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Abstract

This document specifies Titanium, a proposed pair of algorithms for a NIST standard for post-quantum
public-key encryption and Key Encapsulation Mechanism (KEM): Titanium-CPA a chosen-plaintext
attack secure (IND-CPA) public-key encryption with 256 bit message space, and Titanium-CCA and a
chosen ciphertext attack secure (IND-CCA) KEM with 256 bit key space1. In addition to complete
algorithm specifications, this document contains the design rationale, recommended parameter sets,
algorithm time and memory performance, Known Answer Test (KAT) values, expected security levels
of the specified parameter sets, security analysis and known cryptanalytic attacks, and discussion of
advantages and limitations.

1In some literature IND-CCA is refereed to IND-CCA2.
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Chapter 1

Introduction

Background. Lattice-based cryptography relies in great parts on the assumed hardness of two well-
studied and closely related problems: the Small Integer Solution problem (SIS) introduced in [Ajt96]
and the Learning With Errors problem (LWE) introduced in [Reg09]. They lead to numerous crypto-
graphic constructions, are conjectured exponentially hard to solve even for quantum algorithms, and
enjoy reductions from standard worst-case lattice problems such as finding a short non-zero vector
in a lattice (ApproxSVP). However, the resulting cryptographic constructions suffer from large keys
and/or rather inefficient algorithms. This is because the problems themselves involve large-dimensional
random matrices over a ring Zq (for some q ≥ 2).

To obtain more efficient SIS-based primitives, Lyubashevsky and Micciancio [LM06], and Peikert
and Rosen [PR06] introduced the Polynomial SIS problem (PSIS), inspired from [Mic07, HPS98]. The
problem was called Ideal-SIS in [LM06], Cyclotomic-SIS in [PR06], and is now commonly referred to
as Ring-SIS. We prefer to call it PSIS as it is not defined in terms of number fields but polynomial
rings (as opposed to RLWE), similarly to the Polynomial-LWE problem (PLWE) we consider in this
work. It is possible to define a SIS variant of RLWE, i.e., involving number fields: in the common
case of power-of-2 cyclotomics, PSIS and RSIS match (as do PLWE and RLWE). In this work, we are
interested in larger classes of polynomials, making the distinction important. PSISf can be described
in terms of elements of Zq[x]/f for an integer q ≥ 2 and a polynomial f that parametrizes the problem.
Equivalently, it may be described as SIS where the uniform matrix is replaced by a structured matrix
(the precise structure depends on f). PSIS allows the design of fast digital signatures, among other
applications (see [Lyu09], for example).

This approach was extended to LWE by Stehlé et al. [SSTX09], who introduced and studied the
(search version of) Polynomial-LWE problem (PLWE). It was originally called Ideal-LWE, by analogy
to Ideal-SIS (the decision version of PLWE and the name Polynomial-LWE were defined in [BV11]).
Lyubashevsky et al. [LPR13] introduced the RLWE problem, which involves number fields rather than
polynomials, and proposed a reduction from its search to decision versions, in the case of cyclotomic
polynomials. (See also [EHL14, CLS15] for extensions to larger classes of fields of the RLWE search to
decision reduction.) Power-of-2 cyclotomic polynomials (for which PLWE and RLWE match) have been
exploited to design fast encryption schemes, among others (see [ADPS16], for example). Cryptographic
schemes based on PLWE/RLWE most often enjoy keys of Õ(λ) bit-sizes and algorithms with Õ(λ)
runtime, where λ refers to the security parameter (i.e., all known attacks run in time ≥ 2λ) and the
Õ(·) notation hides poly-logarithmic factors.

Switching from unstructured SIS and LWE to their polynomial counterparts PSIS and PLWE has
undeniable efficiency advantages. However, the security guarantees are severely degraded. PSIS and
PLWE also enjoy reductions from worst-case lattice problems such as ApproxSVP, but these lattice
problems, e.g., ApproxSVPf , are restricted to lattices that correspond to ideals of Z[x]/f , where f
is the polynomial that parametrizes PSIS and PLWE: under some conditions on f , there exists a
reduction from ApproxSVPf with small approximation factor, to PSISf and PLWEf (see [LM06, PR06,
SSTX09]). It is entirely possible that PSIS(f)/PLWE(f) could be easy to solve for some polynomials
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CHAPTER 1. INTRODUCTION 4

f , and hard for others. We note that the stability of the polynomial rings under multiplication by
x can be exploited to accelerate some known lattice algorithms by small polynomial factors, but
we are interested here in more drastic weaknesses. For instance, if f has a linear factor over the
integers, then it is well-known that PSIS(f)/PLWE(f) are computationally easy (we note that the
reductions from ApproxSVP(f) require f to be irreducible). Finding weak f ’s for PLWE has been
investigated in [EHL14, ELOS15, CLS15, CLS16]. The attacks presented in this sequence of articles
were used to identify such f ’s, but they only work for error distributions with small width relative to the
geometry of the corresponding ring [CIV16b, CIV16a, Pei16a]. In another sequence of works, Cramer
et al. [CDPR16, CDW16] showed that ApproxSVPf is easier for f a cyclotomic polynomial of prime-
power conductor than for general lattices. More concretely, the authors of [CDW16] give a quantum
polynomial-time algorithm for ApproxSVPf with approximation factor 2Õ(

√
n), where n is the degree

of f . As a comparison, for such approximation factors and arbitrary lattices, the best known algorithms
run in time 2Õ(

√
n) (see [Sch87]). Finally, we note that the choice of non-cyclotomic polynomials

in [BCLvV16] was motivated by such weaknesses. Even though the results in [CDPR16, CDW16]
impact ApproxSVPf , it may be argued that it could have implications for PLWE(f) as well, possibly
even for lower approximation factors. On the other hand, it could be that similar weaknesses exist
for ApproxSVPf considered in [BCLvV16], although none is known at the moment. This lack of
understanding of which f ’s correspond to hard PLWEf problems motivated researchers to take three
different directions:

• Approach 1, Security Oriented: To achieve stronger security guarantees, the structured
RLWE can be replaced by the unstructured LWE problem, whose security is related to more
well understood unstructured lattices. However, this comes at the cost of a significant perfor-
mance penalty, although encryption scheme optimisations for variants of Regev’s LWE-based
cryptosystem have been used to reduce this cost penalty in the Frodo proposal [BCD+16].

• Approach 2, Performance Oriented: To achieve better security guarantees without a
significant performance penalty, RLWE can be replaced by Module-RLWE [LS15] (e.g. Ky-
ber [BDK+17, DLL+17]). Although the performance has not been greatly sacrificed compared to
RLWE-based schemes such as [ADPS16], the security of this approach still relies on the hardness
of the Module-RLWE problem over a single fixed ring R. This means that any attacks exploit-
ing RLWE weaknesses inherent to the ring R could translate to an attack on the Module-RLWE
problems for R-modules too [AD17]. Overall, it is not entirely clear if this approach can buy
much more security than RLWE over a single ring.

• Approach 3, Intermediate: This approach seeks to achieve an intermediate point in the
‘security-guarantee vs. efficiency’ trade-off curve, sitting in between Approach 1 and 2 above.
To obtain better security guarantees than reliance on RLWE (or Module-RLWE) over a single fixed
ring, this approach, initiated by Lyubashevsky [Lyu16] for the design of digital signatures and
extended by Rosca et al. [RSSS17] for design of public-key encryption, aims at problems that are
provably as hard as PLWEf for the hardest f in a large family of polynomials, to hedge against
the weakness of specific polynomial rings, while achieving a better efficiency than schemes based
on unstructured LWE. Our proposal Titanium is based on this ‘intermediate’ approach, as a
practical instantiation of the results in [RSSS17].

Lattice Problems as Hard as PLWEf for the hardest f in a large family. Lyuba-
shevsky [Lyu16] introduced a variant R<n-SIS of SIS that is not parametrized by a polynomial f
and which enjoys the following desirable properties. First, an efficient algorithm for R<n-SIS with
degree bound n leads to an efficient algorithm for PSISf for all f ’s in a family of polynomials of size
exponential in n. Second, there exists a signature scheme which is secure under the assumption that
R<n-SIS is hard, involves keys of bit-size Õ(λ) = Õ(n) and whose algorithms run in time Õ(λ). In
this sense, R<n-SIS can serve as an alternative cryptographic foundation that hedges against the risk
that PSISf is easy to solve for some f (as long as it stays hard for some f in the family).
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The main contribution of [RSSS17] is the introduction of an LWE counterpart to Lyubashevsky’s
R<n-SIS problem, called Middle-Product Learning With Errors (MP-LWE). Let n, q ≥ 2. We let
Z<nq [x] denote the set of polynomials with coefficients in Zq and degree < n. For a ∈ Z<nq [x] and
s ∈ Z<2n−1

q [x], we let a �n s = b(a · s mod x2n−1)/xn−1c ∈ Z<nq [x] denote the polynomial obtained
by multiplying a and s and keeping only the middle n coefficients. Middle-Product LWE (MP-LWE),
with parameters n, q ≥ 2 and α ∈ (0, 1), consists in distinguishing arbitrarily many samples (ai, bi)
uniform in Z<nq [x]× Z<nq [x], from the same number of samples (ai, bi) with ai uniform in Z<nq [x] and
bi = ai �n s + ei, where each ei is sampled from the binomial difference distribution with parameter
η, BinDiff(η), and s is uniformly chosen in Z<2n−1

q [x].
A reduction from (decision) PLWEf to (decision) MP-LWE of parameter n, for every monic f of

degree n whose constant coefficient is coprime with q is given in [RSSS17]. However, in the reduction
presented in [RSSS17], the noise parameter is amplified by the reduction by a factor linear in the
so-called ‘Expansion Factor’ of f , introduced in [LM06]. The noise parameter in MP-LWE can for
example be set to handle all monic polynomials f = xn + g with constant coefficient coprime with
q, deg g ≤ n/2 and ‖g‖ = nc for an arbitrary constant c > 0. For any c ≥ 1, this set of f ’s has
exponential size in n. However, in general the reduction is not tight due to the reduction’s noise
amplification factor, and does not give strong concrete security guarantees. We note that similar
restrictions involving the expansion factor appeared before in [LM06, SSTX09].

Our Proposal: Titanium. In this proposal, we specify Titanium-CPA, a practical and optimised
public-key encryption scheme based on the MP-LWE problem, building on the theoretical results re-
ported in [RSSS17] that exploit the associativity property of the middle product. We optimise both the
encryption scheme in [RSSS17], its parameters and implementation, and its security proof. By special-
izing the reduction of [RSSS17] to a suitable polynomial family F , we give a tight security reduction
to the IND-CPA security of Titanium-CPA from the PLWEf hardness assumption with respect to any f
in the family F of exponential size in the security parameter (the reduction also assumes the classical
random oracle model for an underlying hash function). We use a variant of the generic Fujisako-
Okamoto transformation [FO99, HHK17] to tightly convert Titanium-CPA to a Key Encapsulation
Mechanism (KEM) called Titanium-CCA that is secure under adaptive chosen-ciphertext attacks (i.e.
IND-CCA secure), assuming the classical random oracle model for the underlying hash functions. Our
optimised constant-time implementations of Titanium-CPA and Titanium-CCA employ fast algorithms
based on the Number Theoretic Transform (NTT) for computing the middle product operations, op-
timised randomness distribution parameters, and precomputation optimisation techniques to improve
the scheme efficiency.

We emphasize several notable features of our proposal:

• Strong concrete security guarantees: Our security reduction is tight in terms of both reduction
time and noise amplification, in fact it preserves the noise distribution exactly. This tightness
makes it feasible to incorporate this security proof into our parameter selection procedure, and
not only as asymptotical evidence for security. In particular, our choice of parameters together
with our security reduction gives concrete lower bounds on the security of Titanium-CPA in terms
of the security of the hardest PLWEf problem over all exponentially many f ’s in the family F .
Our family F contains polynomials of the form xm+

∑
i≤`(m) fix

i for some `(m), including specific
f ’s previously used in lattice-based cryptography, such as power-of-2 cyclotomics (xm + 1 for m
a power of 2) and ‘NTRUPrime’ polynomials [BCLvV16] (xm−x−1 for m prime), among many
others. For example, for our Std128 parameter set, F contains polynomials of any degree in the
interval [896, 1024], including the cyclotomic power-of-2 polynomial x1024 + 1, as used in New
Hope [ADPS16].

• Conservative choice of parameters: Our parameter selection makes conservative assumptions,
to allow safety margins for future improvements in cryptanalysis techniques and computing
architectures. In particular, we adopt a conservative variant of the ‘Core SVP hardness’ ap-
proach [ADPS16, BCD+16] in deriving complexity estimates for lattice reduction attacks based
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on the BKZ algorithm [SE94]. This approach only counts the cost of a Shortest Vector Problem
(SVP) call of BKZ, neglecting other BKZ costs. Other conservative choices include a random
access machine (RAM) model neglecting the cost of each memory access, which is also made
in the ‘Core SVP hardness’ approach [ADPS16]. Our approach is even more conservative than
that of [ADPS16] by allowing for the possibility that a variant of sieve SVP algorithm might be
devised to generate as many ‘pseudorandom’ short vectors as the time complexity rather than
the memory complexity of the algorithm. We use attack time to advantage ratio as the main
complexity cost measure, neglecting memory cost to allow for future cryptanalytic improvements
that reduce the attack memory requirements. We also allow an 10% quantum security safety
margin and 5% classical security safety margin in setting our parameters for a target security
goal. Further, our parameter settings are based on our PLWEf -based lower bounds derived from
our security proof, but we do not know of attacks with that complexity: our best known attacks
on the MP-LWE problem underlying our scheme have a higher complexity.
Further cryptanalysis may clarify whether some of our conservative assumptions might be re-
laxed. In the latter case, we may consider tweaking our parameter sets to achieve a better
efficiency for a given security level/category. For example, for our Std128 parameter set for
Titanium-CCA, the PLWEf lower bound quantum complexity estimates range between 2136 and
2161 gates and classical complexity from 2149 to 2176 gates as f ranges over the family F , while
the best known attack on our scheme via the MP-LWE problem has quantum complexity estimate
2214 gates (resp. 2236 gates classically). For our Lite96 parameter set for Titanium-CCA, the best
known attack on our scheme via the MP-LWE problem has quantum complexity estimate 2164

gates and classical complexity estimate 2181 gates, which are already above the λQ = 130 and
λC = 143 goals for Std128 (refer to Table 6.10). This implies that we could potentially take pa-
rameter sets given for Lite96 to achieve goals for Std128. Our parameter choices for Titanium-CCA
also provably ensure a negligible decryption error probability pe to provably avoid decryption
failure chosen-ciphertext attacks, for example, for parameter set Std128 of Titanium-CCA, we
have a decryption error probability upper bounded approximately by 2−161.

• Better Efficiency than LWE-based schemes: Our scheme implementations have better efficiency
than existing proposals [BCD+16] based on the unstructured LWE problem in terms of both
ciphertext length and algorithm run-time (see comparison below).

• Flexible choice of dimensions: In RLWE systems based on ‘power-of-2’ cyclotomics, such as New
Hope [ADPS16], the main parameter for controlling security is the polynomial degree n, which
must jump in increasingly large steps due to the power of 2 restriction, limiting flexibility of
parameter choices for tuning security. In our Titanium schemes, the analogous LWE dimension
parameter n is replaced by an interval [mmin, n] for the degrees of the PLWEf polynomials in
family F whose security reduces to MP-LWE. In our schemes, there is no ‘power-of-2’ restriction
on the analogous dimension parameter n, allowing a flexible tunability of security versus efficiency
(although for maximum efficiency of our optimised radix-2 based fast NTT implementations of
middle product computations, n should be close to a multiple of 256). This allows us to generate
a range of parameter sets with smoothly increasing dimension n. For example, our Titanium-CCA
parameter sets Toy64, Lite96, Std128 have n = 684, 800, 1024, respectively.

Comparison of Titanium with other lattice-based schemes. Table 1.1 shows a brief com-
parison of Titanium-CPA and Titanium-CCA with other lattice-based proposals based on approaches
1 and 2 above (we refer to Tables 3.1-3.2 for the full benchmark results of our Titanium-CPA and
Titanium-CCA implementations for all our six parameter sets), showing how our schemes offer an ‘in-
termediate’ point in terms of security guarantees versus efficiency. In particular, we point out the
following:

• Efficiency Aspects: For our Std128 parameter set (corresponding to NIST category 1, or AES128
security level), our Titanium-CPA ciphertexts are significantly smaller in size (3.2 times factor)
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Table 1.1: Comparison of Titanium-CPA and Titanium-CCA with Frodo and Kyber.
Scheme Cl. Sec. Sec. Guarantees Eff. Aspects

Prob. Family Size Size (Bytes) Cycles

Frodo 130 LWE n/a |pk| = 11296 KeyGen : 2938000
|sk| = 11280 Encrypt : 3484000
|ct| = 11288 Decrypt : 338000

Titanium-CPA.Std128 155 MP-LWE ≥ 3256 |pk| = 14720 KyeGen : 1619550
|sk| = 32 Encrypt : 1262047
|ct| = 3520 Decrypt : 217612

Titanium-CPA.Std128 155 MP-LWE ≥ 3256 |pk| = 14720 KyeGen : 828542
(AVX2 optimised) |sk| = 32 Encrypt : 742541

|ct| = 3520 Decrypt : 116311

Kyber 161 Module-LWE 1 |pk| = 1088 KyeGen : 276720
|sk| = 2368 Encaps. : 332800
|ct| = 1184 Decaps. : 376104

Titanium-CCA.Std128 134 MP-LWE ≥ 3256 |pk| = 16352 KyeGen : 1806119
|sk| = 16384 Encaps. : 1446751
|ct| = 3552 Decaps. : 1671578

Kyber 161 Module-LWE 1 |pk| = 1088 KyeGen : 77892
(AVX2 optimised) |sk| = 2368 Encaps. : 119652

|ct| = 1184 Decaps. : 125736

Titanium-CCA.Std128 134 MP-LWE ≥ 3256 |pk| = 16352 KyeGen : 934051
(AVX2 optimised) |sk| = 16384 Encaps. : 865352

|ct| = 3552 Decaps. : 986905

compared to the LWE-based IND-CPA scheme Frodo [BCD+16] at a higher security level. In
handshake protocols, the quantity |pk|+ |ct| is the main communication size, for which we could
save ≈ 4.3 Kilo Bytes (KB). Our key generation, encryption, and decryption time are also faster
by factors of 1.4, 2.3, and 1.3 compared to Frodo [BCD+16], respectively. Note that we could
even save more in these efficiency aspects once AVX2 optimisation techniques are employed.
The pe for Frodo is set to be 2−30, while ours is 2−33.
We also compare the efficiency aspects of Titanium-CCA (and its AVX2 optimised version) to
that of Kyber (and its AVX2 version, respectively). With a smaller quantum security claim, our
ciphertexts, secret key, and public key are 3, 6.9, and 15 times larger than the corresponding
quantities in Kyber. Our key generation, encapsulation, and decapsulation times are slower by
factors of 7.6, 5.0, and 5.1 compared to Kyber [BDK+17], respectively. The AVX2 optimised
versions can also be compared accordingly.

• Security Guarantees: We have qualitatively achieved/provided better security proof guarantees
than other structured (RLWE-based) schemes; Titanium-CPA security is provably (and tightly)
as hard as the hardest instance of PLWE in a family of polynomial rings of size at least 3256,
hedging against weakness of a few special (e.g. cyclotomic) rings, whereas Kyber [BDK+17]
relies on Module-RLWE over a single specific power-of-2 cyclotomic ring in dimension 256.



Chapter 2

Algorithm Specifications

This Chapter contains the full specifications of our Titanium-CPA public-key encryption algorithm and
Titanium-CCA Key Encapsulation Mechanism (KEM) algorithm.

2.1 Mathematical and Notation Preliminaries

2.1.1 Polynomials and operations

We use the following notations:

• For k > 0, and a ring R, we let R<k[x] denote the set of polynomials with coefficients in R of
degree < k.

• Given a polynomial a = a0 + a1x+ · · ·+ ak−1x
k−1 ∈ R<k[x], we let

PolToVec(a) := a = (a0, . . . , ak−1)T ∈ Rk,

and
Rev(a) = (ak−1, . . . , a0)T ∈ Rk.

The latter notation is extended to the corresponding polynomial too. For two polynomials a
and b (not necessarily with same degree), it is easy to check that:

Rev(a · b) = Rev(a) · Rev(b). (2.1)

On the other hand, for any a = (a0, . . . , ak−1)T ∈ Rk, we define:

VecToPol(a) := a0 + a1x+ · · ·+ ak−1x
k−1 ∈ R<k[x].

• Given two polynomials a = a0+a1x+· · ·+ak−1x
k−1 ∈ R<k[x] and b = b0+b1x+· · ·+bm−1x

m−1 ∈
R<m[x], we denote by a · b ∈ R<k+m−1[x] the ordinary polynomial product of a and b over R[x].

• Let da, db, d, k be integers such that da + db − 1 = d + 2k. The middle-product �
d

: R[x]<da ×
R[x]<db → R[x]<d is the map:

(a, b) 7→ a�
d
b =

⌊
(a · b) mod xk+d

xk

⌋
,

in which the notation b·/xkc means that we divide by xk as a power series in x and drop the
terms cjxj with j < 0. We use the same notation �

d
for every da, db such that da + db − 1− d

is non-negative and even.

8
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• Let f be a polynomial of degree m with coefficients in ring R. We define Mf as the (Hankel)
matrix in Rm×m such that for any 1 ≤ i, j ≤ m, the coefficient (Mf )i,j is the constant coefficient
of xi+j−2 mod f .

The (reversed) coefficient vector of the middle-product of two polynomials is in fact equal to the
product of the Toeplitz matrix associated to one polynomial by the (reversed) coefficient vector of the
second polynomial.

Lemma 2.1.1 ([RSSS17]). Let d, k > 0. Let r ∈ R<k+1[x] and a ∈ R<k+d[x] and b = r �
d
a. Then

Rev(b) = Toepd,k+1(r) · Rev(a). In other words, we have b = Rev
(

Toepd,k+1(r) · Rev(a)
)
.

The middle-product is an additive homomorphism when either of its inputs is fixed. As a conse-
quence of the associativity of matrix multiplication and Lemma 2.1.1, the middle-product satisfies the
following associativity property, which is crucial to the correctness of Titanium-CPA.

Lemma 2.1.2 ([RSSS17]). Let d, k, n > 0. For all r ∈ R[x]<k+1, a ∈ R[x]<n+1, s ∈ R[x]<n+d+k, we
have r �

d
(a�

d+k s) = (r · a)�
d
s.

2.1.2 Number Theoretic Transform (NTT)
Let q be a prime such that d|(q − 1) and ωd be the d-th primitive root of unity in Zq for a positive
integer d. For y = (y0, . . . , yd−1) ∈ Zdq , we define:

NTTd(ωd,y) := z = (z0, . . . , zd−1) ∈ Zdq , (2.2)

where

zi =
d−1∑
j=0

ωi·jd yj , (2.3)

for i = 0, . . . , d− 1. On the other hand, for z ∈ Zdq , we also define

NTT−1
d (ωd, z) := y = (y0, . . . , yd−1) ∈ Zdq , (2.4)

where

yi = d−1 ·
d−1∑
j=0

ω−i·jd zj , (2.5)

for i = 0, . . . , d− 1.

2.1.3 Probability

We use the following notations:

• For a finite domain R, we denote by U(R) the uniform probability distribution over R.

• For a positive even integer B, we denote by ZeIntU(B) the zero-excluded interval uniform dis-
tribution U({−B/2, . . . ,−1} ∪ {1, . . . , B/2}) over Z, i.e. the distribution of an integer with
magnitude uniformly random in the interval {1, . . . , B/2} and a uniformly random sign.

• For a positive integer parameter η, we denote by BinDiff(η) the ‘binomial difference’ distribution
over Z with parameter η, i.e. the distribution of the random variable X − Y when random
variables X,Y are independently sampled from the binomial distribution with number of trials
parameter η and success probability in each trial parameter 1/2.

• For a real-valued random variable r, we denote by E[r] the expected value of r.
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2.2 Titanium-CPA: IND-CPA public-key encryption scheme
The design for the IND-CPA secure version of Titanium, to be called here Titanium-CPA, is based on
the MP-LWE-based public-key cryptosystem described in Section 4 of [RSSS17].

2.2.1 Outline

The scheme of [RSSS17]

In this section, we outline the main high level ideas behind our scheme Titanium-CPA, and the main
(mild) differences between Titanium-CPA and the encryption scheme in [RSSS17]. Following sections
contain full reference specifications of Titanium-CPA and Titanium-CCA.

We first recall the main ideas in the scheme of [RSSS17]. The public key consists of t MP-LWE
samples of the form

pk = (ai, bi = ai �d+k s+ ei)1≤i≤t,

where ai ∈ Z<nq [x] are uniformly random polynomials, s ∈ Z<n+k+d−1
q [x] is a uniformly random secret

key polynomial, and ei ∈ Z<d+k
q [x] are error polynomials with ‘small’ coefficients sampled from an

appropriate error distribution χe, which is a rounded continuous Gaussian distribution in [RSSS17].
The secret key is sk = s. To encrypt a message m ∈ {0, 1}<d[x], the encryption algorithm uses an
analogue of Regev’s encryption scheme [Reg05], computing

c1 =
∑

1≤i≤t
ri · ai and c2 =

∑
1≤i≤t

ri �d bi +m · bq/2c,

using random polynomials ri with ‘small’ coefficients sampled from an appropriate error distribu-
tion χr, which is uniform on binary coefficients in [RSSS17]. The decryption algorithm decrypts a
ciphertext (c1, c2) by exploiting the associativity property of middle-product (Lemma 2.1.2):

r �
d

(a�
d+k s) = (r · a)�

d
s,

which implies that the decryption algorithm can compute

c1 − c2 �d s =
∑

1≤i≤t
ri �d ei +m · bq/2c ≈ m · bq/2c,

since
∑

1≤i≤t ri �d ei is ‘small’ compared to q/2 with overwhelming probability for appropriate choice
of parameters (see Chapter 7). Then m can be recovered (except with negligible error probability) in
decryption by rounding c1 − c2 �d s to a multiple of bq/2c.

The security of the scheme follows from the hardness of the MP-LWE problem, based on a statistical
‘Leftover Hash Lemma’ (LHL) argument (see Chapter 6). Namely, the hardness of MP-LWE implies
that given the ai’s, the bi = ai �d+k s+ ei are indistinguishable from uniformly random polynomials
in Z<d+k

q [x]. Then, if the ri’s have sufficient min-entropy, an LHL argument can be used to show that
if bi are uniformly random, then

∑
1≤i≤t ri �d bi is statistically close to uniform given c1 and the bi’s,

which statistically hides the message m.

Differences between Titanium-CPA and [RSSS17]

We now summarize the main differences between Titanium-CPA and the scheme from [RSSS17]:

• Reference and Optimised Algorithms and Implementations: We present both a reference speci-
fication of our Titanium-CPA algorithms (in this Chapter) and optimised algorithms (in Chap-
ter 3). The reference and optimised algorithms produce compute exactly the same input/output
functionality (and hence their implementation produce identical KATs). However, the reference
algorithms and implementation is written in terms of middle-product and polynomial multipli-
cation operations (and NTTs) and use slow quadratic time (but easy-to-understand) classical
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algorithms to compute those operations. Our optimised algorithms and implementations use
fast (quasi-linear time) optimised algorithms for NTT operations and do not explicitly perform
middle-product operations. Our reference algorithms/implementations are only provided to clar-
ify understanding of the specification, and should not be used for performance benchmarking
purposes.

• Simplified Algorithms: Our NTT precomputation optimisations (see below) modify the input-
output functionality of our algorithms, and consequently, our reference specification also in-
volves NTT operations. In addition, the reference specification specifies explicit randomness
sampling algorithms and output encoding/packing algorithms. As a consequence, our refer-
ence specification is not mathematically concise. Accordingly, we also define simplified variants
of our Titanium-CPA and Titanium-CCA schemes in Chapter 4, closely related to the scheme
in [RSSS17] summarized above. We show that the simplified schemes are equivalent in security
and correctness to the schemes in our reference specification, but are easier to understand and
analyse.

• Optimized ri distribution χr: In [RSSS17], the ri’s are chosen with uniformly random binary
coefficients. In Titanium-CPA, we allow the ri coefficients to be bigger and tune their variance to
optimise the resulting key and ciphertext length, as well as the algorithm run-times, for a given
security and decryption error probability level. In particular, although increasing the variance of
the ri’s implies a corresponding increase in the decryption noise term

∑
1≤i≤t ri�d ei (which tends

to increase the decryption error probability and a corresponding increase in q to compensate),
on the other hand the larger entropy of higher variance ri’s reduces the number t of required
MP-LWE samples in the public-key to satisfy the LHL entropy condition for the security proof,
and a reduced t has a significant improvement on both computation and key length, even if
q is increased up to some point. It turns out that optimal values for the variance of the ri to
minimise the public-key length are typically significantly larger than 1. For efficiency of sampling,
we sample the ri coefficients from a uniform distribution on a set {−B1/2, . . . , 1}∪{1, . . . , B1/2}
of power-of-2 size B1 = 2b1+1 (i.e. the distribution ZeIntU(B1)), but we also allow a fraction
of the ri coefficients to be sampled from ZeIntU(B2) with a larger B2 = 2b2+1 > B1 to allow a
smooth tuning of the ‘mean’ variance of the ri’s, to have a fine control the trade-off between t
and q.

• Optimized ei distribution χe: In [RSSS17], the ei error (noise) distribution χe is chosen as an
integer-rounded continuous Gaussian distribution, but sampling from this distribution tends to
be computationally expensive. Instead, Titanium-CPA uses a ‘binomial difference’ distribution
BinDiff as also used in New Hope [ADPS16] and Kyber [BDK+17]. This distribution is effi-
ciently sampleable, and approximates a Gaussian distribution. Importantly, our optimisation
of the security reduction of [RSSS17] from PLWEf for f in our ring polynomial family F to
MP-LWE preserves the BinDiff distribution exactly (in shape and variance), so we are still able
to provably lower bound the security of Titanium-CPA based on the assumed security of PLWEf
with the BinDiff distribution. As the distribution variance we use 2, which also matches previous
choices [BDK+17].

• Explicit constant-time algorithms: Titanium-CPA specifies explicit algorithms for sampling from
each of the distributions needed in key generation, encryption, and decryption. To resist timing
side-channel attacks, the algorithms are (with one exception treated below) designed and im-
plemented to run in constant-time, except with negligible probability that we explicitly upper
bound in our correctness analysis in Chapter 7. Similarly, other operations in our encryption,
decryption and key generation algorithms are also implemented with constant-time algorithms.
We remark that one exception to the constant run-time implementation is our rejection-based
sampling algorithm for uniformly random integers in Zq. The run-time of the latter algorithm
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depends on the pattern of rejected/accepted integers generated by our SHA-3 based pseudoran-
dom generator PRG; however, assuming the pseudorandomness of PRG, the accepted integers
output by our rejection sampling algorithm are (indistinguishable from) uniformly random and
independent integers in Zq, even conditioned on the rejection pattern leaked by the running-time
of this sampling algorithm. Therefore, the non-constant run-time of this algorithm does not pose
a timing side-channel risk to our scheme implementations.

• NTT-based algorithm for middle-product: We implement the middle-product computations in
Titanium-CPA using a fast NTT-based algorithm optimised for our Titanium-CPA parameters,
that improves on the efficiency of the naive approach of reducing middle product to NTT-based
multiplication. This fast middle product algorithm, an optimised variant of the middle-product
algorithm in [HQZ04] (see Chapter 3) to our setting, can still be viewed MP-LWE analogue of the
standard NTT algorithm for multiplication in rings of the form Zq[x]/(f(x)). That is, to evaluate
c = a � b, the algorithm essentially computes the forward NTT transforms â and b̂ of a and
b in appropriate dimensions, performs a coordinate-wise multiplication of â and b̂ in the NTT
domain, and performs an inverse NTT transform (and truncation) to recover c. As in PLWE-
based lattice cryptosystems such as [ADPS16], the NTT computations make up the dominant
computation cost in our algorithms. Accordingly, similarly to [ADPS16], we use presampling
and precomputation optimisation techniques (see below) to either reduce the number of NTT
computations, or trade-off a better encryption/decryption speed for a longer key generation time
in our optimised algorithms for Titanium-CPA or Titanium-CCA.

• Presampling s directly in the NTT domain: Titanium-CPA uses the same distribution of the secret
polynomial s as in [RSSS17], i.e. with coefficients uniformly random in Zq. However, since the
secret key s is only used in its transformed NTT domain representation ŝ in our NTT-based
optimised algorithms for Titanium in Sec. 3.3, we save NTT computations for s by presampling
s in key generation directly in its NTT domain representation ŝ. Thanks to the uniformity of s
and the injectivity of NTT, the distribution of ŝ is also uniform and easy to sample directly.

• NTT precomputation for bi and c1: To further speed-up Titanium-CPA encryption at the cost of
a longer key generation time, we precompute during key generation the NTT of the public key
polynomials bi needed for the fast middle-product computation of c2 in the Titanium-CPA encryp-
tion algorithm, and store the NTT domain representations b̂i in the public key. Also, to speed
up encryption of Titanium-CPA at the cost of a longer decryption, we send in the ciphertext
c1 in its NTT domain representation ĉ1, moving the inverse NTT computation for recovering
c1 to the Titanium-CPA decryption. For our Titanium-CCA scheme built from Titanium-CPA
using the Fujisaki-Okamoto transformation, this optimisation actually does not increase the
Titanium-CCA decryption algorithm running time, since the latter algorithm performs both
Titanium-CPA decryption and encryption (due to the Fujisaki-Okamoto re-encryption cipher-
text validity check), but we still decrease the Titanium-CCA encryption run-time, as the latter
only performs a Titanium-CPA encryption (but not a Titanium-CPA decryption).

• Ciphertext length compression: To reduce the length of our scheme ciphertext, we also apply a
ciphertext compression optimisation technique (used also in previous lattice-based schemes) by
chopping off cmp least-significant bits of the coefficients of c2. This reduces ciphertext length
at the cost of a larger decryption error probability. However, as the compression error term is
added to the already existing decryption error term, a certain amount of compression can be
achieved almost ‘for free’, i.e. with little effect on the overall decryption error term and hence
decryption error probability. Note that we always choose cmp in a manner that while we still
meet the probability of error goals, the number of remaining bits in c2 be a multiple of 8 (for
packing/unpacking purposes to one or two bytes).

• Pseudorandom Generation of Randomness: To save consumption of truly random bits that tend
to be difficult to generate, Titanium-CPA generates all its randomness pseudorandomly from
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256-bit seeds, using a fast pseudorandom bit generator based on SHA-3 in its KMAC256 PRF
mode of operation in CTR mode [NISb].

2.2.2 Titanium-CPA parameters and building blocks

The scheme is an adaptation of Regev’s cryptosystem from [Reg09] but adapted to give a security
reduction from the MP-LWE problem introduced in [RSSS17].

Parameters

Our scheme relies on the following parameters and probability distributions:

• Main Parameters:

– n - dim. of public key polynomials ai,
– k - deg. of enc. randomness polynomials ri,
– d - dim. of message polynomial enc(µ),
– t - no. of public key polynomials ai,
– q - ciphertext modulus,
– p - plaintext modulus,
– cmp - number of chopped ciphertext LS bits.

• Error Distribution (χe) Sampling Parameters:

– η - no. of trials parameter of BinDiff error distribution χe.

• Randomness Distribution (χr) Sampling Parameters:

– b1 - log (base 2) of first χr interval half size B1/2,
– b2 - log (base 2) second χr interval half size B2/2,
– Ndec1 - no. of coefficients in χr in B1 interval,
– Ndec - total no. of coefficients.

• Unif(Zq) Distribution Sampling Parameters:

– bytpcs - secret key gen. no. of bytes in PRG call,
– bytpca - public key gen. no. of bytes in PRG call,
– bytpm - U(Zq) rejection sampler no. of bytes per coordinate,
– ZqRej - U(Zq) rejection sampler multiple of q.

• NTT over Zq Parameters:

– d1, d2, d3 - NTT dimensions,
– ω1, ω2, ω3 - NTT roots of unity.

Symmetric-Key building block

We use an extendable-output function (XOF) and its instantiations as our main symmetric-key building
block. It is implemented using the KMAC256 Pseudorandom Function (PRF) specified in [NISb], in
CTR mode and we model it as a random oracle here.
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2.2.3 Titanium-CPA algorithms

Main algorithms

Algorithm 1 : Titanium-CPA.KeyGen

Input: seedkg = Randbytes(32) ∈ byte32.
Output: pk ∈ bytelenpk and sk ∈ bytelensk.
1: function KeyGen(seedkg = Randbytes(32))
2: Let prgst = PRG.Init(seedkg).
3: Let (prgst, seedsk) = PRG.Out(prgst, 32) ∈ StSpprg × byte32.
4: Let (prgst, seedpk) = PRG.Out(prgst, 32) ∈ StSpprg × byte32.
5: Let (prgst, ŝ) = Samps(seedsk) ∈ StSpprg × Zd3

q .
6: Let (ā1, . . . , āt) = Sampa(seedpk) ∈ (Z<nq [x])t.
7: Let (e1, . . . , et) = Sampe(prgst) ∈ (Z<d+k

q [x])t.
8: Let s = Trunc(n+ k + d− 1,VecToPol(d−1

3 · NTTd3(ω3, InvPermd3(ŝ)))) ∈ Z<n+d+k−1
q [x].

9: for i ≤ t do
10: Let ai = Rev(āi).
11: Let bi = ai �d+k s+ ei ∈ Z<d+k

q [x].
12: Let b̂i = Permd1(d1 · NTT−1

d1
(ω1,Zpad(d1,PolToVec(bi)))) ∈ Zd1

q .
13: end for
14: Let pk = Encodepk(seedpk ∈ byte32, (b̂1, . . . , b̂t)) ∈ bytelenpk.
15: Let sk = seedsk ∈ bytelensk.
16: end function

Algorithm 2 : Titanium-CPA.Encrypt

Input: pk ∈ bytelenpk, m ∈ byte32, and seedr = Randbytes(32) ∈ byte32.
Output: ct ∈ bytelenct.
1: function Encrypt(pk,m, seedr = Randbytes(32))
2: Let (seedpk, (b̂1, . . . , b̂t)) = Decodepk(pk) ∈ byte32 × (Zd1

q )t.
3: Let m = Decodem(m) ∈ Z<dq [x].
4: Let (ā1, . . . , āt) = Sampa(seedpk) ∈ (Z<nq [x])t.
5: Let (r1, . . . , rt) = Sampr(seedr) ∈ (Z<k+1

q [x])t.
6: Let c′1 =

∑t
i=1 ri · āi ∈ Z<n+k

q [x].
7: Let ĉ1 = Permd2(NTTd2(ω2,PolToVec(Zpad(d2, c

′
1)))) ∈ Zd2

q .
8: bi = Trunc(d+ k,PolToVec(d−1

1 · NTTd1(ω1, InvPermd1(b̂i)))) ∈ Z<d+k
q [x].

9: Let c′2 =
∑t
i=1 Rev(ri)�d bi + bq/pc ·m ∈ Z<dq [x].

10: Let c2 = Chop(cmp, c′2) ∈ Z<dq [x].
11: Let ct = Encodect(ĉ1, c2) ∈ bytelenct.
12: end function
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Algorithm 3 : Titanium-CPA.Decrypt

Input: sk ∈ bytelensk and ct ∈ bytelenct.
Output: m ∈ byte32.
1: function Decrypt(sk, ct)
2: Let seedsk = sk ∈ bytelensk.
3: Let (ŝ, prgst) = Samps(seedsk) ∈ Zd3

q × StSpprg.
4: Let s = Trunc(n+ k + d− 1,VecToPol(d−1

3 · NTTd3(ω3, InvPermd3(ŝ)))) ∈ Z<n+d+k−1
q [x].

5: Let (ĉ1, c2) = Decodect(ct) ∈ Zd2
q × Z<dq [x].

6: Let c′1 = Trunc(n+ k,VecToPol(NTT−1
d2

(ω2, InvPermd2(ĉ1)))) ∈ Z<n+k
q [x].

7: Let c′ = c2 − Rev(c′1)�
d
s ∈ Z<dq [x].

8: Let m′ = Round(bq/pc, c′) ∈ Z<dp [x].
9: Let m = Encodem(m′) ∈ byte32.

10: end function

Pseduorandom bit Generator (PRG)

This algorithm expands a 32-byte uniformly random seed into arbitrarily long pseudorandom bit
sequences. It is implemented using an XOF. As mentioned earlier, we will use KMAC256 as our XOF
and we model it as a random oracle.
PRG Initializer (PRG.Init(seed)): This function initializes the PRG seed and returns a PRG state prgst ∈
StSpprg, where StSpprg = byte32 × byte4 is the state space.

Algorithm 4 : PRG.Init

Input: seed ∈ byte32.
Output: prgst ∈ byte32 × byte4.
1: function PRG.Init(seed)
2: Let c = 0, represented as a 32-bit unsigned integer in little endian form.
3: Let prgst = (seed, c).
4: end function

PRG Output (PRG.Out(prgst, `)): Calls to PRG.Out(·, ·) returns ` pseudorandom bytes in byte` and an
updated state prgst.

Algorithm 5 : PRG.Out

Input: prgst ∈ StSpprg and ` ∈ N.
Output: prgst ∈ StSpprg and out ∈ byte`.
1: function PRG.Out(prgst, `)
2: Let K ∈ byte32 be the first 32 bytes of prgst.
3: Let c ∈ Z232 be the last 4 bytes of prgst denoted as a 32-bit unsigned integer in little endian

form.
4: Let L = 8 · ` ∈ Z.
5: Let S denote the empty string.
6: Let out = XOF(K, c, L, S) ∈ byte`.
7: Let c = c+ 1.
8: Let prgst = (K, c) ∈ StSpprg.
9: end function
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Probability distribution sampling functions

These functions are used to sample (using randomness derived with the pseudorandom generator PRG
from an input seed) from relevant probability distributions.
Secret Key Sampling Algorithm (Samps(seedsk ∈ byte32)): The secret key sampling algorithm samples
a vector ŝ ∈ Zd3

q with coordinates uniformly (pseudo) random in Zq.

Algorithm 6 : Samps

Input: seedsk ∈ byte32.
Output: (prgst′, ŝ) ∈ StSpprg × Zn+d+k−1

q .
1: function Samps(seedsk)
2: Let prgst = PRG.Init(seedsk) ∈ StSpprg.
3: Let (prgst′, ŝ) = SampUnifZq(prgst, d3, bytpcs).
4: end function

Public Key Sampling Algorithm (Sampa(seedpk ∈ byte32)): The public key sampling algorithm sam-
ples the polynomials (a1, . . . , at) ∈ (Znq )t with coordinates uniformly random in Zq.

Algorithm 7 : Sampa

Input: seedpk ∈ byte32.
Output: (a1, . . . , at) ∈ (Z<nq [x])t.
1: function Sampa(seedpk)
2: Let prgst = PRG.Init(seedpk) ∈ StSpprg.
3: for i ≤ t do
4: Let ai = VecToPol(ai) ∈ Z<nq [x].
5: Let (prgst′,ai) = SampUnifZq(n, bytpca) ∈ StSpprg × Znq .
6: end for
7: end function

Uniform Distribution on Zq Sampling Algorithm (SampUnifZq(prgst ∈ StSpprg, ` ∈ Z, bytpc ∈ Z)): Uses
rejection sampling to sample and return a vector of ` (pseudo)-uniformly random elements in Zq. Uses
PRG with state prgst for pseudorandomness generation. Generates bytpc bytes at initial call to PRG.
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Algorithm 8 : SampUnifZq

Input: prgst ∈ StSpprg, ` ∈ Z, and bytpc ∈ Z.
Output: (prgst, z) ∈ StSpprg × Z`q.
1: function SampUnifZq(prgst, `, bytpc))
2: Let (prgst′, r) = PRG.Out (prgst, bytpc).
3: Let i = 0 and j = 0.
4: while (j < `) do
5: if i = bytpc/bytpm then
6: Let (prgst′, r) = PRG.Out (prgst, bytpc).
7: Let prgst = prgst′.
8: Let i = 0.
9: end if

10: Let x ∈ Z denote the i-th consecutive block of bytpm bytes from r, interpreted as an
unsigned integer in little-endian form.

11: if (x < ZqRej) then
12: Let zj = x mod q and j = j + 1.
13: end if
14: Let i = i+ 1.
15: end while
16: Let z = (z0, . . . , z`−1) ∈ Z`q.
17: end function

Key Generation Error distribution χe Sampling Algorithm (Sampe(prgst)): The error sampling algo-
rithm samples the polynomials (e1, . . . , et) ∈ (Z<d+k

q [x])t with coefficients independently sampled
(pseudorandomly) from the binomial difference distribution with parameter η:

χe = (BinDiff(η))t·(d+k) . (2.6)

Algorithm 9 : Sampe

Input: prgst ∈ StSpprg.
Output: (e1, . . . , et) ∈ (Z<d+k

q [x])t.
1: function Sampe(prgst)
2: Let Zebytes be the minimal integer satisfies 8 · Zebytes ≥ 2η.
3: Let (prgst′, r) = PRG.Out (prgst, t · (d+ k + 1) · Zebytes).
4: for 1 ≤ τ ≤ t do
5: Let rr be the τ -th block of (d+ k + 1) · Zebytes bytes in r.
6: Let eτ = 0.
7: for 0 ≤ i ≤ d+ k − 1 do
8: Let (x1, x2) be the i-th consecutive block of Zebytes from rr, where x1, x2 be the high

and low 8 · Zebytes/2 bits, respectively.
9: Let s1 denote the number of bit 1s in the low η bits in x1.

10: Let s2 denote the number of bit 1s in the low η bits in x2.
11: Let eτ = eτ + (s2 − s1) · xi.
12: end for
13: end for
14: end function

Encryption Randomness distribution χr Sampling Algorithm (Sampr(seedr ∈ byte32)): The randomness
sampling algorithm samples the polynomials (r1, . . . , rt) ∈ (Zk+1

q )t with first Ndec1 coefficients (in
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the concatenated vector of Ndec = t · (k + 1) polynomial coefficients) independently sampled (pseu-
dorandomly) from the zero-excluded interval uniform distribution ZeIntU(B1) with even parameter
B1 = 2b1+1, and the remaining Ndec −Ndec1 coefficients of (r1, . . . , rt) independently sampled (pseu-
dorandomly) from the zero-excluded interval uniform distribution ZeIntU(B2) with even parameter
B2 = 2b2+1:

χr = ZeIntU(B1)Ndec1 × ZeIntU(B2)Ndec−Ndec1 (2.7)

Algorithm 10 : Sampr

Input: seedr ∈ byte32.
Output: (r1, . . . , rt) ∈ (Z<k+1

q [x])t.
1: function Sampr(seedr)
2: Let Zbbytes be the minimal integer satisfies 8 · Zbbytes ≥ max (b1, b2).
3: Let Zbt = bNdec1/ (k + 1)c and ZbRem = Ndec1 mod (k + 1).
4: Let prgst = PRG.Init (seedr) ∈ StSpprg.
5: Let (prgst′, r) = PRG.Out (prgst, Ndec · Zbbytes +Ndec/8).
6: for 1 ≤ τ ≤ t do
7: Let rr be the τ -th block of (k + 1) · Zbbytes bytes in r (counted from 1).
8: Let x be the i-th consecutive block of Zbbytes from rr, interpreted as an integer.1
9: if τ ≤ Zbt then

10: for i < k + 1 do
11: Let x′ =

(
x mod 2b1

)
+ 1 and rτ,i = x′.

12: end for
13: else if τ = Zbt + 1 then
14: for 0 ≤ i ≤ k do
15: if i ≤ ZbRem then
16: Let x′ =

(
x mod 2b1

)
+ 1.

17: Let rZbt+1,i = x′.
18: else ZbRem ≤ i ≤ k
19: Let x′ =

(
x mod 2b2

)
+ 1 and rZbt+1,i = x′.

20: end if
21: end for
22: else if Zbt + 2 ≤ τ ≤ t then
23: for i < k + 1 do
24: Let x′ =

(
x mod 2b2

)
+ 1 and rτ,i = x′.

25: end for
26: end if
27: Let r′ be the randomness in r starting from Zbbytes ·Ndec (counted from 0).
28: Let si be the i-th 8 sample blocks in rτ (counted from 1).
29: For each si, let x be the i-th byte in rr (counted from 1) and let xj be the j-th bit in x

counted from the least significant side.
30: if xj = 1 then,
31: the j-th sample in si becomes negative.
32: end if
33: end for
34: end function

Utility functions

Ciphertext Compression Algorithm (Chop(cmp, c)): The ciphertext compression algorithm Chop chops
off (clears) the cmp Least Significant (LS) bits of each coefficient of its polynomial argument c.
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Algorithm 11 : Chop

Input: cmp ∈ Z and a polynomial c with coefficients in Zq.
Output: c′ ∈ Z<dq [x].
1: function Chop(cmp, c)
2: Let c′ = c− (c mod 2cmp) ∈ Z<dq [x].
3: end function

Rounding Algorithm (Round(bq/pc, c)): The rounding algorithm Round divides each coefficient of its
argument polynomial by bq/pc and rounds the result to the nearest integer mod q, rounding up if
the division is an odd integer multiple of 1/2 (we assume that q is odd and the argument polynomial
coefficients are reduced mod q into the interval {−bq/2c, . . . , bq/2c}).

Algorithm 12 : Round

Input: z ∈ Z and a polynomial c with coefficients in Zq.
Output: m ∈ Z<dp [x].
1: function Round((z, c))
2: Let m = b cz e ∈ Z<dq [x].
3: end function

Truncation Algorithm (Trunc(d ∈ Z,v)): The truncation algorithm Trunc returns the first d coordi-
nates of its argument vector v (assumed to be of dimension ≥ d).

Algorithm 13 : Trunc

Input: d ∈ Z and a vector v.
Output: v′ ∈ Zdq .
1: function Trunc(d,v)
2: Let v′ = (v0, v1, . . . , vd−1).
3: end function

Zero padding Algorithm (Zpad(d ∈ Z,v)): The zero padding algorithm Zpad pads its argument vector
v (assumed to be of dimension ≤ d) with zeros to dimension d.

Algorithm 14 : Zpad

Input: d ∈ Z and a vector v.
Output: v′ ∈ Zdq .
1: function Zpad(d,v)
2: Let l denote the dimension of v.
3: Let v′ = (v0, v1, . . . , vl−1, 0, . . . , 0) ∈ Zdq .
4: end function

Permutation (Permdim(a)): For dim = δ1 · δ2, where δ2 is a power of 2, we define the following NTT
permutation. This function arises from the efficient NTT algorithms used in the optimised implemen-
tation, as described in the Chapter 3.
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Algorithm 15 : Perm

Input: a ∈ Z`q.
Output: a′ ∈ Z`q.
1: function Permdim(a)
2: for i < ` do
3: Let a′i = a(i mod δ2)·δ1+bi/δ2c.
4: end for
5: end function

Inverse Permutation (InvPermdim(a)): For dim = δ1 ·δ2, where δ2 is a power of 2, we define the following
NTT permutation. This function arises from the efficient NTT algorithms used in the optimised
implementation, as described in the Chapter 3.

Algorithm 16 : InvPerm

Input: a ∈ Z`q.
Output: a′ ∈ Z`q.
1: function InvPermdim(a)
2: for i < ` do
3: Let a′i = a(i mod δ1)·δ2+bi/δ1c
4: end for
5: end function

Encoding/Decoding Functions: These functions are used to pack a vector of elements in Zq to a vector
of bytes and unpack them back. The main functions are Encodem, Decodem, Encodepk, Decodepk,
Encodect, and Decodect.

Algorithm 17 : PackVec`

Input: b ∈ Z`q and `0.
Output: v ∈ byteN .
1: function PackVec`(b, `0)
2: Let bitst denote a bitstream initialized to empty.
3: for 0 ≤ i ≤ `− 1 do
4: Let ci ∈ bit`0 be the binary representation of bi ∈ Zq in little endian form.
5: Append ci to the bitstream bitst.
6: end for
7: Let L denote the bit length of bitst and let L′ = −L mod 8.
8: Let bitst′ = Zpad(L+ L′, bitst).
9: Let N = (L+ L′)/8.

10: for 1 ≤ i ≤ N do
11: Let x ∈ byte denote the i-th block of 8 bits from bitst′.
12: Let vi = x.
13: end for
14: Let v = (v1, . . . , vN ) ∈ byteN .
15: end function
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Algorithm 18 : PackVec

Input: b ∈ Z`q.
Output: v ∈ byteN .
1: function PackVec(b)
2: Let `0 = blog2(q)c+ 1.
3: Let PackVec`(b ∈ Z`q, `0) ∈ byteN .
4: end function

Algorithm 19 : PackVecc

Input: b ∈ Z`q.
Output: v ∈ byteN .
1: function PackVecc(b)
2: for i < ` do
3: b′i = bi/2cmp

4: end for
5: Let `0 = blog2(q)c+ 1− cmp.
6: Let PackVec`(b′) ∈ Z`q, `0).
7: end function

Algorithm 20 : UnPackVec`

Input: v ∈ byteN and `0.
Output: b ∈ Z`q.
1: function UnPackVec`(v, `0)
2: Let bitst denote a bitstream initialized to empty.
3: for 1 ≤ i ≤ N do
4: Let x ∈ bit8 be the bit representation of vi ∈ byte, the i-th byte of v.
5: Append x to bitst.
6: end for
7: Let ` = b8·N

`0
c.

8: for 0 ≤ i ≤ `− 1 do
9: Let bi ∈ Zq denote the i-th block of `0 bits in bitst interpreted as the binary representation

of an integer in little endian form.
10: end for
11: Let b = (b0, . . . , b`−1) ∈ Z`q.
12: end function

Algorithm 21 : UnPackVec

Input: v ∈ byteN .
Output: b ∈ Z`q.
1: function UnPackVec(v)
2: Let `0 = blog2(q)c+ 1.
3: Let UnPackVec`(v ∈ Z`q, `0)
4: end function
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Algorithm 22 : UnPackVecc

Input: v ∈ byteN .
Output: b ∈ Z`q.
1: function UnPackVecc(v)
2: Let `0 = blog2(q)c+ 1− cmp.
3: b′ = UnPackVec`(v ∈ Z`q, `0)
4: for i < ` do
5: Let bi = b′i · 2cmp

6: end for
7: end function

Algorithm 23 : Encodect

Input: (ĉ1, c2) ∈ Zd2
q × Z<dq [x].

Output: ct ∈ bytelenct.
1: function Encodect(ĉ1, c2)
2: Let ct = (PackVec(ĉ1),PackVecc(PolToVec(c2))) ∈ bytelenct.
3: end function

Algorithm 24 : Decodect

Input: ct ∈ bytelenct.
Output: (ĉ1, c2) ∈ Zd2

q × Z<dq [x].
1: function Decodect(ct)
2: Let ct1 and ct2 be the byte streams of the first and second parts in ct, respectively.
3: Let (ĉ1, c2) = (UnPackVec(ct1),UnPackVecc(ct2)) ∈ Zd2

q × Zdq .
4: Let c2 = VecToPol(c2) ∈ Z<dq [x].
5: end function

Algorithm 25 : Encodepk

Input: seedpk ∈ byte32 and (b̂1, . . . , b̂t) ∈ (Zd+k
q )t.

Output: pk ∈ bytelenpk.
1: function Encodepk(seedpk, (b̂1, . . . , b̂t))
2: Let b = (b̂1, . . . , b̂t) ∈ (Zd+k

q )t.
3: Let bp = PackVec(b) ∈ bytelenpk−32.
4: Let pk = (seedpk, bp).
5: end function

Algorithm 26 : Decodepk

Input: pk ∈ bytelenpk.
Output: (seedpk, (b1, . . . ,bt)) ∈ byte32 × (Zd+k

q )t.
1: function Decodepk(pk)
2: Let seedpk denote the first 32 bytes of pk.
3: Let bp denote the last lenpk− 32 bytes of pk.
4: Let (b1, . . . ,bt) = UnPackVec(bp) ∈ (Zd+k

q )t.
5: end function
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Algorithm 27 : Encodem

Input: m ∈ byte32.
Output: m ∈ Z<d2 [x].
1: function Encodem(m)
2: Let m = 0 ∈ Z<dq [x].
3: for 1 ≤ i ≤ 32 do
4: Let (x0, . . . , x7) ∈ bit8 denote the 8 bits of of the i-th byte of m.
5: Let m = m+

∑7
j=0 xj · x(i−1)·8+j .

6: end for
7: end function

Algorithm 28 : Decodem

Input: m ∈ Z<d[x].
Output: m = (m1, . . . ,m32) ∈ byte32.
1: function Decodem(m)
2: Let m = 0 ∈ Z<dq [x].
3: for 1 ≤ i ≤ 32 do
4: Let (x0, . . . , x7) ∈ Z8 denote the i-th block of 8 coefficients from m.
5: Let (x′0, . . . , x′7) = (x′0 mod 2, . . . , x′7 mod 2) ∈ bit8.
6: Let mi = (x′0, . . . , x′7) ∈ byte.
7: end for
8: end function

2.2.4 Titanium-CPA recommended parameter sets and claimed security

This Section contains the recommended parameter sets for our Titanium-CPA encryption scheme.
The claimed security property for Titanium-CPA is semantic security with respect to chosen plaintext
attack, known as IND-CPA security.

Recommended parameter sets

We specify total of 6 different parameters sets Toy64, Lite96, Std128, Med160, Hi192, Super256, in-
tended to correspond to the brute force key search security level of a symmetric key cipher with key
bit lengths 64, 96, 128, 160, 192, 256, respectively. This means that any attack that breaks the security
of our scheme must require computational resources comparable to or greater than those required
for key search on a block cipher with a 64, 96, 128, 160, 192, 256-bit key, respectively. In particular,
the parameter sets Std128, Hi192, and Super256 satisfy the security categories 1, 3, and 5 specified
by NIST in the call for proposals [NISa] corresponding to security of AES128, AES192, and AES256
against brute force key search attack.

The classical attack gate complexity level goal for the six parameter sets / symmetric-key search
security levels, is denoted by λC with λC ∈ {79, 111, 145, 175, 207, 272} corresponding to ≈ 215 gates
cost for each symmetric-key cipher evaluation, consistent with the specified AES128, AES192, and
AES256 key search complexity levels specified in [NISa].

Similarly, the quantum attack gate complexity level goal for the six parameter sets / symmetric-key
search security levels, is denoted by λQ with λQ ∈ {106, 140, 170, 202, 233, 298} − log2(MD), intended
to estimate the circuit gate complexity of quantum key search attacks under the assumption that the
quantum attack circuit depth is restricted to MD (denoted by MAXDEPTH in [NISa]). These goals
are consistent with AES128, AES192, and AES256 quantum key search complexity levels specified
in [NISa].
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In the following Tables, we give recommended core and error distribution and randomness, and
NTT parameters of the following 6 parameter sets: Toy64, Lite96, Std128, Med160, Hi192, Super256.

In Table 2.1, we specify the core parameters of our Titanium-CPA encryption schemes corresponding
to each parameter set. For further details on how we chose these concrete parameters, we refer the
reader to Chapters 7-6. In Table 2.2, we present the relevant NTT and fast middle-product NTT

Table 2.1: Determined Titanium-CPA core parameters.
Parameter Toy64 Lite96 Std128 Med160 Hi192 Super256

n 684 800 1024 1280 1536 2048
k 255 479 511 511 767 1023
d 256 256 256 256 256 256
t 10 8 9 9 7 7
q 240641 84481 86017 301057 737281 1198081
p 2 2 2 2 2 2

cmp 10 9 9 11 12 13

parameters for each parameter set. For definition of each parameter, please refer to Sections 2.1.2
and 3.2. In Table 2.3, we present the relevant error sampling parameters for each parameter set. For

Table 2.2: The NTT parameters for Titanium-CPA.
Parameter Toy64 Lite96 Std128 Med160 Hi192 Super256

d1 512 768 768 768 1024 1280
d2 1024 1280 1536 1792 2304 3072
d3 1280 1536 1792 2048 2560 3328
ω1 56644 32904 71157 146766 1691 1061167
ω2 238 68911 30077 168263 5454 186516
ω3 35772 5170 35007 174 332395 1169874

definition of each parameter and how we calculated each, please refer to Chapters 7-6.

Table 2.3: The error distribution χe sampling parameter for Titanium-CPA.
Parameter Toy64 Lite96 Std128 Med160 Hi192 Super256

η 4 4 4 4 4 4

In Table 2.4, we present the relevant randomness sampling parameters for each parameter set. For
definition of each parameter and how we calculated each, please refer to Chapters 7-6. In Table 2.5,
we present the relevant sampling parameters for uniform sampler over Zq for each parameter set. For
definition of each parameter and how we calculated each, please refer to Chapters 7-6.

2.3 Titanium-CCA: IND-CCA key encapsulation mechanism (KEM)
scheme

Our KEM Titanium-CCA applies a variant of the Fujisaki-Okamoto (FO) transform [FO99]
from [HHK17] to our IND-CPA encryption scheme Titanium-CPA to turn the latter into an IND-CCA
KEM.
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Table 2.4: The randomness χr sampling parameters for Titanium-CPA.
Parameter Toy64 Lite96 Std128 Med160 Hi192 Super256

b1 7 5 5 7 8 8
b2 8 6 6 8 9 9

Ndec 2560 3840 4608 4608 5376 7168
Ndec1 1488 1496 2568 3816 3384 3848

Table 2.5: The sampling parameters for uniform sampler over Zq for Titanium-CPA.
Parameter Toy64 Lite96 Std128 Med160 Hi192 Super256

bytpcs 4044 4764 5469 6579 8571 10158
bytpca 2205 2523 3153 4191 5280 6300
bytpm 3 3 3 3 3 3
ZqRej 16604229 16727238 16773315 16558135 16220182 16773134

2.3.1 Titanium-CCA Parameters and building blocks

Symmetric-Key Building Blocks

We use XOF as our symmetric-key building block. The pseudorandom bit generator PRG is exactly the
same as specified for Titanium-CPA. We also use hash functions for our Titanium-CCA. Cryptographic
Hash functions G and H are modeled as a ‘random oracle’ in the security analysis, and are instantiated
using the SHAKE256 mode of SHA-3 [NISc].

2.3.2 Titanium-CCA algorithms

Algorithm 29 : Titanium-CCA.KeyGen

Input: seedkg = Randbytes(32) ∈ byte32.
Output: sk ∈ byte32 and pk ∈ bytelenpk.
1: function KeyGen(seedkg)
2: Let prgst = PRG.Init(seedkg).
3: Let ((seedkg.cpa, rdec), prgst) = PRG.Out(prgst, 64) ∈ byte32 × byte32 × StSpprg.
4: Sample (sk.cpa, pk.cpa) = Titanium-CPA.KeyGen(seedkg.cpa).
5: Let sk = (seedkg, pk.cpa).
6: Let pk = pk.cpa.
7: end function

Algorithm 30 : Titanium-CCA.Encrypt

Input: pk ∈ bytelenpk and m = Randbytes(32) ∈ byte32.
Output: ct ∈ bytelenct and ss ∈ byte32.
1: function Encrypt(pk,m)
2: Let (seedenc.cpa, dcca) = G(m) ∈ byte32 × byte32.
3: Let ct.cpa = Titanium-CPA.Encrypt(pk,m, seedenc.cpa).
4: Let ct = (ct.cpa, dcca) ∈ bytelenct

5: Let ss = H(m, ct) ∈ byte32.
6: end function
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Algorithm 31 : Titanium-CCA.Decrypt

Input: sk ∈ byte32 and ct ∈ bytelenct.
Output: ss ∈ byte32.
1: function Decrypt(sk, ct)
2: Parse ct = (ct.cpa, dcca) ∈ bytelenct.cpa × byte32.
3: Parse sk = (seedkg, pk.cpa) ∈ byte32 × bytelenpk.
4: Let prgst = PRG.Init(seedkg).
5: Let (prgst, (rdec, seedkg.cpa)) = PRG.Out(prgst, 64) ∈ StSpprg × byte32 × byte32.
6: Let prgst = PRG.Init(seedkg.cpa).
7: Let (prgst, sk.cpa) = PRG.Out(prgst, 32) ∈ StSpprg × byte32.
8: Let m′ = Titanium-CPA.Decrypt(sk.cpa, ct.cpa) ∈ byte32.
9: Let (seedenc.cpa′, dcca′) = G(m′) ∈ byte32 × byte32.

10: Let ct.cpa′ = Titanium-CPA.Encrypt(pk.cpa,m′, seedenc.cpa′).
11: if (ct.cpa′, dcca′) = (ct.cpa, dcca) then
12: Let ss = H(m′, ct) ∈ byte32

13: else
14: Let ss = H(rdec, ct) ∈ byte32.
15: end if
16: end function

Cryptographic hash functions

In the sequel, we specify our hash functions G and H:

Algorithm 32 : G

Input: m ∈ byte32.
Output: (out1, out2) ∈ byte32 × byte32.
1: function G(m)
2: Let L = 512.
3: Let (out1, out2) = SHAKE256(m, L) ∈ byte32 × byte32.
4: end function

Algorithm 33 : H

Input: m ∈ byte32 and ct ∈ bytelenct.
Output: out2 ∈ byte32.
1: function H(m, ct)
2: Let L = 512.
3: Let out1 = SHAKE256(ct, L) ∈ byte64.
4: Let L = 256.
5: Let out2 = SHAKE256((m, out1), L) ∈ byte32.
6: end function

2.3.3 Titanium-CCA recommended parameter sets and claimed security

This Section contains the recommended parameter sets for our Titanium-CCA Key Encapsulation
Mechanism (KEM). The claimed security property for Titanium-CCA is semantic security with respect
to adaptive chosen ciphertext attack, known as IND-CCA security.
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Recommended parameter sets

We again specify total of 6 different parameters sets Toy64, Lite96, Std128, Med160, Hi192, Super256,
intended to correspond to the brute force key search security level of a symmetric key cipher with key
bit lengths 64, 96, 128, 160, 192, 256, respectively. This means that any attack that breaks the security
of our scheme must require computational resources comparable to or greater than those required
for key search on a block cipher with a 64, 96, 128, 160, 192, 256-bit key, respectively. In particular,
the parameter sets Std128, Hi192, and Super256 satisfy the security categories 1, 3, and 5 specified
by NIST in the call for proposals [NISa] corresponding to security of AES128, AES192, and AES256
against brute force key search attack.

The classical and quantum attack gate complexity level goals for the six parameter sets / symmetric-
key search security levels are taken to be exactly the same as the ones for Titanium-CPA scheme. In
the following Tables, we give recommended core and error distribution and randomness, and NTT
parameters of the following 6 parameter sets: Toy64, Lite96, Std128, Med160, Hi192, Super256. In
Table 2.6, we specify the core parameters of our Titanium-CCA schemes corresponding to each level.
For further details on how we chose these concrete parameters, we refer the reader to Chapters 7-6.
In Table 2.7, we present the relevant NTT and fast middle-product NTT parameters for each level.

Table 2.6: Determined Titanium-CCA core parameters.
Parameter Toy64 Lite96 Std128 Med160 Hi192 Super256

n 684 800 1024 1280 1536 2048
k 255 479 511 511 767 1023
d 256 256 256 256 256 256
t 10 9 10 10 8 8
q 471041 115201 118273 430081 783361 1198081
p 2 2 2 2 2 2

cmp 11 9 9 11 12 13

For definition of each parameter, please refer to Sections 2.1.2 and 3.2. In Table 2.8, we present the

Table 2.7: The NTT parameters for Titanium-CCA.
Parameter Toy64 Lite96 Std128 Med160 Hi192 Super256

d1 512 768 768 768 1024 1280
d2 1024 1280 1536 1792 2304 3072
d3 1280 1536 1792 2048 2560 3328
ω1 69169 13192 4136 15791 874 1061167
ω2 263 4959 75894 235435 596706 186516
ω3 327393 5516 9282 92 13502 1169874

relevant error sampling parameters for each level. For definition of each parameter and how we calcu-
lated each, please refer to Chapters 7-6. In Table 2.9, we present the relevant randomness sampling

Table 2.8: The error distribution χe sampling parameter for Titanium-CCA.
Parameter Toy64 Lite96 Std128 Med160 Hi192 Super256

η 4 4 4 4 4 4

parameters for each level. For definition of each parameter and how we calculated each, please refer
to Chapters 7-6. In Table 2.10, we present the relevant sampling parameters for uniform sampler
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Table 2.9: The randomness χr sampling parameters for Titanium-CCA.
Parameter Toy64 Lite96 Std128 Med160 Hi192 Super256

b1 7 5 4 6 7 7
b2 8 6 5 7 8 8

Ndec 2560 4320 5120 5120 6144 8192
Ndec1 328 4168 208 2248 4704 5904

over Zq for each level. For definition of each parameter and how we calculated each, please refer to
Chapters 7-6.

Table 2.10: The sampling parameters for uniform sampler over Zq for Titanium-CCA.
Parameter Toy64 Lite96 Std128 Med160 Hi192 Super256

bytpcs 4110 4788 5634 6255 8334 10158
bytpca 2250 2541 3276 3942 5115 6300
bytpm 3 3 3 3 3 3
ZqRej 16486435 16704145 16676493 16773159 16450581 16773134

Target and minimum claimed security and probability of error

The target quantum security λQ and classical security λC along with the requested probability of
decryption error pe for each level are specified in Table 2.11 and Tables 2.12-2.13, respectively. For
different MAXDEPTH (MD), we have different goals and minimum achieved security levels. Note
that the pe goal for Titanium-CPA schemes are set to 2−30. In Table 2.13, we only show the goal and
achieved pe of Titanium-CCA schemes with MAXDEPTH, MD = 40. For further information on how
these parameters are calculated, please refer to Chapters 7 and 6.

Some of the above achieved (claimed) security levels in Table 2.11 are matched with security
categories asked by NIST [NISa]. We summarize these matched levels in Table 2.14.

2.4 Design Rationale Summary
In this Section, we summarize our main design rationale aspects. Detailed reasoning for our choice of
parameters is explained in other sections of this document (in particular Chapters 3, 5, and 6). Here,
we mostly focus on some of the high level aspects not discussed elsewhere.

• Choice of MP-LWE as the underlying hard problem. As explained in the Introduction, our
choice of MP-LWE as the basis for the security of Titanium is motivated by a balance between
the goal of hedging against future advances in cryptanalysis exploiting algebraic properties of
specific polynomial rings on the one hand, and the goal of achieving good performance on the
other. The security of Titanium remains valid as long as at least one of exponentially many
polynomial rings resists attacks against the PLWE problem in the ring. Yet Titanium still enjoys
significant performance advantages compared to schemes based on unstructured lattices.3

• Parameter Selection Approach. Our approach to selecting parameter sets (detailed in Chap-
ter 6), is based on provable lower bound estimates for the complexity of (classical) attacks on
our schemes, based on the presumed hardness of the PLWEf problem over a large family of
polynomials f ∈ F1. We chose this approach in preference to deriving parameters based on

3The name Titanium comes from the well known hardness/strength properties of Titanium metal, making it among
the hardest metals used for jewelry rings, while still being practical.
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Table 2.11: The goal and claimed security params. for Titanium-CCA and Titanium-CPA.
Scheme Param. MD = 40 MD = 64 MD = 96

Goal Min. Cl. Goal Min. Cl. Goal Min. Cl.

Titanium-CCA-Toy64 λQ 66 73 53 61 53 61
Titanium-CCA-Toy64 λC 79 82 79 82 79 82
Titanium-CPA-Toy64 λQ 66 83 53 83 53 83
Titanium-CPA-Toy64 λC 79 90 79 90 79 90

Titanium-CCA-Lite96 λQ 98 110 74 110 69 110
Titanium-CCA-Lite96 λC 111 126 111 120 111 120
Titanium-CPA-Lite96 λQ 98 115 74 115 69 115
Titanium-CPA-Lite96 λC 111 126 111 126 111 126

Titanium-CCA-Std128 λQ 130 134 106 126 85 105
Titanium-CCA-Std128 λC 143 146 143 146 143 146
Titanium-CPA-Std128 λQ 130 155 106 159 85 159
Titanium-CPA-Std128 λC 143 164 143 164 143 164

Titanium-CCA-Med160 λQ 162 176 138 164 106 132
Titanium-CCA-Med160 λC 175 192 175 192 175 192
Titanium-CPA-Med160 λQ 162 183 138 187 106 186
Titanium-CPA-Med160 λC 175 199 175 200 175 200

Titanium-CCA-Hi192 λQ 193 207 169 183 137 151
Titanium-CCA-Hi192 λC 207 230 207 230 207 230
Titanium-CPA-Hi192 λQ 193 214 169 217 137 187
Titanium-CPA-Hi192 λC 207 234 207 237 207 237

Titanium-CCA-Super2562 λQ 258 240 234 216 202 184
Titanium-CCA-Super256 λC 272 266 272 266 272 266
Titanium-CPA-Super256 λQ 258 243 234 219 202 187
Titanium-CPA-Super256 λC 272 269 272 269 272 269

best known attacks on MP-LWE, since the MP-LWE has only been recently introduced, and its
concrete hardness is not yet well understood, as opposed to PLWEf which has been known since
at least 2009 [SSTX09].

• Use of NTT in reference specification. The reference specification of our scheme per-
forms a pre-NTT computation in key generation and encryption to reduce the computation
cost. Although this means that efficient implementations of our scheme need to implement the
middle-product operation in our system using an NTT-based algorithm, we believe the efficiency
improvements gained are a worthwhile reason to adopt this variant of the scheme.

• Choice of Uniform distribution for secret key. As opposed to most other LWE and PLWE-
based schemes, we chose the distribution of our secret key coordinates as uniform over Zq, rather
than having ‘small’ coefficients. Although it is possible to prove the hardness of the MP-LWE
problem with ‘small’ secret coordinates (from the hardness of PLWEf with ‘small’ secret coor-
dinates, which is known [ACPS09] to be equivalent to PLWEf with uniform secret), this choice
would not be compatible with our optimisation of sampling the secret key directly in the NTT
domain to save an NTT operation. Moreover, using a secret key with small coordinates would
not save on secret key length, since we generate the secret key using a pseudorandom gener-
ator from a short seed. The main advantage of using a secret key with small coordinates in
previous PLWE-based schemes is the ability to use the ‘ElGamal’ variant of Regev’s encryption
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Table 2.12: The target and achieved probability of error pe of Titanium-CPA schemes.
Parameter Goal Toy64 Lite96 Std128 Med160 Hi192 Super256

− log2(pe) 30 30 31 33 41 37 72

Table 2.13: The target and achieved probability of error pe of Titanium-CCA schemes.
Parameter Toy64 Lite96 Std128 Med160 Hi192 Super256

Goal Ach. Goal Ach. Goal Ach. Goal Ach. Goal Ach. Goal Ach.

− log2(pe) 79 85 111 158 143 161 175 199 206 218 271 354

scheme [LPR10], where the security of the encryption operation is analysed using a computa-
tional indistinguishability argument, rather than a statistical Leftover Hash Lemma argument
as used in Regev’s original scheme [Reg09] and (with appropriate modifications) in our scheme.
The use of a computational argument has efficiency benefits, but it is an open problem to con-
struct such a system based on MP-LWE. Overall, then, our Titanium schemes benefit from our
choice of uniform distribution for the key that is easier to generate and has efficiency benefits
due to the pre-NTT optimisation.

• Choice of a Binomial Difference distribution for the errors. In common with previous
PLWEf based schemes such as New Hope [ADPS16] and Kyber [BDK+17], our scheme uses
a binomial difference error distribution, as it is significantly easier to sample efficiently and
in constant time, in comparison with other choices such as a discrete Gaussian distribution.
Moreover, the exact shape of the distribution does not seem to make a significant difference
to the security of the scheme (and provable arguments to show this security equivalence under
appropriate conditions can be given using the Renyi divergence technique [BLL+15]).

• Choice of a Uniform distribution for encryption randomness. Our choice of the shape of
the interval-uniform distribution for the encryption randomizers was motivated by the maximal
min-entropy of such a distribution for a given variance, minimizing the size of the modulus
needed in our scheme for a given decryption error probability, while satisfying the leftover hash
condition needed in our security proof. The use of two interval sizes being powers-of-2 was chosen
for efficient implementation, while still allowing us a ‘fine control’ (via the choice of the fraction
of coefficients ρ = Ndec1/Ndec allocated to each interval size) to tweak the ‘effective’ entropy and
‘average variance’ of the randomness coefficients to minimize the size of our parameters.

• No reconciliation or error correction techniques. We considered the use of ‘reconcili-
ation’ [Pei14] and error-correction techniques, but those do not appear to lead to significant
savings in our scheme due to its statistical leftover hash security argument. Moreover, due to
the security implications of decryption errors for our Titanium-CCA scheme, we decided to avoid
error correction techniques that require heuristic analysis, to ensure that we can compute a
provable upper bound on the decryption error probability pe for the IND-CCA security proof for
Titanium-CCA.

• Choice of decryption error probability pe for Titanium-CPA and Titanium-CCA. For
Titanium-CPA, since decryption error probability has no effect on IND-CPA security but has an
efficiency impact, we decided to fix a moderate decryption error probability goal pe = 2−30.
We think this level of decryption failure rate (about 1 in a billion decryption failures) should
be acceptable in practical applications (such as key exchange protocols) via standard proto-
col restart/retransmission techniques. The rare occurrence of such failures would likely pose
a negligible performance overhead, yet we achieve significant performance improvements in
Titanium-CPA over Titanium-CCA due to the higher value of pe in the former. In the case of
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Table 2.14: Determined Titanium-CCA core parameters.
NIST category Claimed levels

AES128 Std128, Med160
AES192 Hi192
AES256 Super256

Titanium-CCA, we set the decryption error probability goal to a cryptographically negligible
value, to prevent decryption-failure chosen-ciphertext attacks against the IND-CCA security of
Titanium-CCA, and we also provide proven upper bounds on pe in our correctness analysis, that
are also used as part of our Titanium-CCA IND-CCA security proofs.

2.5 Advantages and Limitations
We summarize several advantages of our Titanium-CPA and Titanium-CCA schemes:

• Our schemes’ security (in the classical random oracle model) is provably and tightly based on
the hardness of the hardest Polynomial-LWE problem (PLWEf ), a variant of the Learning with
Errors (LWE) problem over a polynomial ring Z[x]/(f(x)), among all f in a large family of ring
polynomials. In particular, unlike previous schemes based on PLWEf with specific choices for f
(that may turn out to be weak), the security guarantees of our scheme remain valid even if the
PLWEf problem is found to be weak for some specific choices of f in the family (as long as some
f is still hard). Our schemes therefore enjoy a hedge against future advances in cryptanalysis.

• Our scheme implementations are significantly more efficient than implementations of existing
schemes based on unstructured matrices, such as [BCD+16].

• Our schemes (like others based on the PLWE and related problems) are amenable to fast im-
plementation using the Number Theoretic Transform (NTT), a standard algorithm already im-
plemented in many existing software libraries, such NTL [Sho]. Such libraries could be easily
adapted ‘off the shelf’ to build fast implementations of our schemes.

• Our schemes should be suitable for ‘plug-in’ deployment in existing protocols using public key
encryption, such as TLS, although we have not tested our schemes in such settings.

We summarize limitations of our Titanium-CPA and Titanium-CCA schemes:

• Our schemes’ security analysis currently assumes the classical random oracle model (although
non-tight security proofs in the quantum random oracle model are applicable for its Fujisaki-
Okamoto transform [HHK17]).



Chapter 3

Implementation and Performance

This Chapter contains a summary of the time and memory performance of our Titanium-CPA and
Titanium-CCA schemes, discusses our efficient optimised implementation techniques, and a summary
of the Known Answer Test (KAT) files provided in files as part of this submission package.

3.1 Performance Summary
Our benchmark script will generate 1000 random seeds and random messages as the input, then the
script will run the whole process of the Keygen, the Encryption/Encapsulation, and the Decryp-
tion/Decapsulation for these 1000 inputs, and record the number of CPU cycles consumed by these
3 steps, respectively. Then we take the median among these recorded number of CPU cycles as our
benchmark result for the corresponding step.

Our benchmark platform has an Intel i7-7700K CPU running the Linux operating system. The
CPU frequency is fixed at 4.2 GHz with the Hyperthreading and the Turbo Boost disabled dur-
ing the benchmark. The program is compiled with GCC 7.2.0, with the compiler optimisation
-O3 -march=native enabled, which will select the O3 optimisation level and let the GCC itself choose
the other optimisation options based on the architecture of the benchmark platform.

The Table 3.1 shows the benchmark results and the size of the key and the ciphertext in byte for
each parameter set we specified for Titanium-CPA scheme. Let `0 denote blog2 qc+ 1. The public-key
and ciphertext sizes (in bytes) of the Titanium-CPA schemes can also be calculated using the following
formulas:

|pkTitanium-CPA| = 32 +
⌈d1 · t · `0

8

⌉
,

and
|ctTitanium-CPA| =

⌈d2 · `0
8

⌉
+
⌈
d · (`0 − cmp)

8

⌉
.

Since t, q (and consequently `0), and cmp are different in Titanium-CCA and Titanium-CPA for a given
parameter set, we obtain different sizes in Tables 3.2 and 3.1.

The Table 3.2 shows the benchmark results and the size of the key and the ciphertext in byte for
each parameter set we specified for Titanium-CCA scheme. The public-key and ciphertext sizes (in
bytes) of the Titanium-CCA schemes can also be calculated using the following formulas:

|pkTitanium-CCA| = 32 +
⌈d1 · t · `0

8

⌉
,

and
|ctTitanium-CCA| = 32 +

⌈d2 · `0
8

⌉
+
⌈
d · (`0 − cmp)

8

⌉
.

We further denote the secret part of the secret key, seedkg by sk∗.

32
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Table 3.1: Benchmark results of the Titanium-CPA.
Security Level Number of cycles Size (byte)

Toy64 KeyGen: 1264647 pk: 11552
Encrypt: 900120 sk: 32
Decrypt: 152705 ct: 2560

Lite96 KeyGen: 1269479 pk: 13088
Encrypt: 1073167 sk: 32
Decrypt: 183832 ct: 2976

Std128 KeyGen: 1619550 pk: 14720
Encrypt: 1262047 sk: 32
Decrypt: 217612 ct: 3520

Med160 KeyGen: 1877257 pk: 16448
Encrypt: 1646486 sk: 32
Decrypt: 253458 ct: 4512

Hi192 KeyGen: 1894719 pk: 17952
Encrypt: 1763250 sk: 32
Decrypt: 323977 ct: 6016

Super256 KeyGen: 2486436 pk: 23552
Encrypt: 2450834 sk: 32
Decrypt: 439522 ct: 8320

We observe that the number of cycles and sizes of Super256 had a big jump compared to Hi192
in both Titanium-CPA and Titanium-CCA, in Tables 3.1 and 3.2, respectively, since the gap between
all the other levels is only 32 (for example the quantum security goals for Lite96 and Std128 are 98
and 130, respectively, which are 32 apart), while the jump between the (quantum or classical) security
levels of Hi192 and Super256 is 64.

3.2 Fast Middle Product Algorithm and Optimisations
For a polynomial a, to simplify the description of the algorithm, we use the following notations. For
a vector a of dimension dim, we let

NTT′dim
(
ω′,a

)
k =

dim−1∑
i=0

ai · (ω′)i·k,

NTT′−1
dim

(
ω′,a

)
k = dim−1 ·

dim−1∑
i=0

ai · (ω′)i·k,

where the ω′dim can be either the dim-th root of unity ωdim or its inverse ω−1
dim. The following Lemma

represents how the standard NTT-based algorithm can be employed to compute a polynomial multi-
plication.

Lemma 3.2.1. For polynomial a ∈ Z<d1
q [x], b ∈ Z<d2

q [x] and integer dim ≥ d1 + d2 − 1, the (zero-
padded) coefficient vector of the polynomial product a · b ∈ Z<d1+d2−1

q [x] can be computed as:

NTT′−1
dim

(
ω−1

dim,NTT′dim (ωdim,Zpad (dim,PolToVec (a))) ◦ NTT′dim (ωdim,Zpad (dim,PolToVec (b)))
)
,

where ◦ is the point-wise multiplication of two vectors.
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Table 3.2: Benchmark results of the Titanium-CCA.
Security Level Number of cycles Size (byte)

Toy64 KeyGen: 1269090 pk: 12192
Encrypt: 947906 sk: 12224
Decrypt: 1107424 ct: 2720

sk∗: 32
Lite96 KeyGen: 1426439 pk: 14720

Encrypt: 1234901 sk: 14752
Decrypt: 1425403 ct: 3008

sk∗: 32
Std128 KeyGen: 1806119 pk: 16352

Encrypt: 1446751 sk: 16384
Decrypt: 1671578 ct: 3552

sk∗: 32
Med160 KeyGen: 2035675 pk: 18272

Encrypt: 1855415 sk: 18304
Decrypt: 2109199 ct: 4544

sk∗: 32
Hi192 KeyGen: 2122547 pk: 20512

Encrypt: 1986198 sk: 20544
Decrypt: 2310815 ct: 6048

sk∗: 32
Super256 KeyGen: 2829289 pk: 26912

Encrypt: 2799390 sk: 26944
Decrypt: 3247542 ct: 8352

sk∗: 32

3.2.1 Middle product NTT
To compute a�db, for a ∈ Z<nq [x] and b ∈ Z<n+d−1

q [x], a naive approach keeps the middle d coefficients
of a · b ∈ Z<2n+d−2

q [x], and the computation of a · b can be implemented by the NTT′dim such that
dim ≥ 2n+ d− 2, according to Lemma 3.2.1.

Algorithm 34 Naive MP-NTT-N
Input: a ∈ Z<nq [x], b ∈ Z<n+d−1

q [x].
Output: c′ = PolToVec(a�d b) ∈ Zdq .
1: function MP-NTT-N(a, b)
2: Find an NTT dimension dim that dim ≥ 2n+ d− 2.
3: Let ωdim denote the dim-th root of unity on Zq.
4: Compute a′ = NTT′dim (ωdim,Zpad (dim,PolToVec (a))) ∈ Zdim

q .
5: Compute b′ = NTT′dim (ωdim,Zpad (dim,PolToVec (b))) ∈ Zdim

q .
6: Compute c = NTT′−1

dim

(
ω−1

dim,a′ ◦ b′
)
∈ Zdim

q .
7: Let c′ = (cn−1, . . . , cn+d−2) ∈ Zdq .
8: end function

The naive MP-NTT-N algorithm requires the computation of three NTTs of dimension dim, which
is at least 2n+ d− 2. However, the authors of [HQZ04] proposed a fast MP algorithm for the special
case when d = n (i.e. computing a �n b, for a ∈ Z<nq [x] and b ∈ Z<2n−1

q [x]), based on the 2n-
dimensional Fast Fourier Transform (FFT). In this case, this algorithm reduces the lower bound of
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the NTT dimension from 3n− 2 to 2n, which can save about 1/3 of the NTT computation time.
However, the constraint that the number of the coefficients in the MP result is equal to the

dimension of a for a � b becomes too restrictive for both the parameter choice and the efficient
implementation of the Titanium. Here, we observe a generalization of algorithm given in [HQZ04] by
removing this limitation. For some arbitrary integers d1, d2, d, and k such that d1 + d2 − 1 = d+ 2k,
the generalized MP-NTT in Algorithm 35 computes a�d b, for a ∈ Z<d1

q [x] and b ∈ Z<d2
q [x] using the

NTT′.

Algorithm 35 : Generalized MP− NTT

Input: a ∈ Z<d1
q [x] and b ∈ Z<d2

q [x].
Output: c′ = PolToVec(a�d b) ∈ Zdq .
1: function MP− NTT(a, b)
2: Find such a NTT dimension dim that dim ≥ d2.
3: Let ωdim denote the dim-th root of unity.
4: Compute a′ = NTT′dim (ωdim,Zpad (dim,PolToVec (Rev (a)))) ∈ Zdim

q .
5: Compute b′ = NTT′dim

(
ω−1

dim,Zpad (dim,PolToVec (b))
)
∈ Zdim

q .
6: Compute c = NTT′−1

dim (ωdim,a′ ◦ b′) ∈ Zdim
q .

7: Let c′ = (c0, . . . , cd−1) ∈ Zdq .
8: end function

Theorem 3.2.1 (Adopted from Theorem 11 of [HQZ04]). Let Mp,q,n : R<p [x] × R<q [x] → R<n [x]
and Πn,p,q : R<n [x]×R<p [x]→ R<q [x] be the bilinear forms defined by:

Mp,q,n (y, z) =

 ∑
j+k=i+p−1

yjzk


0≤i<n

,

Πn,p,q (x, y) =

 ∑
i+j=k

xiyj


0≤k<q

.

Then, for any (X,Y, Z) ∈ R<n [x]×R<p [x]×R<q [x], we have:

(X|Mp,q,n(Y, Z)) = (Πn,p,q(X,Rev (Y ))|Z) ,

where | denotes the canonical inner product of two vectors of the same length. For q = n+p−1, Πn,p,q

is X · Y and Mp,q,n is Y �n Z.

Lemma 3.2.2. Let a ∈ Z<d1
q [x], b ∈ Z<d2

q [x], and c = MP-NTT (a, b). Then

c = PolToVec(a�d b) ∈ Zdq .

Proof. For d1, d2, and d be integers such that d2 = d1+d−1, c ∈ Z<dq [x], a ∈ Z<d1
q [x], and b ∈ Z<d2

q [x],
we write Πd,d1,d2 (c,Rev (a)) as:

Πd,d1,d2 (c,Rev (a)) = dim−1 ·
dim−1∑
m=0

(
ωm·idim|c

) (
ωm·jdim|Rev (a)

)
ω−m·kdim mod q 0 ≤ i, j, k < dim,

with the NTT dimension dim ≥ d2. Then, by Theorem 3.2.1, we have:

(c|Md1,d2,d(a, b)) = (Πd,d1,d2(c,Rev (a))|b)

= dim−1 ·
dim−1∑
m=0

(
ωm·idim|c

) (
ωm·jdim|Rev (a)

) (
ω−m·kdim |b

)
mod q.
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Let a′ = PolToVec (Rev (a)), b = PolToVec (b), c = PolToVec (a�d b). We have:

c = Md1,d2,d (a, b) = dim−1 ·
dim−1∑
m=0

(
ωm·jdim|Rev (a)

) (
ω−m·kdim |b

)
ωm·idim mod q

= dim−1 ·
dim−1∑
m=0

(
ωm·idim

) (
NTT′dim

(
ωdim,a′

)
m

) (
NTT′dim

(
ω−1

dim,b
)
m

)
= NTT′−1

dim

(
ωdim,NTT′dim

(
ωdim,a′

)
◦ NTT′dim

(
ω−1

dim,b
))

= MP-NTT (a, b) ,

for 0 ≤ i, j, k < dim and NTT′dim (ωdim,a)m is the m-th coordinate of the NTT result.

3.2.2 Partial MP-NTT
Let dim ≥ d2 > d1 in computation of MP-NTT (a, b), with a ∈ Z<d1

q [x] and b ∈ Z<d2
q [x]. There

are many padded zeros in Zpad (dim,PolToVec (a)) and Zpad (dim,PolToVec (b)). The naive imple-
mentation of NTT′ is inefficient for such a polynomial with lots of zero coordinates, due to the
unnecessary additions/subtractions and multiplications with zero. However, for the NTT dimen-
sion dim = dim1 ·dim2 and some integer ma,mb ≤ dim1, if we assume that ai = 0, bj = 0 for all
i ≥ ma · dim2, j ≥ mb · dim2, we can compute the partial NTT which only takes the first m · dim2
coordinates as the input.

The partial NTT is similar to the FFT decomposition algorithm in [SB93]. Let us denote ωdim1 =
ωdim2

dim and ωdim2 = ωdim1
dim . For some integer m ≤ dim1, the NTT′dim (ωdim,a) algorithm, which only

takes the first m · dim2 coordinates as the input can be written as:

NTT′dim (ωdim,a)k1+dim1 ·k2
=

dim2−1∑
n2=0

ωn2·k1
dim ·

m−1∑
n1=0

adim2 ·n1+n2 · ω
n1·k1
dim1

 · ωn2·k2
dim2

,

for 0 ≤ k1 < dim1 and 0 ≤ k2 < dim2. Similarly, the MP-NTT only requires the first d coordinates
output of NTT′−1, and the naive implementation of NTT′−1 will waste lots of CPU time in computing
the unnecessary coordinates. If we assume that we only needs the first m · dim2, for m ≤ dim1
coordinates output, we can also re-write the NTT′−1 decomposition similar to [SB93]:

NTT′−1
dim (ωdim,a)k2+dim2 ·k1

= dim−1 ·


dim1−1∑
n1=0

ωn1·k2
dim ·

dim2−1∑
n2=0

adim1 ·n2+n1 · ω
n2·k2
dim2

 · ωn1·k1
dim1

 ,
for 0 ≤ k1 < m and 0 ≤ k2 < dim2.

These decompositions can be viewed as the combination of two sub-dimension NTTs on dimen-
sion dim1 and dim2, respectively. For the efficient implementation of the Titanium, we select our
NTT dimension d1, d2, d3 such that dim1 is some small arbitrary integer (less than 13 in our defined
parameter sets), and dim2 is a multiple of 256. Therefore, we achieve an efficient implementation
by combining an efficient radix-2 NTT algorithm for the large sub-dimension dim2, which has the
time complexity O (dim2 log dim2) operations in Zq, and a classical NTT algorithm with complexity
O
(
(dim1)2) operations in Zq for the small sub-dimension dim1. The radix-2 NTT subroutine can

in fact be any O (n logn) NTT algorithm with both the input and the output in the natural order.
However, for the efficiency of the AVX2 parallelized implementation discussed in Chapter 3.4.4, we
choose the Gentleman-Sande NTT implementation used by [ADPS16].

We pre-compute the tables to store the powers of ωdim, ωdim1 , and ωdim2 for each NTT dimension
respectively. We denote the matrix Ω ∈ Zdim1× dim1

q with:

Ωi,j = ω
(i−1)(j−1)
dim1

1 ≤ i, j ≤ dim1 .
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To implement the NTT of sub-dimension dim1, for each n2 < dim2, let au,n2 ∈ Zuq be the decimation(
an2 , adim2 +n2 , . . . , a(u−1)·dim2 +n2

)
of a. Let NTTm→dim1 (a, n2) denote the NTT which takes am,n2 ∈ Zmq as the input and generates dim1
coordinates output. Similarly, let NTTdim1→m (a, n2) denote the NTT which takes adim1,n2 ∈ Zdim1

q as
the input and generates the first m coordinates output. We define Ωu×v ∈ Zu×vq as the submatrix of
Ω which takes the first u rows and v columns. Then, we have:

NTTm→dim1 (a, n2) = Ωdim1×m · am,n2 ,

NTTdim1→m (a, n2) = Ωm×dim1 · adim1,n2 .

The pseudocode of our partial NTT implementations are as follows. Note that both the output
of NTT-Pdim and the input of NTT-P−1

dim are permuted by Permdim, the permutation defined in the
previous Chapter, and NTT-P−1

dim is the step-by-step reversal of NTT-Pdim.

Algorithm 36 : Partial NTT Algorithm: NTT-Pdim

Input: m, ω′dim, and a satisfying dim = dim1 · dim2 and ai = 0 for all i ≥ m · dim2.
Output: Partial Permdim

(
NTT′dim (ω′dim,a)

)
∈ Zdim

q transformation.
1: function NTT-Pdim(m,ω′,a)
2: for n2 = 0, . . . ,dim2−1 do
3: Let a′1 be the computation result of classical NTTm→dim1 (a, n2).
4: Set

(
an2 , adim2 +n2 , . . . , a(dim1−1)·dim2 +n2

)
= a′1.

5: end for
6: for n1 = 0, . . . ,dim1−1 do
7: for n2 = 0, . . . ,dim2−1 do
8: Set adim2 ·n1+n2 = adim2 ·n1+n2 · ω′

n1n2
dim .

9: end for
10: end for
11: for n1 = 0, . . . ,dim1−1 do
12: Let a2 be the decimation

(
an1·dim2 , an1·dim2 +1 . . . , a(n1+1)·dim2−1

)
of a.

13: Let a′2 be the computation result of radix-2 NTTdim2

(
ω′dim2

,a2
)
.

14: Set
(
an1·dim2 , an1·dim2 +1 . . . , a(n1+1)·dim2−1

)
= a′2.

15: end for
16: end function
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Algorithm 37 : Partial NTT inverse algorithm: NTT-P−1
dim

Input: m, ω′dim and a. Assume dim = dim1 · dim2 and a is permutated by Permdim.
Output: the first m · dim2 coordinates of the NTT′−1

dim (ω′dim, InvPermdim (a)).
1: function NTT-P−1

dim(m,ω′,a)
2: for n1 = 0, . . . ,dim1−1 do
3: Let a2 be the decimation

(
an1·dim2 , an1·dim2 +1 . . . , a(n1+1)·dim2−1

)
of a.

4: Let a′2 be the computation result of radix-2 NTTdim2

(
ω′dim2

,a2
)
.

5: Set
(
an1·dim2 , an1·dim2 +1 . . . , a(n1+1)·dim2−1

)
= a′2.

6: end for
7: for n1 = 0, . . . ,dim1−1 do
8: for n2 = 0, . . . ,dim2−1 do
9: Set adim2 ·n1+n2 = adim2 ·n1+n2 · ω′

n1·n2
dim .

10: end for
11: end for
12: for n2 = 0, . . . ,dim2−1 do
13: Let a′1 be the computation result of classical NTTdim1→m (a, n2).
14: Set

(
an2 , adim2 +n2 , . . . , a(m−1)·dim2 +n2

)
= a′1.

15: end for
16: for i = 0, . . . ,m · dim2−1 do
17: Set ai = ai · dim−1.
18: end for
19: end function

We now state the relation of our partial NTT algorithm to the standard NTT algorithm.

Lemma 3.2.3. Let Permdim and InvPermdim denote the permutation defined in Algorithms 15 and 16
respectively. Let dim = dim1 ·dim2 and integer m ≤ dim1, for a vector a such that ai = 0 for all
i ≥ m · dim2. The following equalities hold:

• NTT-Pdim (m,ωdim,a) = Permdim (NTTdim (ωdim,a)),

• NTT-Pdim
(
m,ω−1

dim,a
)

= Permdim
(
dim ·NTT−1

dim (ωdim,a)
)
.

For a vector a permuted by Permdim, we have:

• NTT-P−1
dim (m,ωdim,a)i =

(
dim−1 ·NTTdim (ωdim, InvPermdim (a))

)
i
,

• NTT-P−1
dim

(
m,ω−1

dim,a
)
i

= NTT−1
dim (ωdim, InvPermdim (a))i,

for 0 ≤ i < m ·dim2. The NTTdim and the NTT−1
dim are the notations used in the scheme specification.

Given NTT dimension dim = dim1 ·dim2, a ∈ Z<d1
q [x], and b ∈ Z<d2

q [x] such that d1 ≤ ma · dim2
and d2 ≤ mb · dim2 for some integer ma,mb ≤ dim1, we provide the MP-NTT-P algorithm merged
with the NTT-P as follows:
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Algorithm 38 : Partial MP-NTT-P

Input: a ∈ Z<d1
q [x] and b ∈ Z<d2

q [x].
Output: c′ = PolToVec(a�d b) ∈ Zdq .
1: function MP-NTT-P(a, b)
2: Find such a NTT dimension dim = dim1 ·dim2 that dim ≥ d2.
3: Let ωdim denote the dim-th root of unity.
4: Find an integer ma ≤ dim1 such that d1 ≤ ma · dim2.
5: Compute a′ = NTT-Pdim (ma, ωdim,Zpad (ma · dim2,PolToVec (Rev (a)))) ∈ Zdim

q .
6: Find an integer mb ≤ dim1 such that d2 ≤ mb · dim2.
7: Compute b′ = NTT-Pdim

(
mb, ω

−1
dim,Zpad (mb · dim2,PolToVec (b))

)
∈ Zdim

q .
8: Find an integer mc ≤ dim1 such that d ≤ mc · dim2.
9: Compute c = NTT-P−1

dim (mc, ωdim,a′ ◦ b′) ∈ Zmc·dim2
q .

10: Let c′ = (c0, . . . , cd−1) ∈ Zdq .
11: end function

Lemma 3.2.4. Given NTT dimension dim = dim1 ·dim2, a ∈ Z<d1
q [x], and b ∈ Z<d2

q [x] such that
d1 ≤ ma · dim2 and d2 ≤ mb · dim2 for some integer ma,mb ≤ dim1, we have

MP-NTT-P (a, b) = MP-NTT (a, b) .

Let Tdim2 denote the running time of the radix-2 NTT subroutine for dimension dim2, which is the
dominate part of NTT-P’s running time. Therefore, the MP-NTT-P algorithm has time complexity
(Zq operations) of about:

3 · (dim1 ·Tdim2) +O (dim) .

We also provide a variant of the MP-NTT-P taking b̂ ∈ Zdim
q as the input, which we call Partial NTT-P

pre-transformed b ∈ Z<d2
q [x] by the computation of Line 7 in MP-NTT-P, i.e.

b̂ = NTT-Pdim
(
mb, ω

−1
dim,Zpad (mb · dim2,PolToVec (b))

)
.

Algorithm 39 : Partial MP-NTT-Ppre

Input: d, a ∈ Z<d1
q [x], and b̂ ∈ Zdim

q satisfying dim = dim1 · dim2.
Output: c′ = PolToVec(a�d b) ∈ Zdq .
1: function MP-NTT-Ppre(d, a, b̂)
2: Let ωdim denote the dim-th root of unity.
3: Find an integer ma ≤ dim1 such that d1 ≤ ma · dim2.
4: Compute a′ = NTT− Pdim (ma, ωdim,Zpad (ma · dim2,PolToVec (Rev (a)))) ∈ Zdim

q .
5: Find an integer mc ≤ dim1 such that d ≤ mc · dim2.
6: Compute c = NTT− P−1

dim

(
mc, ωdim,a′ ◦ b̂

)
∈ Zmc·dim2

q .
7: Let c′ = (c0, . . . , cd−1) ∈ Zdq .
8: end function

3.3 Optimised Titanium-CPA Algorithms
We now provide the optimised Titanium-CPA algorithms by using the MP-NTT-Ppre as follows:
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Algorithm 40 : Optimized Titanium-CPA.KeyGen-Opt

Input: seedkg = Randbytes(32) ∈ byte32.
Output: pk ∈ bytelenpk and sk ∈ bytelensk.
1: function KeyGen-Opt(seedkg = Randbytes(32))
2: Let prgst = PRG.Init(seedkg).
3: Let (prgst, seedsk) = PRG.Out(prgst, 32) ∈ StSpprg × byte32.
4: Let (prgst, seedpk) = PRG.Out(prgst, 32) ∈ StSpprg × byte32.
5: Let (prgst, ŝ) = Samps(seedsk) ∈ StSpprg × Zd3

q .
6: Let (ā1, . . . , āt) = Sampa(seedpk) ∈ (Z<nq [x])t.
7: Let (e1, . . . , et) = Sampe(prgst) ∈ (Z<d+k

q [x])t.
8: for i ≤ t do
9: Let bi = VecToPol (MP-NTT-Ppre (d+ k,Rev(āi), ŝ)) + ei ∈ Z<d+k

q [x].
10: Let b̂′i = Zpad (d1,PolToVec(bi)) ∈ Zd1

q .
11: Let b̂i = Permd1

(
NTT′d1

(
ω−1

1 , b̂i
))
∈ Zd1

q .
12: end for
13: Let pk = Encodepk(seedpk ∈ byte32, (b̂1, . . . , b̂t)) ∈ bytelenpk.
14: Let sk = seedsk ∈ bytelensk.
15: end function

Algorithm 41 : Optimized Titanium-CPA.Encrypt-Opt

Input: pk ∈ bytelenpk, m ∈ byte32, and seedr = Randbytes(32) ∈ byte32.
Output: ct ∈ bytelenct.
1: function Encrypt-Opt(pk,m, seedr = Randbytes(32))
2: Let (seedpk, (b̂1, . . . , b̂t)) = Decodepk(pk) ∈ byte32 × (Zd1

q )t.
3: Let m = Decodem(m) ∈ Z<dq [x].
4: Let (ā1, . . . , āt) = Sampa(seedpk) ∈ (Z<nq [x])t.
5: Let (r1, . . . , rt) = Sampr(seedr) ∈ (Z<k+1

q [x])t.
6: For d2 = dim1 ·dim2, find the integermr,ma ≤ dim1 such that k+1 ≤ mr ·dim2, n ≤ ma ·dim2.
7: for i ≤ t do
8: Let r̂i = NTT-Pd2 (mr, ω2,Zpad (mr · dim2,PolToVec (ri))) ∈ Zd2

q .
9: Let âi = NTT-Pd2 (ma, ω2,Zpad (ma · dim2,PolToVec (ai))) ∈ Zd2

q .
10: end for
11: Let ĉ1 =

∑t
i=1 r̂i ◦ âi ∈ Zd2

q .
12: Let c′2 =

∑t
i=1 VecToPol

(
MP-NTT-Ppre

(
d,Rev(ri), b̂i

))
+ bq/pc ·m ∈ Z<dq [x].

13: Let c2 = Chop(cmp, c′2) ∈ Z<dq [x].
14: Let ct = Encodect(ĉ1, c2) ∈ bytelenct.
15: end function
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Algorithm 42 : Titanium-CPA.Decrypt-Opt

Input: sk ∈ bytelensk and ct ∈ bytelenct.
Output: m ∈ byte32.
1: function Decrypt-Opt(sk, ct)
2: Let seedsk = sk ∈ bytelensk.
3: Let (ŝ, prgst) = Samps(seedsk) ∈ Zd3

q × StSpprg.
4: Let (ĉ1, c2) = Decodect(ct) ∈ Zd2

q × Z<dq [x].
5: Let c′1 = Trunc(n+ k,VecToPol(NTT′−1

d2 (ω−1
2 , InvPermd2(ĉ1)))) ∈ Z<n+k

q [x].
6: Let c′ = c2 − VecToPol (MP-NTT-Ppre (d,Rev(c′1), ŝ)) ∈ Z<dq [x].
7: Let m′ = Round(bq/pc, c′) ∈ Z<dp [x].
8: Let m = Encodem(m′) ∈ byte32.
9: end function

3.4 Additional implementation aspects

3.4.1 Simplifying the middle product

The first step of the NTT middle product will reverse the polynomial on the left hand side. However,
to compute Rev (a)� b, the first step of the NTT middle product directly takes a without any reversal.
In our Titanium-CPA specification, all of the left hand side polynomials are in the form Rev (a), so
there is no reversal in our actual implementation using the NTT middle product.

Also, from Theorem 3.2.1, for a ∈ Z<d1
q [x] , b ∈ Z<d2

q [x], we have:

a�d b = Md1,d2,d (a, b) =

 ∑
j+k=i+d1−1

ajbk


0≤i<d

.

Since j+k = i+d1−1, 0 ≤ i < d, we get k < d+d1−1. Therefore, only the coefficients corresponding
to monomials with degree less than d+d1−1 in polynomial b contribute to a�d b, so those coefficients
corresponding to monomials with degree higher than d1 + d− 1 in polynomial b do not affect the MP
result. Therefore, we can directly use the secret key ŝ sampled from the NTT domain in dimension
d3 ≥ n+ d+ k− 1 without truncating the coefficients with the degree higher than n+ d+ k− 1 in its
pre-image.

3.4.2 Fast modulo reduction

Since the generated assembly code of the "%" operator in C programming language depends on the
compiler and therefore this operator should be avoided in constant time implementation [Sei18], we
need an efficient constant time modulo reduction algorithm. For the multiplication between the
coordinate of a vector and the root of unity ω in the NTT, we apply the lazy Montgomery reduction
with the pre-computed ω table in the Montgomery form [Har14]. The following algorithm computes
x′ = x · ρ−1 mod q, x′ ∈ [0, 2q − 1], where ρ is power of 2 satisfying x < qρ and q < ρ:

Algorithm 43 : Montgomery

Input: Integers x and q.
Output: x′ ∈ Zq.
1: function Montgomery(x, q)
2: Let b = −q−1 mod ρ.
3: Let m = ((x mod ρ) · b) mod ρ.
4: Let x′ = (x+mq) /ρ.
5: end function
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If we pre-transform the roots ωi to their Montgomery form ωi · ρ mod q, for an x in the natural
form, the Montgomery reduction of x ·

(
ωi · ρ

)
will become x · ωi mod q in the natural form. Also, we

define the word width as 32 bits (i.e. ρ = 232 in Algorithm 43), then the Line 3 in Algorithm 43 is
simplified as the low product between x and b, which is faster than the full product [Sei18].

For the pointwise multiplication reduction and addition/subtraction reduction, to avoid the con-
version between the natural form and the Montgomery form, we employ the lazy Barrett reduction
[Har14, ADPS16]. The following algorithm computes x′ = x mod q, x′ ∈ [0, 2q − 1]:

Algorithm 44 : Barrett

Input: Integers x and q.
Output: x′ ∈ [0, 2q − 1].
1: function Barrett(x, q)
2: Find an integer k such that x < 2kq.
3: Let b =

⌊
2k/q

⌋
.

4: Let m =
⌊
(x · b) /2k

⌋
.

5: Let x′ = x−mq.
6: end function

To reduce the number of reductions, we can omit the addition/subtraction Barrett reductions on
some intermediate levels of the NTT [ADPS16]. This requires the factor ρ and k in Algorithm 43 and
Algorithm 44 to be large enough for larger input, respectively. For our radix-2 NTT subroutine, we
select ρ = 232 and k = 32, in which case we can omit all the Barrett reductions in the intermediate
levels except the last level for all specified parameter sets. This reduces the number of reductions by
about half in the NTT.

3.4.3 Optimised uniform sampler

We apply the optimisation in [GOPS13] to reduce the rejection rate of the uniform sampler in Algo-
rithm 8. We compute ZqRej = 28·bytpm− (28·bytpm mod q), which is the multiple of q closest to 28·bytpm.
Then, we perform the rejection sampling with the success rate r = ZqRej/28·bytpm, and reduce the
samples to Zq. We refer to Chapter 7 for an in-depth analysis of the run-time of this sampler.

3.4.4 AVX2 instruction set

The AVX2 instruction set will significantly improve the performance of the Gentleman-Sande radix-
2 NTT on newer Intel CPUs, as suggested by [ADPS16]. Therefore, we also provide the AVX2
parallelised version as one of our additional implementations in the submission. The AVX2 instruction
can pack four 64-bit integers into a vector and perform the arithmetic operations simultaneously. Since
all of our defined NTT dimensions are divisible by 4, the implementation is straightforward.

During the benchmark, the Keccak library is compiled toward the target architecture Haswell,
which is also implemented by the AVX2 instruction set. We use Clang 5.0.1 to compile our AVX2
implementations, with the compiler switch -O3 -march=native enabled.

The Table 3.3 compares the AVX2 benchmark results with the implementations without the AVX2
instructions for each parameter set of the Titanium-CPA schemes. The Table 3.4 compares the AVX2
benchmark results with the implementations without the AVX2 instructions for each parameter set
of the Titanium-CCA schemes.

3.4.5 AES variant of Titanium
The PRG costs a large amount of running time for the lattice-based crypto schemes requiring lots of
randomness. Recent evidence [NAB+17] shows that by applying the Advanced Encryption Standard
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Table 3.3: Comparison of the Titanium-CPA benchmark results with and without the AVX2.
Par. Set Number of cycles (non-AVX2) Number of cycles (AVX2)

Toy64 KeyGen: 1264647 KeyGen: 692916
Encrypt: 900120 Encrypt: 525429
Decrypt: 152705 Decrypt: 85511

Lite96 KeyGen: 1269479 KeyGen: 689425
Encrypt: 1073167 Encrypt: 583561
Decrypt: 183832 Decrypt: 102190

Std128 KeyGen: 1619550 KeyGen: 828542
Encrypt: 1262047 Encrypt: 742541
Decrypt: 217612 Decrypt: 116311

Med160 KeyGen: 1877257 KeyGen: 1036984
Encrypt: 1646486 Encrypt: 919323
Decrypt: 253458 Decrypt: 140187

Hi192 KeyGen: 1894719 KeyGen: 1062465
Encrypt: 1763250 Encrypt: 993939
Decrypt: 323977 Decrypt: 183561

Super256 KeyGen: 2486436 KeyGen: 1262301
Encrypt: 2450834 Encrypt: 1376773
Decrypt: 439522 Decrypt: 229425

New Instructions (AES-NI), the efficiency of the PRG can be significantly improved for such schemes
on Intel CPUs. However, for those platforms without the AES hardware instructions, the AES software
implementation is usually vulnerable to timing attacks [Ber05, BDK+17]. Therefore, we provide the
AES variant of Titanium only as one of the additional implementations.

We use the following counter mode of the AES as our PRG: the high 32 bits of the 128-bit AES
block is a 32-bit unsigned integer counter in little endian form, and the other bits in the block are
zero (i.e. extend the counter c in PRG.Init and PRG.Out to 128 bits with zero). The counter starts
from 0. For each block, we use the AES− 256− ECB to generate the randomness (i.e. replace the
XOF in PRG.Out with AES− 256− ECB(K, c||0 . . . 0 ∈ byte16)). For the non-AVX2 implementations,
we employ the AES from the OpenSSL library. For the AVX2 implementations, we directly use the
Intel AES-NI. The AES− PRG.Init is the same as PRG.Init in Algorithm 4, and Algorithm 45 shows
the AES− PRG.Out.
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Table 3.4: Comparison of the Titanium-CCA benchmark results with and without the AVX2.
Par. Set Number of cycles (non-AVX2) Number of cycles (AVX2)

Toy64 KeyGen: 1269090 KeyGen: 703451
Encrypt: 947906 Encrypt: 564866

Decrypt: 1107424 Decrypt: 656566
Lite96 KeyGen: 1426439 KeyGen: 773685

Encrypt: 1234901 Encrypt: 682140
Decrypt: 1425403 Decrypt: 790026

Std128 KeyGen: 1806119 KeyGen: 934051
Encrypt: 1446751 Encrypt: 865352
Decrypt: 1671578 Decrypt: 986905

Med160 KeyGen: 2035675 KeyGen: 1122462
Encrypt: 1855415 Encrypt: 1042861
Decrypt: 2109199 Decrypt: 1182880

Hi192 KeyGen: 2122547 KeyGen: 1189978
Encrypt: 1986198 Encrypt: 1118572
Decrypt: 2310815 Decrypt: 1303825

Super256 KeyGen: 2829289 KeyGen: 1439023
Encrypt: 2799390 Encrypt: 1590001
Decrypt: 3247542 Decrypt: 1811888

Algorithm 45 : AES− PRG.Out

Input: prgst ∈ StSpprg and ` ∈ N.
Output: prgst ∈ StSpprg and out ∈ byte`.
1: function AES− PRG.Out(prgst, `)
2: Let K ∈ byte32 be the first 32 bytes of prgst.
3: Let c ∈ Z232 be the last 4 bytes of prgst denoted as a 32-bit unsigned integer in little endian

form.
4: Let S denote the empty binary string.
5: for i ≤ d`/16e do
6: Let S = S||AES− 256− ECB

(
K, c||0 . . . 0 ∈ byte16

)
.

7: Let c = c+ 1.
8: end for
9: Let out be the first ` bytes of S.

10: Let prgst = (K, c) ∈ StSpprg.
11: end function

The Table 3.5 shows both the non-AVX2 and the AVX2 benchmark results for each parameter set
of the Titanium-CPA schemes. The Table 3.6 shows both the non-AVX2 and the AVX2 benchmark
results for each parameter set of the Titanium-CCA schemes. From both tables, we can find that the
AES variants improve the efficiency by 10-15% for the non-AVX2 implementations, and 30-40% for
the AVX2 implementations compared to the original KMAC variants.

3.4.6 Open Quantum Safe Integration

The Open Quantum Safe library (liboqs) contains several quantum-resistant key exchange protocols
or KEMs, and it can be integrated with the popular OpenSSL library for a wide range of applications
[MS]. Our Titanium-CCA optimised implementations (non-AVX2) are already included in the latest
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Table 3.5: Comparison of the Titanium-CPA benchmark results with and without the AVX2 using the
AES PRG.

Par. Set Number of cycles (non-AVX2) Number of cycles (AVX2)

Toy64 KeyGen: 1080756 KeyGen: 426869
Encrypt: 751720 Encrypt: 315424
Decrypt: 132875 Decrypt: 54228

Lite96 KeyGen: 1099505 KeyGen: 436896
Encrypt: 935097 Encrypt: 383282
Decrypt: 159962 Decrypt: 65568

Std128 KeyGen: 1396315 KeyGen: 501206
Encrypt: 1079362 Encrypt: 473929
Decrypt: 193412 Decrypt: 73888

Med160 KeyGen: 1612734 KeyGen: 639902
Encrypt: 1436597 Encrypt: 590207
Decrypt: 221925 Decrypt: 91578

Hi192 KeyGen: 1631230 KeyGen: 655928
Encrypt: 1530741 Encrypt: 632895
Decrypt: 286266 Decrypt: 119864

Super256 KeyGen: 2185642 KeyGen: 788307
Encrypt: 2182793 Encrypt: 934890
Decrypt: 395959 Decrypt: 155303

liboqs implementation (the nist-branch on official upstream’s github1). Thus, our scheme has the
flexibility and potential for common use.

The liboqs provides a benchmark script speed_kem to measure the average running time and CPU
cycles among all KEMs. The Table 3.7 compares the running time of KeyGen, Encrypt and Decrypt
between the Titanium-CCA with other lattice-based KEMs in the library on our benchmark platform
2. The Table 3.8 compares the CPU cycles of KeyGen, Encrypt and Decrypt between the Titanium-CCA
with other lattice-based KEMs in the library. Note that the -DAVX2 switch is globally enabled by
default during compiling, which might enable the AVX2 optimisations for some schemes.

3.5 Constant Time Implementation
The lazy reduction algorithm [Har14] discussed in Sec. 3.4.2 also contributes to the constant time im-
plementation, since it removes the conditional adjustment of the result from the original Montgomery
or Barrett reduction. In addition, we adapt the constant time implementation techniques discussed
by [ALM+16], particularly the constant-time comparison and the constant-time branching. We apply
these techniques to the following steps in our implementation:

• Constant time comparison [Sei18]: Given unsigned 32-bit integers x, y < 231, to check whether
x < y, let c be the computation result of:

c = (x− y) shr 31.

where shr is the bit right shift operation. We get c = 1 if x < y, and c = 0 otherwise.

• SampUnifZq in Algorithm 8: We generate more randomness at the beginning of SampUnifZq
to make sure the possibility of rerunning the PRG is negligible, as discussed in Chapter 7.

1https://github.com/open-quantum-safe/liboqs/tree/nist-branch
2The compiler is gcc 7.4.1 in this benchmark
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Table 3.6: Comparison of the Titanium-CCA benchmark results with and without the AVX2 using the
AES PRG.

Par. Set Number of cycles (non-AVX2) Number of cycles (AVX2)

Toy64 KeyGen: 1085654 KeyGen: 430751
Encrypt: 801691 Encrypt: 347802
Decrypt: 937381 Decrypt: 400762

Lite96 KeyGen: 1233880 KeyGen: 488751
Encrypt: 1085114 Encrypt: 458299
Decrypt: 1248694 Decrypt: 522409

Std128 KeyGen: 1553925 KeyGen: 556385
Encrypt: 1248256 Encrypt: 555743
Decrypt: 1439221 Decrypt: 627455

Med160 KeyGen: 1775307 KeyGen: 704882
Encrypt: 1638219 Encrypt: 695653
Decrypt: 1863957 Decrypt: 785317

Hi192 KeyGen: 1843318 KeyGen: 740083
Encrypt: 1760607 Encrypt: 755662
Decrypt: 2041340 Decrypt: 876249

Super256 KeyGen: 2493796 KeyGen: 895571
Encrypt: 2521849 Encrypt: 1123224
Decrypt: 2919891 Decrypt: 1276374

We remark that the rejection sampling loop of SampUnifZq does not run in constant time due
to the variable rejection pattern of x’s. However, as discussed in the previous Chapter, the
accepted x’s output by this algorithm are uniform in Zq and independent, even conditioned on
the rejection pattern of x’s (assuming the indistinguishability from uniform of the x’s supplied
as input to SampUnifZq by the PRG). Thus, this variability in the run-time of SampUnifZq does
not constitute a timing side-channel attack issue.

• Sampr in Algorithm 10: Since we only get a random bit b ∈ {0, 1} when applying the sign bit
to the sample s, to map b to a signed byte b′ ∈ {1,−1} and compute s′ = s · b′, we apply the
constant-time branching technique to compute:

b′ = ((−b) and 0xFE) xor 0x01,

where and is the bitwise and operation. Note that we store b as a single byte and −b = −1 =
0xFF when b = 1.

• Titanium-CCA.Decrypt in Algorithm 31: The following algorithm 46 makes the comparison be-
tween ct′ = (ct.cpa′, dcca′) and ct = (ct.cpa, dcca), and set h = m′ if ct′ = ct, or h = rdec with
h ∈ byte32 otherwise:
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Table 3.7: Comparison of the Titanium-CCA running time (µs) with other lattice-based KEMs by
liboqs

Scheme KeyGen Encrypt Decrypt

FrodoKEM-640-AES 11010.355 11158.576 11177.721
FrodoKEM-640-cSHAKE 2005.305 2199.089 2219.091

FrodoKEM-976-AES 25487.475 25768.214 25828.094
FrodoKEM-976-cSHAKE 4295.913 4668.652 4697.009

Kyber512 37.154 52.704 63.600
Kyber768 57.939 76.178 89.680
Kyber1024 84.988 107.512 124.744

Lima-2p-1024-CCA-KEM 186.823 127.755 158.594
Lima-2p-2048-CCA-KEM 380.583 264.318 327.173
Lima-sp-1018-CCA-KEM 389.483 325.818 421.370
Lima-sp-1306-CCA-KEM 707.170 622.606 810.820
Lima-sp-1822-CCA-KEM 778.417 659.875 852.131
Lima-sp-2062-CCA-KEM 1378.093 1241.754 1621.791
NewHope-512-CCA-KEM 31.460 46.843 53.841
NewHope-1024-CCA-KEM 63.173 94.966 111.290

LightSaber-KEM 91.401 182.446 270.815
Saber-KEM 198.051 335.426 468.913

FireSaber-KEM 345.574 528.095 704.756

Titanium-CCA Std128 471.134 364.518 422.615
Titanium-CCA Med160 525.844 467.058 534.019

Titanium-CCA Hi192 551.760 502.875 588.879
Titanium-CCA Super256 757.930 703.959 821.646

Algorithm 46 : Compare ct′ and ct and set h in constant time

Input: ct′, ct.
Output: h ∈ {m′, rdec}.
1: function Compct(ct′, ct)
2: Let unsigned 32-bit integer c = 0.
3: for i < lenct do
4: Let c = c or (ct′i xor cti).
5: end for
6: Let c = − ((−c) shr 31).
7: Let h = m′ and h ∈ byte32.
8: for i < 32 do
9: Let hi = hi xor (c and (rdeci xor hi)).

10: end for
11: end function

3.6 Known Answer Test (KAT) values
In Table 3.9, we provide the KAT folders of the Titanium-CPA and Titanium-CCA for the corresponding
parameter sets.
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Table 3.8: Comparison of the Titanium-CCA’s number of CPU cycles with other lattice-based KEMs
by liboqs

Scheme KeyGen Encrypt Decrypt

FrodoKEM-640-AES 46243407 46865825 46946249
FrodoKEM-640-cSHAKE 8422190 9236035 9320081

FrodoKEM-976-AES 107047253 108226283 108477770
FrodoKEM-976-cSHAKE 18042738 19608210 19727287

Kyber512 155959 221257 267033
Kyber768 243256 319859 376572

Kyber1024 356866 451434 523831
Lima-2p-1024-CCA-KEM 784550 536430 666012
Lima-2p-2048-CCA-KEM 1598275 1109973 1374022
Lima-sp-1018-CCA-KEM 1635689 1368263 1769662
Lima-sp-1306-CCA-KEM 2969957 2614779 3405345
Lima-sp-1822-CCA-KEM 3269172 2771270 3578857
Lima-sp-2062-CCA-KEM 5787777 5215205 6811435
NewHope-512-CCA-KEM 132040 196627 226031

NewHope-1024-CCA-KEM 265240 398728 467292
LightSaber-KEM 383796 766207 1137351

Saber-KEM 831724 1408705 1969347
FireSaber-KEM 1451334 2217878 2959844

Titanium-CCA Std128 1978670 1530891 1774880
Titanium-CCA Med160 2208445 1961495 2242735

Titanium-CCA Hi192 2317277 2111889 2473171
Titanium-CCA Super256 3183179 2956480 3450786

Table 3.9: KAT folders for the Titanium-CPA and Titanium-CPA.
Par. Set Folder for Titanium-CPA Folder for Titanium-CCA

Toy64 Titanium_CPA_toy Titanium_CCA_toy
Lite96 Titanium_CPA_lite Titanium_CCA_lite

Std128 Titanium_CPA_std Titanium_CCA_std
Med160 Titanium_CPA_med Titanium_CCA_med

Hi192 Titanium_CPA_hi Titanium_CCA_hi
Super256 Titanium_CPA_super Titanium_CCA_super



Chapter 4

Simplified Algorithms

In this Chapter, we simplify our Titanium-CPA and Titanium-CCA algorithms into more algebraic
formats suitable for correctness and security analysis.

4.1 Simplified Titanium-CPA Algorithms: Titanium-CPA-S
In this section the Titanium-CPA algorithms are simplified to have only work with polynomials. Let
χe = (BinDiff(η)d+k)t as in (2.6) and χr = ZeIntU(B1)Ndec1 ×ZeIntU(B2)Ndec−Ndec1 similar to (2.7). Let
we denote the sampling of a random element x from distribution X by x ←↩ X . Then to encrypt a
message m ∈ Z<dp [x], we have:

Algorithm 47 : Titanium-CPA-S.KeyGen

Input: 1λ.
Output: pk and sk.
1: function KeyGen(1λ)
2: Let s←↩ U(Z<n+d+k−1

q [x]).
3: Let (ā1, . . . , āt)←↩ U(Z<nq [x])t.
4: Let (e1, . . . , et)←↩ χe ∈ (Z<d+k

q [x])t.
5: for i ≤ t do
6: Let bi = Rev(āi)�d+k s+ ei ∈ Z<d+k

q [x].
7: end for
8: Let pk = ((ā1, . . . , āt), (b1, . . . , bt)) and sk = s.
9: end function

Algorithm 48 : Titanium-CPA-S.Encrypt

Input: pk and m.
Output: ct = (c′1, c′2).
1: function Encrypt(pk,m)
2: Let (r1, . . . , rt)←↩ χr ∈ (Z<k+1

q [x])t.
3: Let c′1 =

∑t
i=1 ri · āi

4: Let c′2 =
∑t
i=1 Rev(ri)�d bi + bq/pc ·m ∈ Z<dq [x].

5: end function

49
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Algorithm 49 : Titanium-CPA-S.Decrypt

Input: sk and ct.
Output: m′.
1: function Decrypt(sk, ct)
2: Let c′ = c′2 − Rev(c′1)�

d
s ∈ Z<dq [x].

3: Let m′ = Round(bq/pc, c′) ∈ Z<dp [x].
4: end function

4.2 Simplified Titanium-CCA Algorithms: Titanium-CCA-S

Algorithm 50 : Titanium-CCA-S.KeyGen

Input: 1λ.
Output: pk and sk.
1: function KeyGen(1λ)
2: Sample (sk.cpa, pk.cpa) = Titanium-CPA.KeyGen(1λ).
3: Sample rdec←↩ U(byte32).
4: let sk = (sk.cpa, rdec, pk.cpa) and pk = pk.cpa.
5: end function

Algorithm 51 : Titanium-CCA-S.Encrypt

Input: pk.
Output: ct and ss.
1: function Encrypt(pk)
2: Sample m←↩ U(byte32).
3: Let (seedenc.cpa, dcca) = G(m) ∈ byte32 × byte32.
4: Let ct.cpa = Titanium-CPA.Encrypt(pk,m).
5: Let ct = (ct.cpa, dcca)
6: Let ss = H(m, ct) ∈ byte32.
7: end function

Algorithm 52 : Titanium-CCA-S.Decrypt

Input: sk and ct.
Output: ss.
1: function Decrypt(sk, ct)
2: Let m′ = Titanium-CPA.Decrypt(sk.cpa, ct.cpa).
3: Let (seedenc.cpa′, dcca′) = G(m′) ∈ byte32 × byte32.
4: Let ct.cpa′ = Titanium-CPA.Encrypt(pk,m′).
5: if (ct.cpa′, dcca′) = (ct.cpa, dcca) then
6: Let ss = H(m′, ct).
7: else
8: Let ss = H(rdec, ct).
9: end if

10: end function



Chapter 5

Correctness Analysis

This Chapter contains the proofs of correctness for our utility functions, distribution sampling func-
tions, and explains our method of computing a numerical provable upper bound on the error probability
of decryption, that is also used in our IND-CCA security proof.

5.1 Utility and sampling functions correctness

5.1.1 Utility functions

We first note the following Lemma:

Lemma 5.1.1. With appropriate domains and ranges, the following equalities are outstanding:

• Permdj (InvPermdj (a)) = InvPermdj (Permdj (a)) = a, for j = 1, 2, 3, and a ∈ Z`q,

• NTTdj (ωj ,NTT−1
dj (ωj , z)) = NTT−1

dj (ωj ,NTTdj (ωj , z)), for j = 1, 2, 3, and z ∈ Zdq ,

• Trunc(n0,Zpad(n0,v)) = v, for an integer n0, and a vector v of length ` < n0,

• Decodem(Encodem(m)) = m, for m ∈ byte32

• Decodpk(Encodepk(pk)) = pk,

• Decodect(Encodect(ct) = ct.

Proof. We prove each item independently:

• Let ki = (i mod δ2) · δ1 + bi/δ2c, and dj = δ1 · δ2, then we have

InvPermdj (Permdj (a)) = InvPermdj (aki)
= a(ki mod δ1)·δ2+bki/δ1c.

On the other hand, if i ≤ δ2, it is easy to verify that i′ := (ki mod δ1) ·δ2 +bki/δ1c = i. If i > δ2,
we write i = t · δ2 + s, for integers t and s < D2. Rewriting i′ in terms of s and t, one gets i′ = (t
mod δ1) · δ2 + s+ bt/δ1c. Note that t > δ1 contradicts i < δ1 · δ2, and hence t ≤ δ1, which means
that i′ = i. The inverse is also true, which completes the proof.

• Let us calculate NTTdj (ωdj ,NTT−1
dj (ωdj , z)). Based on the definition of NTT−1, we have that

NTT−1
dj (ωdj , z) = y, with yi = d−1

j ·
∑d−1
`0=0 ω

−i·`0
dj z`0 . The i-th component of NTTdj (ωdj ,y) is

d−1∑
`=0

ωi·`dj

d−1
j ·

d−1∑
`0=0

ω−`·`0dj z`0

 = d−1
j ·

d−1∑
`0=0

z`0 ·
(
d−1∑
`=0

ω
`·(i−`0)
dj

)
. (5.1)

When i − `0 6= 0, we have that
∑d−1
`=0 ω

`·(i−`0)
dj = 0 and with i − `0 = 0, the latter summation is

equal to dj , which means that (5.1) equals zi.
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• The proof is straightforward by looking at Algorithms 13 and 14.

• Note that the result of Encodem(m) in Algorithm 27 is a polynomial in Z<d2 [x], in which the
coefficients of x(i−1)·8 up to x(i−1)·8+j , for 1 ≤ j ≤ 7, are the bits of the i-th byte of m, for
1 ≤ i ≤ 32. The Decodem function in Algorithm 28 takes this polynomial and re-construct
blocks of 8-bits one by one.

• Looking at Algorithms 25 and 26, it is enough to show that PackVec and UnPackVec in Algo-
rithms 18 and 21 and hence PackVec` and UnPackVec` in Algorithms 17 and 20 are the compo-
sitional inverses of each other. Following the steps of Algorithm 17, we note that bitst is just the
component-wise bit representation of b and bitst′ is its zero-padded version to dimension L+L′,
for L′ = −L mod 8. Dividing this vector into chunks of 8 bits and putting each into a byte would
give us the vector v. On the other hand, to compute UnPackVec`(PackVec`(b)) = UnPackVec`(v),
we first unpack v into bytes and then bits. Finally, we remove the padded zeros to get to b.
This completes the proof.

• Looking at Algorithms 23 and 24, it is enough to show that UnPackVec(PackVec(ĉ1)) = ĉ1 for
ĉ1 ∈ Zd2

q , UnPackVecc(PackVecc(c2)) = c2, and VecToPol(PolToVec(c2)) = c2, for c2 ∈ Z<dq [x].
The first and the third statements are proved in previous parts, we prove the second one here.
Note that in Algorithms 19 and 22, we use division and multiplication by 2cmp and PackVec`
and UnPackVec` with appropriate sizes, respectively. Hence, the correctness of these algorithms
can easily be followed from previous proofs.

Now we describe the reason why Titanium-CPA and Titanium-CPA-S are basically the same. The
decryption algorithm for Titanium-CPA computes

c1 = Trunc(n+ k,VecToPol(NTT−1
d2

(ω2, InvPermd2(ĉ1))))

with ĉ1 being the first part of Decodect(ct). On the other hand, ct = Encodect(ĉ1, c2) with ĉ1 =
Permd2(NTTd2(ω2,PolToVec(Zpad(d2, c

′
1)))) from the Encrypt algorithm. Using Lemma 5.1.1, c′1 com-

puted in Decrypt algorithm is equal to c′1 from the Encrypt algorithm. On the other hand s computed
in Decrypt is equal to s derived in KeyGen, since both are calculated as

s = Trunc(n+ k + d− 1,VecToPol(d−1
3 · NTTd3(ω3, InvPermd3(ŝ)))),

with ŝ being the output of Samps with the same input seedsk.

5.1.2 Sampler algorithms output correct distributions

In this Subsection, we show that algorithms Samps, Sampa, Sampe, and Sampr (with overwhelming
probability) produce distributions U(Z<n+d+k−1

q [x]), U(Z<nq [x]), χe (as in (2.6)), and χr (as in (2.7)),
respectively.

Lemma 5.1.2. Let prgst ∈ byte32 and ` be an integer, and (prgst, out) ← PRG.Out(prgst, `). If out
is truly random, then

• the second part of the output of SampUniZq in Algorithm 8 is distributed as U(Zq)`,

• the output of Sampe in Algorithm 9 is distributed as (χe)t,

• the output of Sampr is in Algorithm 10 distributed as χr.

Proof. We provide the proof of each part independently:
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• Note that we generate bytpm bytes per coordinate for uniform sampler over Zq and let ZqRej =
28·bytpm − (28·bytpm mod q), which is the closest multiple of q to 28·bytpm. We employ rejection
sampling with the success rate r = ZqRej/28·bytpm, and reduce the samples modulo q. On the
other hand, to generate ` samples, the sampler requires more random bytes than bytpm · ` when
r < 1. We generate slightly more randomness than bytpm · ` to avoid the overhead of rerunning
the PRG. Let Y be the random variable denoting the number of bytpm groups of bytes tested
to generate one Zq element. The rejection sampling follows a geometric distribution with the
bias r, that is Geom(r), with mean 1/r, standard deviation (1 − r)/r2, and probability density
function fY (y) = (1 − r)yr. As we want to generate ` independent Zq elements, we have to
choose bytpc1 = bytpc/bytpm such that

Pr [PRG is called more than once in Algorithm 8] = Pr
[∑̀
i=1

yi ≥ bytpc1

]
≤ 2−λC , (5.2)

with yi distributed as Geom(r), for 1 ≤ i ≤ `, and λC being the classical security parameter
of the relevant category of interest, to ensure correctness of our sampler and claim constant
time encryption independent of randomness (useful for side-channel attacks). This probability
is equal to make the possibility of running out of the randomness from the first PRG call in
Algorithm 8 negligible, say about 2−λC . It is easy to see that the mean of

∑`
i=1 yi is `/r, we

now begin with the expansion of the LHS of (5.2) based on Hoeffding approach [Rig15]:

Pr
[∑̀
i=1

yi ≥ bytpc
]

= Pr
[
exp

(
s ·
∑̀
i=1

yi

)
≥ exp (bytpc1)

]

≤
E
(
exp

(
s ·
∑`
i=1 yi

))
exp(s · bytpc1) (5.3)

=
E
(∏`

i=1 exp(s · yi)
)

exp(s · bytpc1)

=
∏`
i=1 E(exp(s · yi))
exp(s · bytpc1) , (5.4)

where (5.3) is obtained using Markov inequality [BLM13]. The moment generating function of a
geometric distribution Geom(r) can be derived as r exp(s)

1−(1−r) exp(s) . Plugging this formula into (5.4)
and defining

g(s) := r` exp(s · `)
(1− (1− r) exp(s))` exp(s · bytpc1) .

The defined function g is minimized at s∗, with

exp(s∗) = bytpc1 − `
bytpc1 · (1− r)

. (5.5)

We now choose bytpc∗1 such that
g(s∗) ≤ 2−λC . (5.6)

We also estimate (5.2) using central limit theorem (CLT). Using CLT,
∑`
i=1 yi can be approxi-

mated by a Gaussian distribution with the same mean and variance as
∑`
i=1 yi. It is easy to see

that the mean of
∑`
i=1 yi is µ = `/r and its variance is σ2 = `(1− r)/r2. Therefore,

Pr
[∑̀
i=1

yi ≥ bytpc1

]
≈ Pr

z←↩Gauss(µ,σ2)
[z ≥ bytpc1] (5.7)

= Pr
z←↩Gauss(0,1)

[z ≥ (bytpc1 − µ)/σ] , (5.8)
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where (5.7) is obtained using CLT and (5.8) is the Q-function of a standard Gaussian distribution
that can be computed numerically. Letting ` be equal to d3 and n, we choose bytpcsclt

1 and
bytpcaclt

1 such that the RHS of (5.8) is less that 2−λC , for different classical security requirements.
The overhead of such estimations are compared to the relevant means µs = d3/r and µa =
n/r are called ovclt

s and ovclt
a , respectively. The results of the above optimisation are given in

Tables 5.1-5.2. Note that bytpcs1 and bytpca1 are calculated as bytpcs/bytpm and bytpca/bytpm,
respectively, with bytpca, bytpcs and bytpm given in Table 2.10, while bytpca∗1 and bytpcs∗1 are
the smallest integers chosen to satisfy (5.5) and (5.6) simultaneously, for ` = n and ` = d3,
respectively. Furthermore, the overheads ov∗a and ov∗s are calculated (in %) as (bytpca∗1−µa)/µa
and (bytpcs∗1−µs)/µs, with µa = n/r and µs = d3/r. Numerical evaluations given at Tables 5.1
and 5.2 justify the selections of bytpc for different security categories in Tables 2.5 and 2.10. In
particular, we have that bytpcs = bytpcs∗1 · bytpm and bytpca = bytpca∗1 · bytpm.

Table 5.1: The sampling parameters for uniform sampler over Zq in Titanium-CPA. The parameters
are divided into two groups. The top half are related to Samps in Algorithm 6 and the bottom half
are related to sampa in Algorithm 7.

Parameter Toy64 Lite96 Std128 Med160 Hi192 Super256

λC 79 111 143 175 207 272

d3 1280 1536 1792 2048 2560 3328
µs 1293.33 1540.58 1792.41 2075.09 2647.91 3328.80

bytpcs∗1 1348 1588 1823 2193 2857 3386
ov∗s (in %) 4.2 3.0 1.7 5.6 7.8 1.7

bytpcsclt
1 1330 1566 1801 2155 2807 3346

ovclt
s (in %) 2.8 1.6 0.4 3.8 6.0 0.5

n 684 800 1024 1280 1536 2048
bytpca∗1 735 841 1051 1397 1760 2100

µa 691.12 802.39 1024.23 1296.93 1588.74 2048.49
ov∗a (in %) 6.3 4.8 2.6 7.7 10.7 2.5

bytpcaclt
1 769 821 1030 1360 1712 2062

ovclt
a (in %) 11.2 2.3 0.5 4.8 7.7 0.6

• Since r is truly random, each rr is random too. Note that there are (d + k − 1) · Zebytes
bytes available in rr. In Algorithm 9, we just divide each Zebytes bytes of rr into two chunks of
(8·Zebytes)/2 bits and let the difference of these two halves as the coefficient of the corresponding
polynomial. Since 8 · Zebytes ≥ η, each coefficient of each ei, for 1 ≤ i ≤ t, is distributed as a
binomial difference distribution BinDiff with parameter η.

• First note that we take (k + 1) · t elements in Zq to construct polynomials rj ∈ Z<k+1
q [x], for

1 ≤ j ≤ t. Given Ndec1 and Ndec, with Ndec1 < Ndec, we write Ndec1 = (k+ 1) ·Zbt + ZbRem, for
ZbRem ≤ k. Since Ndec = (k+ 1) · t, we have that Zbt < t. Following the steps of Algorithm 10,
each block of (k + 1) · Zbbytes bytes are used to generate a random polynomial in Z<k+1

q [x].
To be more precise, each block of Zbbytes bytes will be employed to generate a coefficient in
either ZeIntU(B1) or ZeIntU(B2) depending on the index of the consecutive blocks arranged in
r. The block with index Zbt + 1 is divided into two sub-blocks, the first ZbRem blocks will be
used to generate elements in ZeIntU(B1) and the rest are used to generate random elements in
ZeIntU(B2). The final Ndec/8 bytes are used to generate random signs for each coefficient in each
random polynomial. Since r is random, all blocks in rr, x, x mod 2b1 , x mod 2b2 , and sj ’s are
random too. Hence the output of Sampr is distributed as ZeIntU(B1)Ndec1×ZeIntU(B2)Ndec−Ndec1 .
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Table 5.2: The sampling parameters for uniform sampler over Zq in Titanium-CCA. The parameters
are divided into two groups. The top half are related to Samps in Algorithm 6 and the bottom half
are related to sampa in Algorithm 7.

Parameter Toy64 Lite96 Std128 Med160 Hi192 Super256

λC 79 111 143 175 207 272

d3 1280 1536 1792 2048 2560 3328
µs 1302.57 1542.71 1802.82 2048.49 2610.83 3328.80

bytpcs∗1 1370 1596 1878 2085 2778 3386
ov∗s (in %) 5.1 3.4 4.1 1.7 6.4 1.7

bytpcsclt
1 1351 1574 1848 2059 2731 3346

ovclt
s (in %) 3.7 2.0 2.5 0.5 4.6 .05

n 684 800 1024 1280 1536 2048
bytpca∗1 750 847 1092 1314 1705 2100

µa 696.06 803.49 1030.18 1280.30 1566.49 2048.49
ov∗a (in %) 7.7 5.4 6.0 2.6 8.8 2.5

bytpcaclt
1 769 826 1064 1288 1659 2062

ovclt
a (in %) 10.4 2.8 3.2 0.6 5.9 0.6

Corollary 5.1.1. The output of

• Samps in Algorithm 6 is distributed as U(Z<n+d+k−1
q [x]),

• Sampa Algorithm 7 is distributed as U(Z<nq [x])t.

Proof. The proof of the corollary is trivial as we only use SampUnifZq as the uniform sampling algo-
rithm over Zq with appropriate dimensions n + d + k − 1 and n for Samps and Sampa, respectively.
Note that SampUnifZq is been used t times in Algorithm 7 and that is the reason why the output of
this function belongs to (Z<nq [x])t.

5.1.3 On equivalence of reference and simplified algorithms

With the above described correctness of utility functions, Lemma 5.1.2 and Corollary 5.1.1, it is clear
that the correctness of Titanium-CPA is equivalent to the correctness of Titanium-CPA-S and also
correctness of Titanium-CCA and Titanium-CCA-S are equivalent (under the random oracle model for
XOF). It particularly means that it is enough to first prove/analyse the correctness of Titanium-CPA-S
and Titanium-CCA-S. In the following two Sections we analyse each of these schemes independently.

5.2 Concrete correctness conditions of Titanium-CPA-S
We first define the concept of δ-correct Titanium-CPA-S.

Definition 5.2.1. Our Titanium-CPA-S scheme is called δ-correct if for any functions f , we have

Pr[Decrypt(sk, ct) 6= m | (pk, sk)← KeyGen;m = f(pk, sk); ct← Encrypt(pk,m)] ≤ δ. (5.9)

We remark that the above definition of decryption error probability over the choice of both public
key and encryption randomness (for any, even key-dependent, messages), matches the definition of
δ-correctness in [HHK17], which allows us to apply the security analysis of [HHK17] to the Fujisaki-
Okamoto transform applied to Titanium-CPA, which yields our Titanium-CCA scheme.
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From now on, we let pe denotes the LHS of (5.9). We now analyse the correctness of Titanium-CPA-S.
Let us first expand the main operation in decryption of Titanium-CPA-S:

c′ = c′2 − Rev(c′1)�
d
s

=
t∑
i=1

Rev(ri)�d bi + bq/pc ·m− Rev
(

t∑
i=1

ri · āi

)
�
d
s

=
t∑
i=1

Rev(ri)�d (Rev(ai)�d+k s+ ei) + bq/pc ·m−
t∑
i=1

Rev(ri) · Rev(ai)�d s (5.10)

=
t∑
i=1

Rev(ri) · Rev(ai)�d+k s+
t∑
i=1

Rev(ri) · ei + bq/pc ·m−
t∑
i=1

Rev(ri) · Rev(ai)�d s(5.11)

= bq/pc ·m+
t∑
i=1

Rev(ri)�d ei ∈ Zdq [x],

where (5.10) and (5.11) are obtained using (2.1) and Lemma 2.1.2, respectively. Therefore, in Decryp-
tion algorithm of Titanium-CPA-S we have

m′ = Round
(
bq/pc, c′

)
= Round

(
bq/pc, bq/pc ·m+

t∑
i=1

Rev(ri)�d ei

)
= m,

if
∑t
i=1 Rev(ri) �d ei computed over Zdq [x] (i.e. with reduction mod q) has coefficients smaller than

bq/pc/2, i.e. if ∥∥∥∥∥
t∑
i=1

Rev(ri)�d ei

∥∥∥∥∥
∞

< bq/pc/2, (5.12)

with the computations performed over Zd[x]. We upper bound the probability pe that (5.12) does
not hold, over the choice of the encryption randomness (r1, . . . , rt) from the distribution χr defined in
(2.7) and the choice of key generation errors (e1, . . . , et) from the distribution χe defined in (2.6).

We recall from (2.7) that χr has the form:

χr = ZeIntU(B1)Ndec1 × ZeIntU(B2)Ndec−Ndec1 ,

i.e. the firstNdec1 integer coefficients of the concatenated coefficient vectors of the ri’s are sampled from
ZeIntU(B1) and the remaining Ndec − Ndec1 coefficients sampled from ZeIntU(B2). Also, χe samples
each integer coefficient of (e1, . . . , et) from the BinDiff(η) distribution. For i = 1, 2, let us define the
distributions χi over Z as the distribution of the product (over Z) of a sample from ZeIntU(Bi) and
an independent sample from BinDiff(η). Let us define r̄i as Rev(ri). Then we observe that for each
1 ≤ i ≤ t, each coefficient of r̄i�d ei is an inner product between a row of Toepd,k(r̄i) and the coefficient
vector ei of ei. Therefore, by the independence of the ri and ei coefficients, the distribution of each
coefficient of

∑t
i=1 r̄i �d ei is the distribution of a sum

∑Ndec
i=1 xi of independent random variables xi,

where xi is sampled from the distribution χi with

χi :=
{
χ1 1 ≤ i ≤ Ndec1,
χ2 Ndec1 < i ≤ Ndec.

(5.13)

The probability of error p̄e for any fixed coordinate of the message can therefore be upper bounded
as follows:

p̄e = Pr
[
N∑
i=1

xi ≥ bq/pc/2
]
,
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with xi distributed as in (5.13). Since the xi’s are independent with E[xi] = 0 for 1 ≤ i ≤ Ndec, we
have

p̄e = Pr

Ndec∑
i=1

xi ≥ bq/pc/2

 (5.14)

= Pr

exp

s · Ndec∑
i=1

xi

 ≥ exp (s · bq/pc/2)

 (5.15)

≤
E
[
exp

(
s ·
∑Ndec
i=1 xi

)]
exp (s · bq/pc/2) (5.16)

=
E
[∏Ndec

i=1 exp (s · xi)
]

exp (s · bq/pc/2)

=
∏Ndec
i=1 E [exp (s · xi)]
exp (s · bq/pc/2) , (5.17)

where (5.15) is true because the mapping x 7→ exp(s ·x) is monotonically increasing, (5.16) is obtained
using Markov inequality [BLM13], and (5.17) is valid due to the fact that xi’s are independent of each
other. Let us further define

Mχj (s) := Ex←↩χj [exp(s · x)],

for j ∈ {1, 2}. Therefore, (5.17) can be re-written as:

p̄e ≤
∏Ndec
i=1 E [exp (s · xi)]
exp (s · bq/pc/2) =

MNdec1
χ1 (s)MNdec−Ndec1

χ2 (s)
exp (s · bq/pc/2) . (5.18)

In order to minimize p̄e, one needs to find s that minimizes (5.18). Letting

f(s) :=
MNdec1
χ1 (s)MNdec−Ndec1

χ2 (s)
exp (s · bq/pc/2) ,

one can differentiate f to find the critical point s∗, such that f(s∗) = 0 minimizing the right hand
side of (5.18). The well-known bi-section method is now used to numerically evaluate s∗ and hence
p̄e

Hoeffding such that p̄e ≤ p̄e
Hoeffding. The above analysis and a union bound over the d coordinates of∑t

i=1 r̄i �d ei ensures that our Titanium-CPA-S is pHoeffding
e ≤ d · p̄eHoeffding-correct.

Instead of the above Hoeffding approach, one could use CLT heuristic analysis to upper bound
(5.14). In particular, by the independence of the xi’s, we can approximate the distribution of

∑Ndec
i=1 xi

by a Gaussian distribution with mean µ and standard deviation σ that we can explicitly compute
and then use standard Gaussian tail bounds to bound pe. To be more precise, a straightforward
computation using the independence of the xi, and that the standard deviation of χe is

√
2η/4 =

√
η/2

shows that the standard deviation of
∑Ndec
i=1 xi is given by

σ =
√

(B2
eff/12 +Beff/4 + 1/6) · (η/2) ·Ndec, (5.19)

where
Beff =

√
ρB2

1 + (1− ρ)B2
2 ,

and
ρ = Ndec1/Ndec.

Using a standard Gaussian tail bound along with union bound over the d coordinates as above, one
gets

pclt
e ≤ (2d) · exp(−z2

clt/2), (5.20)



CHAPTER 5. CORRECTNESS ANALYSIS 58

where
zclt = bq/pc/(2σ). (5.21)

Furthermore, using union bound one can calculate zHoeffding such that the calculated pHoeffding
e satisfies

the following inequality
pHoeffding
e ≤ (2d) · exp(−z2

Hoeffding/2). (5.22)

In Tables 5.3-5.4, we compare our derived zHoeffding in (5.22) with that of zclt in (5.21) for our different
parameter sets. The results suggest that our provable Hoeffding bounds on the decryption error
probability are close optimal, as they are not much higher than the bounds obtained from the CLT
heuristic.

Table 5.3: The values of zHoeffding in (5.22) and zclt defined in (5.21) for Titanium-CPA.
Parameter Toy64 Lite96 Std128 Med160 Hi192 Super256

zHoeffding 7.39 7.45 7.63 8.32 8.06 10.61
zclt 7.55 7.64 7.83 8.58 8.26 10.93

Table 5.4: The values of zHoeffding in (5.22) and zclt defined in (5.21) for Titanium-CCA.
Parameter Toy64 Lite96 Std128 Med160 Hi192 Super256

zHoeffding 11.42 15.25 15.36 17.00 17.74 22.45
zclt 11.67 15.61 15.69 17.43 18.23 23.26

5.3 Concrete correctness condition of Titanium-CCA-S
We similarly define the following correctness for Titanium-CCA-S

Definition 5.3.1. Our Titanium-CCA scheme is called δ-correct if

Pr[Decrypt(sk, ct) 6= k|(pk, sk)← KeyGen; (k, ct)← Encrypt(pk)] ≤ δ.

As we follow the KEM construction given in [HHK17], the following result is outstanding.

Lemma 5.3.1. If Titanium-CPA-S is δ-correct and G and H are random oracles, then our Titanium-CCA-S
is δ-correct.



Chapter 6

Security Analysis

6.1 Introduction
This Chapter contains the Security analysis of our Titanium schemes. After introducing some pre-
liminary notations and results, we present security proofs for our Titanium-CPA and Titanium-CCA
schemes from the security of the MP-LWE problem, and then from the hardness of PLWEf problem
for f in a large family of ring polynomials F1 that we introduce. We then present and analyse the
security of the PLWEf problem against best known attacks, and explain how we select our scheme
parameters based on the complexity of those attacks, combined with our security proofs, to give lower
bounds on the complexity of attacks against Titanium-CPA and Titanium-CCA. Finally, we present our
best known attacks on Titanium-CPA and Titanium-CCA and their complexity for our parameter sets.

6.2 Security analysis preliminaries

6.2.1 Probability

We use the following variant of the Leftover hash Lemma (LHL)[DORS08].

Lemma 6.2.1. Let X,Y, Z denote finite sets. Let H be a universal family of hash functions h : X →
Y . Let f : X → Z be arbitrary. Then for any random variable T taking values in X, we have:

∆ ((h, h(T ), f(T )), (h, U(Y ), f(T ))) ≤ 1
2 ·
√
γ(T ) · |Y | · |Z|,

where γ(T ) = maxt∈X Pr[T = t].

We will apply the LHL to the following universal hash family that arises in our construction.

Lemma 6.2.2 (Adapted from [RSSS17]). Let q, k, d ≥ 2, q prime, and Suppr ⊆ Z<k+1
q [x]. For (bi)i ∈

(Z<d+k
q [x])t, we let h(bi)i denote the map that sends (ri)i≤t ∈ (Suppr)t to

∑
i≤t ri�d bi ∈ Z<dq [x]. Then

the hash function family (h(bi)i)(bi)i is universal.

Proof. Our aim is to show that for r1, . . . , rt not all 0 in Suppr, we have

Pr
(bi)i,(b

′
i)i

[∑
i≤t

ri �d bi =
∑
i≤t

ri �d b
′
i

]
= q−d.

W.l.o.g. we may assume that r1 6= 0. By linearity, it suffices to prove that for all y ∈ Z<dq [x],

Pr
b1

[
r1 �d b1 = y

]
= q−d.

Let j be minimal such that the coefficient in xj of r1 is non-zero and hence co-prime to q. Then the
equation r1�d b1 = y restricted to entries j+ 1 to j+d is a triangular linear system in the coefficients
of b1 with diagonal coefficients invertible mod q. The map b1 7→ r1�d b1 restricted to these coefficients
of b1 is hence a bijection. This gives the equality above.

59
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6.2.2 Matrices

We use the following notations:
• For any d, k > 0 and a ∈ R[x]<k for a ring R, we let Toepd,k(a) denote the (Toeplitz) matrix in
Rd×(k+d−1) whose i-th row, for i = 1, . . . , d, is given by the coefficients of xi−1 · a.

• For a matrix M over R, we denote by ‖M‖ its matrix norm (i.e. the magnitude of its largest
singular value).

• For a Henkel matrix M ∈ Rm×n for a ring R, and 1 ≤ j ≤ m+ n− 1, we denote by ADiagj(M)
the element (in R) repeated along the j-th anti-diagonal of M (i.e. the elements Mi,k with
i+ k = j + 1).

• For a polynomial f over R of degree m, we define Mf as the Hankel matrix with anti-diagonal
element ADiagj(Mf ) being the constant coefficient of the polynomial xj−1 mod f , for j =
1, . . . , 2m− 1.

6.2.3 Lattices

We refer the reader to [MG02] for an introduction to lattices and their computational aspects.

6.2.4 Security models

We refer to the following definitions from [HHK17]. We denote the sampling of a random element x
from distribution X by x←↩ X .
Definition 6.2.1 (IND-CPA). Let PKE = (Gen,Enc,Dec) be a public-key encryption scheme with
message space M. We define the IND-CPA game as in Algorithm 53, and the IND-CPA advantage
function of an adversary A = (A1,A2) against PKE (such that A2 has binary output) as

ε(IND-CPA)(A) :=
∣∣∣Pr[IND-CPAA → 1]− 1/2

∣∣∣ .
Algorithm 53 IND-CPA Game.

1: (pk, sk)← Gen.
2: b←↩ U({0, 1}).
3: (m∗0,m∗1, st)← A1(pk).
4: c∗ ← Enc(pk,m∗b).
5: b′ = A2(pk, c∗, st).
6: Return b′ =? b.

Definition 6.2.2 (IND-CCA). Let KEM = (Gen,Encaps,Decaps) be a key encapsulation mechanism
with key space K. We define the IND-CCA game as in Algorithm 54, and the IND-CCA advantage
function of an adversary A (with binary output) against KEM as

ε(IND-CCA)(A) :=
∣∣∣Pr[IND-CCAA → 1]− 1/2

∣∣∣ .
Algorithm 54 IND-CCA Game.

1: (pk, sk)← Gen.
2: b←↩ U({0, 1}).
3: (k∗0, c∗)← Encaps(pk).
4: k∗1 ←↩ K.
5: b′ = ADecaps(c∗, k∗b ).
6: Return b′ =? b.
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6.2.5 Computational models

In both our concrete classical security proofs and attack complexity estimates, we model attackers
as Random Access Machines (RAMs), with instructions that perform elementary two-input bit ‘gate’
operations (AND/OR/NOT) on arguments, and can access arbitrary memory locations in constant
time (each access is counted as 1 elementary operation). We use as our ‘time’ complexity measure
(denoted by T ) for a RAM the sum of the actual run-time (number of elementary gate instructions
executed) plus its program size (bits). The inclusion of program size in the ‘time’ measure models the
cost of memory for storage of pre-computation look up tables. For an attack with run-time T that
succeeds with advantage ε, we measure the overall ‘gate complexity level’ of the attack by the time to
advantage ratio T/ε.

We chose the above model based on a conservative security viewpoint. Since a boolean circuit of
N (AND/OR/NOT) two-input gates can be simulated by a RAM of run-time T ≈ N and memory
M ≈ N (including program instructions), any lower bound L on the ‘time’ (run-time plus program
size) of a RAM for some computational problem implies a similar lower bound ≈ L/2 on the size of a
circuit for solving the problem. Therefore, our RAM bounds also correspond to approximate circuit
complexity lower bound estimates, neglecting for conservative measure the cost of the RAM’s memory
access instructions, which is highly dependent on the computing architecture used. (In general, the
reverse simulation of a RAM of run-time T and memory M requires a circuit of size O(T ·M), but as
a conservative measure, in our claimed lower bound security estimates, we neglect the memory access
cost in assessing the circuit complexity of attacks for setting our parameters.)

Similarly, for our quantum attack complexity estimates, we assume a RAM-like quantum machine,
as also assumed in the quantum SVP sieve estimates of [LMvdP15], with instructions that perform
elementary two-qubit gate operations (H/CNOT/T gates, i.e. the ‘Clifford+T’ elementary opera-
tions [AMM14, AMG+16]) on arguments, and can quantumly address arbitrary memory locations
in constant time (each access is counted as 1 elementary operation). Although the implementation
prospects of a quantum RAM-like model is unclear, we chose to use it as a conservative measure for
security level estimates. Similarly to the classical case, for an attack with run-time T that succeeds
with advantage ε, we measure the overall ‘gate complexity level’ of the attack by the time to advantage
ratio T/ε.

6.2.6 Grover-type bounds on quantum search problems

Grover [Gro96] gave a celebrated quantum algorithm for the quantum search problem. The basic
variant of the problem is the following: given access to a quantum oracle evaluating a function F :
X → Y where F (x∗) = 1 for some x∗ ∈ X and F (x) = 0 for x 6= x∗, find x∗. Grover’s quantum
algorithm [Gro96] solves this problem with probability pGrover

e ≈ Q2 · |X|−1 given Q quantum queries to
the oracle, where |X| denotes the number of elements in X (a quadratic improvement over the success
probability Q · |X|−1 of the best classical algorithm for this problem). Here, we state an upper bound
from [HHK17] on the success probability of any quantum algorithm for a variant of the quantum
search problem called ‘Generic Search Problem’ (GSP). The upper bound is very close to Grover’s
algorithm success probability for this problem. In the GSP with parameter δ, F : X → Y denotes a
function such that F (x) ∈ {0, 1} is independently chosen (before giving oracle access to the attacker)
for each x ∈ X as a Bernoulli random variable with Pr[F (x) = 1] = λ(x) ≤ δ, where λ : X → [0, 1] is
a fixed function. The attacker is allowed Q quantum queries to a quantum implementation of F and
the attack succeeds if it returns an x∗ such that F (x∗) = 1.

Lemma 6.2.3 ([HHK17]). For any (unbounded time) quantum GSP (with parameter δ) algorithm
making Q quantum queries to its oracle, the success probability is at most 8 · (Q+ 1)2 · δ.
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6.3 Security proofs, hard problem attacks, and parameter selection
approach

6.3.1 Security proof: IND-CPA of Titanium-CPA from IND-CPA of Titanium-CPA-S
To simplify the rest of our security analysis of Titanium-CPA, we first show that its IND-CPA security is
as hard as that of the simplified algebraic scheme Titanium-CPA-S defined in Chapter 4. Our security
reduction is in the Random Oracle Model [BR93] (ROM) and models the XOF cryptographic hash
function underlying the PRG algorithm used in Titanium-CPA as a black box random function (a
random oracle) that the Titanium-CPA attacker can query.

Lemma 6.3.1 (IND-CPA of Titanium-CPA from IND-CPA of Titanium-CPA-S). . Any IND-CPA attack
against Titanium-CPA with run-time T and advantage ε in the Random Oracle Model for XOF with at
most Q queries to the XOF random oracle, implies an IND-CPA attack against Titanium-CPA-S with
run-time

T ′ ≈ T, (6.1)

and distinguishing advantage
ε′ ≥ ε− 3 ·Q/2256. (6.2)

Proof. Let A denote an IND-CPA attack algorithm against Titanium-CPA. The proof consists of nine
games (let pi be the attacker’s success probability in Gamei).

• Game0 : The original IND-CPA attack game against Titanium-CPA with attacker A. In this game,
each query qu = (K, c, L, S) to the random oracle XOF is answered by looking up qu in a table
XOFTab of previous query-answer pairs. If an entry of the form (qu, out) exists in the table, the
corresponding answer out is returned. Otherwise, an independent random answer out is sampled
uniformly at random from {0, 1}L and the entry (qu, out) is added to XOFTab.

• Game1 : In this game, we change lines 3 and 4 of Titanium-CPA.KeyGen algorithm to sample
(prgst, seedsk) and (prgst, seedpk) independently and uniformly at random from StSpprg × byte32

(instead of calling PRG.Out, which in Game0 leads to a query to XOF of the form qu = (K =
(seedkg, 0), c, L, S)).
Let Badkg denote the event that a query of the form qu = (K = (seedkg, 0), c, L, S) (for some L,
S) is made to XOF in Game1. When Badkg does not occur, A’s view in Game1 is identical to its
view in Game0, so |p1 − p0| ≤ Pr[Badkg]. Moreover, since seedkg is uniformly random in byte32

and is not used anywhere by the challenger in Game1, we have Pr[Badkg] ≤ Q/2256, so:

|p1 − p0| ≤ Q/2256.

• Game2 : In this game, we change the way we answer XOF queries of SampUnifZq when the latter
is called by public key sampling algorithm sampa. Namely, for i = 1, . . . , t, and τ ∈ Z let ri,τ
denote the τ -th (starting from 0) vector returned by PRG.Out in the execution of SampUnifZq
when it is called by sampa to sample āi. Let xi,τθ ∈ Z denote the θ-th block of bytpm bits from
ri,τ , and for j ∈ {0, . . . , n− 1}, let xi,τ(j)

θ(j) denote the j-th such block that passes the acceptance
test xi,τθ < ZqRej at line 12 of SampUnifZq in Algorithm 8.
Let Si denote the indices of accepted x’s, i.e. {(θ(j), τ(j)) : j = 0, . . . , n − 1}. In Game2,
we replace the value of x(i,τ(j))

θ(j) (returned by XOF as answer to the relevant query and placed in
XOFTab) with āi[j]+κi,j ·q where āi[j] and κi,j sampled independently and uniformly at random
from Zq and {0, . . . ,ZqRej/q− 1}, respectively. Note that this will result in āi[j] being returned
as the j-th coefficient of āi in Game2, so the distribution of (a1, . . . , at) in Game2 is U(Z<nq )t.
By the correctness of SampUnifZq in Algorithm 8 (see Chapter 7) and the uniformly random and
independent distribution of the ri,τ , we have that āi is uniformly random in both Game1 and
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Game2. The accepted indices Si and the values of rejected blocks xi,τθ for (θ, τ) /∈ Si are generated
in exactly the same way in both games. Moreover, in Game1, conditioned on the the distribution
of Si and the values of rejected blocks xi,τθ for (θ, τ) /∈ Si, the values of accepted blocks xi,τ(j)

θ(j) for
j = 0, . . . , n−1 are independent uniformly random integers in {0, . . . ,ZqRej−1}. In Game2, the
same conditional distribution holds since āi[j] + κi,j · q is uniform in {0, . . . ,ZqRej/q − 1} when
āi[j] and κi,j are independently uniform in their domains. Therefore, since the distribution of
the view of A remains the same in Game1 and Game2, we have

|p2 − p1| = 0.

• Game3 : In this game, we define a new algorithm SampUnifZqsk that works exactly the same as
SampUnifZq, and change line 3 of Samps to call SampUnifZqsk (instead of calling SampUnifZq as
in previous game). Since SampUnifZqsk and SampUnifZq are identical, this does not change A’s
view and we have |p3 − p2| = 0.

• Game4 : In this game, we change lines 2 and 6 of SampUnifZqsk to sample r independently and
uniformly at random from bytebytpc and bytebytpm, respectively (instead of calling PRG.Out, which
in Game3 leads to a query to XOF of the form qu = (K = (seedsk, c′), C, L, S)). We also change
line 3 of Sampe to sample r independently and uniformly at random from bytet·(d+k+1)·Zebytes

(instead of calling PRG.Out, which in Game3 leads to a query to XOF of the form qu = (K =
(seedsk, c′), C, L, S)).
Let Badsk denote the event that a query of the form qu = (K = (seedsk, c′), C, L, S) (for some
c′, L, S) is made to XOF in Game4. When Badsk does not occur, A’s view in Game4 is identical
to its view in Game3, so |p4 − p3| ≤ Pr[Badsk]. Moreover, since seedsk is uniformly random in
byte32 and is not used anywhere by the challenger in Game4, we have Pr[Badsk] ≤ Q/2256, so:

|p4 − p3| ≤ Q/2256.

• Game5 : In this game, we change line 3 of Titanium-CPA’s Samps algorithm to sample ŝ indepen-
dently and uniformly at random from Zdim3

q (instead of calling SampUnifZqsk). By correctness
of SampUnifZq with uniformly random r’s (see Lemma 5.1.2), the distribution of ŝ is identical
in Game5 to Game4. Therefore, |p5 − p4| = 0.

• Game6 : In this game, we change line 8 of Titanium-CPA.KeyGen algorithm to sample s indepen-
dently and uniformly at random from Z<n+d+k−1

q [x] (instead of letting s = Trunc(n+k+d−1, s′),
where s′ = VecToPol(d−1

3 · NTTd3(ω3, InvPermd3(ŝ)))) ∈ Z<n+d+k−1
q [x]).

Since the mappings InvPermd3 , NTTdim3 , v 7→ dim−1
3 ·v and VecToPol are all injective, s′ is

independent and uniformly random in Z<dim3
q [x] in Game5, and therefore s is independent and

uniformly random in Z<n+d+k−1
q [x] in Game5, exactly as in Game6. Therefore, |p6 − p5| = 0.

• Game7 : In this game, we change line 7 of Titanium-CPA.KeyGen algorithm to sample (e1, . . . , et)
from χe = BinDiff(η)t (instead of calling Sampe). By correctness of Sampe with uniformly
random r (see Lemma 5.1.2), the distribution of (e1, . . . , et) is identical in Game7 and Game6.
Therefore, |p7 − p6| = 0.

• Game8 : In this game, we change line 5 of Sampr to sample r independently and uniformly at
random from byteNdec·Zbbytes+Ndec/8 (instead of calling PRG.Out, which in Game7 leads to a query
to XOF of the form qu = (K = (seedr, c′), C, L, S)).
Let Badr denote the event that a query of the form qu = (K = (seedr, c′), C, L, S) (for some c′,
L, S) is made to XOF in Game8. When Badr does not occur, A’s view in Game8 is identical to
its view in Game7, so |p8 − p7| ≤ Pr[Badr]. Moreover, since seedr is uniformly random in byte32

and is not used anywhere by the challenger in Game8, we have Pr[Badr] ≤ Q/2256, so:

|p8 − p7| ≤ Q/2256.
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• Game9 : In this game, we change line 5 of Titanium-CPA.Encrypt algorithm to sample (r1, . . . , rt)
from χr (instead of calling Sampr). By correctness of Sampr with uniformly random r (see
Lemma 5.1.2), the distribution of (r1, . . . , rt) is identical in Game9 and Game8. Therefore, |p9 −
p8| = 0.

We now modify the last game to construct an IND-CPA attacker A′ against Titanium-CPA-S. Given
the challenge public key (ā1, . . . , āt), (b1, . . . , bt) of Titanium-CPA, A′ samples seedpk uniformly at
random from byte32 and simulates the execution of Sampa(seedpk) to program the random oracle XOF
using the coordinates āi[j] ∈ Zq as in Game9 (see Game2 changes). A′ then computes a Titanium-CPA
public key pk from bi’s seedpk by simulating steps 12 and 14 of Titanium-CPA.KeyGen algorithm, and
runs A on input pk, simulating A’s XOF oracle queries as in Game9. When A outputs a challenge
message pair (m0,m1), A′ computes and outputs to its challenger the pair (m0 = Decodem(m0),m1 =
Decodem(m0)), receiving back the challenge ciphertext (c′1, c′2). A′ then simulates steps 6-7 and 10-
11 of Titanium-CPA.Encrypt algorithm to compute a challenge ciphertext ct for Titanium-CPA from
(c′1, c′2), which A′ returns to A. Finally, A′ returns the same bit that A outputs.

It is easy to verify that A′ running with its challenger, simulates the same view to A as in Game9.
It follows from the above sequence of games that the success probability of A′ is lower bounded as

ε′ = p9 ≥ p0 + 3 ·Q/2256.

The stated run-time of A′ follows from the NTT and MP computations in dimension ≤ n+ k+ d over
Zq that can be computed in time O((n+ d+ k) log(n+ d+ k)) arithmetic operations (additions and
multiplications) over Zq, as shown in Chapter 3.

6.3.2 Security proof: IND-CPA of Titanium-CPA-S from MP-LWE hardness

We base IND-CPA security of Titanium-CPA-S on the Middle-Product LWE problem [RSSS17] (MP-
LWE), a variant of LWE defined over Zq[x] as follows.

Definition 6.3.1 (MP distribution [RSSS17]). Let n, d > 0, q ≥ 2, and χ a distribution over Z<d[x].
For s ∈ Z<n+d+1

q [x], we define the distribution MPq,n,d,χ(s) over Z<nq [x]× Z<dq [x] as the one obtained
by: sampling a←↩ U(Z<nq [x]), e←↩ χ and returning (a, b = a�

d
s+ e).

Definition 6.3.2 (MP-LWE [RSSS17]). Let n, d > 0, q ≥ 2, and a distribution χ over Z<d[x].
The (decision) MP-LWEq,n,d,χ problem consists in distinguishing between arbitrarily many samples
from MPq,n,d,χ(s) and the same number of samples from U(Z<nq [x]×Z<dq [x]), with non-negligible prob-
ability over the choice of s←↩ U(Z<n+d+1

q [x]). If the number of MPq,n,d,χ(s) samples is restricted to t,
we write MP-LWEq,n,d,t,χ to denote the corresponding restricted MP-LWE problem.

We show that, under appropriate choice of parameters, the IND-CPA security of Titanium-CPA-S
is as hard as the MP-LWE problem. The proof is based on adapting the Leftover hash Lemma (LHL)
based argument from [RSSS17], with relatively mild changes and generalizations to account for the
relatively mild differences between Titanium-CPA-S and the encryption scheme presented in [RSSS17].

Lemma 6.3.2 (IND-CPA of Titanium-CPA-S from MP-LWE, adapted from [RSSS17]). Assume that

q is prime , (6.3)

and the following Leftover Hash Lemma (LHL) condition holds:

t ≥
2 · (log(∆−1

LHL)− 1) + (n+ d+ k) · log q
(k + 1) · bLHL

, (6.4)

where
bLHL

def= ρ · (b1 + 1) + (1− ρ) · (b2 + 1), (6.5)
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and
ρ

def= Ndec1
Ndec

, with Ndec
def= (k + 1) · t. (6.6)

Then any IND-CPA attack against Titanium-CPA-S with run-time T and advantage ε, implies an
attack against the MP-LWEq,n,d+k,Dαq problem with run-time

TMP-LWE ≈ T (6.7)

and distinguishing advantage
εMP-LWE ≥ ε/2−∆LHL. (6.8)

Proof. We summarize the modifications of the argument in [RSSS17] and the concrete reduction cost.
The proof consists in three games (let pi be the attacker A’s success probability in Gamei).

• Game0 : The original IND-CPA game.

• Game1 : Instead of generating pk = (āi, bi)i≤t with bi = ai �d+k s + ei ∈ Z<d+k
q [x] using

Titanium-CPA-S.KeyGen, where we define ai = Rev(āi) for i = 1, . . . , t, the challenger sets bi ←↩
U(Z<d+k

q [x]) independently of ai.
We can construct a distinguishing attacker against MP-LWEq,n,d+k,Dαq given t samples, that has
run-time TMP-LWE = T +O(t ·(n+d+k) · log q) and distinguishing advantage εMP-LWE = |p1−p0|.
Given t MP-LWE samples (a′i, b′i)i≤t, the MP-LWE attacker computes āi = Rev(a′i) and bi = b′i
for i = 1, . . . , t, and sets pk = (āi, bi)i≤t as the public key. If (a′i, b′i) have the MP distribution
(resp. uniform distribution), then (āi, bi)i≤t have the correct public key distribution as in Game0
(resp. Game1), using the fact that Rev is an injective mapping on Z<nq [x].

• Game2 : Instead of generating the second challenge ciphertext component c2 as c′2 =∑t
i=1 Rev(ri) �d bi + bq/pc · m ∈ Z<dq [x], the challenger sets c2 ←↩ U(Z<dq [x]), but leaves

c1 =
∑
i≤t ri · ai as before. By the Leftover Hash Lemma 6.2.1 with γ(T ) = BNdec1

1 · BNdec−Ndec1
2

the (exponential of) the inverse min-entropy of the input (Rev(r1), . . . ,Rev(rt)) to the universal
hash family in Lemma 6.2.2, |Y | = qd the hash output space size, and |Z| = qn+k the size of
the leakage space due to c1, the statistical distance between the distributions of the challenge
ciphertext in Game2 and Game1 is at most ∆LHL if the condition

1
2 ·
√
B−Ndec1

1 ·B−(Ndec−Ndec1)
2 qn+d+k ≤ ∆LHL (6.9)

holds, which is equivalent to (6.4), using the definitions Ndec
def= (k + 1) · t, B1 = 2b1+1 and

B2 = 2b2+1.

In the last game, the attacker’s view is independent of the encrypted challenge message, so p2 = 1/2.
It follows that |p0− p2| = |p0− 1/2| = ε/2 ≤ |p1− p0|+ |p2− p1| ≤ εMP-LWE + ∆LHL, which gives (6.8).

6.3.3 Security proof: IND-CCA of Titanium-CCA from IND-CCA of Titanium-CCA-S
We simplify the rest of our security analysis of Titanium-CCA by first showing that its IND-CCA security
is as hard as that of the slightly simpler scheme Titanium-CCA-S defined in Chapter 4. Our security
reduction is in the Random Oracle Model [BR93] (ROM) and models the XOF cryptographic hash
function underlying the PRG algorithm used as a black box random function (a random oracle) that
the Titanium-CCA attacker can query.
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Lemma 6.3.3 (IND-CCA of Titanium-CCA from IND-CCA of Titanium-CCA-S). . Any IND-CCA attack
against Titanium-CCA with run-time T and advantage ε in the Random Oracle Model for XOF with at
most Q queries to the XOF random oracle, implies an IND-CCA attack against Titanium-CCA-S with
run-time

T ′ ≈ T, (6.10)

making ≤ Q queries to XOF and having distinguishing advantage

ε′ ≥ ε−Q/2256. (6.11)

Proof. Let A denote an IND-CCA attack algorithm against Titanium-CCA. The proof consists of two
games (let pi be the attacker’s success probability in Gamei).

• Game0 : The original IND-CCA attack game against Titanium-CCA with attacker A. In this game,
each query qu = (K, c, L, S) to the random oracle XOF is answered by looking up qu in a table
XOFTab of previous query-answer pairs. If an entry of the form (qu, out) exists in the table, the
corresponding answer out is returned. Otherwise, an independent random answer out is sampled
uniformly at random from {0, 1}L and the entry (qu, out) is added to XOFTab.

• Game1 : In this game, we change lines 3 of Titanium-CCA.KeyGen algorithm to sample
((seedkg.cpa, rdec), prgst) independently and uniformly at random from byte32× byte32× StSpprg
(instead of calling PRG.Out, which in Game0 leads to a query to XOF of the form qu = (K =
(seedkg, 0), c, L, S)).
Let Badkg denote the event that a query of the form qu = (K = (seedkg, 0), c, L, S) (for some L,
S) is made to XOF in Game1. When Badkg does not occur, A’s view in Game1 is identical to its
view in Game0, so |p1 − p0| ≤ Pr[Badkg]. Moreover, since seedkg is uniformly random in byte32

and is not used anywhere by the challenger in Game1, we have Pr[Badkg] ≤ Q/2256, so:

|p1 − p0| ≤ Q/2256.

We observe that Game1 simulates the view of A exactly as in an IND-CCA attack on
Titanium-CCA-S. The result follows.

6.3.4 Security proof: IND-CCA of Titanium-CCA-S from IND-CPA of Titanium-CPA
The Titanium-CCA-S scheme is the result of applying a variant of the Fujisaki-Okamoto (FO) trans-
form [FO99, Den03] to the Titanium-CPA-S scheme. The variant of FO transform that we use is called
QFO 6⊥ in [HHK17], where a tight reduction from the IND-CCA security of this scheme to the IND-CPA
security of the Titanium-CPA-S is given (we remark that the random oracles G and H′ in [HHK17]
consist respectively of the left and right 32 bytes of the output of G in our scheme, and we also hash
the ciphertext appended to the message in the shared secret derivation, rather than just the message).
We restate the classical security reduction result from [HHK17] below (a non-tight reduction in the
quantum random oracle model is also given for this transform in [HHK17]). We refer the reader to
Chapter 7, where an upper bound on the correctness error probability pe is proved.

Lemma 6.3.4 (IND-CCA of Titanium-CCA-S from IND-CPA of Titanium-CPA, Adapted from [HHK17],
Th.3.2 and 3.4). If Titanium-CPA is pe-correct, then any IND-CCA attack against Titanium-CCA-S with
run-time T and advantage ε with at most QXOF, QG, QH queries in the Random Oracle Model for XOF,
G and H respectively, implies an IND-CPA attack against Titanium-CPA with run-time

T ′ ≈ T, (6.12)

making ≤ QXOF queries to XOF and having distinguishing advantage

ε′ ≥ (ε−QG · pe − (2 ·QG +QH + 1)/2256)/3. (6.13)
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6.3.5 Security proof: MP-LWE hardness from PLWEf hardness over many f ’s

We base hardness of MP-LWE on the hardest PLWEf among those with the ring modulus polynomial
f in a large family F . The PLWEf is defined as follows. We first define the distribution the PLWE
problem is based on. Note our definition here is slightly different to the corresponding one in [RSSS17],
as we consider discrete error distributions over Z[x]/f rather than continuous distributions.

Definition 6.3.3 (P distribution). Let q ≥ 2, m > 0, f a polynomial of degree m, χ a distribution
over Z[x]/f . Given s ∈ Zq[x]/f , we define the distribution Pfq,χ(s) over Zq[x]/f ×Zq[x]/f obtained by
sampling a←↩ U(Zq[x]/f), e←↩ χ and returning (a, b = a · s+ e).

Definition 6.3.4 (PLWE). Let q ≥ 2, m > 0, f a polynomial of degree m, χ a distribution over
Z[x]/f . The (decision) PLWEfq,χ problem consists in distinguishing between arbitrarily many samples
from Pfq,χ(s) and the same number of samples from U(Zq[x]/f×Zq[x]/f), with non-negligible probability
over the choice of s ←↩ U(Zq[x]/f). If the number of Pfq,χ(s) samples is restricted to t, we write
PLWEfq,t,χ to denote the corresponding restricted PLWE problem.

The important parameters of the family F for our reduction from MP-LWE to PLWEf for all
f ∈ F , are what we call the geometric matrix and geometric factor of F , which are closely related to
the largest expansion factor [LM06] over the polynomials in F . They are defined as follows.

Definition 6.3.5 (Geometric Matrix/Factor). Given a monic polynomial f of degree n, and an integer
d′ ≤ n, its d′-geometric matrix Md′

f is defined as the top d′ rows of the Hankel matrix Mf having
anti-diagonal element ADiagj(Mf ) as the constant coefficient of the polynomial xj−1 mod f , for j =
1, . . . , 2m − 1. The geometric factor Gd′(f) of f is defined as Gd′(f) = ‖Md′

f ‖. For a family F of
polynomials of degree ≥ d′, we define its geometric factor G(F) as the maximum of Gd′(f) over all f
in F .

The geometric factor of f controls the tightness, in terms of error distribution variance amplifica-
tion, of the following hardness result in [RSSS17] from PLWEf to MP-LWE. The geometric matrix of
f also describes how the shape of the error distribution is distorted by this security reduction.

Theorem 6.3.1 (adapted from [RSSS17], Le. 3.7). Let n, d′, t > 0, q ≥ 2, and let f denote a
polynomial f ∈ Z[x] that is monic, has constant coefficient coprime with q, and has degree m in [d′, n].
Let χe,P denote a PLWE error distribution over Z[x]/f (i.e. over Zm in the coefficient representation of
Z[x]/f), and let χe,MP denote a MP-LWE error distribution over Z<d′ [x] (i.e. over Zd in the coefficient
representation of Z<d[x]) defined in the coefficient representation by

χe,MP
def= J ·Md′

f · χe,P, (6.14)

where J is the matrix for the coefficient reversal function Rev (with 1’s on the anti-diagonal and 0’s
elsewhere).

Then any attack against MP-LWEq,n,d′,t,χe,MP with run-time TMP-LWE and advantage εMP-LWE, im-
plies an attack against the PLWEfq,t,χe,P problem with run-time

TPLWE ≈ TMP-LWE (6.15)

and distinguishing advantage
εPLWE ≥ εMP-LWE. (6.16)

For general f , the geometric matrix Md′
f of f is closely related to the structure of f , and this

causes the distribution χe,MP to also depend on the structure of f . Since our security hedging goal is
to reduce from PLWEf for a large family of f ’s to MP-LWE with single χe,MP distribution as used in
Titanium (namely χe), we need to remove from our security reduction such a dependence of χe,MP on
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f . In [RSSS17], this is achieved in by using for χe,MP a spherical Gaussian distribution and adding a
‘noise unskewing’ step in the reduction to ‘unskew’ the covariance matrix back to a diagonal matrix,
which in general tends to amplify the noise variance by a quantity related to the geometric factor of
f .

In our Titanium setting, we use for χe,MP the binomial difference distribution BinDiff(η), and we
also would like a tight reduction in terms of error amplification, to allow a meaningful setting of our
parameters based on the hardness of PLWE, as the latter’s concrete hardness has already been studied
for some time.

To this end, for our parameter selection procedure, we apply Theorem 6.3.1 to the following ring
polynomial family F :

Definition 6.3.6 (Ring polynomial family F). For integers n ≥ m′ ≥ d′, we denote by F(n,m′, d′)
the set of ring polynomials f of the form

f(x) = xm +
∑

i≤`(m)
fi · xi (6.17)

with
m′ ≤ m ≤ n, (6.18)

and
`(m) = min(m/2 + 1,m+ 1− d′), (6.19)

and
f0 ∈ {−1, 1}. (6.20)

We choose F as a hardness basis for our security analysis of MP-LWE because:

• If m′ ≤ (1 − ε′)n for a constant ε′ > 0, F contains an exponentially large (in n) number of
polynomials (rings).

• It potentially (for a suitable choice of d′,m′ and n) contains both previously used cyclotomic
polynomials xm + 1 (for m a power of 2) and non-cyclotomic polynomials xm − x − 1 (for m
prime, as in NTRU Prime [BCLvV16]).

• MP-LWE enjoys a tight reduction from the hardest ring in the family, due to the family’s optimal
d′-geometric factor of 1, by the results summarized below, and the reduction preserves the shape
of the distribution if the latter is balanced and has independent coordinates.

The following proposition and its corollary show that F has an optimal geometric factor.

Proposition 6.3.1. Let f(x) = xm +
∑
i≤` fi · xi, with ` ≤ m/2 + 1. Then,

ADiag1(Mf ) = 1 (6.21)

and
ADiagj(Mf ) = 0 if 2 ≤ j ≤ m or m+ 2 ≤ j ≤ 2m− `, (6.22)

and
ADiagj(Mf ) = −f0 if j = m+ 1 (6.23)

and
ADiagj(Mf ) = f2m+1−j · f0 if 2m− `+ 1 ≤ j ≤ 2m− 1. (6.24)
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Proof. From the definition of Mf , we have ADiagj(Mf ) = (xj−1 mod f(x)) mod x for 1 ≤ j ≤ 2n− 1.
From this (6.21) and (6.22) for j ≤ m follow immediately. For j = m + 1, we have xm mod f(x) =
−
∑
i≤` fi · xi from the definition of f , which gives (6.23). For m + 2 ≤ j ≤ 2m − `, we have

xj−1 mod f(x) = xj−m−1 · (−
∑
i≤` fi · xi) mod f(x) = 0 since j −m − 1 + ` ≤ m − 1, giving (6.22).

Finally, for 2m− `+ 1 ≤ j ≤ 2m− 1, we have xj−1 mod f(x) = xj−m−1 · (−
∑
i≤` fi · xi) mod f(x) =

−
∑
i≤` fi · xi+j−m−1 mod f(x). Using (xi+j−m−1 mod f(x)) mod x = −f0 if i + j −m − 1 = m (i.e.

i = 2m + 1 − j) and (xi+j−m−1 mod f(x)) mod x = 0 if m + 1 ≤ i + j − m − 1 ≤ 2m − `, we get
(6.24).

For f as in Prop. 6.3.1, the first d′ rows of Mf contain elements from anti diagonals 1, . . . ,m+d′−1.
Therefore, if the condition 2m−`+1 > m+d′−1 holds (or equivalently, ` ≤ m+1−d′), the condition
(6.24) is never satisfied in the first d′ rows of Mf , so the non-zero columns of Md′

f are orthogonal and
(using |f0| = 1) have unit norm. We therefore obtain the following corollary.

Corollary 6.3.1. For integers n and d′ ≤ m′ ≤ n, the family F(n,m′, d′) in Def. 6.3.6 has geometric
factor G(F) = 1. Moreover, let t > 0, q ≥ 2, and let f denote a polynomial f ∈ F(n,m′, d′) and
has degree m in [m′, n]. Let χe,P denote a PLWE error distribution over Z[x]/f (i.e. over Zm in
the coefficient representation of Z[x]/f) that has independent identically distributed coordinates, i.e.
χe,P = χmc for some distribution χc over Z which is balanced (i.e. χc(x) = χc(−x) for all x ∈ Z). Let
χe,MP = χd

′
c .

Then any attack against MP-LWEq,n,d′,t,χe,MP with run-time TMP-LWE and advantage εMP-LWE, im-
plies an attack against the PLWEfq,t,χe,P problem with run-time

TPLWE ≈ TMP-LWE (6.25)

and distinguishing advantage
εPLWE ≥ εMP-LWE. (6.26)

In particular, this reduction holds for χc = BinDiff(η) (i.e. χe,MP = BinDiff(η)d+k), the error distribu-
tion specified for Titanium-CPA-S.

It shows that for f in family F(n,m′, d′), the reduction from PLWE to MP-LWE is tight in terms
of error variance, and moreover preserves the shape of the distribution, under mild conditions.

6.3.6 Underlying worst-case problems and different function families

In this subsection, we first state a result from [RWS17], which introduces ApproxSVPOK to be the
underlying worst case problem of PLWE. We then present the specific function families of interest in
this submission and study their properties.

Underlying worst-case problem

Let K be a number field, OK its ring of integers, and q > 2 be a prime. There are [LPR10, PRSD17]
worst-case to average-case reductions from Approximate Shortest Vector Problem (ApproxSVP) re-
stricted to the class of Euclidean lattices corresponding to ideals of OK to decision RLWE, in which
the secret is chosen from O∨k /qO∨k , where O∨k denotes the dual of Ok, denoted by dRLWEO∨

k
. If the

secret is chosen from Ok/qOk, the problem is called the primal dRLWE, and is denoted by dRLWEOk .
A sequence of reductions as

ApproxSVPOK −→ dRLWEO∨
k
−→ dRLWEOk −→ PLWEf ,

is given in [RWS17]. The first reduction is obtained from [PRSD17], the second reduction is a gener-
alisation of [Pei16b] presented in [RWS17], which uses the so-called “polynomial t”, and the last one
is proven only in [RWS17] for three different function families. For the second reduction, the authors
of [RWS17] have used the concept of conductor ideal for which its size is proportional to f ′(α), the
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first derivative of f , for f being the polynomial in K = Q[x]/f , and α being a root of this polynomial
modulo q. For the third reduction, the authors of [RWS17] made use of the associated Vandermonde
matrix of f =

∏n
j=1(x− αj), Vf , as it corresponds to the linear map between the coefficient and em-

bedding spaces. Thus a good approximation factor for ApproxSVPOK can be obtained if the distortion
given by the condition number of Vf , that is ‖Vf‖·‖V −1

f ‖, and f ′(α) are both scaling polynomially with
n. Note that, in addition to the above condition, we use smaller noises in our constructions/designs
than what we have in the above mentioned reductions.

We remark that cyclotomic polynomials [LPR10], NTRUPrime polynomials [BCLvV16], and a class
of functions named gn,a are shown to have quantities ‖Vf‖ and ‖V −1

f ‖ polynomially in n. However, we
will introduce a new function family similar to that of gn,a. In particular, the only difference between
our function family and gn,a would be the constant coefficient a, for which we need to have {±1},
while the authors of [RWS17] set it to be a large prime proportional to the degree n of gn,a. In the
sequel, we introduce our function family F1. Hence an interesting open problem is to derive similar
corresponding properties (with respect to f ′, ‖Vf‖, and ‖V −1

f ‖) of class gn,a for F1.
We specifically study two sub-families of the above introduced F in Definition 6.3.6: namely F1

and F2. The first one is only used for our implementations in Toy64, Lite96, Std128, Med160, Hi192,
and Super256. The latter one is only introduced and we study some properties of F2. The following
definitions and notations are outstanding with m′ ≤ m ≤ n: In both F1 and F2, we have that

Table 6.1: A list of notations used in function families F1 and F2.
notation value

mmax n
mmid (n+m′)/2
mmin m′

d′ d+ k
`(m) min(m/2 + 1,m+ 1− d′)
gap1 n−m′
gap2 m′ − d′

m′/2 ≤ n/2 ≤ d′, which implies that `(m) = m + 1 − d′ for m′ ≤ m ≤ n in these cases. With this,
`(mmin) = gap2 + 1 and `(mmax) = gap1 + gap2 + 1.

Function family F1

Let d′ < m′. If we restrict the coefficients (except the leading and constant terms) of our function
families to {−1, 0, 1}, then the total number of polynomials of degree m in F1(n,m′, d′) is equal to
2 · 3`(m), in which the factor 2 is because of the constant coefficient being {±1}. Since `(mmin) =
gap2 + 1, the total number of binary polynomials of degree m in F1 is at least 2 · 3gap2+1. Hence, the
total number of polynomials in F1 is at least

gap1+gap2∑
m=gap2+1

2 · 3m = 3gap2+1 · (3gap1 − 1) ≥ 3gap1+gap2 .

This is in fact the function family of our interest for our implementation purposes. We summarize
quantities gap1 and gap2 in F1 for our implemented parameter sets in Tables 6.2-6.3. The last row of
the table shows whether if the studied F1 includes a power-of-two cyclotomic polynomial or not. The
inclusion of such polynomials are of particular interest as we can then compare the security of our
schemes with those appeared in [ADPS16] and [BDK+17].

Note that all over our proposal, whenever we talk about F , we actually mean F1.
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Table 6.2: The parameters in F1 for Titanium-CPA.
Parameter Toy64 Lite96 Std128 Med160 Hi192 Super256

gap1 30 30 50 50 50 50
gap2 142 35 178 462 462 718

lower bound on log3(|F1|) 172 65 256 512 512 768
power-of-two inclusion X X

Table 6.3: The parameters in F1 for Titanium-CCA.
Parameter Toy64 Lite96 Std128 Med160 Hi192 Super256

gap1 30 30 128 50 50 50
gap2 142 35 128 462 462 718

lower bound on log3(|F1|) 172 65 256 512 512 768
power-of-two inclusion X X

Function family F2

Letting m′ = d′ and having coefficients from {−1, 0, 1}, we obtain F2 that we are not concerned in
this submission. However, we study some of the properties of F2 in Table 6.4. We emphasize that
the family F2 may not achieve the security goals declared in Table 2.11. At one hand, we have that
log3(|F1|) = log3(|F2|) as gap1 + gap2 = n− d′ is fixed for both families. On the other hand, the new
family F2 covers more power-of-2 cyclotomic polynomials in our specified parameter sets.

Table 6.4: The parameters in F1 for Titanium-CPA and Titanium-CCA.
Parameter Toy64 Lite96 Std128 Med160 Hi192 Super256

lower bound on log3(|F2|) 172 65 256 512 512 768
power-of-two inclusion X X X X X

6.3.7 Best known attacks: PLWEf over any f in family

The security of PLWEf has been studied over the last few years within the field of lattice-based
cryptography since its introduction in [SSTX09] (where it was called ‘Ideal-LWE’) and the independent
introduction in [LPR10] of the closely related ‘Ring-LWE’ problem. As special cases of the LWE
problem [Reg05], the computational hardness of PLWEf relies on the hardness of the ApproxSVP
problem on a family of structured q-ary lattices. As explained in Section 6.1, weak f ’s for PLWE
has been investigated in [EHL14, ELOS15, CLS15, CLS16], where attacks were described that work
for error distributions with small width relative to the geometry of the corresponding ring [CIV16b,
CIV16a, Pei16a]. In another sequence of works, Cramer et al. [CDPR16, CDW16] showed that
ApproxSVP restricted to ideal lattices corresponding to ideals of the polynomial ring Z[x]/f is easier
to solve quantumly for f a cyclotomic polynomial of prime-power conductor than for general lattices.

We recall that our security reductions show that the security of Titanium is as hard as the hardest
PLWEf over all f in the family F introduced in the previous Section. In this Section, we explain our
security evaluation of best known attacks against PLWEf under this assumption.

Security of PLWEf against weak f

The security of PLWE has been investigated in [EHL14, ELOS15, CLS15, CLS16], where attacks were
described that work for weak f ’s and error distributions with small width relative to the geometry of
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the corresponding ring [CIV16b, CIV16a, Pei16a]. The polynomials f are reducible mod q if they are
weak against the latter attacks. With this in mind, we show that an exponential proportion of functions
in F are irreducible, meaning the explained attacks in [ELOS15] are not applicable to a lot of functions
in our considered function family. In order to find a %95 confidence interval, we run an experiment
by generating 10000 random polynomials of different degrees belonging to F1 corresponding to each
parameter set. For example for Std128, we generate 200 random polynomials in F1 with degrees
ranging between n to n− 49 (in total of 10000 random polynomials). We then check the irreducibility
of these polynomials and count the number of all irreducible polynomials. Table 6.5 summarizes the
number c of irreducible polynomials we counted for each family corresponding to the parameter sets
stated in the table. The evaluated probability for each level is also computed in the second row of the
Table 6.5. Let p̂ = c/10000 denotes the observed probability of having irreducible polynomials, the
third row of the below table gives the evaluated p̂ for different parameter sets. Since our experiment
follows a binomial distribution with parameters (p̂, 10000), the %95 binomial confidence interval can
be computed as:

p̂± z∗
√
p̂(1− p̂)/10000 ≈ c/10000± z∗ · (

√
c/10000),

which is justified by CLT by approximating the difference between correct probability pc and p̂ by a
Gaussian distribution. Note that z∗ for %95 assurance is 1.96.

Table 6.5: Number of irreducible polynomials counted in 10000 random polynomials from F1.
Parameter Toy64 Lite96 Std128 Med160 Hi192 Super256

Counted irreducibles 16 12 9 8 4 7
Probability p̂ 16/104 12/104 9/104 8/104 4/104 7/104

%95 confidence interval (×104) [16± 7.8] [12± 6.7] [9± 5.8] [8± 5.5] [4± 3.9] [7± 5.1]

Since log3(|F1|) ≥ gap1 + gap2 = n− (d+ k), we will be left by at least 3n−(d+k)−log3(n) irreducible
polynomials to which attacks in [EHL14, ELOS15, CLS15, CLS16] are not applicable.

Security of PLWEf against ‘dual’ lattice attacks

A recent summary of known attacks against LWE is given in [APS15]. Except for unusual choices
of parameters, one of the best known lattice-based attack against LWE is the ‘Dual lattice attack’,
as described also in [ADPS16]. We describe this attack and its (conservative) analysis when applied
to PLWEfq,t,χe,P with the goal of minimizing the ratio between the attack time to attack distinguish-
ing advantage ratio. We then use those estimates to select parameters for our IND-CPA security of
Titanium-CPA-S (see following section for our parameter selection procedure). Our analysis of this
attack closely follows the conservative ‘Core SVP Hardness’ approach introduced in [ADPS16], with
some modifications that we explain.

Before describing the details of our approach, we remark that our ‘Core SVP hardness’ approach for
dual lattice attack security estimates for PLWEf is conservative on several fronts, as follows. Namely,
we do not put any restriction on the quantum attacker’s circuit depth, and we assume a quantumly
addressable random access machine computation model with unit time for memory access, as also
assumed in previous analyses of quantum SVP sieve algorithms [LMvdP15].

Let md = t ·m. The ‘dual lattice attack’ consists in rewriting the PLWEfq,t,χe,P instance (ai, bi =
ai · s + ei)i≤t ∈ (Zq[x]/f × Zq[x]/f)t with f ∈ F1 of degree m ∈ [m′, n] as an LWE instance (A,b) ∈
Zmd·mq ×Zmdq over Zq (where b = A · s + e for an ‘PLWE input’ or b is uniform for a ‘random input’),
and using lattice reduction on the ‘dual (perp) lattice’

L⊥q (A) = {w ∈ Zmd : wT · A = 0 mod q.}

to find a short non-zero lattice vector v of length ` in L⊥q (A). The attack then tries to distinguish
the distribution of z = vt · b mod q ∈ Zq from uniform on Zq. In the ‘PLWE input’ case, we have
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z = vt · e. Since the dimension of e is large and the coordinates of e are independent, we have by the
Central Limit Theorem that the distribution of z tends (asymptotically) to a Gaussian with standard
deviation ‖v‖ ·αq and reduced mod q, whereas the in the “random input” case, z is uniformly random
over Zq. Here, we denote by αq the standard deviation of the coordinates of e sampled from χe,MP.
For our Titanium setting, we have χe = BinDiff(η)Ndec , so αq is the standard deviation of BinDiff(η),
namely

αq =
√
η

2 . (6.27)

The maximum distinguishing advantage achievable between the latter distributions of z in the ‘PLWE
input’ and ‘random input’ cases is their statistical distance, which can be shown to be upper bounded
as

ε′Q ≤
exp(−2π2τ2)

1− exp(−2π2τ2) ≤ 4 · exp(−2π2τ2), (6.28)

where the rightmost inequality holds if

τ ≥

√
ln(4/3)

2π ≈ 0.22, (6.29)

with
τ = ‖v‖ · α. (6.30)

We use the right-hand side as our advantage estimate ε′Q for the best attack against PLWEfq,t,Dαq .
We assume that the BKZ algorithm [SE94] with block size b (where b is chosen to optimise the

attack) is used for lattice reduction to compute the short non-zero vector v in lattice L⊥q (A). The
BKZ algorithm calls an exact SVP oracle in dimension b. Currently, the most efficient known exact
SVP algorithm in large dimension b appears to be the ‘Hypercone filtering’ sieve based SVP algorithm
of Laarhoven [LMvdP15] (see Chap. 14 therein), an SVP sieve algorithm accelerated by a quantum
Grover-based search algorithm. As in standard ‘Dual lattice attacks’ [MR09], we let the attacker run
BKZ on a sublattice of L⊥q (A) of dimension m∗ ≤ md, where m∗ is chosen to minimize the BKZ output
vector length ‖v‖, which is estimated by

‖v‖ = δ(b)m∗−1 · qm/m∗ , (6.31)

where δ(b) is the BKZ Hermite Factor (the ratio between the output vector norm and the root
determinant of the lattice), which we estimate using the Geometric Series Assumption (GSA) model
for the BKZ output Gram-Schmidt norms [Sch03a]. Under the GSA model, the BKZ Hermite Factor
can be shown to be [Sch03a].

δ(b) =
(

b

2πe · (πb)
1/b
) 1

2·(b−1)
, (6.32)

The run-time of the attack is dominated by the time of BKZ with block size b. Following the
conservative ‘core-hardness’ methodology used in [ADPS16, BCD+16], we estimate the BKZ running-
time by only counting the time of a single SVP oracle call, which according to [LMvdP15] takes
time

TQBKZ(b) = 20.265·b+o(b) and TCBKZ(b) = 20.292·b+o(b), (6.33)

respectively, on quantum and classical computing model, respectively. For our attack complexity
estimates, we neglect the o(b) term (by setting it to zero). We remark again that the above esti-
mates assume (conservatively) a quantum (resp. classical) Random Access Machine (RAM) model
of computation with unlimited quantum (resp. classical) circuit depth and unit time for memory
lookup. We also assume (conservatively) (following [ADPS16, LMvdP15]) that each such memory
lookup operation can be implemented with one quantum (resp. classical) gate.

Running BKZ on the dual lattice yields a lattice vector of length given by (6.31), and therefore
a distinguisher for PLWEfq,t,Dαq with advantage ε′Q given by (6.28). We call this basic distinguisher
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a ‘one-sample’ distinguisher. It has a run-time TQBKZ(b) quantumly (and TCBKZ(b) classically), and
therefore a time to advantage ratio TQBKZ(b)/ε′Q(b) (respectively TCBKZ(b)/ε′Q(b); from here onwards,
we only describe the quantum case, but we use the same analysis with TQBKZ replaced with TCBKZ
to estimate the classical cost of the attack). Our goal is to consider optimised versions of this attack
that amplify the distinguishing advantage by performing the distinguishing test over multiple samples
(i.e. multiple short lattice vectors vi and corresponding zi’s) by taking a majority vote over the
samples tested in order to minimize the the time to advantage ratio of the attack. Namely, using N
independent samples, one can amplify the advantage in this way to ≈

√
N · ε′Q(b). In fact, the last

sieve SVP call in the BKZ algorithm gives, MQBKZ(b) short vectors v (proportional to the memory of
the algorithm) that could be used in the distinguishing attack. Following the conservative approach
we first replaceMQBKZ(b) by the larger quantity TQBKZ(b) in [ADPS16, BCD+16], and we also assume
heuristically (conservatively, i.e. optimistically for the attacker) that all those TQBKZ(b) short vectors
v obtained from a single sieve SVP call are ‘independent’ so they can be used in the distinguishing
attack with the same PLWEfq,t,Dαq instance to amplify the advantage. Let

Rmax(b, ε′Q) = max
(

1,
1/(ε′Q)2

TQBKZ(b)

)
. (6.34)

For each BKZ block size b, if the attacker runs BKZ R′ times (with R′ ∈ (1, Rmax(b, ε′Q)) he gets
R′ · TQBKZ(b) samples which leads to total running-time Tdual = R′ · TQBKZ(b) and distinguishing
advantage εdual ≈ min(

√
R′ · TQBKZ(b) · ε′Q, 1). The attacker chooses optimum values of b and R′ that

minimizes Tdual/εdual (we note that when R′ = Rmax, the advantage is fully amplified to ≈ 1, and
therefore there is no gain in using larger R′).

There are two possible cases for b. If the case Rmax(b, ε′Q) = 1 holds (equivalently, if TQBKZ(b) ≥
1/(ε′Q)2 or in other words ε′Q

√
TQBKZ(b) ≥ 1) then R′ = 1 and εdual = 1 and hence Tdual/εdual ≈

TQBKZ(b). In the other possible case Rmax(b, ε′Q) > 1 (equivalently, if TQBKZ(b) < 1/(ε′Q)2), we have
Tdual/εdual ≈

√
R′ · TQBKZ(b)/ε′Q(b) so in this case R′ = 1 is also the optimal choice that minimizes

Tdual/εdual at ≈
√
TQBKZ(b)/ε′Q(b). The optimum value for b that minimizes Tdual/εdual is therefore the

value b∗ that minimizes the attack time to advantage ratio function gdual(b), which is given by:

gdual(b) =


√
TQBKZ(b)
ε′Q(b) for b < beq,

TQBKZ(b) for b ≥ beq,
(6.35)

where beq is the value of b such that
√
TQBKZ(b)/ε′Q(b) = TQBKZ(b) (equivalently, 1/ε′Q(b)2 = TQBKZ(b)).

Note that since TQBKZ(b) increases monotonically with b, we have b∗ ≤ beq. Also, beq is the value of b
assumed as the optimal value using a slightly different argument in [ADPS16], where it was assumed
that the attacker aims to achieve a high advantage in the overall attack, whereas we do not make this
assumption1. In our security estimates for parameter set selection, we compute the optimal value of
b∗ and m∗ numerically, and return the PLWEf attack time to advantage ratio log complexity

λPLWE = log2(gdual(b∗)). (6.36)

Note that if we would have taken the non-conservative MQBKZ(b) short non-zero vectors rather than
TQBKZ(b), we would have a larger gdual by a factor of

√
TQBKZ(b)/MQBKZ(b).

We remark that, as shown in [MR09], for each fixed b, the optimal sublattice dimension m∗ that
minimizes ‖v‖ in (6.31) (and therefore maximizes the distinguishing advantage of the attack) and the
corresponding minimum length ‖v‖opt are given by:

m∗ ≈
√
m log q
log δ and ‖v‖opt ≈ 22

√
m log q log δ. (6.37)

1However, we remark that in numerical computations of b∗ for security estimates of our Titanium parameter sets, we
found that b∗ ≈ beq in all cases we considered.
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We summarize in Table 6.6 the computed complexities (using the above ‘core SVP hardness’
methodology) of PLWE instances corresponding to our scheme parameter sets via the reduction of
Corollary 6.3.1 (see Sec. 6.3.8). The table also includes, for comparison, the PLWE complexity goals
for achieving our target scheme security levels based on our parameter selection approach described in
Sec. 6.3.8. A Sagemath [Dev17] script used to compute those values and is also included in our submis-
sion package. In Table 6.6, the classical ‘goal’ column gives λPLWE,C,goal from (6.62) (for Titanium-CPA)
and from (6.69) (for Titanium-CCA). The classical ‘Min. Cl.’, ‘Med. Cl.’ and ‘Max. Cl.’ columns give
the corresponding claimed PLWE complexities λC,PLWE,mmin , λC,PLWE,mmed , and λC,PLWE,mmax for PLWE
with dimensions mmin,mmed,mmax corresponding to the minimum, middle and maximum degrees of
polynomials in our family F1 (see Sec. 6.3.8). Similarly, the quantum ‘goal’ column gives λPLWE,Q,goal
from (6.66) (for Titanium-CPA) and from (6.73) (for Titanium-CCA), assuming MD = 240 (this corre-
sponds to the largest quantum security goals for MD in the range 240 to 296). The quantum ‘Min.
Cl.’, ‘Med. Cl.’ and ‘Max. Cl.’ columns give the corresponding claimed quantum PLWE complexities
λQ,PLWE,mmin , λQ,PLWE,mmed , and λQ,PLWE,mmax for PLWE with dimensions mmin,mmed,mmax computed
based on our dual attack ‘core SVP hardness’ methodology (which we recall, assumes conservatively,
an unlimited quantum circuit depth).

Table 6.6: PLWE classical and quantum security goals and claimed classical and quantum complexities
for each scheme parameter set. CCA (resp. CPA) rows refer to Titanium-CCA (resp. Titanium-CPA)
scheme.

Par. Set Classical Quantum
Goal Min. Cl. Med. Cl. Max. Cl. Goal Min. Cl. Med. Cl. Max. Cl.

CCA,Toy64 84 85 88 90 71 78 80 83
CPA,Toy64 82 91 94 97 69 84 86 89

CCA, Lite96 116 123 126 129 103 113 115 118
CPA, Lite96 114 127 130 133 101 116 119 122

CCA,Std128 148 149 162 176 135 136 149 161
CPA, Std128 145 171 176 182 133 156 161 166

CCA,Med160 180 195 200 205 167 178 183 187
CPA,Med160 178 201 206 211 165 184 189 194

CCA,Hi192 212 233 238 243 198 214 218 222
CPA,Hi192 210 235 239 244 196 215 219 224

CCA,Super256 277 323 328 333 263 296 300 305
CPA, Super256 275 327 330 333 261 299 302 305

Security of PLWEf against primal ‘embedding attack’

A primal embedding attack will be described in full details in subsubsection 6.4.2. There, we explain
a generic LWE attack followed by an attack optimised for MP-LWE. Here, we apply the generic
attack based on ‘analysis approach 2’ to PLWEf rather than MP-LWE (the optimised attack can only
be applied to MP-LWE taking advantage of sparse MP-LWE corresponding matrices). In Table 6.7,
the classical ‘goal’ column gives λPLWE,C,goal from (6.62) (for Titanium-CPA) and from (6.69) (for
Titanium-CCA).

The classical ‘Min. At.’, ‘Med. At.’ and ‘Max. At.’ columns give the corresponding estimated
PLWE attack log. time complexities λC,emb,2,PLWE,mmin , λC,emb,2,PLWE,mmed , and λC,emb,2,PLWE,mmax for
PLWE with dimensions mmin,mmed,mmax corresponding to the minimum, middle, and maximum
degrees of polynomials in our family F1 (see Sec. 6.3.8). Similarly, the quantum ‘goal’ column gives
λPLWE,Q,goal from (6.66) (for Titanium-CPA) and from (6.73) (for Titanium-CCA), assuming MD = 240
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(this corresponds to the largest quantum security goals for MD in the range 240 to 296). The quantum
‘Min. At.’, ‘Med. At.’ and ‘Max. At.’ columns give the corresponding estimated quantum PLWE
log. time complexities λQ,emb,2,PLWE,mmin , λQ,emb,2,PLWE,mmed , and λQ,emb,2,PLWE,mmax for PLWE with
dimensions mmin, mmed, and mmax computed based on our primal embedding attack.

Table 6.7: The generic PLWE primal embedding (analysis approach 2) key recovery lattice-based attack
log expected classical (resp. quantum) complexity estimates for all our parameter sets. Here, attack
complexity estimates on scheme parameter sets are denoted by ‘Min. At.’, ‘Med. At.’ and ‘Max.
At.’ corresponding to claimed classical/quantum PLWE complexities with respect to with dimensions
mmin,mmed,mmax.

Par. Set Classical Quantum
Goal Min. At. Med. At. Max. At. Goal Min. At. Med. At. Max. At.

CCA,Toy64 84 89 92 94 71 81 83 86
CPA,Toy64 82 96 99 102 69 87 89 92

CCA, Lite96 116 129 132 134 103 117 120 122
CPA, Lite96 114 133 136 140 101 121 124 127

CCA, Std128 148 155 169 183 135 141 154 166
CPA,Std128 145 178 184 190 133 162 167 172

CCA,Med160 180 202 208 213 167 184 188 193
CPA,Med160 178 209 215 220 165 190 195 200

CCA,Hi192 212 242 247 252 198 220 224 229
CPA,Hi192 210 243 248 253 196 221 225 230

CCA, Super256 277 334 339 344 263 303 308 312
CPA,Super256 275 334 339 344 261 303 308 312

We remark that a comparison of Tables 6.6-6.7 shows that our claimed security levels based on
the dual attack are slightly lower than the corresponding estimated log. time complexities those of
the primal embedding attack.

Security of PLWEf against algebraic attacks

Security of the LWE problem (and also PLWE) against algebraic attacks [AG11, ACF+14] is not very
well understood. The basic Arora-Ge attack against PLWE in dimension m ≥ m′ ≥ d+ k with noise
coordinates restricted to [−αq, αq] (this is conservative, as Gaussian noise with s.d. αq will not satisfy
this with significant probability) constructs a linearised system of t ·m equations (one equation per
LWE sample) over Zq in m2αq+1 variables (originally monomials consisting of products of powers of
the LWE secret coordinates in the non-linear algebraic equations). For security level λQ against this
attack (taking into account Grover-based ‘square-root’ search acceleration), we can require the number
of solutions to this system to be ≥ 22λQ , giving the condition

qm
2αq+1−t·m ≥ 22λQ . (6.38)

This condition is easy to satisfy even for very small αq (e.g. even with a very large t = (m), the left
hand side of (6.38) is ≥ qm

2αq−1 ≥ qm for αq ≥ 1). However, the basic AG attack can be improved
with Gröbner basis techniques[ACF+14] to require less equations at the cost of more computation to
generate more equations. More investigation of the Gröbner based attack cost in [ACF+14] is needed.
For our parameter estimates, we assume the following condition for security against algebraic attacks,
which is consistent with similar choices in [ADPS16, BCD+16]:

αq ≥ 1.4. (6.39)
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6.3.8 Summary of parameter selection procedure

In this Section, we summarize our parameter selection procedure based on the security analysis in
previous sections.

Definition of Titanium-CPA and Titanium-CCA attack circuit complexity level

We say that an IND-CPA attack A on Titanium-CPA has a quantum (resp. classical) circuit gate
complexity 2λQ (resp. 2λC ), if A has running time 1 ≤ TQ ≤ 2λQ (measured in number of elementary
quantum, resp. classical gate operations) and advantage εQ such that TQ/εQ = 2λQ (resp. 2λC ), and
we call λQ and λC the log. complexity levels. Here, we count the cost of computing a response to
each query of A to the random oracle XOF as TRO classical gates (resp. TQRO quantum gates). In the
quantum (classical) case, we count the depth of the circuit for answering random oracle queries as
DQRO quantum (DRO classical) gates.

Similarly, we say that IND-CCA attack A on Titanium-CCA has a quantum (resp. classical) com-
plexity λQ (resp. λC), if A has running time 1 ≤ TQ ≤ 2λQ measured in number of quantum, (resp.
classical gates) and advantage εQ such that TQ/εQ = 2λQ (resp. 2λC ). In this case, similarly to the
Titanium-CPA case, we count the cost of computing a response to each query of A to the random
oracles XOF,G,H as taking TRO classical gates (resp. TQRO quantum gates). In the quantum case, we
count the depth of the circuit for answering random oracle queries as DRO quantum gates.

Choice of random oracle evaluation cost constants

Concretely, since our scheme instantiates the random oracles XOF,G,H using the SHA-3 SHAKE
construction, we set TRO ≈ 215 classical gates as a conservative estimate for the size of the circuit
evaluating the random oracles, based on the 40k-50k gate complexity of fast classical hardware im-
plementations of SHA-3 [SGH+13]. Similarly, we set TQRO = 219 and DQRO = 213 quantum gates
as a conservative estimate for the size and depth, respectively, of the quantum circuit evaluating the
random oracles, based on the optimised quantum SHA-3 implementation of [AMG+16].

Parameter sets and goal security levels

As specified in Chapter 2, to illustrate the efficiency-security scalability of Titanium, we generated
six Titanium parameter sets called Toy64, Lite96, Std128, Med160, Hi192, Super256, intended to cor-
respond to the brute force key search security level of a symmetric key cipher with key bit lengths
64, 96, 128, 160, 192, 256, respectively. In particular, the parameter sets Std128, Hi192, Super256 sat-
isfy the security categories 1,3,5 specified by NIST in the call for proposals [NISa] corresponding to
security of AES128, AES192 and AES256 against brute force key search attack.

The classical attack gate complexity level goal for the six parameter sets / symmetric-key search
security levels, is denoted by λC with

λC ∈ {79, 111, 145, 175, 207, 272} (6.40)
for parameter sets Toy64, Lite96, Std128, Med160, Hi192, Super256 respectively, corresponding
to ≈ 215 gates cost for each symmetric-key cipher evaluation, consistent with the specified
AES128/AES192/AES256 key search complexity levels specified in [NISa].

Similarly, the quantum attack gate complexity level goal for the six parameter sets / symmetric-key
search security levels, is denoted by λQ with

λQ ∈ {106, 140, 170, 202, 233, 298} − log2(MD), (6.41)
for parameter sets Toy64, Lite96, Std128, Med160, Hi192, Super256 respectively, intended to estimate
the circuit gate complexity of quantum key search attacks under the assumption that the quantum
attack circuit depth is restricted to MD (the parameter MD denotes MAXDEPTH in [NISa]). These
goals are consistent with AES128/AES192/AES256 quantum key search complexity levels specified
in [NISa].
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Approach: parameter set claimed security levels - classical attacks

In accordance with our aim of basing the security of Titanium on the security of the hardest PLWEf
problem over the large family F1(n,m′, d′) of polynomial rings f , we computed our specified ‘claimed
classical security levels’ for Titanium-CPA and Titanium-CCA as proven lower bounds on classical
attack complexity on those schemes, based on our security proofs and the minimum complexity, over
the choice of f from F1(n,m′, d′) (corresponding to the lowest degree m′ of polynomials in the family)
of the best known attack on PLWEf (the dual lattice attack described in the previous Section), and
assuming the random oracle model for the underlying hash functions XOF,G,H.

• Conservative PLWEf Attack Estimates: Our parameter selection procedure is conservative, as
the best attacks we know of on our Titanium schemes have a somewhat higher complexity than
the above lower bounds implied by our security proofs and the best known attacks on PLWEf
(see following Section), even if our conservative ‘core SVP hardness’ and ‘neglecting memory
access gate cost’ assumptions are taken into account. Moreover, Since the complexity of best
known lattice attacks on PLWEf increases monotonically with the degree m of the polynomial f
in the degree interval [m′, n] of polynomials in F1, the hardness of PLWEf for f of degree higher
than m′ potentially gives our schemes an extra security margin (assuming there are hard choices
of f of degree larger than m′). To quantify this lattice attack security margin, we computed the
log complexity levels λPLWE,C,mmin , λPLWE,C,mmid , λPLWE,C,mmax of the best known lattice attacks
on PLWEf with f of minimum degree m′, ‘middle’ degree mmid = (m′ + n)/2, and maximum
degree n, for the family F1(n,m′, d′) respectively (we explain our choice of n, m′, and d′ below).

• Safety Margins: As a safety margin against future advances in lattice cryptanalysis, in addition
to requiring that λPLWE,C,mmin exceeds the desired log complexity goal λPLWE,C,goal (needed to
achieve the desired lower bound λC for the scheme attack log complexity level), we imposed
the additional constraint on our parameter selection that the middle PLWE complexity level
λPLWE,C,mmid exceeds the desired log complexity goal λPLWE,C,goal by at least 5%. This implies
that our scheme has at least 5% log complexity safety margin, as long as the ‘top half’ subfamily
of F1 (i.e the polynomials in F1 of degree ≥ mmid = (n + m′)/2) contains a polynomial for
which the complexity of PLWEf matches the best known attacks. The log complexity levels
λPLWE,C,mmin , λPLWE,C,mmid , λPLWE,C,mmax and achieved safety margins with respect to the desired
log complexity goal λPLWE,C,goal for each parameter set are tabulated in Table 6.6.

• Decryption Error Probability pe: Both our Titanium-CPA and Titanium-CCA schemes have a
non-zero decryption failure probability pe, over the choice of randomness in key generation and
randomness in encryption (see Chapter 7 for proven upper bounds on this probability for our
parameter sets). However, our choice of pe is different in Titanium-CPA and Titanium-CCA.
For Titanium-CCA, the choice of pe is dictated by the IND-CCA security requirement. It is
well known [HNP+03] that the decryption algorithm of lattice-based encryption schemes tends
to be vulnerable to decryption failure attacks which extract information on the secret key by
querying the decryption oracle on a set of ciphertexts that are likely to cause a decryption failure.
Indeed, our Titanium-CCA scheme also potentially suffers from such attacks if parameters are
set such that pe is non-negligible. To thwart such decryption-failure CCA attacks, we choose
our Titanium-CCA parameters to make pe cryptographically small (we have pe < 2−85 for all
our parameter sets; the exact goal for pe is given in Tables 2.12–2.13, so that it is infeasible
for the attacker to find an encryption randomness that will cause a decryption failure for the
corresponding ciphertext encrypted with the encryption randomness.
For Titanium-CPA, pe has functional implications on applications of the encryption scheme (e.g.
in key exchange, which would require a protocol restart in the rare case of a decryption fail-
ure), but pe has no security implications in the IND-CPA attack model. Consequently, for
Titanium-CPA, we chose an error probability that is extremely rare such that it is likely to



CHAPTER 6. SECURITY ANALYSIS 79

have a negligible performance effect in practice (< 2−30, i.e. less than 1 in a Billion), but
not negligible in the cryptographic security sense (a similar approach was taken in the design
of other IND-CPA lattice-based encryption schemes designed for authenticated key exchange
protocols, such as Frodo [BCD+16]). By allowing an extremely rare but non-negligible pe for
Titanium-CPA, we are able to improve the efficiency of our parameter sets for Titanium-CPA over
those for Titanium-CCA at comparable security levels.

A summary of the claimed classical security level bounds λQ,CCA,Cl and λQ,CPA,Cl for Titanium-CCA
and Titanium-CPA based on the above approach are given in (6.61) and (6.51), respectively, and their
computed values for each parameter set is shown in the ‘Min. Cl.’ columns of Table 2.11 in Chapter 2,
along with (for comparison) the scheme security goal λQ from (6.41). Computed values and comparison
with corresponding goals of PLWE security levels are given in Table 6.6, and other terms in the security
bounds for the parameter sets are given in Tables 2.12–2.13 in Chapter 2 and Table 6.8.

A summary of the claimed classical security level bounds λC,CCA,Cl and λC,CPA,Cl for Titanium-CCA
and Titanium-CPA based on the above approach are given in (6.57) and (6.48), respectively, and their
computed values for each parameter set is shown in the ‘Min. Cl.’ columns of Table 2.11 in Chapter 2,
along with (for comparison) the scheme security goal λC from (6.40). Computed values and comparison
with corresponding goals of PLWE security levels are given in Table 6.6, and other terms in the security
bounds for the parameter sets are given in Tables 2.12–2.13 in Chapter 2 and Table 6.8.

Approach: parameter set claimed security levels - quantum attacks

Unlike the classical security proofs, existing security proofs for the IND-CCA security of the Fujisaki-
Okamoto transform and its variants in the quantum random oracle model [HHK17, TU16] incur
a significant reduction cost. The tightness of these quantum security proofs is currently not well
understood. Some of the larger terms in the quantum reduction cost (compared to the classical
reduction) are unavoidable and due to ‘Grover-type’ brute-force quantum search attacks against the
scheme (see below), but other reduction costs seem to be an artifice of existing proof techniques, and
we do not know of quantum attacks that exploit those costs.

Instead of relying on (probably) non-tight quantum security reductions, our estimated claimed
quantum attack complexity is based on the additional (currently heuristic and unproven) assump-
tion. Our assumption is that the classical security proof bounds of Lemma 6.3.1, Lemma 6.3.3 and
Lemma 6.3.4 also apply in the quantum attack setting (a similar assumption is made in the parame-
ter selection of [BDK+17]), with the following modification to account for the success probability of
‘Grover-type’ brute force quantum search attacks. Each probability term of the form pC = Q · δ in
the classical security reduction bound, where here, Q denotes the number of queries QXOF, QG, QH
to XOF, G or H, respectively, and δ denotes a probability (i.e. either δ = 1/2256, representing the
event of querying a random oracle at some ‘bad’ point, or δ = pe, representing the event of querying
the random oracle G of Titanium-CCA at a message that maps to randomness causing a decryption
failure), is replaced by a term of the form

pQ = 8 · (Q/QD) · (QD + 1)2 · δ = (1 + 1/QD) ·Q · (QD + 1) · δ ≈ Q ·QD · δ (6.42)

in the corresponding quantum bound, where

QD = MD′/DQRO, (6.43)

MD′ = min(MD, 2λQ), (6.44)

is the maximal gate depth allowed for attacks of total gate complexity ≤ 2λQ and gate depth ≤ MD,
and DQRO is the quantum circuit depth of the hash function instantiating the random oracles (i.e.
SHA-3 in SHAKE mode). This assumption requires further study, and we leave this and a possible
proof for future work.
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The heuristic assumption above is motivated by (an adaptation of) ‘Grover-type’ lower bounds
on the query complexity of the quantum ‘Generic Search Problem’ [HHK17, HRS16]. In particular,
by Lemma 6.2.3, if F denotes a function maps each x ∈ X (where X denotes the domain of F ) to
F (x), where F (x) ∈ {0, 1} is independently chosen for each x as a Bernoulli random variable with
Pr[F (x) = 1] ≤ δ, where F (x) = 1 represents a ‘bad’ x event, then any quantum circuit making Q
queries to a quantum circuit implementing F , will return a ‘bad’ x such that F (x) = 1 with probability
at most pQ ≤ 8·(Q+1)2·δ. In our setting, to obtain (6.42), we modified this estimate for p to account for
the MD quantum circuit depth restriction. Namely, we assume that the quantum circuit C maximizing
pQ under the MD quantum circuit depth restriction (where evaluating the quantum oracle for each
query is assumed to cost DQRO gates of circuit depth), runs in parallel Q/QD sequential circuits C ′i
(i = 1, . . . , Q/QD) each of depth MD making QD = MD/DQRO oracle queries (as QD is the maximal
number of sequential queries C ′ can make under the MD restriction), and C returns a ‘bad’ x. By
Lemma 6.2.3 each run of C ′i succeeds to find a ‘bad’ x with probability at most 8 · (QD + 1)2 · δ, and
hence, by the union bound over the Q/QD circuits C ′i, C succeeds to find a ‘bad’ x with probability
at most pQ ≤ (Q/QD) · 8 · (QD + 1)2 · δ, which gives our assumed estimate in (6.42).

We note that for the random oracles XOF,G,H, the quantum brute-force query complexity quantum
term pQ corresponds approximately to an estimate for the success probability of the best known Grover
brute force attacks involving Q queries to the quantum random oracle, under the restriction of at most
MD quantum circuit depth, as summarized in the following Section.

Based on the above assumption, we compute the claimed quantum security estimates of our
parameter sets similarly to the classical case, except that we evaluate the claimed security under
three possible assumptions on the attacker’s maximum allowed quantum circuit depth MD, namely
MD ∈ {240, 264, 296}, suggested in [NISa] as examples of moderate, large and extreme (potentially
infeasible) estimates, respectively, on the power of practical quantum architectures.

We remark that, in line with our conservative assumptions for the complexity of lattice attacks,
we do not actually make the MD depth restriction in estimating the quantum complexity of the best
known attacks against the PLWEf problem; we allow unrestricted depth quantum circuits for attacking
PLWEf , though we do make the MD restriction for estimating the complexity of Grover attacks on
the scheme (see following section). Based on the BKZ attack with a quantum SVP sieve subroutine
as analysed in the previous section, we compute the quantum complexities λPLWE,Q,mmin , λPLWE,Q,mmid ,
λPLWE,Q,mmax of the best known lattice attacks on PLWEf with f of minimum degree m′, ‘middle’
degree mmid = (m′ + n)/2, and maximum degree n, for the family F1(n,m′, d′) respectively.

For our safety margin against future advances in lattice cryptanalysis, in addition to requiring
that λPLWE,Q,mmin exceeds the desired quantum log complexity goal λPLWE,Q,goal (needed to achieve
the desired lower bound λQ for the scheme attack log complexity level), we imposed the additional
constraint on our parameter selection that the middle PLWE complexity level λPLWE,Q,mmid exceeds the
desired log complexity goal λPLWE,Q,goal by at least 10%. We chose a larger safety margin for quantum
attacks than for classical attacks because the quantum complexity of lattice problems appears less
well understood than the classical complexity.

We also remark that, for the usages of the XOF as a pseudorandom generator with secret seeds
(i.e. expanding seedkg to (seedsk, seedpk), seedsk to ŝ and (e1, . . . , et), and seedr to (r1, . . . , rt)), the
security can be easily proven with respect to the pseudorandomness of XOF in the standard model,
and in that case, the terms pQ corresponding to XOF queries can be replaced by the advantage of
the best known quantum distinguishing attack on XOF as a pseudorandom generator. Our heuristic
assumption then corresponds to assuming that the best quantum distinguishing attack is the Grover
brute-force search for the seed under the MD quantum circuit depth restriction.

A summary of the claimed quantum security level bounds λQ,CCA,Cl and λQ,CPA,Cl for Titanium-CCA
and Titanium-CPA based on the above approach are given in (6.61) and (6.51), respectively, and their
computed values for each parameter set is shown in the ‘Min. Cl.’ columns of Table 2.11 in Chapter 2,
along with (for comparison) the scheme security goal λQ from (6.41). Computed values and comparison
with corresponding goals of PLWE security levels are given in Table 6.6, and other terms in the security
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bounds for the parameter sets are given in Table 2.13 in Chapter 2 and Table 6.8.

Composing security proofs

As summarized above, we compose the security proof conditions from previous sections to derive
conditions on the classical PLWE attack log circuit complexity λC,PLWE and on parameters ∆LHL and
pe that are needed to achieve a lower bound λC,LB ≥ λC on the log circuit complexity of classical
attacks against Titanium-CPA and Titanium-CCA. We then apply our heuristic assumption explained
above to modify the classical lower bounds and obtain our claimed quantum complexity estimates.

Classical attack complexity lower bounds: Titanium-CPA

By composing the reductions in Lemma 6.3.1, Lemma 6.3.2 and Corollary 6.3.1, we conclude that any
(T, ε) attack A against IND-CPA of Titanium-CPA making QXOF queries to the random oracle XOF
implies a (T ′, ε′) attack B against PLWEf

q,t,χd′c
for any f ∈ F1(n,m′, d′) with

T ≈ T ′ and ε ≤ 2 · (ε′ + ∆LHL) + 3 ·QXOF/2256. (6.45)

From (6.45), we obtain the following lower bound on the classical circuit complexity security level
of Titanium-CPA:

2−λC,CPA,Cl def= ε

T
≤ 2 · ε

′

T ′
+ 2 · ∆LHL

T
+ 3 ·QXOF

T · 2256 . (6.46)

To use (6.46) for our classical claimed security level estimates, we use the additional fact that

T ≥ QXOF · TRO, (6.47)

where TRO is the total number of gates in a circuit for evaluating the random oracle XOF, so the third
term in (6.46) is bounded as 3·QXOF

T ·2256 ≤ 3
TRO·2256 . We also upper bound the first two terms in (6.46) as

follows. The first term is upper bounded as 6 · ε′/T ′ = 6 ·2−λPLWE,C , where 2λPLWE,C is our conservative2

circuit complexity (time to advantage ratio) lower bound estimate of the best known classical attack
against PLWEf

q,t,χd
′
c
for any f ∈ F1(n,m′, d′) (see previous Section). The second term is upper bounded

as 6 ·∆LHL/T
′ ≤ 6 ·∆LHL. This finally gives our classical claimed (and proven lower bound) security

level estimate for Titanium-CPA:

2−λC,CPA,Cl ≤ 2 · 2−λPLWE,C + 2 ·∆LHL + 3
TRO · 2256 . (6.48)

Quantum claimed attack complexity: Titanium-CPA

Applying our heuristic approach described above for deriving our claimed quantum attack complexity
estimate from the classical lower bound (6.46), we get the following claimed quantum circuit complexity
of Titanium-CPA:

2−λQ,CPA,Cl def= ε

T
≤ 2 · ε

′

T ′
+ 2 · ∆LHL

T
+ 3 · 8 ·QXOF ·QD

T · 2256 , (6.49)

where QD is given by (6.43). To use (6.49) for our quantum claimed security level estimates, we use
the additional fact that

T ≥ QXOF · TQRO, (6.50)

where TQRO is the total number of gates in a quantum circuit for evaluating the random oracle XOF,
so the third term in (6.49) is bounded as 3·8·QXOF

T ·2256 ≤ 24·QD
TQRO·2256 . We also upper bound the first two terms

on the right-hand side of (6.49) as follows. The first term is upper bounded as 2 · ε′/T ′ = 2 · 2−λPLWE,Q ,
2We recall that we conservatively lower bound the circuit complexity of this attack by the time plus memory of the

best known attack on a random access machine.
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where 2λPLWE,Q is our conservative circuit complexity (time to advantage ratio) lower bound estimate
of the best known quantum attack against PLWEf

q,t,χd′c
for any f ∈ F1(n,m′, d′) (see previous Section).

The second term is upper bounded as 2 ·∆LHL/T
′ ≤ 2 ·∆LHL. This finally gives our classical claimed

(and proven lower bound) security level estimate for Titanium-CPA:

2−λQ,CPA,Cl ≤ 2 · 2−λPLWE,Q + 2 ·∆LHL + 24 ·QD
TQRO · 2256 . (6.51)

Classical attack complexity lower bounds: Titanium-CCA.

By composing the reductions in Lemma 6.3.3 and Lemma 6.3.4, we conclude that any (T ′′, ε′′) attack
A′′ against IND-CCA of Titanium-CCA making QXOF, QG, QH queries to XOF,G,H respectively, implies
a (T, ε) attack A against IND-CPA of Titanium-CPA with

T ′′ ≈ T and ε′′ ≤ 3 · ε+ QXOF + 2 ·QG +QH + 1
2256 +QG · pe. (6.52)

Composing (6.52) with (6.45) we get that any (T, ε) attack A against IND-CPA of Titanium-CPA making
QXOF queries to the random oracle XOF implies a (T (3), ε(3)) attack B(3) against PLWEf

q,t,χd′c
for any

f ∈ F1(n,m′, d′) with

T ≈ T (3) and ε ≤ 6 · (ε(3) + ∆LHL) + 10 ·QXOF + 2 ·QG +QH + 1
2256 +QG · pe. (6.53)

From (6.53), we obtain the following lower bound on the classical circuit complexity security level
of Titanium-CCA:

2−λC,CCA,Cl def= ε

T
≤ 6 · ε

(3)

T (3) + 6 · ∆LHL
T (3) + (QG/T ) · pe + 10 · (QXOF +QG +QH) + 1

T · 2256 . (6.54)

To use (6.54) for our classical claimed security level estimates, we use the additional fact that

T ≥ (QXOF +QG +QH) · TRO, (6.55)

where TRO is the total number of gates in a circuit for evaluating each of the random oracles XOF,G,H,
and since may assume QXOF + ·QG +QH ≥ 1 (since otherwise the attacker cannot query the random
oracles and has advantage zero), we conclude that the fourth term in (6.54) is bounded as

10 · (QXOF +QG +QH) + 1
T · 2256 ≤ 20

TRO · 2256 . (6.56)

We also upper bound the first three terms in (6.54) as follows. The third term in (6.54) is upper
bounded as (QG/T )·pe ≤ pe/TRO using (6.55). The first term is upper bounded as 6· ε(3)

T (3) = 6·2−λPLWE,C ,
where 2λPLWE,C is our conservative3 circuit complexity (time to advantage ratio) lower bound estimate
of the best known classical attack against PLWEf

q,t,χd′c
for any f ∈ F1(n,m′, d′) (see previous Section).

The second term is upper bounded as 6 · ∆LHL
T (3) ≤ 6 ·∆LHL. This finally gives our classical claimed (and

proven lower bound) security level estimate for Titanium-CCA:

2−λC,CCA,Cl ≤ 6 · 2−λPLWE,C + 6 ·∆LHL + pe
TRO

+ 20
TRO · 2256 . (6.57)

3We recall that we conservatively lower bound the circuit complexity of this attack by the time plus memory of the
best known attack on a random access machine.
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Quantum claimed attack complexity: Titanium-CCA

Applying our heuristic approach described above for deriving our claimed quantum attack complexity
estimate from the classical lower bound (6.54), we get the following claimed quantum circuit complexity
of Titanium-CCA:

2−λC,CCA,Cl def= ε

T
≤ 6· ε

(3)

T (3) +6·∆LHL
T (3) +(8·QG ·QD/T )·pe+ 10 · 8 ·QD · (QXOF +QG +QH) + 1

T · 2256 , (6.58)

where QD is given by (6.43). To use (6.58) for our quantum claimed security level estimates, we use
the additional fact that

T ≥ (QXOF +QG +QH) · TQRO, (6.59)

where TQRO is the total number of gates in a quantum circuit for evaluating the random oracles
XOF,G,H, and since may assume QXOF + ·QG + QH ≥ 1 (since otherwise the attacker cannot query
the random oracles and has advantage zero), we conclude that the fourth term in (6.58) is bounded
as

10 · 8 ·QD · (QXOF +QG +QH) + 1
T · 2256 ≤ 160 ·QD

TQRO · 2256 . (6.60)

We also upper bound the first three terms in (6.58) as follows. The third term in (6.58) is
upper bounded as (8 · QG · QD/T ) · pe ≤ 8·QD

TQRO
· pe using (6.59). The first term is upper bounded

as 6 · ε(3)/T (3) = 6 · 2−λPLWE,Q , where 2λPLWE,Q is our conservative lower bound estimate of the best
known quantum attack against PLWEf

q,t,χd′c
for any f ∈ F1(n,m′, d′) (see previous Section). The

second term is upper bounded as 6 · ∆LHL
T (3) ≤ 6 ·∆LHL. This finally gives our quantum claimed security

level estimate for Titanium-CCA:

2−λQ,CCA,Cl ≤ 6 · 2−λPLWE,Q + 6 ·∆LHL + 8 ·QD
TQRO

· pe + 160 ·QD
TQRO · 2256 . (6.61)

Titanium-CPA parameter goals: classical attacks

To satisfy our 2λC classical attack complexity lower bound claims for Titanium-CPA, we set parameters
such that the three terms on the right-hand side of (6.48) are each at most 1

3 · 2
−λC , i.e. such that the

following conditions hold:
λPLWE,C ≥ λC + log2(6) def= λPLWE,C,goal, (6.62)

log2(∆−1
LHL) ≥ λC + log2(6) def= λLHL,C,goal, (6.63)

3
TRO · 2256 ≤

1
3 · 2

−λC , (6.64)

and satisfying the decryption error probability functionality requirement:

log2(p−1
e ) ≥ 30. (6.65)

Titanium-CPA parameter goals: quantum attacks

To satisfy our 2λQ quantum attack complexity claims for Titanium-CPA, we also set parameters such
that the three terms on the right-hand side of (6.51) are each at most 1

3 · 2
−λQ , i.e. such that the

following conditions hold:
λPLWE,Q ≥ λQ + log2(6) def= λPLWE,Q,goal, (6.66)

log2(∆−1
LHL) ≥ λQ + log2(6) def= λLHL,Q,goal, (6.67)

24 ·QD
TQRO · 2256 ≤

1
3 · 2

−λQ . (6.68)
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If the goals (6.62) to (6.68) are satisfied, then (6.48) (resp. (6.51)) implies that any classical (resp.
quantum) attack on Titanium-CPA will have circuit complexity (advantage to time ratio) less than
2−λC (resp. 2−λQ), as required to achieve a λC (resp. λQ) attack complexity level. We achieve all
these goals for all our parameter sets except the Super256 set. For the Super256, the circuit complexity
goal corresponds to ‘256-bit’ AES key search security. This is not achieved by our lower bound because
goal (6.64) for classical attacks (resp. (6.68) for quantum attacks) is not satisfied, but the other goals
are still satisfied. Informally, this is because we are using several 256-bit symmetric key primitives,
so our provable security level for the scheme is always slightly lower than 256-bit key search security.
However, we do not view this as a problem, since it is only a very small deviation from the goal
that is (at least partially) due to looseness of our bounds, and to the use of several primitives in our
scheme (a similar phenomenon occurs when evaluating the security of a symmetric key encryption
scheme based on several 256-bit primitives; the security of the encryption scheme will generally be
slightly worse than that of the primitives). Since all the other three security goals (related to PLWE,
LHL and decryption errors) are satisfied, this issue with the Super256 parameter set could have been
circumvented if required by substituting SHA-3-384 in place of SHA-3-256. However, we do not believe
the slightly lower claimed security level for the Super256 parameter set warrants the overheads of this
change.

Titanium-CCA parameter goals: classical attacks

To satisfy our 2λC classical attack complexity lower bound claims for Titanium-CCA, we set parameters
such that the four terms on the right-hand side of (6.57) are each at most 1

4 · 2
−λC , i.e. such that the

following conditions hold:
λPLWE,C ≥ λC + log2(24) def= λPLWE,C,goal, (6.69)

log2(∆−1
LHL) ≥ λC + log2(24) def= λLHL,goal, (6.70)

log2(p−1
e ) ≥ λC − (log2(TRO)− 2), (6.71)

and
20

TRO · 2256 ≤
1
4 · 2

−λC . (6.72)

Titanium-CCA parameter goals: quantum attacks

To satisfy our 2λQ quantum attack complexity claims for Titanium-CCA, we also set parameters such
that the four terms on the right-hand side of (6.61) are each at most 1

4 · 2
−λQ , i.e. such that the

following conditions hold:
λPLWE,Q ≥ λQ + log2(24) def= λPLWE,Q,goal, (6.73)

log2(∆−1
LHL) ≥ λQ + log2(24) def= λLHL,Q,goal, (6.74)

log2(p−1
e ) ≥ λQ − (log2(TQRO)− 5− log2(QD)), (6.75)

and
160 ·QD
TQRO · 2256 ≤

1
4 · 2

−λQ . (6.76)

If the goals (6.62) to (6.68) are satisfied, then (6.48) (resp. (6.51)) implies that any classical (resp.
quantum) attack on Titanium-CCA will have circuit complexity (advantage to time ratio) less than
2−λC (resp. 2−λQ), as required to achieve a λC (resp. λQ) attack complexity level. We achieve all
these goals for all our parameter sets except the Super256 set. The small deviation from the goal for
the Super256 set is for the same reasons as for Titanium-CPA (see discussion above), and we also do
not view it as a problem for the same reasons.
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Table 6.8: LHL log inverse statistical distance (log2(∆−1
LHL)) goal and achieved values for each scheme

parameter set. ‘Goal’ value is λLHL,C,goal from (6.70), and achieved value ‘Ach.’ is the value on the
left-hand side of (6.9). CCA (resp. CPA) rows refer to Titanium-CCA (resp. Titanium-CPA) scheme.

Par. Set Goal Ach.

CCA,Toy64 84 96
CPA,Toy64 82 95

CCA, Lite96 116 132
CPA, Lite96 114 131

CCA,Std128 148 166
CPA,Std128 146 165

CCA,Med160 180 202
CPA,Med160 178 201

CCA,Hi192 212 245
CPA,Hi192 210 249

CCA,Super256 277 323
CPA,Super256 275 327

Parameter selection procedure

We summarize the main aspects of our parameter selection procedure based on the goals and security
evaluation above:

• Fix p = 2 and d = 256 to support 256 bit plaintexts.

• Fix n, and k+ 1 < n at multiples of 256 (or slightly smaller), integer t and η satisfying algebraic
attack constraint in Eq. (6.39) (revised if conditions below cannot be satisfied).

• Determine NTT dimensions d1, d2, d3 as a multiple of 256 (to support our Cooley-Tukey fast
NTT implementation, see Chap. 3):

– Let β1 = d(d+ k)/256e and d1 = β1 · 256.
– Let β2 = d(n+ k)/256e and d2 = β2 · 256.
– Let β3 = d(n+ d+ k − 1)/256e and d3 = β3 · 256.

• Pick the smallest q and a bLHL satisfying (for cmp = 0):

– NTT constraint: q = 1 (mod l · 256), where l = lcm(β1, β2, β3).
– Leftover hash Lemma (LHL) constraint: t ≥ tLO + 0.01, where tLO is the LHL-based lower

bound on t in right-hand side of (6.4), where we set ∆LHL according to (6.70) above.
– pe constraint: Upper bound on decryption error probability pe bounded using right-hand

side of inequality (5.18) in Chapter 7 is less than the right-hand side of (6.71) above with
a 5% safety margin.

• Let b1 = bbLHLc − 1 and b2 = b1 + 1 and compute Ndec1 ∈ Z such that Eq. (6.5) is satisfied.

• Let λPLWE,C and λPLWE,Q quantum and classical attack log complexities against PLWE(f) for
f ∈ F1(n,m′, d′) of minimum degree m′ and maximum degree n, evaluated using (6.36).

• Choose ciphertext compression parameter cmp > 0 subject to pe constraint above.

• If λPLWE,C and λPLWE,Q satisfy the security goal (6.69), return parameter set. Else, restart with
new n, k, t values.
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6.4 Best known attacks: Titanium-CPA and Titanium-CCA
The previous Section contained analysis of our claimed security strength for Titanium-CPA and
Titanium-CCA, based on our security proof relating the security of those schemes to the hardness
of the PLWE problem, and the complexity of best known cryptanalytic attacks against the PLWE
problem. However, we believe those security claims are somewhat conservative, as we do not know
of attacks on our schemes with complexity that matches the claims. In this Section, we describe the
several attacks we know of on Titanium-CPA and Titanium-CCA, and analyse their complexity for our
Titanium parameter sets to identify our best known attacks.

6.4.1 Brute-force search attacks

Since our Titanium-CPA and Titanium-CCA schemes use a pseudorandom generator PRG based on the
XOF hash function to generate all needed randomness 256-bit seeds, a brute-force search attack can
be mounted against PRG, and is less costly than a brute-force attack on the MP-LWE problem. There
are several ways to mount this attack due to the several uses of PRG in our scheme. The least costly
is probably to invert the mapping g mapping seedkg ∈ byte32 to seedpk ∈ byte32 that is stored in the
public key. It is likely that this mapping has only a few preimages, one of which is the correct seedkg.

Classical attack

Given a run-time bound T , the attack can evaluate g on Q ≈ T/TRO input seeds x, and succeeds of
g(x) = seedpk. Here, we take TRO = 215 as the approximate classical gate cost for our SHA-3 based
instantiation of XOF (see previous Section). The attack success probability is p = Q/2256 = T

TRO·2256 ,
giving am estimated time to success probability cost

λbrf,C = TRO · 2256 = 2272. (6.77)

Quantum attack

The quantum attack runs Grover’s algorithm [Gro96] to find seedkg by making Q quantum queries to
a quantum implementation of the Boolean function f mapping x ∈ byte32 to 1 if g(x) = seedpk and
0 else. Given a total run-time T quantum gates and the maximum quantum circuit depth restriction
MD, the attack runs in parallel Q/QD Grover circuits C ′i (i = 1, . . . , Q/QD) each of depth MD, each
making QD = MD/DQRO oracle queries. Here, QD is the maximal number of sequential queries C ′ can
make under the MD depth restriction, since we assume, as in the previous Section, that each call to f
consumes a quantum circuit depth DQRO ≈ 213 gates. We also assume that each call to f consumes
a total number TQRO ≈ 219 of quantum gates (we neglect the cost of the Grover ‘diffusion’ operator).
The attack succeeds if one of the Grover circuits C ′i’s succeeds. Since each run of C ′i succeeds with
QD queries with probability ≈ Q2

D/2256 and the C ′i are independent, the overall success probability of
the attack over all Q/QD circuits C ′i is

1− (1−Q2
D/2256)Q/QD ≈ Q ·QD/2256 ≈ T ·MD

TQRO ·DQRO · 2256 ,

since Q ≈ T/TQRO. This gives the following estimated time to success probability cost for this attack:

λbrf,Q = DQRO · TQRO · 2256

MD = 2288

MD . (6.78)

The above attack cost corresponds to security level λbrf,Q ∈ {248, 224, 192} for MD ∈ {240, 264, 296}
correspond approximately to the NIST category 5 (AES256 key search) security levels [NISa]. We re-
mark that the Grover attack complexity estimate in 6.78 is lower by a factor ≈ 210 than the complexity
estimated in [NISa] for Grover attack complexity against AES-256 key search attacks. We believe this
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is due to the slightly higher circuit complexity and depth of AES-256 compared to SHA-3, and do not
view it as a significant issue, as it only slightly affects complexity estimates at the highest security
levels.

6.4.2 Lattice attacks on MP-LWE
Let n′ = n + d + k − 1. We recall that the public-key of Titanium-CPA and Titanium-CCA contains
a MP-LWEq,n,d′,t,χe,MP instance (ai, bi = ai �d+k s + ei)i≤t ∈ (Z<nq [x] × Zd+k

q [x])t in the secret key
s ∈ Z<n′q [x]. The attack consists in recovering s from (ai, bi)i≤t. Viewing MP-LWE as a special case of
an LWE instance in dimension n′ = n+ d+ k − 1, any of the known algorithms for the search (rather
than decision) variant of LWE could be used. In particular, we could use a search variant of the ‘dual
lattice’ attack (described in Sec. 6.3.7) applied to MP-LWE. One such variant that seems to give the
lowest complexity is based on Kannan’s embedding method [Kan87] to convert the LWE instance to
a ‘unique SVP’ instance, as analysed by Albrecht et al. in [AFG13] and Alkim et al. in [ADPS16].
We describe the attack below (we call it the ‘primal embedding attack’), and then we explain how to
optimise it to take advantage of the special Toeplitz structure of the MP-LWE matrix.

The generic primal ‘embedding attack’

Let t′ = t · d′. Similar to the ‘dual lattice’ attack, the ‘embedding attack’ [Kan87, AFG13] consists
in rewriting the MP-LWEq,n,d′,t,χe,MP instance (ai, bi = ai �d′ s+ ei)i≤t ∈ (Z<nq [x]× Zd′q [x])t as an LWE
instance (A,b) ∈ Zt′·n′q ×Zt′q over Zq, where b = A·s+e. Similar to the ‘dual lattice’ attack, we consider
using a subset of m∗ ≤ t′ = t · d′ samples (rows) of the instance to give the sublattice LWE instance
(A∗,b∗ = A∗ · s + e∗) ∈ Zm∗·n′q × Zm∗q , where the sublattice dimension m∗ is chosen by the attacker
to optimise the attack (see below). The attack constructs a (column) basis matrix Ā∗ ∈ Zm∗×m∗ for
the m∗-dimensional LWE (primal) lattice Lq(A∗) = {A∗ · u + q · Zm∗ : u ∈ Zn′q } and builds a basis
B ∈ Z(m∗+1)×(m∗+1) for an embedding lattice L(B) of the form

B =
(

Ā∗ b∗
0T c

)
,

where c is a small constant (whose value depends on the variant of the attack; see below). The
(m∗ + 1)-dimensional embedding lattice L(B) generated by the columns of B therefore contains an
embedding of the LWE primal lattice Lq(A∗) and the target LWE vector b∗. In particular, the embed-
ding lattice L(B) contains the short vector v = (e, c)T of norm ‖v‖ ≈ ‖e∗‖. By running a lattice basis
reduction algorithm on B, the attack aims at recovering v as one of the vectors in the reduced basis
(which immediately reveals the error e∗ and then the secret s). There are several analyses/variants
of the success condition (and complexity) of this attack in the literature. Here, we evaluate it using
two analysis approaches: analysis approach 1 [AFG13]) is more rigorous, while analysis approach
2 [ADPS16] is heuristic, based on the block-structure of the BKZ lattice reduction algorithm and the
Geometric Series Assumption for the output basis, and tends to give lower complexity estimates.

• Primal Attack Analysis Approach 1 [AFG13]: In this variant, the constant c in the basis B is set
to approximate the error vector norm: c ≈

√
m∗ · α · q. Based on the Gaussian heuristic, v is

typically the shortest vector in L(B), and the gap ratio γ between ‖v‖ and the second minimum
of the lattice is [AFG13]

γ ≈ 1√
4πe · qn′/m∗ε′ · α

(6.79)

with success probability

psuc > 1−
(
ε′ · exp

(
1− (ε′)2

2

))m∗
, (6.80)
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where ε′ > 1 is an adjustable constant4. The attack then runs an approximate SVP algorithm,
such as BKZ with block size b, to compute a short non-zero vector v′ in lattice L(B). Experi-
mental practical evidence shows [GN08] that typically, the vector v′ returned by BKZ will be
the shortest vector v as long as the gap γ exceeds θ · δ(b)m∗ , where δ(b) denotes the Hermite
Factor of BKZ with block size b (see Eq. (6.32) for some parameter θ that experimentally is
typically ≈ 0.3 for a high success probability. It follows that the ‘embedding attack’ is expected
to succeed with high probability if

f1(m∗, b) def= δ(b)m∗ · qn′/m∗ < 1
θ ·
√

4πe · ε′ · α
, (6.81)

and ε′ is chosen so that the right-hand side in (6.80) is > 0.5 (choosing ε′ = 1.4 suffices for the
latter). The quantity f1(m∗, b) on the left-hand side of (6.81) is identical to the BKZ output
vector length (6.31) in the ‘dual lattice’ attack described in the previous Sections (up to a
constant factor δ−1), except that here the LWE dimension is n′ instead of m ≤ n. For each
fixed b, it can be minimised with respect to m∗ similarly to (6.37) with the optimum choice of
m∗ = m∗opt:

m∗opt(b) ≈
√
n′ log q
log δ(b) and f1(m∗opt(b), b) ≈ 22

√
n′ log q log δ(b). (6.82)

The expected classical (resp. quantum) log time complexity of the primal embedding attack
(repeated until success), according to analysis approach 1, is

λC,emb,1 = log2(TCBKZ(b)/psuc) and λQ,emb,1 = log2(TQBKZ(b)/psuc) (6.83)

where the classical (resp. quantum) BKZ run-time TCBKZ(b) (resp. TQBKZ(b)) is estimated by
(6.33), at the smallest b such that success condition (6.85) is satisfied, for m∗ = m∗opt(b) chosen
at the optimum value (6.82) and ε′ is chosen to minimize the expected time complexity.

• Primal Attack Analysis Approach 2 [ADPS16]: In this primal attack variant [ADPS16], the
constant c in the basis B is set to 1. The attack runs the BKZ lattice reduction algorithm with
block size b on basis B, aiming to compute a short non-zero vector v′ in lattice L(B). Under
the Geometric Series Assumption (GSA) model [Sch03b], the BKZ output basis Gram-Schmidt
norms ‖b∗i ‖ (i = 0, . . . ,m∗) follow a geometric series; namely, since the lattice determinant is
with high probability det(L(B)) = det(Lq(A∗) = qm

∗−n, we have:

‖b∗i ‖ = δ(b)m∗−2i · q
m∗−n
m∗+1 , i = 0, . . . ,m∗. (6.84)

The heuristic in [ADPS16] is that if the attack fails to recover the short vector v from the BKZ
reduced basis, the projection πS(v) of v onto the vector space S spanned by the last b BKZ GSO
vectors b∗m∗+1−d, . . . ,b∗m∗+1 should behave as a random b-dimensional projection, with expected
norm ‖πS(v)‖ ≈

√
b · α · q. On the other hand, BKZ reduction ensures that ‖b∗m∗+1−d‖ is the

norm of the shortest non-zero vector in the projection of L(B) onto S. Therefore, under these
heuristics, if the condition ‖b∗m∗+1−d‖ >

√
b · α · q holds, a failure of the BKZ reduced basis to

contain v implies a contradiction, so we expect that the reduced basis will contain v when the
latter condition holds. Based on the GSA (6.84), this gives the heuristic attack success condition
(with high probability) if

f2(m∗, b) def= δ(b)2b−1−(m∗+1) · q1− n
m∗+1 >

√
b · α · q. (6.85)

4We note that we define αq as the standard deviation of the error coordinates, which is smaller by a factor 1/
√

2π
than the definition of αq in [AFG13].



CHAPTER 6. SECURITY ANALYSIS 89

For each fixed b, f2(m∗, b) can be minimized with respect to m∗, with the optimum choice of
m∗ = m∗opt being

m∗opt(b) + 1 ≈
√
n′ log q
log δ(b) and f2(m∗opt(b), b) ≈ δ(b)

2b−1−
√

n′ log q
log δ(b) · q1−

√
n′ log δ(b)

log q . (6.86)

The expected classical (resp. quantum) log time complexity of the primal embedding attack,
according to analysis approach 2 is,

λC,emb,2 = log2(TCBKZ(b)) and λQ,emb,2 = log2(TQBKZ(b)) (6.87)

where the classical (resp. quantum) BKZ run-time TCBKZ(b) (resp. TQBKZ(b)) is estimated by
(6.33), at the smallest b such that success condition (6.85) is satisfied, for m∗ = m∗opt(b) chosen
at the optimum value (6.86).

Optimised primal ‘embedding attack’ against MP-LWE

Our PLWEf -based complexity lower bounds on MP-LWE in the previous sections reduce from PLWE
with a secret polynomial of dimension ≤ n, but the above ‘generic’ embedding attack against MP-LWE
works on the MP-LWE secret in a larger dimension n′. Thus there is an apparent complexity gap of
d′ in the secret vector dimension between those lower and upper bounds. We now explain a simple
optimisation of the generic ‘embedding attack’ against MP-LWE that takes advantage of the ‘block
Toeplitz’ structure of the MP-LWE matrix to give a lower complexity attack on MP-LWE, closing some
of this apparent complexity gap.

Indeed, the i-th block of d′ rows of matrix A in the LWE representation of the MP-LWE instance has
the Toeplitz form Toepd′,n(ai), for i = 1, . . . , t. Due to the triangle of zero coefficients on the right-hand
side of Toepd′,n(ai), the top m∗/t rows of each Toepd′,n(ai) submatrix have non-zero coefficients only
in the leftmost n +m∗/t positions (equivalently, the polynomials xj · ai(x) are of degree < n +m∗/t
for j = 0, . . . ,m∗/t− 1). Therefore, if we choose in the ‘embedding attack’ on MP-LWE the m∗ rows
(samples) of (A,b) as our m∗ of our sublattice LWE instance to consist of the top m∗/t rows of each
of the Toepd′,n(ai) blocks, those LWE samples in fact constitute an LWE instance with respect to a
lower dimensional secret s∗ ∈ Zn+m∗/t

q consisting of the first n + m∗/t coefficients of the original n′-
dimensional MP-LWE secret s. Therefore, our sublattice LWE instance in the optimised attack has the
form (A∗,b∗ = A∗ · s∗ + e∗) ∈ Zm

∗×(n+m∗/t)
q × Zm∗q , where we also remove the last d′ −m∗/t columns

of A to form A∗.

• MP-LWE-optimised primal embedding attack; Analysis Approach 1 [AFG13]: The analysis of the
attack then proceeds identically to approach 1 for analysing the generic attack above, replacing
generic condition (6.81) with the MP-LWE optimised attack success condition

f1(m∗, b) def= q1/t · δ(b)m∗ · qn/m∗ < 1
θ ·
√

4πe · ε′ · α
, (6.88)

and optimised sublattice dimension

m∗opt(b) ≈
√
n log q
log δ(b) and f1(m∗opt(b), b) ≈ q1/t · 22

√
n log q log δ. (6.89)

Note that the optimum sublattice dimensionm∗opt(b) is now exactly the same as it is in the attack
in dimension n (rather than n′). The remaining overhead for this attack over the standard primal
embedding attack on LWE in dimension n is the extra factor q1/t in the function f(b), which is
a constant between 3 and 4 for our parameter settings. We leave it as an open problem to find
improved optimised attacks on MP-LWE that also close this remaining gap.
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We remark that the ‘optimised embedding attack’ on MP-LWE as described above only recovers
the first n+m∗/t coefficients of the n′-dimensional MP-LWE secret s. But since n > d′ for our
parameters, this constitutes more than half of the coefficients of s. The remaining coefficients of
s can then be recovered by either repeating the attack using the last n + m∗/t coefficients of s
(which doubles the run-time), or (at even lower complexity) by solving the remaining (d′−m∗/t)-
dimensional LWE instance in the last coefficients of s. In addition to the extra factor q1/t in the
success condition, the attack also has a higher complexity than the distinguishing ‘dual lattice’
attack considered in our lower bound estimates due to the fact that it is solving the search LWE
problem with high probability, rather than only distinguishing the samples from uniform.

• MP-LWE-optimised primal embedding attack; Analysis Approach 2 [ADPS16]: The approach 2
analysis proceeds identically to approach 2 for analysing the generic attack above, replacing
generic condition (6.85) with the MP-LWE-optimised attack success condition

f2(m∗, b) def= q−1/t · δ(b)2b−1−(m∗+1) · q1−n−1/t
m∗+1 >

√
b · α · q. (6.90)

and with optimised sublattice dimension

m∗opt(b)+1 ≈
√

(n− 1/t) log q
log δ(b) and f2(m∗opt(b), b) ≈ q−1/t·δ(b)

2b−1−
√

(n−1/t) log q
log δ(b) ·q

1−
√

(n−1/t) log δ(b)
log q .

(6.91)
Similarly to MP-LWE-optimised analysis approach 1, the optimum sublattice dimension m∗opt(b)
is now n−1/t ≈ n (rather than n′), and the remaining overhead for this attack over the standard
embedding attack on LWE in dimension n is the extra factor q−1/t in the function f2.

Table 6.9: MP-LWE-optimised Primal Embedding (analysis approach 1) key recovery lattice-based
attack log expected classical (resp. quantum) complexity estimates, for all our parameter sets. Here,
attack complexity estimates on scheme parameter sets are denoted by λC,emb,1 (resp. λQ,emb,1), and
(for comparison) we also show claimed lower bound estimates for PLWE security levels λPLWE,C,mmax

(resp. λPLWE,Q,mmax) and overall scheme goals λC (resp. λQ at MD = 240). CCA (resp. CPA) rows
refer to Titanium-CCA (resp. Titanium-CPA) scheme.

Par. Set Classical Quantum
λC,emb,1 λC,PLWE,mmax λC λQ,emb,1 λQ,PLWE,mmax λQ

CCA,Toy64 154 90 79 139 83 66
CPA,Toy64 168 97 79 152 89 66

CCA, Lite96 238 129 111 216 118 98
CPA, Lite96 260 133 111 236 122 98

CCA, Std128 317 176 143 287 161 130
CPA,Std128 343 182 143 311 166 130

CCA,Med160 360 205 175 327 187 162
CPA,Med160 389 211 175 353 194 162

CCA,Hi192 460 243 207 418 222 193
CPA,Hi192 491 244 207 445 224 193

CCA, Super256 633 333 272 575 305 258
CPA,Super256 670 333 272 608 305 258

Other attacks. There exist other potential attack approaches on MP-LWE that could be applied
to our schemes. In particular, one could try algebraic/linearisation attacks [AG11, AFG13] or com-
binatorial (‘BKW’-type) attacks [BKW03] and their variants [KF15, GJS15]. However, we did not
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Table 6.10: MP-LWE-optimised Primal Embedding (analysis approach 2) key recovery lattice-based
attack log expected classical (resp. quantum) complexity estimates for all our parameter sets. Here,
attack complexity estimates on scheme parameter sets are denoted by λC,emb (resp. λQ,emb), and (for
comparison) we also show claimed lower bound estimates for PLWE security levels λPLWE,C,mmax (resp.
λPLWE,Q,mmax) and overall scheme goals λC (resp. λQ at MD = 240). CCA (resp. CPA) rows refer to
Titanium-CCA (resp. Titanium-CPA) scheme.

Par. Set Classical Quantum
λC,emb,2 λC,PLWE,mmax λC λQ,emb,2 λQ,PLWE,mmax λQ

CCA,Toy64 125 90 79 113 83 66
CPA,Toy64 134 97 79 121 89 66

CCA, Lite96 181 129 111 164 118 98
CPA, Lite96 194 133 111 176 122 98

CCA, Std128 236 176 143 214 161 130
CPA,Std128 251 182 143 228 166 130

CCA,Med160 274 205 175 248 187 162
CPA,Med160 291 211 175 264 194 162

CCA,Hi192 345 243 207 313 222 193
CPA,Hi192 363 244 207 330 224 193

CCA, Super256 467 333 272 424 305 258
CPA,Super256 489 333 272 444 305 258

give complexity estimates for those attacks, as both approaches (but in particular BKW style attacks)
tend require a large number of given LWE samples with respect to the dimension of the secret (≥ n in
the case of MP-LWE). Due to the relatively low number of samples t · (d+ k) in our public key, these
approaches do not seem to yield competitive attacks against our schemes. We leave it to future work
to see whether such attacks can be adapted to improve on the complexity of our best known attacks.

Summary of best known attack complexity estimates. We computed estimates for the classical
(resp. quantum) expected complexity of our key recovery ‘MP-LWE-optimised’ primal embedding
attack against Titanium-CPA and Titanium-CCA for all our parameter sets, based on the (conservative)
time estimates for BKZ discussed in Sec. 6.3.7, using both approaches 1 and 2 described above. The
resulting attack complexities for approach 1 (resp. approach 2) are summarized and compared to our
overall scheme goals and maximum PLWE security claims in Table 6.9 (resp. Table 6.10).

Taking the minimum complexity over the attacks summarized above for each parameter set, Ta-
ble 6.11 summarizes the best known attack complexities on our parameter sets, compared to our
overall scheme goals and maximum PLWE security claims.
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Table 6.11: Best known attack complexity estimates, for all our parameter sets. Here, best attack
complexity estimates on scheme parameter sets are denoted by λC,bstatk (resp. λQ,bstatk), and (for
comparison) we also show claimed lower bound estimates for PLWE security levels λPLWE,C,mmax (resp.
λPLWE,Q,mmax) and overall scheme goals λC (resp. λQ at MD = 240). CCA (resp. CPA) rows refer to
Titanium-CCA (resp. Titanium-CPA) scheme.

Par. Set Classical Quantum
λC,bstatk λC,PLWE,mmax λC λQ,bstatk λQ,PLWE,mmax λQ

CCA,Toy64 125 90 79 113 83 66
CPA,Toy64 134 97 79 121 89 66

CCA, Lite96 181 129 111 164 118 98
CPA, Lite96 194 133 111 176 122 98

CCA, Std128 236 176 143 214 161 130
CPA,Std128 251 182 143 228 166 130

CCA,Med160 272 205 175 245 187 162
CPA,Med160 272 211 175 245 194 162

CCA,Hi192 272 243 207 245 222 193
CPA,Hi192 272 244 207 245 224 193

CCA, Super256 272 333 272 245 305 258
CPA,Super256 272 333 272 245 305 258



Chapter 7

Version Update History

This Chapter summarises the updates made to the Titanium specification document since the original
version (called version 1.0, dated 1 Dec 2017) submitted to the NIST PQC process.

7.1 Updates in version 1.1, dated Dec. 2018
This version contains the following updates (some of which were reported at the First NIST PQC
workshop in April 2018):

• Constant time implementation improvements: The implementation submitted to NIST
may not be constant time depending on the C compiler implementation of % mod reduction
operations. To address this, we rewrote the mod reduction code to avoid % operations and
ensure a compiler-independent constant-time implementation. At the same time, we also im-
proved the efficiency of the NTT implementation by merging all the intermediate levels of
the radix-2 NTT (except the last level), to reduce the number of mod reductions and per-
form the mod reduction at end. We chose ρ = 232 in Montgomery reduction, to make it
more efficient by using the low product. The updated implementation code is available at
https://github.com/raykzhao/Titanium/.

– Relevant document updates:
∗ Revised the modulo reduction documentation (Section 3.4.2).
∗ Simplified the constant time comparison implementation (Section 3.5).
∗ Updated Titanium benchmark timing results for the new more efficient constant-time
implementations in Tables 1.1, 3.1, 3.2, 3.3, 3.4.

• OpenQuantum integration: Our updated implementation of Titanium was recently integrated
into the Open Quantum Safe (liboqs) library. We have added our benchmark results for this
integration and benchmark comparison with other liboqs schemes.

– Relevant document updates: Added liboqs integration results in new Section 3.4.6.

• New AES-based PRG Titanium variant Titanium− AES: We added a new variant of Titanium
(not in original NIST submission) which uses AES to replace the SHA-3 based PRG. This allows
faster implementation on suitable hardware using Intel AES-NI instructions.

– Relevant document updates: Added details of Titanium− AES and implementation
benchmarks in new Section 3.4.5.

• Minor documentation corrections/clarifications:

– Chap 1: delete reference to Kyber with respect to x1024 + 1.
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– Chap 2, Sec. 2.1.1: clarify def. of middle product.
– Chap 3:
∗ Fixed the typo: MP-NTT-P(a,b)=MP-NTT(a,b) in Lemma 3.2.4
∗ Updated the version of compilers used in new benchmarks: gcc 7.2.0 and clang 5.0.1
∗ Deleted some implementation remarks in chapter 3 which no longer apply to the revised
modulo reduction implementation.

– Chap 6:
∗ Sec. 6.3.2 and 6.3.4: corrected/clarified definition/notation of MP-LWE and PLWE

problems
∗ Sec. 6.3.7: clarified implication of weak f .
∗ Sec. 6.3.8, quantum attack approach: "two possible assumptions" –> "three possible
assumptions"
∗ Sec. 6.4.2, "projection of det(L(B))" –> "projection of L(B)"

Acknowledgement. We thank Chitchanok Chuengsatiansup for helpful discussions and sugges-
tions regarding our implementation of Titanium.
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