. However, most signature schemes are randomised and allow
many possible signatures for a single message. In this case, it may be possible
to produce a new signature on a previously signed message. Some applications
(such as constructing chosen-ciphertext secure public key encryption schemes [3]
and authenticated key exchange protocols [9]) require that this type of forgery
also be prevented – this requirement is called strong unforgeability.

At PKC2006, Boneh Shen and Waters [2] presented an efficient transform
based on a randomised trapdoor hash function which converts a weakly un-
forgeable signature into a strongly unforgeable signature, and applied it to con-
struct a strongly unforgeable signature based on the CDH problem. However,
the transform of Boneh et al only applies to a class of so-called partitioned sig-
natures. Although many schemes fall in this class, some do not, for example the
DSA signature [12]. Hence it is natural to ask whether one can obtain a truly
generic efficient transform which converts any weakly unforgeable signature into
a strongly unforgeable one.

Our Result. We answer the above question in the positive by presenting
a general efficient transform which uses randomised trapdoor hash functions
to strengthen any weakly unforegeable signature into a strongly unforgeable
signature. Our transform makes use of two randomised trapdoor hash functions
(rather than just one in the less general transform of [2]). Like the transform
of [2], our transform requires the randomised trapdoor hash functions to be
strongly collision-resistant (by the word strong we mean here that it is even
hard to find two randomisers r 6= r′ and a message m such that (m, r) and
(m, r′) are a collision-pair for the randomised hash function, whereas usually
only weak collision resistance is needed, i.e. it is only hard to find collisions with
distinct message inputs). For this purpose, we show that a small modification of
the efficient VSH randomised trapdoor function, which was shown to be weakly
collision-resistant in [5], gives a strongly collision-resistant function which can
be used in this application.

Relation to Previous Work. The problem of converting a weakly unforge-
able signature into a strongly unforgeable one can be trivially “solved” in two
known ways. The first solution is to construct a one-way function from the
weakly unforgeable signature scheme, and then apply the generic construction
of a strongly unforgeable signature from any one-way function (see Section 6.5.2
in [8]), but this results in a very inefficient scheme. The second trivial “so-
lution” is to completely ignore the original weakly unforgeable scheme, make
additional assumptions, and directly construct the strongly unforgeable scheme
from those assumptions. For example, strongly unforgeable signature schemes
from the Strong RSA assumption [7, 6], Strong Diffie-Hellman assumption [1] or
Computational Diffie-Hellman in a bilinear group [2] are known. However, these
all seem quite strong and non-classical additional assumptions, and do not make
use of the given weakly unforgeable signature.

In contrast to the above trivial solutions, our weak-to-strong transform (like
the BSW transform [2]) makes non-trivial use of the given weakly unforge-
able signature scheme, and efficiently reduces the problem of strengthening it
to the problem of constructing a seemingly simpler cryptographic primitive,
namely a randomised trapdoor hash function. As evidence for the practicality
of our transform, we note that randomised trapdoor hash functions are known
to be efficiently constructible under the classical factoring or discrete-log as-
sumptions, whereas no efficient direct constructions for strongly unforgeable
signatures based on these classical assumptions are known (without random

oracles). As an example application, we show (in Section 4.2) how to strengthen
the standard Digital Signature Algorithm (DSA) [12], assuming only the weak
unforgeability of DSA.

2 Preliminaries

Weak and Strong Unforgeability for Signature Schemes. A signature
scheme Σ consists of three efficient algorithms: a key generation algorithm KG,
a signing algorithm S and a verification algorithm V.

The strong and weak unforgeability of a signature scheme Σ are defined using
the following game. A key pair (sk, pk) = KG(k) is generated, and unforgeability
attacker A is given the public key pk. A can run for time t and can issue q
signing queries m1, . . . ,mq to a signing oracle S(sk, ·), which upon each query
mi returns the signature σi = S(sk,mi) to A. At the end, A outputs a forgery
message/signature pair (m∗, σ∗). We say that A succeeds in breaking the strong
unforgeability of Σ if (m∗, σ∗) passes the verification test V with respect to public
key pk, and (m∗, σ∗) 6= (mi, σi) for all i = 1, . . . , q. We say that A succeeds in
breaking the weak unforgeability of Σ if (m∗, σ∗) passes the verification test
V with respect to public key pk, and m∗ 6= mi for all i = 1, . . . , q. A signature
scheme Σ is called (t, q, ε) strongly (respectively, weakly) existentially unforgeable
under an adaptive chosen-message attack if any efficient attacker A with run-
time t has success probability at most ε in breaking the strong (respectively,
weak) unforgeability of Σ.

Randomised Trapdoor (Chameleon) Hash Functions [10, 13]. A ran-
domised trapdoor hash function scheme consists of three efficient algorithms: a
key generation algorithm KGF , a hash function evaluation algorithm F , and a
trapdoor collision finder algorithm TCF . On input a security parameter k, the
(randomised) key generation algorithm KGF (k) outputs a secret/public key pair
(sk, pk). On input a public key pk, message m ∈ M and random r ∈ R (here M
and R are the message and randomness spaces, respectively), the hash function
evaluation algorithm outputs a hash value h = Fpk(m; r) ∈ H (here H is the hash
string space). On input a secret key sk, a message/randomiser pair (m1, r1) ∈
M × R and a second message m2 ∈ M , the trapdoor collision finder algorithm
outputs a second randomiser r2 = TCF (sk, (m1, r1),m2) ∈ R such that (m1, r1)
and (m2, r2) constitute a collision for Fpk, i.e. Fpk(m1; r1) = Fpk(m2; r2).

There are two desirable security properties for a trapdoor hash function
scheme F = (KGF , F,TCF). The scheme F is called (t, ε) strongly collision-
resistant if any efficient attacker A with run-time t has success probability at
most ε in the following game. A key pair (sk, pk) = KGF (k) is generated, and
A is given the public key pk. A can run for time t and succeeds if it outputs
a collision (m1, r1), (m2, r2) for Fpk satisfying Fpk(m1, r1) = Fpk(m2, r2) and
(m1, r1) 6= (m2, r2). The scheme F has the random trapdoor collision property
if for each fixed secret key sk and fixed message pair (m1,m2), if r1 is chosen

uniformly at random from R, then r2
def
= TCF (sk, (m1, r1),m2) has a uniform

probability distribution on R.

3 Converting Weak Unforgeability to Strong

Unforgeability

We begin by reviewing the Boneh-Shen-Waters (BSW) transform that applies
to the class of partitioned signatures. We then explain the problem that arises
in trying to apply the BSW transform to an arbitrary signature scheme while
preserving the security proof, and how we resolve the problem with our generic
transform.

3.1 The Boneh-Shen-Waters Transform for Partitioned Signatures

The BSW transform [2] converts any weakly unforgeable partitioned signature
into a strongly unforgeable signature. First we recall the definition of partitioned
signatures from [2].

Definition 1 (Partitioned Signature). A signature scheme Σ is called par-
titioned if it satisfies the following two properties:

1. The signing algorithm S can be split into two deterministic subalgorithms S1

and S2, such that a signature σ = (σ1, σ2) on a message m using secret key
sk can be computed as follows:
– choose a random ω ∈ ΩΣ,
– compute σ1 = S1(sk,m;ω) and σ2 = S2(sk;ω) (note that σ2 does not

depend on m),
– return signature σ = (σ1, σ2).

2. For each m and σ2, there exists at most one σ1 such that σ = (σ1, σ2) verifies
as a valid signature on message m under public key pk.

The BSW transform converts a partitioned signature scheme Σ = (KG,S,V)
(where the signing algorithm S is partitioned into subalgorithms S1 and S2,
and the signing algorithm randomness space is denoted ΩΣ) into a new signa-
ture scheme ΣBSW = (KGBSW,SBSW,VBSW). The transform also makes use of
a randomised trapdoor hash function scheme F = (KGF , F,TCF) (where the
randomness space is denoted RF). We remark that in [2] the authors present
their transform with a specific trapdoor hash construction for F based on the
discrete-log problem, but here we present it more generally. The new signature
scheme ΣBSW is defined as follows:

1. KGBSW(k). On input security parameter k, run KG(k) to generate a se-
cret/public key pair (sk, pk) for signature scheme Σ, and run KGF (k) to
generate secret/public key pair (skF , pkF) for trapdoor hash scheme F . The
secret and public keys for the new signature scheme ΣBSW are:

skBSW = (sk, pkF) and pkBSW = (pk, pkF).

2. SBSW(skBSW,m). On input message m and secret key skBSW = (sk, pkF), a
signature is generated as follows:

(a) choose random ω ∈ ΩΣ and s ∈ RF ,
(b) compute σ2 = S2(sk;ω),
(c) compute m̄ = FpkF

(m‖σ2; s),
(d) compute σ1 = S1(sk, m̄;ω) and return signature σ = (σ1, σ2, s).

3. VBSW(pk,m, σ). A signature σ = (σ1, σ2, s) on a message m is verified as
follows:
(a) compute m̄ = FpkF

(m‖σ2; s),
(b) return V(pk, m̄, (σ1, σ2)).

The security result proven in [2] can be stated as follows (when generalised
to the case of an arbitrary trapdoor hash function in place of the composition of
a standard collision-resistant hash function and trapdoor hash function in [2]).

Theorem 1 (Boneh–Shen–Waters). The signature scheme ΣBSW is (t, q, ε)
strongly existentially unforgeable, assuming the underlying signature scheme Σ
is (t, q, ε/2) weakly existentially unforgeable and the randomised trapdoor hash
function F is (t, ε/2) strongly collision-resistant and has the random trapdoor
collision property.

Intuition. The basic idea of the BSW transform (as also explained in [2]) is
that the message-independent signature portion σ2 of a generated signature is
protected from modification by appending it to the message m before hashing
with FpkF

and signing with the S1 algorithm. As a consequence, any ‘strong
unforgeability’ attacks which modify σ2 will lead to either a collision for the
hash function F or a ‘weak unforgeability’ forgery for the underlying signature
scheme. However (to set the scene for our generalised construction) we wish to
highlight two important issues and how they were addressed in [2]:

(1) Security Proof Issues: Following the above intuition, the security proof in-
volves using the strong unforgeability attacker A on ΣBSW to construct at-
tackers AF and AΣ against the collision resistance and weak unforgeability of
schemes F and Σ, respectively. But note that to answer A’s signing queries:

(1.1) AF needs to be able to simulate signatures of ΣBSW without the trapdoor
key skF for trapdoor hash scheme F .

(1.2) AΣ needs to be able to simulate signatures of ΣBSW using the signing
algorithm S(sk, ·) as a black box (i.e. without individual access to the
internal subalgorithms S1(·, sk) and S2(·, sk)).

(2) No Protection for σ1: Since the σ1 signature portion is not hashed, it is not
protected from modification by the transform.

These issues were addressed in [2] as follows. The issue (1.1) was easily re-
solved by just using the signing algorithm SBSW since the latter does not make
use of skF . The issue (1.2) was resolved using an alternative signing algo-
rithm which uses the trapdoor key of hash function Fk and the ‘sign-then-
switch’ paradigm [13] to sign using S(sk, ·) as a black box (namely, to sign
m, one picks a random s′ ∈ RF and an arbitrary string σ′

2 and signs m̄ =
FpkF

(m‖σ′
2; s

′) to obtain σ = (σ1, σ2) = S(sk, m̄), and then ‘switch’ s′ to

s = TCF (skF , (m‖σ′
2, s

′), (m‖σ2)) using the trapdoor key skF , yielding the sig-
nature (σ1, σ2, s)). Finally, the issue (2) was resolved vt using Property 2 of
partitioned signatures (see Def. 1), which implies that protection of σ1 is not
needed, because one cannot modify σ1 alone without making the signature in-
valid.

3.2 Our Generic Transform for Arbitrary Signatures

Intuition. Our goal is to construct a generic transform which can convert any
weakly unforgeable signature to a strongly unforgeable one, i.e. we seek a trans-
form which does not rely on the properties of partitioned signatures. Suppose
we attempt to modify the BSW transform for this purpose. To address the issue
(2) in the previous section, we must protect the whole signature from modifica-
tion. Referring to Fig 1(a), suppose we modify the BSW construction by feeding
back the whole signature σ (not just σ2) into the hash function FpkF

input.
The problem is that we obtain a closed loop, where message input m̄ of S(sk, ·)
depends on the output signature σ. Using the trapdoor key skF of the hash
function FpkF

and the black box S(sk, ·), we can still produce valid signatures
of ΣBSW using the ‘sign-then-switch’ method outlined in the previous section,
but we can no longer produce signatures of ΣBSW without the trapdoor key skF

(even if we know sk). Therefore, the proof of security for the modified construc-
tion collapses due to issue (1.1) discussed in the previous section. Our solution
for resolving this issue is to introduce a second trapdoor hash function H in this
closed loop as shown in Fig. 1(b). This resolves the issue (1.1) by allowing us
to use the ‘hash-then-switch’ method to simulate signatures of ΣBSW using skH

and sk (without knowing skF), or using skF and sk (without knowing skH), and
the last two signing methods produce identically distributed signatures thanks
to the ‘random trapdoor collision’ property of F and H.

Construction. Following the above intuition, we now give a precise descrip-
tion and security proof for our generic transform GBSW. The GBSW trans-
form converts an arbitrary signature scheme Σ = (KG,S,V) (where the sign-
ing algorithm randomness space is denoted ΩΣ) into a new signature scheme
ΣGBSW = (KGGBSW,SGBSW,VGBSW). The transform makes use of two randomised
trapdoor hash function schemes F = (KGF , F,TCF) (with randomness space
RF) and H = (KGH ,H,TCH) (with randomness space RH). The new signature
scheme ΣGBSW is defined as follows:

1. KGGBSW(k). On input security parameter k, run KG(k) to generate a se-
cret/public key pair (sk, pk) for signature scheme Σ, and run KGF (k) and
KGH(k) to generate secret/public key pairs (skF , pkF) and (skH , pkH) for
trapdoor hash schemes F and H, respectively. The secret and public keys
for the new signature scheme ΣGBSW are:

skGBSW = (sk, skH , pkF , pkH) and pkGBSW = (pk, pkF , pkH).

Fig. 1. (a) Boneh–Shen–Waters (BSW) transform for partitioned signature schemes.
(b) Our Generalised BSW transform for arbitrary signature schemes.

2. SGBSW(skGBSW,m). On input message m and secret key skGBSW =
(sk, skH , pkF , pkH), a signature is generated as follows:

(a) choose random elements ω ∈R ΩΣ , s ∈R RF , and r′ ∈R RH,
(b) compute h = HpkH

(m′‖σ′; r′), for some arbitrary fixed strings m′ and
σ′.

(c) compute m̄ = FpkF
(h; s),

(d) compute σ = S(sk, m̄;ω),
(e) using trapdoor collision finder for H to compute r =

TCH(skH , (m′‖σ′, r′),m‖σ) such that HpkH
(m‖σ; r) = h and re-

turn signature σGBSW = (σ, r, s).

3. VGBSW(pkGBSW,m, σGBSW). A signature σGBSW = (σ, r, s) on a message m
using public key pkGBSW = (pk, pkF , pkH) is verified as follows:

(a) compute h = HpkH
(m‖σ; r),

(b) compute m̄ = FpkF
(h; s),

(c) return V(pk, m̄, σ).

Remark 1: We implicitly assume of course, that the verification algorithm
VGBSW immediately rejects any signature (σ, r, s) for which r 6∈ RH or s 6∈ RF .

Remark 2: One can set the schemes F and H to be identical – the important
requirement is that the key pair instances (skF , pkF) and (skH , pkH) are gen-
erated by two independent runs of the key generation algorithms of F and H,
respectively.

The following theorem proves the strong unforgeability of the scheme ΣGBSW,
assuming the weak unforgeability of the underlying signature scheme Σ.

Theorem 2. The signature scheme ΣGBSW is (t, q, ε) strongly existentially un-
forgeable, assuming the underlying signature scheme Σ is (t, q, ε/3) weakly exis-
tentially unforgeable and the randomised trapdoor hash functions F and H are
both (t, ε/3) strongly collision-resistant and both have the random trapdoor colli-
sion property.

Proof. Let A denote a (t, q, ε) attacker against the strong unforgeability of ΣGBSW.
We show how to construct attackers AΣ , AF and AH against the weak unforge-
ability of Σ and strong collision-resistance of F and H, respectively, such that
at least one of AΣ , AF or AH succeeds with probability at least ε/3, and all have
run-time t, which establishes the theorem.

We first classify the forgery produced by attacker A. Suppose that A is run on
input pkGBSW = (pk, pkF , pkH) = KGGBSW(k). For i = 1, . . . , q, let mi denote the
ith sign query of A and (σi, ri, si) the answer to that query. Furthermore, let hi =
HpkH

(mi‖σi; ri) and m̄i = FpkF
(hi; si) be the values computed by the signing

algorithm in answering the ith sign query. Finally, let (m∗, (σ∗, r∗, s∗)) denote
the output message/signature forgery of A and define h∗ = HpkH

(m∗‖σ∗; r∗)
and m̄∗ = FpkF

(h∗; s∗). Let Succ denote the event that A succeeds to break the
strong unforgeability of ΣGBSW. If Succ occurs then it easy to see that at least
one of the following subevents must occur:

– subevent SuccI (Type I forgery): m̄∗ 6∈ {m̄1, . . . , m̄q},
– subevent SuccII (Type II forgery): there exists i∗ ∈ {1, . . . , q} such that

m̄∗ = m̄i∗ but (h∗, s∗) 6= (hi∗ , si∗),
– subevent SuccIII (Type III forgery): there exists i∗ ∈ {1, . . . , q} such that

m̄∗ = m̄i∗ and (h∗, s∗) = (hi∗ , si∗) but (m∗, σ∗, r∗) 6= (mi∗ , σi∗ , ri∗).

Since event Succ occurs with probability ε, it follows that one of the above 3
subevents occur with probability at least ε/3. Accordingly, our attackers AΣ ,
AF and AH described below will each run A and succeed if subevents SuccI ,
SuccII and SuccIII occur, respectively. In each of those three runs of A we show
that the distribution of A’s view is perfectly simulated as in the real attack, so
that the subevents SuccI , SuccII and SuccIII occur with the same probability as
in the real attack, and hence at least one of attackers AΣ , AF and AH succeeds
with probability ε/3, as claimed.

Attacker AΣ. The attacker AΣ against the weak unforgeability of Σ runs as
follows on input public key pk (where (pk, sk) = GK(k) is a challenge key pair
for Σ).

Setup. AΣ runs KGF (k) and KGH(k) to generate secret/public key pairs
(skF , pkF) and (skH , pkH) for trapdoor hash schemes F and H, respectively,
and runs A with input public key pkGBSW = (pk, pkF , pkH).

Sign Queries. When attacker A makes its ith sign query message mi, AΣ

responds as follows:

– choose random elements si ∈R RF , and r′i ∈R RH,
– compute hi = HpkH

(m′‖σ′; r′i), for some arbitrary fixed strings m′ and σ′,
– compute m̄i = FpkF

(hi; si),

– query message m̄i to sign oracle of AΣ to obtain answer σi = S(sk, m̄i;ω)
for a random ω ∈R ΩΣ ,

– use trapdoor collision finder for H to compute ri =
TCH(skH , (m′‖σ′, r′i), (mi‖σi)) such that HpkH

(mi‖σi; ri) = hi and
return signature (σi, ri, si) to A.

Output. After A outputs its forgery (m∗, (σ∗, r∗, s∗)), AΣ computes h∗ =
HpkH

(m∗‖σ∗; r∗) and m̄∗ = FpkF
(h∗; s∗), and outputs (m̄∗, σ∗) as its forgery for

Σ.
Notice that in the above game AΣ perfectly simulates the real signing oracle

SGBSW of A (because AΣ simply follows the real signing procedure, exploiting
the fact that SGBSW makes only black box access to the signing oracle S(sk, ·) of
Σ, and that AΣ knows the trapdoor key skH for H). Furthermore, if A succeeds
and outputs a type I forgery, i.e. if subevent SuccI occurs, then (m̄∗, σ∗) verifies
as a valid message/signature pair for Σ and m̄∗ 6∈ {m̄1, . . . , m̄q}, meaning that
A breaks the weak unforgeability of Σ, as required.

Attacker AF . The attacker AF against the strong collision-resistance of F
runs as follows on input public key pkF (where (pkF , skF) = GKF (k) is a chal-
lenge key pair for F).

Setup. AF runs KG(k) and KGH(k) to generate secret/public key pairs
(sk, pk) and (skH , pkH) for schemes Σ and H, respectively, and runs A with
input public key pkGBSW = (pk, pkF , pkH).

Sign Queries. When attacker A makes its ith sign query message mi, AF re-
sponds with (σi, ri, si) = SGBSW(skGBSW,mi), where skGBSW = (sk, skH , pkF , pkH).
AF also stores (mi, σi, ri, si) in a table for later use.

Output. After A outputs its forgery (m∗, (σ∗, r∗, s∗)), AF computes h∗ =
HpkH

(m∗‖σ∗; r∗) and then m̄∗ = FpkF
(h∗; s∗), and searches its table of A’s

queries for entry i∗ ∈ {1, . . . , q} such that m̄∗ = mi∗ but (h∗, s∗) 6= (hi∗ , si∗). If
such entry is found, AF outputs strong collision (h∗; s∗), (hi∗ ; si∗) for F , else AF

fails.
In the above game AF perfectly simulates the real signing oracle SGBSW of

A (because AF knows both sk and skH and follows the real signing algorithm).
Furthermore, AF succeeds in breaking the strong collision-resistance of F if A

outputs a type II forgery, i.e. if subevent SuccII occurs (because (h∗, s∗) 6=
(hi∗ , si∗) but m̄∗ = FpkF

(h∗; s∗) = FpkF
(hi∗ ; si∗) = m̄i∗), as required.

Attacker AH. The attacker AH against the strong collision-resistance of H
runs as follows on input public key pkH (where (pkH , skH) = GKH(k) is a
challenge key pair for H).

Setup. AH runs KG(k) and KGF (k) to generate secret/public key pairs
(sk, pk) and (skF , pkF) for schemes Σ and F , respectively, and runs A with
input public key pkGBSW = (pk, pkF , pkH).

Sign Queries. When attacker A makes its ith sign query message mi, AH

responds as follows:

– choose random elements s′i ∈R RF , and ri ∈R RH,
– compute m̄i = FpkF

(h′
i; s

′
i), for some arbitrary fixed string h′

i,

– compute σi = S(sk, m̄i;ω) for a random ω ∈R ΩΣ ,
– compute hi = HpkH

(mi‖σi; ri),
– use trapdoor collision finder for F to compute si = TCF (skF , (h′

i, s
′
i), hi)

such that FpkF
(hi; si) = m̄i and return signature (σi, ri, si) to A. AH also

stores (mi, σi, ri, si) in a table for later use.

Output. After A outputs its forgery (m∗, (σ∗, r∗, s∗)), AH computes h∗ =
HpkH

(m∗‖σ∗; r∗) and searches its table of A’s queries for entry i∗ ∈ {1, . . . , q}
such that h∗ = hi∗ but (m∗, σ∗, r∗) 6= (mi∗ , σi∗ , ri∗). If such entry is found, AH

outputs strong collision (m∗‖σ∗; r∗), (mi∗‖σi∗ ; ri∗) for H, else AH fails.
In the above game, AH succeeds in breaking the strong collision-resistance

of H if A outputs a type III forgery, i.e. if subevent SuccIII occurs (because
(m∗‖σ∗, r∗) 6= (mi∗‖σi∗ , ri∗) but h∗ = HpkH

(m∗‖σ∗; r∗) = HpkH
(mi∗‖σi∗ ; ri∗) =

hi∗), as required.
It remains to show that in the above game, AH perfectly simulates the real

signing oracle SGBSW of A. For any fixed message m and fixed signature triple
(σ̂, r̂, ŝ), let Preal(σ̂, r̂, ŝ) denote the probability that the real signing algorithm
SGBSW outputs (σ̂, r̂, ŝ) for input message m (over the random choices r′ ∈R RH ,
s ∈R RF , ω ∈R ΩΣ of the real signing oracle). Similarly, let Psim(σ̂, r̂, ŝ) denote
the probability that the sign oracle simulator of AH outputs (σ̂, r̂, ŝ) for input
message m (over the random choices r ∈R RH , s′ ∈R RF , ω ∈R ΩΣ of the

simulator). Then, defining ĥ = HpkH
(m‖σ̂; r̂) and ̂̄m = FpkF

(ĥ; ŝ), we have:

Preal(σ̂, r̂, ŝ) =

Pr
r′,s,ω

[(TCH(skH , (m′‖σ′, r′),m‖σ̂) = r̂) ∧ (s = ŝ) ∧ (S(sk, ̂̄m;ω) = σ̂)]

= Pr
r′∈RRH

[TCH(skH , (m′‖σ′, r′),m‖σ̂) = r̂] · Pr
s∈RRF

[s = ŝ]

· Pr
ω∈RΩΣ

[S(sk, ̂̄m;ω) = σ̂]

=

(
1

|RH|

)
·

(
1

|RF |

)
· Pr

ω∈RΩΣ

[S(sk, ̂̄m;ω) = σ̂], (1)

where in the second-last row we used the independence of the r′, s, ω and in the
last row we used the random trapdoor collision property of H and the uniform
distribution of s in RF chosen by the real signing algorithm.

On the other hand, for the simulated signatures, we have:

Psim(σ̂, r̂, ŝ) =

Pr
r,s′,ω

[(r = r̂) ∧ (TCF (skF , (h′, s′), ĥ) = ŝ) ∧ (S(sk, ̂̄m;ω) = σ̂)]

= Pr
r∈RRH

[r = r̂] · Pr
s′∈RRF

[TCF (skF , (h′, s′), ĥ) = ŝ] · Pr
ω∈RΩΣ

[S(sk, ̂̄m;ω) = σ̂]

=

(
1

|RH|

)
·

(
1

|RF |

)
· Pr

ω∈RΩΣ

[S(sk, ̂̄m;ω) = σ̂], (2)

where in the second-last row we used the independence of r, s′, ω and in the
last row we used the random trapdoor collision property of F and the uniform
distribution of r in RH chosen by the simulator.

Comparing (1) and (2), we conclude that Preal(σ̂, r̂, ŝ) = Psim(σ̂, r̂, ŝ), so AH

perfectly simulates the real signing algorithm, as required.
It follows that at least one of the attackers AΣ , AF and AH succeeds with

probability at least ε/3, completing the proof of the theorem. ut

Remark (Non-Adaptive to Adaptive Security). It is known [13, 11] that ran-
domised trapdoor hash functions can also be used to generically upgrade non-
adaptive chosen message attack security to adaptive chosen message attack se-
curity for signature schemes. Suppose we start with a weakly unforgeable sig-
nature secure against non-adaptive message attack and we wish to upgrade it
to a strongly unforgeable signature secure against adaptive message attack. A
generic solution is to apply our weak-to-strong transform above followed by the
non-adaptive-to-adaptive transform from [13, 11]. However, it is easy to see (by
modifying the attacker AΣ in our proof of Theorem 2 using the technique in [13,
11]) that our GBSW transform simultaneously also achieves non-adaptive-to-
adaptive conversion, so there is no need to apply the second transform. Similarly,
like the transforms in [13, 11], our GBSW transform also gives an ‘on-line/off-
line’ signature scheme, where the only on-line operation is collision-finding for
trapdoor hash scheme H (for this application, H would have to be chosen ap-
propriately to have a collision-finding algorithm faster than signing algorithm
S). Finally, we remark that the ‘dual’ of the above observation does not hold,
namely it is easy to see that the non-adaptive-to-adaptive transforms in [13, 11]
do not upgrade weak unforgeability to strong unforgeability in general.

4 Implementation Issues and Application

4.1 Implementation of the Randomised Trapdoor Hash Function

We discuss some possible provably secure concrete implementations of the ran-
domised trapdoor hash functions used in our transform.

Discrete-Log Based Construction. A well known Discrete-log based strongly
collision-resistant randomised trapdoor hash function is the Chaum–van Heijst–
Pfitzmann (CHP) function [4], also used in [2]. This construction HDL works
in any group G of prime order q where discrete-log is hard. Let g denote a
generator for G and let J denote a collision-resistant hash function from {0, 1}∗

to ZZq. The key generation algorithm KGHDL
chooses x ∈R ZZq and outputs

public/secret key pair pkH = (g, g1 = gx) and skH = x. Given randomiser

r ∈ ZZq and message m, we define its hash value HDL(m; r) = grg
J(m)
1 . Given

a message/randomiser pair (m, r) and a second message m′, the collision-finder
algorithm computes a second randomiser r′ = r + (J(m) − J(m′))x mod q such
that HDL(m; r) = HDL(m′; r′). Any ‘strong’ collision (m; r) 6= (m′; r′) for HDL

(with r, r′ ∈ ZZq) implies that m 6= m′ (because g has order q) and hence x = (r−
r′)/(J(m′)−J(m)) mod q, revealing the discrete-log of g1 to base g. Hence HDL

is strongly collision-resistant (with randomiser space ZZq) as long as discrete-log
is hard in G and J is collision-resistant, and HDL also has the random trapdoor
collision property.

Factoring-based Construction. The above DL-based construction has a fast
collision-finding algorithm but relatively slow hash evaluation algorithm. Some
constructions based on a standard factorization problem are given in [13]. A vari-
ant of the recent VSH randomised trapdoor hash function [5] can also be used
and has the opposite performance tradeoff: a fast evaluation algorithm but rela-
tively slow collision-finding algorithm. Although the randomised trapdoor hash
function described in [5] is not strongly collision-resistant, we show how to easily
modify it to achieve this property. The original construction HV SH in [5] has
public key n = pq, where p,q are primes congruent to 3 modulo 4. The secret key
is (p, q). Let J : {0, 1}∗ → {0, 1}k be a collision-resistant hash function. The ran-
domiser space is ZZ

∗
n. Given message m and randomiser r ∈ ZZ

∗
n, the hash value

is HV SH(m; r) = (r2
∏k

i=1 p
J(m)i

i)2 mod n, where J(m)i denotes the ith bit of
J(m) ∈ {0, 1}k and pi denotes the ith prime. Given a message/randomiser pair
(m, r) and a second message m′, the collision-finder algorithm computes a second
randomiser r′ such that HV SH(m; r) = HV SH(m′; r′) by choosing uniformly at

random among the 4 fourth roots of (r2
∏

i p
J(m)i−J(m′)i

i)2 mod n in ZZ
∗
n. The

function HV SH is weakly collision resistant assuming hardness of the factoring-
related ‘Very Smooth Number Non-Trivial Modular Square-Root’ (VSSR) prob-
lem, but is not strongly collision-resistant because (m; (−r mod n)) collides with
(m; r) for any m, r. However, the function H ′

V SH defined in the same way but
with randomiser space restricted to ZZ

∗
n

⋂
(0, n/2) is strongly collision-resistant

under the VSSR assumption. This follows from the fact that any quadratic
residue in ZZ

∗
n has two of its square roots less than n/2 and two above (the

negatives modulo n of each of the first two square-roots). The two square-roots
r,r′ below n/2 are congruent modulo one of the prime factors of n but not
modulo the other prime factor, so finding both r and r′ is as hard as factor-
ing n (since gcd(r′ − r, n) gives either p or q). The random trapdoor collisions
property also is preserved by this modification (note that the modified collision-
finder algorithm chooses r′ uniformly at random among the two fourth roots of

(r2
∏

i p
J(m)i−J(m′)i

i)2 mod n in ZZ
∗
n

⋂
(0, n/2)).

4.2 Application to Strengthen the standard Digital Signature
Algorithm (DSA)

The Digital Signature Standard [12] (DSA) is an example of a randomised signa-
ture scheme which probably does not fall within the class of partitioned signature
schemes, as noted in [2]. In this scheme, the public key is (g, y = gx mod p), where
p is prime and g ∈ ZZ

∗
p is an element of prime order q, and x ∈ ZZq is the secret

key. The signature on message m using randomiser r ∈ ZZq is (σ1, σ2), where σ2 =
(gr mod p) mod q and σ1 = r−1(SHA(m) + xσ2) mod q (here SHA : {0, 1}∗ →
ZZq is the SHA-1 hash function). To verify signature (σ1, σ2) on message m under
public key (g, y), one checks whether ((gSHA(m)yσ2)1/σ1 mod p) mod q equals σ2.

Although DSA clearly satisfies Property (1) of partitioned signatures, it prob-
ably does not satisfy Property (2). The reason is that given a valid signature
(σ1, σ2) on a message m, the number of σ′

1 values such that (σ′
1, σ2) verifies

as a valid signature on m is the number of elements in the group G of order q
generated by g which are congruent to σ2 mod q. As σ′

1 runs through all q−1 val-
ues of ZZq except σ1, we heuristically expect the values of ((gSHA(m)yσ2)1/σ1 mod
p) mod q to behave like q−1 independent uniformly random elements in ZZq. This
heuristic suggests that with “high probability” of about 1− (1−1/q)q−1 ≈ 0.63,
we expect there exists at least one other σ′

1 6= σ1 such that (σ′
1, σ2) is also a valid

signature on m. Although we do not know how to efficiently find such ‘strong
forgeries’ for DSA, the fact that DSA is not partitioned means that the BSW
transform does not provably guarantee the strong unforgeability of DSA, even
assuming that DSA is weakly unforgeable.

Applying our generalised transform to DSA with two CHP [4] randomised
trapdoor hash functions for F and H based on the hardness of discrete-log in
the group G used by DSA, we can construct a strengthened DSA signature which
is provably strongly unforgeable, assuming only the weak unforgeability of DSA

(which immediately implies the hardness of discrete-log in G and hence the
strong collision-resistance of F and H). The resulting concrete system, called
SDSA, is as follows.

1. KGSDSA(k). On input security parameter k:
(a) run DSA key generation on input k to generate a DSA key pair skDSA =

(p, q, g, x) and pkDSA = (p, q, g, y), where p is prime, q is a divisor of p−1,
g ∈ ZZ

∗
p is an element of order q > 2159, x is uniformly random in ZZq and

y = gx mod p,
(b) choose uniformly random xH ∈ ZZq and compute v = gxH mod p,
(c) choose uniformly random xF ∈ ZZq and compute u = gxF mod p,
(d) the secret and public keys for signature scheme SDSA are:

skSDSA = (p, q, g, x, v, u, xH) and pkSDSA = (p, q, g, y, v, u).

2. SSDSA(skSDSA,m). On input message m and secret key skSDSA = (p, q, g, x, xH),
a signature is generated as follows:
(a) compute h = gη′

vSHA(0) mod p, for uniformly random η′ ∈ ZZq and fixed
bit string 0 (e.g. an all zero byte),

(b) compute m̄ = gsuSHA(h) mod p for uniformly random s ∈ ZZq.
(c) compute DSA signature (σ1, σ2) on “message” m̄, where σ2 = (gr mod

p) mod q for uniformly random r ∈ ZZq and σ1 = r−1(SHA(m̄) + x ·
σ2) mod q,

(d) compute η = η′ + (SHA(0) − SHA(m‖σ1‖σ2)) · xH mod q,
(e) return signature σSDSA = (σ1, σ2, η, s).

3. VSDSA(pkSDSA,m, σSDSA). A signature σSDSA = (σ1, σ2, η, s) on a message m
is verified as follows:
(a) compute h = gηvSHA(m‖σ1‖σ2) mod p,
(b) compute m̄ = gsuSHA(h) mod p,
(c) accept only if DSA signature (σ1, σ2) verifies on “message” m̄, namely

accept only if σ2 = ((gSHA(m̄)yσ2)1/σ1 mod p) mod q holds.

We have:

Corollary 1. The signature scheme SDSA is (t, q, ε) strongly existentially un-
forgeable assuming that the DSA signature is (t,max(q, 1), ε/6) weakly existen-
tially unforgeable.

Proof. Applying Theorem 2 to the GBSW transform applied to the DSA sig-
nature with two CHP trapdoor hash functions F and H, we can convert any
(t, q, ε) attacker against the strong unforgeability of SDSA into a (t, q, ε/3) at-
tacker against the weak unforgeability of DSA or a (t, ε/3) attacker against the
strong collision-resistance of F or H respectively. In turn, any (t, ε/3) attacker
against collision-resistance of F (or H) can be converted into either a (t, ε/6) at-
tacker against the discrete-log problem in the group generated by g, or a (t, ε/6)
attacker against the collision-resistance of SHA. Finally, any (t, ε/6) discrete-log
attacker can be easily converted into a (t, 0, ε/6) attacker against weak unforge-
ability of DSA, while any (t, ε/6) attacker against collision-resistance of SHA
can be easily converted into a (t, 1, ε/6) attacker against the weak unforgeability
of DSA. So in any case, we can construct a (t,max(q, 1), ε/6) attacker against
weak unforgeability of DSA, which gives the claimed result. ut

The SDSA scheme requires an extra computation of two products of two ex-
ponentiations each in both verification and signature generation over the DSA

scheme, the public key contains two additional elements of ZZp and the signature
contains two additional elements of ZZq. A feature of SDSA which may be of use
in practice is that it uses the key generation, signature generation and verifica-
tion algorithms of DSA as subroutines; hence existing implementations of these
subroutines can be used without modification to build SDSA implementations.

5 Conclusion

We presented a modification of the Boneh–Shen–Waters transform to strengthen
arbitrary weakly unforgeable signatures into strongly unforgeable signatures, and
presented applications to the Digital Signature Standard (DSA) with suggested
concrete implementations of the randomised trapdoor hash functions needed by
our transform.

Finally, we have recently learnt (by private communication with I. Teran-
ishi) that, independently and in parallel with our work, Teranishi, Oyama and
Ogata [14] propose a ‘weak to strong’ unforgeability transform which uses a sim-
ilar idea to our transform, but is less general in its implementation. In particular,
the standard model transform in [14] assumes the hardness of the discrete-log
problem, whereas our transform works with any randomised trapdoor hash func-
tion (for example, our transform can be used with the efficient factoring-based
trapdoor hash function from [5]). On the other hand, the discrete-log based
transform in [14] has a more efficient verification algorithm compared to our
general transform applied using the discrete-log based trapdoor hash function
from [4]. A more efficient transform assuming the random-oracle model along
with the discrete-log assumption is also described in [14].

Acknowledgements. The authors would like to thank Duncan Wong for
interesting discussions and the anonymous referees for their useful comments.
This work was supported by Australian Research Council Discovery Grants
DP0663452, DP0451484 and DP0665035.

References

1. D. Boneh and X. Boyen. Short Signatures without Random Oracles. In EURO-
CRYPT 2004, volume 3027 of LNCS, pages 56–73, Berlin, 2004. Springer-Verlag.

2. D. Boneh, E. Shen, and B. Waters. Strongly Unforgeable Signatures Based on
Computational Diffie-Hellman. In PKC 2006, volume 3958 of LNCS, pages 229–
240, Berlin, 2006. Springer-Verlag.

3. R. Canetti, S. Halevi, and J. Katz. Chosen-Ciphertext Security from Identity-Based
Encryption. In Eurocrypt 2004, volume 3027 of LNCS, pages 207–222, Berlin, 2004.
Springer-Verlag.

4. D. Chaum, E. van Heijst, and B. Pfitzmann. Cryptographically Strong Undeniable
Signatures, Unconditionally Secure for the Signer. In CRYPTO ’91, volume 576
of LNCS, pages 470–484, Berlin, 1991. Springer-Verlag.

5. S. Contini, A.K. Lenstra, and R. Steinfeld. VSH, an Efficient and Provable
Collision-Resistant Hash Function. In Eurocrypt 2006, volume 4004 of LNCS,
pages 165–182, Berlin, 2006. Springer-Verlag.

6. R. Cramer and V. Shoup. Signature Schemes Based on the Strong RSA Assump-
tion. ACM Transactions on Information and System Security (ACM TISSEC),
3:161–185, 2000.

7. R. Gennaro, S. Halevi, and T. Rabin. Secure Hash-and-Sign Signatures Without
the Random Oracle. In EUROCRYPT ’99, volume 1592 of LNCS, pages 123–139,
Berlin, 1999. Springer-Verlag.

8. O. Goldreich. Foundations of Cryptography, Volume II. Cambridge University
Press, Cambridge, 2004.

9. J. Katz and M. Yung. Scalable Protocols for Authenticated Group Key Exchange.
In CRYPTO 2003, volume 2729 of LNCS, pages 110–125, Berlin, 2003. Springer-
Verlag.

10. H. Krawczyk and T. Rabin. Chameleon Signatures. In NDSS 2000, 2000. Available
at http://www.isoc.org/isoc/conferences/ndss/2000/proceedings/.

11. K. Kurosawa and S. Heng. The Power of Identification Schemes. In PKC 2006,
volume 3958 of LNCS, pages 364–377, Berlin, 2006. Springer-Verlag.

12. National Institute of Standards and Technology (NIST). Digital Signature Standard
(DSS). Federal Information Processing Standards Publication 186-2, January 2000.

13. A. Shamir and Y. Tauman. Improved Online/Offline Signature Schemes. In
CRYPTO 2001, volume 2139 of LNCS, pages 355–367, Berlin, 2001. Springer-
Verlag.

14. I. Teranishi, T. Oyama, and W. Ogata. General Conversion for Obtaining Strongly
Existentially Unforgeable Signatures. In INDOCRYPT 2006. To Appear.

