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Abstract

A well-known attack on RSA with low secret-exponent d was given by Wiener about 15 years
ago. Wiener showed that using continued fractions, one can efficiently recover the secret-exponent
d from the public key (N, e) as long as d < N1/4. Interestingly, Wiener stated that his attack may
sometimes also work when d is slightly larger than N1/4. This raises the question of how much
larger d can be: could the attack work with non-negligible probability for d = N1/4+ρ for some
constant ρ > 0? We answer this question in the negative by proving a converse to Wiener’s result.
Our result shows that, for any fixed ε > 0 and all sufficiently large modulus lengths, Wiener’s
attack succeeds with negligible probability over a random choice of d < Nδ (in an interval of
size Ω(N δ)) as soon as δ > 1/4 + ε. Thus Wiener’s success bound d < N1/4 for his algorithm is
essentially tight. We also obtain a converse result for a natural class of extensions of the Wiener
attack, which are guaranteed to succeed even when δ > 1/4. The known attacks in this class (by
Verheul and Van Tilborg and Dujella) run in exponential time, so it is natural to ask whether
there exists an attack in this class with subexponential run-time. Our second converse result
answers this question also in the negative.

1 Introduction

The RSA public-key cryptosystem is one of the most popular systems in use today. Accordingly,
the study of the security of special variants of RSA designed for computational efficiency is a major
area of research. One natural RSA variant which is attractive for speeding up secret operations
(signature generation or decryption) is Low Secret-Exponent RSA. In this variant the RSA secret
exponent d is chosen to be small compared to the RSA modulus N . A well-known attack on RSA
with low secret-exponent d was given by Wiener[10] about 15 years ago. Wiener showed that using
continued fractions, one can efficiently recover the secret-exponent d from the public key (N, e) as
long as d < N1/4. Interestingly, Wiener stated that his attack may sometimes also work when d is
slightly larger than N1/4. This raises the question of how much larger d can be: could the attack
work with non-negligible probability for d = N1/4+ρ for some constant ρ > 0?

In this paper, we answer the above question in the negative by proving a converse to Wiener’s result.
Our result shows that, for any fixed ε > 0 and all sufficiently large modulus lengths, Wiener’s attack
succeeds with negligible probability over a random choice of d < N δ (in an interval of size Ω(N δ))
as soon as δ > 1/4 + ε. Thus Wiener’s bound d < N1/4 for his attack is essentially tight. We also
obtain a converse result for a natural class of extensions of the Wiener attack, which are guaranteed
to succeed even when δ > 1/4. The known attacks in this class (by Verheul and Van Tilborg [8] and
Dujella [3]) run in exponential time, so it is natural to ask whether there exists an attack in this class
with subexponential run-time. Our second converse result answers this question also in the negative.

Related Work. To our knowledge, the converse results in this paper provide the first proven evidence
for the limitations of the Wiener attack [10] and its extensions by Verheul and Van Tilborg [8] and
Duejlla [3]. Essentially, our results prove that when δ > 1/4, the linear equation (satisfied by the
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secret key) which is exploited by the Wiener attack cannot lead by itself to a key-recovery attack
which runs in subexponential time (because there are too many solutions). In order to obtain a
subexponential attack when δ > 1/4 one must exploit some other property of the secret key. Indeed,
the lattice-based Boneh-Durfee attack [2] and its variant given by Blömer and May [1], exploit a
non-linear equation satisfied by the secret key, which gives an attack that heuristically succeeds in
polynomial-time when δ < 0.292. Finding proven limitations on the Boneh-Durfee attack and its
variants is currently an open problem, but we believe our results on provable limitations of the Wiener
attack are a first step in this direction.

Organization of This Paper. Section 2 presents definitions and known results from number theory
that we use. In Section 3, we define the standard RSA key-generation algorithm that our results
apply to and review Wiener’s result. In Section 4, we state and prove our converse to Wiener’s result.
In Section 5, we present our generalized converse result which applies to a natural class of extensions
of the Wiener attack. Section 6 concludes the paper.

2 Preliminaries

2.1 Continued Fractions

Here we collect several known results that we use about continued fractions, which can be found
in [5, 6].

For positive integers a1, . . . , an, we define the rational number

x
def=

1
a1 + 1

a2+...+ 1
an

.

For brevity, we write x = (a1, a2, . . . , an), and we call the sequence (a1, . . . , an) a continued fraction
expansion of length n for x.

Theorem 2.1 (Continued Fractions). Let x = r
s for positive integers r, s with gcd(r, s) = 1 and

r < s. Then the rational x has a unique continued fraction expansion x = (a1, . . . , an) with an > 1,
which can be computed in time O(log2 s) by the following algorithm:

1. Initialize x0 = x.

2. Compute iteratively xi = 1
xi−1−bxi−1c for i = 1, . . . , n, where n ≤ 2 log(s) is the smallest value

of i such that bxic = xi.

3. Return (a1, . . . , an), where ai = bxic for i = 1, . . . , n.

Let (a1, . . . , an) denote the continued fraction expansion of rational x. For i = 1, . . . , n, the rationals
yi = ri

si

def= (a1, . . . , ai) are called the convergents of (the continued fraction expansion for) x. The
convergents yi to x become successively closer to x with increasing index i until the last convergent
yn which is equal to x.

Theorem 2.2 (Convergents). Let y1, . . . , yn denote the convergents of a rational x = r
s for positive

integers r, s with gcd(r, s) = 1 and r < s. For i = 1, . . . , n− 1, let us write yi = ri
si

for integers ri, si

with gcd(ri, si) = 1. Then the following statements hold:

(1) For i ∈ {1, . . . , n−1}, yi = ri
si

is a best approximation to x in the sense that |si·x−ri| < |s′·x−r′|
for all r′, s′ such that 0 < s′ ≤ si and r′

s′ 6= yi (note: this implies that | ri
si
− x| < | r′s′ − x| for all

r′, s′ such that 0 < s′ ≤ si and r′
s′ 6= yi).
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(2) For i ∈ {1, . . . , n− 1}, | ri
si
− x| < 1

s2
i

and si+1 ≥ 2si.

(3) Let y = r̂
ŝ be any rational such that | r̂ŝ − x| < 1

2ŝ2 . Then y is equal to one of the convergents of
x, i.e. y = yi for some i ∈ {1, . . . , n}.

3 Review of Wiener’s Attack

3.1 The RSA Key-Generation Algorithm

In this paper we assume the following natural key-generation algorithm RSAKGδ,β1,β2(`) for RSA,
which would typically be used when the goal is to produce a modulus N in the order of 2` and a
secret exponent d in the order of N δ for some fixed 0 < δ ≤ 1. The fixed real-valued parameters
β1 > 0 and β2 > 0 control the size of the intervals from which the prime factors of N and the secret
exponent d are chosen from (typically, we set β1 = β2 = 1, to fix a certain bit-length for p, q and d).

All the probabilities computed in this paper are evaluated over the random choices of algorithm
RSAKGδ,β1,β2(`).

RSAKGδ,β1,β2(`): RSA Key-Generation Algorithm

1 Pick uniformly at random a prime p ∈ P`/2,β1
(Here P`/2,β1

denotes the set of all primes in the
interval [2`/2−β1 , 2`/2] and typically we set β1 = 1).

2 Pick uniformly at random a prime q ∈ P`/2,β1
.

3 Compute integers N = pq and φ = (p− 1)(q − 1).

4 Pick uniformly at random a secret exponent d ∈ D`,δ,β2(φ) (Here D`,δ,β1(φ) denotes the set of
all integers in the interval [2δ·`−β2 , 2δ·`] which are coprime to φ, and typically we set β2 = 1).

5 Compute e = d−1 mod φ (note: this implicitly defines the integer k = (ed− 1)/φ).

6 Return secret-exponent d and public key (N, e).

3.2 Wiener’s Attack

The idea behind Wiener’s attack on RSA with small secret-exponent d is that for small d, the publicly
known fraction e/N is a very good approximation to the secret fraction k/d (here k = (ed − 1)/φ),
and hence k/d can be found from the convergents of the continued-fraction expansion of e/N , using
the results of Section 2.1.

WienAtk(N, e): Wiener Attack Algorithm

1 Compute the continued fraction convergents
(

k1
d1

, . . . , kn
dn

)
of e

N using the algorithm of Theo-
rem 2.1.

2 Return
(

k1
d1

, . . . , kn
dn

)
.
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We say that algorithm WienAtk succeeds on input (N, e) if it outputs
(

k1
d1

, . . . , kn
dn

)
with ki

di
= k

d for

some i ∈ {1, . . . , n} (where d = e−1 mod φ and k = (ed− 1)/φ).

To obtain Wiener’s sufficient condition for the success of algorithm WienAtk, we observe that, from
the equation ed− 1 = kφ it follows that the approximation error of k/d by e/N is given by:

k

d
− e

N
= e ·

(
1
φ
− 1

N

)
− 1

φ · d (1)

= e ·
(

1
N − s

− 1
N

)
− 1

(N − s) · d where s = p + q − 1 (2)

=
(

s

N − s

)(
e

N
− 1

d · s
)

(3)

<
s

N − s
<

22β1+1

2`/2
. (4)

The last bound uses the fact that s < 2`/2+1 since p and q are not even. Note also that k
d − e

N > 0.

From Theorem 2.2 part (3), we know that k/d will be one of the convergents of the continued fraction
expansion of e/N if k

d − e
N < 1

2d2 . Using the above bound on k
d − e

N and the fact that d < 2δ·`, we
conclude that a sufficient condition for success of algorithm WienAtk is that 22β1+1

2`/2 < 1
22δ·`+1 . This

immediately gives us the following result due to Wiener [10].

Theorem 3.1 (WienAtk Sufficient Condition). Suppose that the key-generation parameters (δ, β1, β2, `)
satisfy the condition

δ < 1/4− β1 + 1
`

.

Then on input (N, e), where (N, e, d) = RSAKGδ,β1,β2(`), the Wiener attack algorithm WienAtk suc-
ceeds with probability 1.

4 A Converse to Wiener’s Result

The following statement is our necessary condition for success of Wiener’s algorithm. It shows that
whenever δ exceeds the Wiener sufficiency threshold 1/4 by any positive constant ε, the Wiener
attack algorithm succeeds with negligible probability 2−c·` for some constant c > 0.

Theorem 4.1 (WienAtk Necessary Condition). Fix positive constants 0 < ε < 3/4, β1 and β2,
and suppose that the key-generation parameter δ satisfies the condition

δ = 1/4 + ε.

Then there exist positive constants c and `0 (depending on ε,β1 and β2) such that on input (N, e),
where (N, e, d) = RSAKGδ,β1,β2(`), the Wiener attack algorithm WienAtk succeeds with probability at
most 2−c·` for all ` ≥ `0.

Proof. By definition, if WienAtk succeeds on input (N, e), then one of the convergents
(

k1
d1

, . . . , kn
dn

)

of e
N is equal to k

d . But by Theorem 2.2 part (2), it follows that k
d − e

N < 1
d2 . Using d > 2δ·`−β2 and

δ = 1/4 + ε, we obtain the necessary success condition

k

d
− e

N
< 22β2−(1/2+2ε)·`. (5)

We now show that, for any ε > 0, the probability that (5) holds is negligible over the random choice
of d ∈ D`,δ,β2(φ). We first reduce the problem to upper bounding the probability that e

N is negligibly
small.
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Lemma 4.1. Fix positive constants c1 and η1. Then there exist positive constants c2 and η2 such
that

Pr
[
k

d
− e

N
< c1 · 2−(1/2+η1)·`

]
≤ Pr

[ e

N
< c2 · 2−η2·`

]
.

Proof. Let ∆ = k
d − e

N . From (3) in Section 3.2 we have ∆ =
(

s
N−s

)
· (

e
N − 1

d·s
)
, and using

s = p + q − 1 > N1/2 we get ∆ > N−1/2 ·
(

e
N − 1

dN1/2

)
. Using d > 2δ·`−β2 and N > 2`−2β1 we get

∆ > N−1/2 ·( e
N − 2β1+β2−(1/2+δ)·`), and then using N < 2` we get ∆ > 2−`/2 ·( e

N − 2β1+β2−(1/2+δ)·`).
Let C = 2β1+β2−(1/2+δ)·`. Then we have

Pr
[
∆ < c1 · 2−(1/2+η1)·`

]
≤ Pr

[
2−`/2 ·

( e

N
− C

)
< c1 · 2−(1/2+η1)·`

]

= Pr
[ e

N
< c1 · 2−η1·` + C

]

≤ Pr
[ e

N
< c2 · 2−η2·`

]
,

for positive constants c2 = 2 max(c1, 2β+1+β2) and η2 = min(η1, 1/2 + δ), as claimed. ut
ut

To bound Pr
[

e
N < c2 · 2−η2·`], we need an upper bound on the number of d ∈ D`,δ,β2(φ) such that

e
N < c2 · 2−η2·` holds, and a lower bound on the total size of the set D`,δ,β2(φ). These bounds are
provided by the following two counting results.

Lemma 4.2. Fix positive constants c1, c2 and δ. The size of the set M of secret-exponents d < 2δ·`

such that the corresponding public exponent e = d−1 mod φ satisfies e
N < c1 · 2−c2·` is bounded as

follows:

#M = O

(
2

(
δ−c2+

c3
log `

)
·`
)

,

with constant c3 = 2(1 + δ).

Proof. For each d ∈ M , we have e·d = 1+k·φ for some positive integer k, where k < ed
φ = O

(
2(δ−c2)·`)

using the fact that N/φ = O(1). So, to get an upper bound on the number of (e, d) pairs, we only
need to consider the possibilities for k, from 1 up to some integer K = O

(
2(δ−c2)·`).

For each k ∈ {1, . . . , K}, let m = 1 + k · φ = O
(
2(1+δ−c2)·`). The possible (e, d) pairs for this k

correspond to factorizations of m as a product of two integers. The number of such factorizations
is equal to τ(m), the number of divisors of m. It is known (see Theorem 317 of [4]) that τ(m) =

O
(
2

2 log m
log log m

)
, and using the bounds m = O(k ·φ) = O

(
2(1+δ)·`) and m = Ω(N) = Ω

(
2`

)
we conclude

that τ(m) = O

(
2

2(1+δ)
log `

·`
)

.

Thus the total number of possible (e, d) pairs satisfying the required conditions is bounded as #M =

O (K · τ(m)) = O

(
2

(
δ−c2+

c3
log `

)
·`
)

where c3 = 2(1 + δ), as required. ut
ut

Lemma 4.3. Fix positive constants β1, β2 and δ. The size of the set D`,δ,β1(φ) of all integers in the
interval [2δ·`−β2 , 2δ·`] which are coprime to φ is lower bounded as follows:

#D`,δ,β1(φ) = Ω
(
2(δ− log log `

` )·`
)

.
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Proof. For an integer d ≥ 1, we denote by µ(m) the Möbius function. We recall that µ(1) = 1,
µ(d) = 0 if d ≥ 2 is not square-free and µ(d) = (−1)ω(d) otherwise, where for integer d we denote by
ω(d) the number of distinct prime factors of d.

Fix any integers m,J ≥ 1. Using the Möbius function µ(d) over the divisors of q to detect the co-
primality condition (see Section 3.d of Chapter 2 of [9]) and interchanging the order of summation,
we obtain the Legendre formula

J∑
j=1

gcd(j,m)=1

1 =
∑

d|m
µ(d)

⌊
J

d

⌋
= J

∑

d|m

µ(d)
d

+ O


∑

d|m
|µ(d)|


 . (6)

Observe that
∑

d|m
|µ(d)| =

ω(m)∑

k=0

|(−1)k|
(

ω(m)
k

)
= 2ω(m),

and recall that the Möbius function satisfies

∑

d|m

µ(d)
d

=
ϕ(m)

m
,

where ϕ(m) denotes Euler’s phi function evaluated at m. So, for any integers Jmax > Jmin ≥ 1,
applying (6) to both intervals [1, . . . , Jmin] and [1, . . . , Jmax] and subtracting gives us

∑
Jmin≤j≤Jmax

gcd(j,m)=1

1 =
ϕ(m)

m
(Jmax − Jmin) + O(2ω(m)).

But 2ω(m) is the number of square-free divisors of m, which is upper bounded by the total number
τ(m) of divisors of m. It is known (see Theorem 317 of [4]) that τ(m) = O

(
2

2 log m
log log m

)
. Setting

m = φ, Jmin = 2δ·`/2β2 and Jmax = 2δ·`, we get

#D`,δ,β2(φ) = Ω
(

ϕ(φ)
φ

· 2δ·`
)

+ O
(
2

2 log φ
log log φ

)
. (7)

We now observe that φ = Θ(2`) so 2
2 log φ

log log φ = O

(
2

c5`
log `

)
for some positive constant c5. Furthermore,

it is known [7] that φ
ϕ(φ) = O(log log φ) = O(2log log `). Plugging these results in (7) and using the

fact that 2
c5`
log ` = o

(
2δ·`−log log `

)
we obtain the claimed result #M = Ω

(
2(δ− log log `

` )·`
)
. ut

ut

Using Lemma 4.1 and the fact that d is chosen uniformly at random from the set D`,δ,β2(φ), we
conclude that WienAtk’s success probability p is upper bounded as p ≤ #M

#D`,δ,β2
(φ) , where M denotes

the set of all secret-exponents d < 2δ·` such that the corresponding public exponent e = d−1 mod φ
satisfies e

N < c2 · 2−η2·`. Taking the ratio of the bounds on #M and #D`,δ,β2(φ) from Lemma 4.2

and Lemma 4.3, we have that p = O

(
2−

(
η2− c3

log `
− log log `

`

)
·`
)

for some positive constants η2 and c3.

It follows that there exists a constant `0 such that p ≤ 2−c·` for all ` ≥ `0, where c = η2/2 > 0. This
completes the proof of the theorem. ut

ut
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5 A Converse Result for Improved Variants of Wiener Attack

Since Wiener’s attack fails as soon as δ > 1/4, it is natural to investigate improved variants of
the Wiener attack which may succeed even in this case. In particular, Verheul and Van Tilborg
(VVT) [8], and more recently Dujella [3], presented improved variants of Wiener’s attack which are
guaranteed to succeed even when δ > 1/4. However, the run-time of these attacks when δ = 1/4 + ε
(for some positive constant ε) is exponential in ε · `, so these attacks are asymptotically slower than
the generic attack of factoring the RSA modulus, which runs in subexponential time. As we explain
below, both the VVT and Dujella attacks can be viewed as members of a natural class of extensions
of the Wiener attack (which are all guaranteed to succeed when δ > 1/4), which we call the Wiener
Search Variant (WSV) class of attacks (essentially, a WSV attack searches an interval near the known
fraction e/N for the secret fraction k/d — see below for a precise definition). It is interesting to ask
whether one can substantially improve on the VVT and Dujella attacks — in particular: does there
exist an attack in the WSV class which has subexponential run-time? In this section, we answer this
question in the negative by proving the following ‘converse’ result: For any attack algorithm in the
WSV class and any subexponential run-time bound T , the probability (over the random choices of
the key generation algorithm RSAKG) that the attack halts with success after a run-time less than
T is negligible whenever δ = 1/4 + ε for any constant ε > 0. Thus there are no WSV attacks which
are asymptotically faster than factoring (and hence the VVT and Dujella attacks are optimal in the
sense that all WSV attacks must have at least exponential run-time).

The Wiener Search Variant (WSV) Attack Class. Recall that the central idea behind Wiener’s attack
is that the public fraction e/N is a good approximation to the secret fraction k/d. Indeed, when
δ < 1/4 − ε, k/d is the best approximation to e/N among all fractions with denominator at most d
(see Theorem 2.2), and Wiener’s continued fractions attack efficiently finds this best approximation.
Our converse result in the previous section shows that when δ > 1/4, k/d is likely to no longer be
the best approximation to e/N in the set of all fractions with denominator at most d, but it is still
likely to be a good approximation. So, a natural extension of the Wiener attack is to search through
the set of fractions with denominator less than 2δ·` (and greater than 2δ·`−β2) in an interval close to
e/N , until k/d is found. This leads to the following definition.

Definition 5.1 (Wiener Search Variant Attack Class – WSV). An attack algorithm Aδ,β2,` is
said to belong to the Wiener Search Variant (WSV) attack class if it has the following form.

Aδ,β2,`(N, e): WSV Attack Algorithm

1 Enumerate a set S(N, e) of approximations to k
d , where S(N, e) is guaranteed to contain the

set Ŝ(N, e) of all fractions k′
d′ in the interval [ e

N , k
d ] with denominator d′ ∈ [2δ·`−β2 , 2δ·`].

2 Return a list containing all elements of the set S(N, e).

We note that the above definition gives rise to a class of attacks, since it allows any choice for the
set S(N, e) (subject to the constraint that S(N, e) contains Ŝ(N, e)). As in the case of the original
Wiener attack, we say that a WSV attack succeeds if it outputs a set of approximations S(N, e)
which contains the desired secret fraction k/d. From the definition, it is in fact clear that any WSV
attack succeeds with probability 1 because of the requirement that S(N, e) ⊇ Ŝ(N, e) and the fact
that k/d ∈ Ŝ(N, e). The central question is, therefore, how large is the running-time of the attack
for δ = 1/4 + ε. The running-time depends on the size of the set S(N, e) output by the attack, and
on the efficiency by which the elements of S(N, e) are enumerated.

Known WSV Attacks. The VVT [8] and Dujella [3] attacks are both members of the WSV class. Let
δ = 1/4 + ε with ε > 0. In the VVT attack [8], it is shown, using continued fraction techniques, how
to enumerate a set of approximations SV V T (N, e) (containing Ŝ(N, e) as defined in Def. 5.1) of size
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#SV V T (N, e) = O(A2 ·22ε·`) in time TV V T = O(`2#SV V T (N, e)), where the integer A is proportional
to certain coefficients in the continued fraction expansion of e/N and heuristically expected to be
small with high probability. The Dujella attack [3] improves on the VVT attack by using results
from diophantine approximation to enumerate a smaller set #SDuj(N, e) (containing Ŝ(N, e)) of size
#SDuj(N, e) = O(log(A) · 22ε·`) in time TDuj = O(`2#SDuj(N, e)), where the integer A is the same
as in the VVT attack. Moreover, Dujella proves that #SDuj(N, e) = O(` · 22ε·`).

Our Result: A Lower Bound on WSV Attack Running-Time. The known WSV attacks have expo-
nential run-times for δ = 1/4 + ε with ε > 0. We now address the following question: Does there
exist a WSV attack with subexponential run-time for δ = 1/4 + ε? The following result shows that
the answer is no. Therefore, the WSV class does not contain an attack faster than factoring.

Theorem 5.1 (WSV Attack Lower Bound). Let Aδ,β2,` denote any ‘Wiener Search Variant’
(WSV) attack algorithm (see Def. 5.1). Let T (`) = 2g(`) denote any subexponential function, where
g(`) = o(`). Fix positive constants 0 < ε < 3/4, β1 and β2, and suppose that the key-generation
parameter δ satisfies the condition

δ = 1/4 + ε.

Then there exist positive constants c and `0 (depending on ε,β1, β2 and g(`)) such that on input
(N, e), where (N, e, d) = RSAKGδ,β1,β2(`), the running-time of the WSV attack algorithm Aδ,β2,` is
less than T (`) with probability at most 2−c·` for all ` ≥ `0.

Proof. The set S(N, e) output by Aδ,β2,` is guaranteed by Def. 5.1 to contain the set Ŝ(N, e), where

Ŝ(N, e) = (F2δ·` \ F2δ·`−β2 ) ∩ [
e

N
,
k

d
],

and for any m > 0, we denote by Fm the Farey set of order m which consists of all rational numbers
k′/d′ with k′, d′ ∈ ZZ, 0 < d′ ≤ m and 0 ≤ k′ < d′. So the running-time TA of Aδ,β2,` on input (N, e)
is certainly lower bounded as TA = Ω(#Ŝ(N, e)). To prove the theorem, it therefore suffices to show
that for any subexponential bound T = 2g(`) with g(`) = o(`), there exist positive constants c and
`0 such that

Pr[#Ŝ(N, e) < T ] ≤ 2−c·` for all ` ≥ `0. (8)

We will first reduce this problem to several simpler problems. To do so, we introduce the following
definitions. For an element k′

d′ ∈ F2δ·` \ F2δ·`−β2 , we denote by A−δ,β2,`(
k′
d′ ) the adjacent element of

k′
d′ in F2δ·` \ F2δ·`−β2 in the ‘−’ direction, i.e. the largest element of F2δ·` \ F2δ·`−β2 which is strictly
less than k′

d′ . We will be interested in elements k′
d′ for which the gap k′

d′ − A−δ,β2,`(
k′
d′ ) is ‘large’.

Accordingly, for positive ∆̂, let Ŝ∗δ,β2,`(∆̂) denote the set of all elements k′
d′ in F2δ·` \F2δ·`−β2 such that

k′
d′ −A−δ,β2,`(

k′
d′ ) ≥ ∆̂.

We now have the following result.

Lemma 5.1. For any ∆min > 0, we have

Pr[#Ŝ(N, e) < T ] ≤ T ·#Ŝ∗δ,β2,`

(
∆min

T

)
· p∗ + Pr

[
k

d
− e

N
< ∆min

]
, (9)

where

p∗ = max
k′
d′ ∈F2δ·`\F2δ·`−β2

(
Pr

[
k

d
=

k′

d′

])
.

Proof. For a positive integer i, let ki
di

denote the ith closest element in F2δ·` \ F2δ·`−β2 to k
d in the ‘−’

direction (if i exceeds the number of elements of F2δ·` \F2δ·`−β2 which are less than k
d then we define

8



ki
di

= 0). Also, we define k0
d0

= k
d . Then #Ŝ(N, e) < T implies that k

d − kT
dT

> ∆, where ∆ = k
d − e

N ,
and hence that

T−1∑

r=0

(
kr

dr
−A−δ,β2,`

(
kr

dr

))
> ∆.

It follows that there exists r∗ ∈ {0, . . . , T −1} such that kr∗
dr∗
−A−δ,β2,`(

kr∗
dr∗

) > ∆
T . So, for any ∆min > 0:

Pr[#Ŝ(N, e) < T ] ≤ Pr
[
∃r∗ < T :

kr∗

dr∗
−A−δ,β2,`

(
kr∗

dr∗

)
>

∆
T

]

= Pr
[(
∃r∗ < T :

kr∗

dr∗
−A−δ,β2,`

(
kr∗

dr∗

)
>

∆
T

)
and ∆ ≥ ∆min

]

+ Pr
[(
∃r∗ < T :

kr∗

dr∗
−A−δ,β2,`

(
kr∗

dr∗

)
>

∆
T

)
and ∆ < ∆min

]

≤ Pr
[
∃r∗ < T :

kr∗

dr∗
−A−δ,β2,`

(
kr∗

dr∗

)
>

∆min

T

]
+ Pr[∆ < ∆min]

≤
(

T−1∑

r=0

pr

)
+ Pr[∆ < ∆min], (10)

where, for each r ∈ {0, . . . , T − 1},

pr = Pr
[
kr

dr
−A−δ,β2,`

(
kr

dr

)
>

∆min

T

]

= Pr
[
kr

dr
∈ Ŝ∗δ,β2,`(∆min/T )

]
(11)

≤ #Ŝ∗δ,β2,`(∆min/T ) · p∗r , (12)

and

p∗r = max
k′
d′ ∈Ŝ∗δ,β2,`(∆min/T )

(
Pr

[
kr

dr
=

k′

d′

])

≤ max
k′
d′ ∈F2δ·`\F2δ·`−β2

(
Pr

[
k

d
=

k′

d′

])
= p∗ for all r, (13)

where the last inequality follows because the probability that kr
dr

= k′
d′ is equal to the probability that

k
d coincides with the rth closest element in F2δ·` \ F2δ·`−β2 to k′

d′ in the ‘+’ direction.

Plugging (13) into (12) and the result into (10), the claimed bound on Pr[#Ŝ(N, e) < T ] follows
immediately. ut

ut

Let us now apply Lemma 5.1 with the parameter ∆min = 2−(1/2+η2)·` for some positive constant η2

such that η2 < 2 · ε (recall that δ = 1/4 + ε), and upper bound each of the terms on the right-hand
side of (9). First, combining Lemmas 4.1, 4.2 and 4.3 from the proof of Theorem 4.1, we conclude
that there exists a positive constant c3 such that

Pr
[
k

d
− e

N
< ∆min

]
= O

(
2−c3·`

)
. (14)
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Next, we upper bound #Ŝ∗δ,β2,`

(
∆min

T

)
. Let us define n = 2δ·` = 2(1/4+ε)·`. Then we have, using

T = 2g(`) with g(`)/` = o(1), that there exist positive constants ε̂ and ̂̀
0 such that

∆min

T
=

1
2(η2+g(`)/`)·` · 2`/2

=
22ε·`

2(η2+g(`)/`)·` ·
(

1
22ε·` · 2`/2

)

= n(2ε−(η2+g(`)/`))/δ · n−2

≥ n−2·(1−ε̂) for all ` ≥ ̂̀
0, (15)

where we have used the fact that 0 < η2 < 2ε to obtain the last inequality.

The following lemma shows that ‘large’ gaps (exponentially larger than n−2) between adjacent ele-
ments of the set Fn \ Fn/2β2 are very ‘rare’ (negligible fraction).

Lemma 5.2. Fix positive constants β2, ν, and δ. For any n = 2δ·`, and any ν ′ > ν we have

#Ŝ∗δ,β2,`(n
−(2−ν′)) = O(n2−ν).

Proof. For brevity, in the following we let F denote the set Fn \ Fn/2β2 . For each x ∈ F , let
d(x) = x−A−δ,β2,`(x) denote the distance to the adjacent element to x in F in the ’-’ direction (and

d(0) = 0). Notice that Ŝ∗δ,β2,`(n
−(2−ν)) = {x ∈ F : d(x) > n−(2−ν)}.

Let X denote a random variable uniformly distributed in F . The expected value of d(X) is

E[d(X)] =
1

#F ·
∑

x∈F
d(x) <

1
#F ,

since
∑

x∈F d(x) = maxx∈F x < 1. Now recall that by the Markov inequality, the probability that
d(X) exceeds r · E[d(X)] is at most 1/r for any r > 0. Hence, for any constant c > 0, we have:

Pr
[
d(X) ≥ c · nν

#F
]
≤ Pr [d(X) ≥ c · nν · E[d(X)] ] ≤ c−1n−ν .

Since X is uniformly random in F , it follows that

#Ŝ∗δ,β2,`

(
c · nν

#F
)
≤ c−1 · n−ν ·#F ≤ c−1 · n2−ν , (16)

using #F ≤ n2. Below we will show that #F = Ω(n2−h(`)) where h(`) = o(1). Plugging this in

(16) we obtain #Ŝ∗δ,β2,`

(
nν+h(`)

n2

)
= O(n2−ν) and hence #Ŝ∗δ,β2,`

(
nν′

n2

)
= O(n2−ν) for any ν ′ > ν, as

claimed.

It remains to show that #F = Ω(n2−h(`)) where h(`) = o(1). Indeed, for every d′ ∈ [n/2β2 , n] there are
ϕ(d′) fractions k′/d′ ∈ F with gcd(k′, d′) = 1, and from [7] we know that ϕ(d′) = Ω(d′/ log log d′) =
Ω(n/ log log n). Since there are Ω(n) choices for d′, we have #F = Ω(n2/ log log n) = Ω(n2−h(`)) with
h(`) = log δ`/(δ`) = o(1), as required. This completes the proof of the lemma. ut

ut

The next lemma shows that, thanks to the uniformly random choice of p and q in P`/2,β1
and d in

D`,δ,β2(φ), the resulting probability distribution of k/d is ‘close’ to uniform in the set Fn \ Fn/2β2 .

Lemma 5.3. Fix positive constants β1, β2 and set n = 2δ·`. There exists a positive constant c7 such
that

p∗ = max
k′
d′ ∈F2δ·`\F2δ·`−β2

(
Pr

[
k

d
=

k′

d′

])
= O

(
n−(2−c7/ log `)

)
.
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Proof. The algorithm RSAKG always generates k and d such that gcd(k, d) = 1 and k
d ∈ F2δ·` \

F2δ·`−β2 . So, in bounding p∗ it is enough to consider any fixed k′ and d′ with gcd(k′, d′) = 1 and
k
d ∈ F2δ·` \ F2δ·`−β2 , and we have Pr[k/d = k′/d′] = Pr[k = k′ and d = d′]. But from ed− 1 = kφ we
have that k = −φ−1 mod d and hence

Pr
[
k

d
=

k′

d′

]
= Pr[−φ−1 mod d = k′ and d = d′]

= Pr[−φ−1 mod d′ = k′ and d = d′]
= Pr[−φ−1 ≡ k′ (mod d′) and d = d′]
= Pr[φ ≡ (−k′)−1 (mod d′) and d = d′]
= Pr[φ ≡ (−k′)−1 (mod d′)] · Pr[d = d′|φ ≡ (−k′)−1 (mod d′)] (17)

We now upper bound each of the two probabilities in the right-hand side of (17). First we upper
bound the probability Pr[d = d′|φ ≡ (−k′)−1(mod d′)]. To do so, observe that for any fixed φ′ in the
support of φ and any fixed d′ ∈ ZZ we have

Pr[d = d′|φ = φ′] ≤ 1/#D`,δ,β2(φ) ≤ p, (18)

for some fixed p = O
(
n−(1− log `

δ·` )
)
, using Lemma 4.3. Letting Φ denote the set of φ′ in the support

of φ satisfying φ ≡ (−k′)−1(mod d′), we have

Pr
[
d = d′|φ ≡ (−k′)−1 mod d′

]
=

Pr[d = d′ and φ ≡ (−k′)−1 (mod d′)]
Pr[φ ≡ (−k′)−1 (mod d′)]

=

∑
φ′∈Φ Pr[d = d′ and φ = φ′]

Pr[φ ≡ (−k′)−1 (mod d′)]

=

∑
φ′∈Φ Pr[d = d′|φ = φ′] · Pr[φ = φ′]

Pr[φ ≡ (−k′)−1 (mod d′)]

≤
∑

φ′∈Φ p · Pr[φ = φ′]
Pr[φ ≡ (−k′)−1 (mod d′)]

= p = O
(
n−(1− log `

δ·` )
)

, (19)

where we used (18) to get the inequality in the fourth line.

Fix φ′ = (−k′)−1 mod d′. We now focus on upper bounding Pr[φ ≡ φ′(mod d′)]. First, observe that
φ < N < 2`. So

Pr[φ ≡ φ′ mod d′] ≤ #{φ̂ ∈ ZZ2` : φ̂ ≡ φ′ (mod d′)} · max
2`/4<φ̂<2`

Pr[φ = φ̂].

But

#{φ̂ ∈ ZZ2` : φ̂ ≡ φ′ (mod d′)} = #{h ∈ ZZ : h ≥ 0 and φ′ + h · d′ < 2`} ≤ 2`

d′
+ 1.

Now recall that φ = (p−1)·(q−1). So, for any φ̂ < 2`, we have using the uniform distribution of (p, q)
in P2

`/2,β1
, that Pr[φ = φ̂] = #{(p, q) ∈ P2

`/2,β1
: (p− 1)(q− 1) = φ̂}/#P2

`/2,β1
≤ τ(φ̂)/#P2

`/2,β1
, where

τ(φ̂) denotes the total number of divisors of φ̂. It is known (see Theorem 317 of [4]) that τ(φ̂) =
O

(
22 log(φ̂)/ log log(φ̂)

)
= O(nc2/ log `) for some positive constant c2, using the fact that 2`/4 < φ̂ < 2`.

Also, from the prime number theorem (see Theorem 6 of [4]), we have that cL · x/ ln x < π(x) <
cH · x/ ln x for any constants cL < 1 and cH > 1 for all sufficiently large x, where π(x) denotes the
number of primes less than or equal to x. It follows that #P`/2,β1

= π(2`/2)−π(2`/2−β1) = Ω(2`/2/`)
meaning that #P2

`/2,β1
= Ω(2`/`2). So we conclude that

Pr[φ = φ̂] = O

(
nc2/ log `

2`/`2

)
= O

(
nc3/ log `

2`

)
,
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for some positive constant c3. Hence, using the fact that d′ ∈ [n/2β2 , n], we have

Pr[φ ≡ φ′ mod d′] = O

((
2`/d′ + 1

)
·
(

nc3/ log `

2`

))
= O

(
n−(1−c3/ log `)

)
. (20)

Plugging in (19) and (20) into (17), we finally obtain

Pr
[
k

d
=

k′

d′

]
= O

(
n−(2−c7/ log `)

)

for some positive constant c7, as claimed. This completes the proof of the lemma. ut
ut

Combining (15) and Lemma 5.2 we know that (with n = 2δ·`) there exists a positive constant ν such
that

#Ŝ∗δ,β2,` (∆min/T ) = O
(
n2−ν

)
. (21)

Using the bounds from Lemma 5.3 and (21) and the fact that T = 2g(`) with g(`)/` = o(1), we get,
for some positive constant ε′ that

T ·#Ŝ∗δ,β2,` (∆min/T ) · p∗ = O
(
2g(`) · n2−ν/2 · n−(2−c7/ log `)

)
= O

(
2−ε′·`

)
. (22)

Finally, plugging in the bounds from (14) and (22) into (9), we conclude that there exist positive
constants c and `0 such that (8) holds. This completes the proof of the theorem. ut

ut

6 Conclusions

We obtained converse results to the Wiener attack on low secret-exponent RSA and its extensions.
Our results show that the Wiener approach alone cannot lead to a subexponential-time attack when
the RSA secret exponent d > N1/4. Obtaining converse results for the lattice-based Boneh-Durfee
attack and its extensions, which heuristically succeed in polynomial-time when d < N0.292, is cur-
rently an interesting open problem. We believe our results are a first step towards a solution to this
open problem.
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