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NTRU Cryptosystem: Recent Developments and
Emerging Mathematical Problems in Finite
Polynomial Rings

Ron Steinfeld

Abstract. The NTRU public-key cryptosystem, proposed in 1996 by Hoffstein, Pipher and
Silverman, is a fast and practical alternative to classical schemes based on factorization or
discrete logarithms. In contrast to the latter schemes, it offers quasi-optimal asymptotic effi-
ciency and conjectured security against quantum computing attacks. The scheme is defined
over finite polynomial rings, and its security analysis involves the study of natural statistical
and computational problems defined over these rings.

We survey several recent developments in both the security analysis and in the applica-
tions of NTRU and its variants, within the broader field of lattice-based cryptography. These
developments include a provable relation between the security of NTRU and the computa-
tional hardness of worst-case instances of certain lattice problems, and the construction of
fully homomorphic and multilinear cryptographic algorithms. In the process, we identify the
underlying statistical and computational problems in finite rings.

Keywords. NTRU Cryptosystem, lattice-based cryptography, fully homomorphic encryption,
multilinear maps.
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1 Introduction

The NTRU public-key cryptosystem has attracted much attention by the cryptographic
community since its introduction in 1996 by Hoffstein, Pipher and Silverman [32,
33]. Unlike more classical public-key cryptosystems based on the hardness of integer
factorisation or the discrete logarithm over finite fields and elliptic curves, NTRU is
based on the hardness of finding ‘small’ solutions to systems of linear equations over
polynomial rings, and as a consequence is closely related to geometric problems on
certain classes of high-dimensional Euclidean lattices. From a practical point of view,
the distinguishing feature of NTRU compared with classical systems, has mainly been
its very high speed of encryption and decryption operations for practical security levels
under best known attacks, being faster than classical systems by 2 or more orders of
magnitude. This highly attractive feature has led to the inclusion of NTRU in the
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IEEE P1363 industry standard for cryptography [36]. It is also often considered as the
most viable ‘post-quantum’ public-key encryption due to its conjectured resistance to
attack by quantum computers (see, e.g., [58]), whereas classical systems have been
shown [70] to be insecure in the presence of quantum computing.

In this survey, we focus on recent exciting developments in both the security anal-
ysis and applications of NTRU, that we believe should make the NTRU system even
more attractive for study and development in future than the above ‘traditional’ rea-
sons, and suggest new motivation and directions for studying NTRU’s mathematical
underpinnings.

In terms of security of NTRU, one of the troubling issues since its introduction, has
been a lack of confidence in the hardness of its underlying computational problems.
We review the computational/statistical problems underlying NTRU’s security, and a
recent result of Stehlé and Steinfeld [71, 72], that shows a variant of NTRU whose se-
curity can be proved based on the worst-case quantum hardness of natural lattice prob-
lems over the class of ideal lattices defined over certain polynomial rings. Although
the hardness of the latter problem is not guaranteed, the result of [71, 72] shows that
any efficient attack against the NTRU variant implies a significant advance in compu-
tational algebraic number theory: an efficient quantum algorithm for the problem of
finding an element of small Euclidean norm in any given ideal of the underlying ring.
In the process of describing this result, we introduce some Fourier analysis tools which
find common use today in the wider field of lattice-based cryptography.

In terms of applications of NTRU, we review two recent novel variants of the NTRU
system, which allow powerful new functionality to be added to the basic cryptosys-
tem. The first application is an NTRU-based Fully Homomorphic Encryption (FHE)
scheme [43], which allows useful computation on encrypted messages, and the second
is a construction for NTRU-based multilinear maps [23] (as simplified by [40]), which
open the door to another class of applications including non-interactive multiparty key
agreement.

There are interesting recent developments related to NTRU that we do not cover
due to space limitations, and we only mention some of them here. The hard prob-
lems underlying the NTRU cryptosystem can also be used to design a digital signature
scheme. There is a long ‘design-break-repair’ history behind this scheme, now known
as NTRUSign (see, e.g., [26, 29, 35, 74, 53, 54] and the survey [31]). Recent no-
table developments in this area include a variant of NTRUSign with a security proof
based on worst-case hardness of lattice problems [72], and an alternative particulary
efficient class of signature schemes [44, 45, 21], the most recent of which [21] is also
based on NTRU-like hardness assumptions, that can be considered a lattice analogue
of Schnorr’s discrete-log based signature scheme [69]. Another recent line of investi-
gation is generalizations of NTRU, that use higher degree algebraic rings to replace the
integer ground ring in NTRU (see, e.g. [37]). We do not attempt in this work to survey
the whole area and history of lattice-based cryptography, but refer the interested reader
instead to the surveys [51, 62] for some starting points.
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The rest of this paper is organized as follows. In Section 2, we introduce some
notation used throughout. After a review of the basic NTRU cryptosystem and its
underlying mathematical problems in Section 3, we survey some central tools in the
Stehlé-Steinfeld security proof for NTRU in Section 4. Beginning with a review of
the underlying Fourier analysis tools in Section 4.2, we explain their application to
analyzing the ‘statistical region’ NTRU key cracking problem in Section 4.3, and then
in Section 4.4 briefly look at how the NTRU ciphertext cracking problem relates to
the now well-known Ring-LWE problem and worst-case lattice problems. Moving
to recent novel applications of NTRU in Section 5, in Section 5.1 we review the ho-
momorphic cryptosystem of Lopez-Alt et al. [43] and its underlying computational
problems, and in Section 5.2 we explain the multilinear maps of Garg et al. [23] and
underlying problems, ending with some concluding remarks in Section 6.

2 Notation and Preliminaries

Notation. We make use of the Landau notations O(+), o(+), w(-), Q(-). A function f(n)
is called negligible if f(n) = n~“(), otherwise, if there exists a constant ¢ > 0 such
that f(n) > n~¢ for infinitely many n, we say that f(n) is non-negligible and write
f(n) = non-neg(n). We write poly(n) to denote a polynomial function of n. We say
that a sequence of events E,, holds with overwhelming probability if Pr[-E,] < f(n)
for a negligible function f.

Probability and Algorithms. A probabilistic algorithm is called efficient if its run-
ning time is polynomial in its input length (in the cryptographic settings discussed
in this survey, the input length is always polynomial in a security parameter n, and
so one can think of running time and probabilities as all being functions of n). We
write x < D to denote that = is a random variable sampled from the probability
distribution D. The effectiveness of an algorithm to distinguish between two proba-
bility distributions Dy and D; is measured by its distinguishing advantage, defined
by |Pry-p,[A(z) = 1] — Prye.p,[A(z) = 1]|. We say that a decision problem
(parameterized by n) is hard if there does not exist an efficient algorithm for it that

has a non-negligible advantage in n. The statistical distance A(Dy; D) between
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two distributions Dy, D; on some countable domain X is defined as A(Dy; D) =

> ex |Do(z) — Di(z)], and is extended to a continuous domain X and density
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functions vy and vy on X via A(v; 1) o % - [x wo(z) — vi(z)|dz. We denote by
U(X) the uniform distribution on a finite discrete domain X, or the uniform density
function on X if X is finite and continuous.

Rings. If ¢ is a non-zero integer, we let Z, denote the ring of integers modulo g,
i.e., the set {0,...,¢ — 1} with addition and multiplication modulo q. We some-
times identify Z, with the set of residues reduced into the interval (—q/2, ¢/2]. For a
ring (R, +, x), we let R* denote the set of invertible elements of R. For the polyno-

mial ring R = Z[z]/(z™ + 1), if z,y € R, their product x - y is the polynomial whose
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coefficient vector is given by the vector-matrix product y” - rot(z), where 3 € Z"
denotes the coefficient row vector of y and rot(x) is the nega-cyclic n x n matrix with
entries in Z, having the coefficient vector of x on its first row and each additional row
is obtained from the one above it by rotating one position to the right and negating the
leftmost entry. If 2 € R is an element of a polynomial ring R, we denote by ||z|| the
Euclidean norm of the coefficient vector of x.

Lattices. A (full-rank) lattice is a set of the form L = ). 7Z-b;, where the b;’s are
linearly independent vectors in R™. The integer n is called the lattice dimension, and
the b;’s are called a basis of L. The minimum (L) (resp. A\}°(L)) is the Euclidean
(resp. infinity) norm of any shortest non-zero vector of L. More generally, we define
the k-th successive minimum M\ (L) for any k& < n as the smallest r such that L
contains at least k linearly independent vectors of norm < r. The dual lattice of L is
defined as L = {c € R™ : Vi, (c,b;) € Z}. If B = (b;); is a basis matrix of L, the
fundamental parallelepiped of B is the set P(B) = {)_,., cib; : ¢; € [0,1)}. The
volume | det B| of P(B) is an invariant of the lattice L, denoted by det L. The most
famous algorithmic problem on lattices is the Shortest Vector Problem (SVP). Given
a basis of a lattice L, it aims at finding a shortest vector in L \ {0}. It can be relaxed
to an approximate-SVP (approx-SVP) variant y-SVP by asking for a non-zero vector
that is no longer than «y(n) times a solution to SVP, for a prescribed function ~(-).
It is believed that no subexponential quantum algorithm solves ~-SVP in the worst
case, for any ~y that is polynomial in the dimension. The smallest v which is known to
be achievable in polynomial time is exponential, up to poly-logarithmic factors in the
exponent [41, 68, 52].

3 Review of the NTRU Cryptosystem

3.1 The NTRU Construction

We review the construction of the basic NTRU Public-Key Cryptosystem. We present
it here in a general form, to allow us to easily explain later the difference in instantia-
tion choices between the original cryptosystem [33] and more recent variants [71, 72].
The NTRU system is defined over a polynomial ring R = Z[z]/(¢(z)), for some
polynomial ¢(z) € Z[z] of degree n (a typical setting in the original system would take
¢(x) = 2" —1 with n = 257). Itis determined by a set of parameters (1, ¢, P, Xo» Xp» X3)
having the following interpretation. The parameter n is the degree of the modulus
polynomial ¢ defining the polynomial ring . Polynomials p € R and ¢ € R are used
to define the quotient polynomial rings R, = R/(¢R) and R, = R/(pR) that form
the ciphertext space and message space of the cryptosystem, respectively (A typical
setting would take ¢ = 64 and p = 3 as small integers). Strictly speaking, the message
space should be considered a subset S}, of the ring R that has a unique representation
modulo p. In particular, when p is a rational integer, I?;, has p™ elements and if p is odd,
the message space .S, can be taken as the set S, = {—(p—1)/2,...,(p—1)/2}" of n-
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dimensional vectors with integer coordinates of magnitude < (p—1)/2 (note however,
that in some settings, such as the multilinear map variant we discuss in Sec. 5.2, or as
an efficiency optimization [34], it is useful to choose p as a polynomial of non-zero
degree). Finally, (Xo, X, X3) are probability distributions for the secret key poly-
nomials, ciphertext secret polynomial, and ciphertext noise polynomial, respectively.
They are defined over the ring R and, for correctness of the decryption algorithm, are
concentrated on elements of small norm, compared to the modulus g. The distribution
parameters o, p, $ are a measure of the norm of elements sampled from the respective
distribution (typically, in the original NTRU system, x,, X, outputs random poly-
nomials with most coefficients being zero and the rest in the set {—1, 1}, while xg
outputs the zero polynomial). Also, for correctness of decryption, the support of the
distribution Yy, is additionally restricted to elements f € R satisfying f mod p = 1
and f mod g € Ry.

The key generation, encryption, and decryption algorithms are then defined as in
Figure 1.

e Key generation KG(n). On input security parameter n:
— Sample f and g from x,-.
— Return secret key f € R and publickey h = g/f € Ry.

e Encryption Enc(h, m). Given public-key h and message m € S, sample s from
X > sample e from X g, and return ciphertext ¢ = p - (hs + e) +m € R,,.

e Decryption Dec(f, ¢). Given secret-key f and ciphertext ¢, compute ¢ = f-¢ €
R, and return message m = ¢’ mod p.

Figure 1. The basic NTRU scheme. Note that e = 0 and the public key is p - h in the
original NTRU system.

To generate a secret/public key-pair for himself, a user Bob samples two polyno-
mials of small norm f, g. Bob keeps the ‘small’ polynomial f as his secret key, and
publishes the quotient h = g/f € R as his public key. Observe that although g, f
have a small norm compared to ¢, their quotient mod gq is typically ‘large’ mod q. The
underlying intuition is that the public key h “looks” like a uniformly distributed ele-
ment of R,, to any potential eavesdropping adversary Cathy (we will come back to
make this intuition more precise later on).

To encrypt a private message m intended for Bob, a user Alice takes Bob’s public
key h, samples ‘small’ polynomials s and e, computes the ciphertext ¢ = p - (hs +
e) + m € R, and sends it to Bob along a public communication channel (possibly
eavesdropped by Cathy). The underlying intuition is that the term p - (hs + e) “looks”
random to Cathy and “masks” the added message m in R, (we will come back to
this intuition later also). On the other hand, ¢ does not look random to Bob, due to
his knowledge of the small polynomial f. Indeed, Bob can decrypt ¢ by computing
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d =f-c=plgs+ fe)+ fm € Ry Since p, g, s, f, e are all elements of R of
small norm compared with ¢, both the terms p(gs+ fe) and fm are also of small norm
compared with g, the coefficients of p(gs + fe) + fm can be guaranteed (at least with
high probability) to be all smaller than ¢, so that the equality ¢ = p(gs + fe) + fm
holds in R (and not just in %;). As a consequence, Bob can recover the message m
by computing ¢’ mod p = fm mod p = m mod p, using f mod p = 1, and the fact
that m mod p determines m € .S;, uniquely by the unique representation of .S, modulo
p. We remark here that in the original NTRU system [33], there was no error term
(e = 0), and the public key was defined as h = p - g/ f, to save a multiplication by
p during encryption. This ‘original variant’ does not achieve semantic security (as
defined below), a problem that was addressed in [71] by introducing a non-zero error
term e.

Setting the Parameters for Correct Decryption. To give an idea of parameter set-
tings for NTRU to keep in mind for the rest of the survey, we give an example pa-
rameter setting as a function of the security parameter n, for getting perfectly correct
decryption (in practice, less conservative parameters can often be used to improve ef-
ficiency, while tolerating a small decryption error probability). Let us assume that
¢(x) = 2™ — 1 (as in the original NTRU proposal), p = 3 = O(1) and suppose that
(0, p, B) are upper bounds on the infinity norm of ring elements sampled by x, X, X8
respectively. Since the ith coefficient of the polynomial gs € R is the inner-product
between the coefficient vector of s and the coefficient vector of z° - g(x) (the latter
being just the coefficient vector of g rotated by ¢ positions), we have by the Schwartz
inequality [|gs|lec < |lg]l - [Is]] < n - op. Similarly, we have || fe|l < n-o/5 and
|l fellcc < po. The decryption correctness condition ||p(gs + fe) + fmlle < q/2
then is satisfied if o - pn - (8 + p + 1) < ¢/2. To satisfy the latter, one may then take
for example o, 3,p = O(1) and ¢ = O(n). In the next section, we will see that to
allow a security proof for the scheme assuming the hardness of worst-case ideal lattice
problems, one needs somewhat larger parameters, though still polynomial in n.

3.2 Security of NTRU: Computational/Statistical Problems and Known
Attacks

Semantic Security of Public-Key Encryption Schemes. We will focus in this sur-
vey on the standard security notion for public-key encryption schemes against pas-
sive eavesdropping attacks, known as semantic security, or indistinguishability against
chosen-plaintext attack. We refer here to this notion as IND, but it is often called
IND-CPA in the cryptographic literature (see [39] for a good introduction to modern
security notions for public-key encryption schemes, including more advanced active
attacks that we do not consider). It asks that there exists no efficient algorithm A that
has success probability 1/2 + non-neg(n) in the following two-phase ‘game’ between
a challenger and the adversary A:

(i) The challenger gives A the public key pk sampled by the key generation algo-
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rithm KG(n), and A returns two challenge messages mg, m;.

(ii) The challenger chooses a uniformly distributed bit b € {0,1} and gives A a
challenge ciphertext ¢, = Enc(pk, my,) for message my,.

(iii) A outputs an estimate b’ for the bit b. We say that A succeeds if ¥’ = b.

This notion of security, first defined by Goldwasser and Micali [30], guarantees that
no ‘partial’ information on the message leaks to the adversary via the ciphertext. As
noticed in [71], the original NTRU system with a zero error term e is not secure in the
sense of IND. Indeed, given ¢ = hs + my and mg, my, to compute b, one can compute
the element s,y = (¢ — my) - h~!in R, for & € {0, 1} and return the value of b’ such
that sy is ‘small’ compared to ¢ (indeed, notice that s, = s is ‘small’, whereas s;_; =
s+ (mp — my_p)h ™! is very likely to be ‘large’, since h~! is ‘large’). This problem
was fixed by introducing a non-zero error term e in the variant of NTRU proposed
in [71] (we remark in passing that ‘plain’ variants of other cryptosystems, such as
‘plain’ RSA [63], are also insecure in the sense of IND, and there exist techniques to
deal with the problem — see, e.g. [39]).

Computational Problems Arising from NTRU. There are essentially two ways to
break the IND security of NTRU. The first is to recover the secret ‘small’ polynomials
(f,g) from the public key h, or alternatively some other pair (f’,¢’) € R? of ‘small’
polynomials satisfying h = ¢’/ f’ mod ¢ (it is easy to see that as long as the norm
I(f', )]l = ¢ is sufficiently small compared with ¢, the polynomials (f’,g’) can
serve as an ‘equivalent’ secret key, in the sense that f’ will also successfully decrypt
NTRU ciphertexts), and use this to distinguish the challenge c — we call this approach
the ‘NTRU key cracking problem’. The second way is to distinguish the message
encrypted in the ciphertext ¢ “without using the special structure” of the public-key h
— we call this approach the ‘NTRU ciphertext cracking problem’.

In the following we define both a search and a decision version of the key cracking
problem.

Definition 3.1 (NTRU Key Cracking Problems). The NTRU search and decision key
cracking problems are defined as follows:

» Search Key Cracking Problem NKC,, p, ;4. ¢: Given h = g/f € Ry, with
f, g sampled independently from ., compute (f’,¢') € R? satisfying h =
g'/f" mod g and [|(f',¢")|| < ¢.

* Decision Key Cracking Problem DNKCy, ; 4.4.y,: Given h € Ry, distinguish
whether A is sampled from the distribution Dy = {h = g/f € Ry : f,9 <> Xo}
or from the distribution Dy = U(R}).

For the ciphertext cracking problem, we can make the requirement “without using
the special structure” precise by requiring that an algorithm for the ‘NTRU ciphertext
inversion’ problem works even for a public key £ that is uniformly distributed in 2.
This leads to the following definitions.
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Definition 3.2 (NTRU Ciphertext Cracking Problems). The NTRU search and decision
key cracking problems are defined as follows:

* Search Ciphertext Cracking Problem NCCy, ;, 4 4 v,.x5: Given h sampled from
U(R;),and ¢ = p - (hs +e) +m € Ry with s, e sampled independently from
Xp» X 3 Tespectively, compute (s, e, m).

* Decision Ciphertext Cracking Problem DNCCy, , 4 4 v,.x5: Given h sampled from
U (R;), and ¢ € R, distinguish whether ¢ is sampled from the distribution Dy =
{c=p-(hs+e): s+ xp,e <> xg} or from the uniform distribution U (R).

The utility of the decision problems defined above is that we can actually prove that
NTRU achieves semantic security if both problems are hard.

Proposition 3.3.1f the decision key cracking problem DNKCy , .4, and the
decision ciphertext cracking problem DNCCpp 4.6, s are both hard, then the
NTRUy, p q.6,x0xp:xs CTYPIOSYstem achieves semantic (IND) security.

Proof. We argue by contradiction. Suppose A denotes an efficient algorithm for break-
ing the IND security of NTRU, having success probability p = Pryyp[b/ = b] =
1/2 + non-neg(n). Consider the modified IND game IND’, in which the public-key
h provided to A by the challenger is sampled from U (R;), instead of being generated
by the key generation algorithm KG. Let p’ = Pryyp/[b) = b] denote the success
probability of A in game IND’. If |[p’ — p| = non-neg(n), then we can use A as an
efficient distinguisher against the decision key cracking problem DNKC,, ;, 4 4.y, With
non-negligible advantage |p’ — p|, a contradiction with the hardness of this problem.
Indeed, such a distinguisher B, on input an instance h € R, of the DNKC,, ,, ;4 .
problem, would run A with public-key input h, with B simulating the IND game
by acting as a challenger for A. When A outputs &', B outputs 1 if ¥ = b and
0 else. Observe that if B’s input h comes from the key generation distribution
Dy={h=g/f € Ry: f,9 < Xo}, B perfectly simulates for A the IND game, and
hence B outputs 1 with probability p, whereas if B’s input h comes from the uniform
distribution Dy = U(Ry), B perfectly simulates for A the IND* game, and hence B
outputs 1 with probability p'. It follows that B’s distinguishing advantage is |p’ — p|,
as required, which leads by contradiction to the conclusion p’ = 1/2 + non-neg(n).
Now consider a further modified game IND” that is obtained from IND’ by chang-
ing the distribution of the challenge ciphertext c;, to be sampled independently from
U(Ry). Let p” = Pryypr[b’ = b] denote the success probability of A in game IND”.
Because ¢, is statistically independent of b in game IND”, we have p” = 1/2, which
implies that |p” — p’| = non-neg(n). But this means (by a similar construction as used
for distinguisher B above) that we can use A as an efficient distinguisher against the
decision ciphertext cracking problem DNCCy, , 4 ¢.y,,,xs With non-negligible advantage
|p” — p/|, a contradiction with the hardness of this problem. o



NTRU Cryptosystem: Recent Developments 9

Although not directly sufficient for the IND security proof of NTRU, the hardness
of the search variants of the NTRU cracking problems is also clearly a necessary con-
dition for the security of the decision problems, and forms a good starting point for
the analysis of NTRU. We also remark that the hardness of the decision key cracking
problem is not known to be necessary for the IND security of NTRU.

Known Attacks: link to lattices. The NTRU system was originally presented
as a system based on hard problems in polynomial rings. However, soon after its
presentation, Coppersmith and Shamir [19] realized that the NTRU cracking problems
can actually be interpreted as computational problems on a related special class of
lattices, now known as the NTRU lattices. By using existing algorithms for lattice
reduction, in particular the LLL algorithm [41] and its many variants, lattice methods
quickly became the dominant avenue of attacking the NTRU system. Other known
attacks on the system are combinatorial in nature and easily avoided by a careful choice
of parameters, so we will not cover them here (see [31] for details on these). Instead,
we here explain the link to lattices that will lead to the more recent developments
described in the next section.

The main observation of Coppersmith and Shamir was that the search key cracking
problem NKC,, ;, ; 4 . ,¢ can be interpreted as a variant of the shortest vector problem
in a related lattice. Namely, the secret key (f, g) € R? satisfies the homogenous linear
relation

f+-h—g=0mod q. (3.1

in R. Hence, the set of all solutions (f, g) € R? to (3.1) forms an R-module M), over
the ring R, and can be generated by the rows of the matrix

1 h
. 32
] 3

Recall (see Section 2) that when we represent the elements of R by their coefficient
vectors in Z", a ring multiplication x - y corresponds to a vector-matrix product 27 -
-rot(y). It follows that the module M}, can also be viewed as a 2n-dimensional lattice
Lyrry C Z*™ with row basis matrix

I, rot(h) (33)
0 gql, |’ '

which is known as the NTRU lattice. The secret key (f, g) is a typically a “short”
vector in L y7 Ry, and thus approx-SVP algorithms can be used for computing (f, g) or
avector v = (f',¢') € Lyrgry of not much larger norm. Although this method gives
a practical algorithm for the key cracking problem for small n, it does not seem to give
an efficient attack for large n. Indeed, to be useful, the norm ¢ of the non-zero vector v
returned by the approx-SVP algorithm must be smaller than ¢. This is because, as we
recall, successful decryption of a ciphertext ¢ = p- (hs+e) +musingv = (f’,¢') by
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computing f'c mod ¢ = p(¢'s + f'e) + f'm mod g, relies on ||v|| being sufficiently
small compared to ¢ so that ||p(¢g's+ f'e)+ f'm||oc < ¢/2 and hence (f’'c mod ¢) mod
p = f'm mod p (for the same reason, the non-zero vector (g,0,...,0) of norm g,
which is always in L 7R, is not useful for decryption of NTRU ciphertexts). On the
other hand, recall that with typical parameters settings we have ¢ = poly(n), whereas
llv]| > A (Lyrry) > 1since Lyrry € Z*". We conclude that, to be successful in
attacking this problem, we need an approx-SVP algorithm with approximation factor
~v(n) < g = poly(n), and this is currently believed to require time exponential in n, at
least for worst-case lattice instances.

However, the class of NTRU lattices in scope looks very special. This naturally
suggests an open question that has clouded the understanding of NTRU’s security ever
since, namely: Is the poly(n)-SVP problem restricted to the class of NTRU lattices as
hard as the worst-case for general lattices? Is there a non-negligible fraction of NTRU
lattices for which the poly(n)-SVP problem is easy?

The complexity of known algorithms for the the approx-SVP problem for arbitrary
lattices, namely the LLL algorithm and its variants, seems to behave the same for
NTRU lattices as for other lattices, and the NTRU designers conjectured [33] that
the approx-SVP for NTRU lattices is indeed hard. But the possibility still remains
that a special approx-SVP algorithm may be tailored to exploit the structure of NTRU
lattices, or a large fraction thereof, possibly by exploiting algebraic properties. This
was a main motivation for the results we survey in the following section.

4 Recent Developments in Security Analysis of NTRU

4.1 Overview

Motivated by the uncertainty over the security of NTRU, Stehlé and Steinfeld [71, 72]
studied the possibility of applying the tools developed over the last decade within the
recently developing field of lattice-based cryptography, to obtain a variant of NTRU
with a provable security guarantee with respect to the hardness of worst-case instances
in a natural class of ideal lattices, corresponding to the ideals in the ring R, against
quantum attacks. Although this result does not exclude the possibility that poly(n)-
SVP is easy for random NTRU lattices, it does show that the realization of such a
possibility would imply a significant development in computational algebraic number
theory. In this Section, we explain the key ideas used to obtain the result of [71], and
in the process introduce some powerful tools from lattice based cryptography.

The result of [71, 72] builds on a large body of work on the design of cryptographic
schemes with provable security guarantees based on the worst-case hardness of lat-
tice problems. Interestingly, this research field began independently around the same
time the original NTRU system was introduced, with the pioneering work of Ajtai [1].
This work, followed by that of Ajtai-Dwork [2] and its later significant extension by
Regev [59, 60], Micciancio-Regev [50], and Gentry et al. [27], laid the foundations
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for this area by establishing tools for constructing (somewhat inefficient) one-way
functions and public-key cryptosystems with security provably based on the (some-
times quantum) worst-case hardness of lattice problems over general lattices. Inspired
by the high efficiency of the (then still heuristic) algebraic NTRU system, Miccian-
cio [49] was the first to study adaptations of Ajtai’s result to the design of efficient
cryptographic one-way functions with a provable security guarantee, based on worst-
case hardness of lattice problems restricted to classes of algebraically structured lat-
tices, now known as ideal lattices. This work was further generalized and extended by
Peikert-Rosen [57] and Lyubashevsky-Micciancio [46]. Later, concurrent and inde-
pendent work by Stehle, Steinfeld, Tanaka, and Xagawa [73] and Lyubashevsky, Peik-
ert and Regev [47, 48] adapted the results of Regev [60] to establish tools for design-
ing efficient public-key encryption schemes based on worst-case (quantum) hardness
of ideal lattice problems. In particular, the decision Ring-LWE problem introduced
in [47, 48] and shown there to be as hard to solve as certain worst-case ideal lattice
problems, was one of the main ingredients used in the NTRU security proof of [71]
(see Sec. 4.4). The second main ingredient, introduced in [71], are statistical proper-
ties of NTRU-like lattices, building on statistical tools introduced in [50] and extended
in [27] for general lattices (see Sec. 4.3). We have chosen to emphasize in this part
of our survey the statistical tools of the second ingredient and their application to the
NTRU key cracking problem, and we only briefly mention the computational methods
of the first ingredient, since they are already well covered in Regev’s survey [62] on
the Learning With Errors (LWE) problem and its Ring-LWE variant.

We begin by stating the main result of Stehlé-Steinfeld [71]. To do so, we need to
first define the class of worst-case lattices involved. Let R = Z[x]/¢(z). By mapping
polynomials to the vectors of their coefficients, we see that a non-zero ideal I of R
corresponds to a full-rank sublattice of Z": we can thus view I as both a lattice and
an ideal. An ideal lattice for ¢ is a sublattice of Z" that corresponds to a non-zero
ideal I C Z[xz]/¢. We say that A is an algorithm for the v-Ideal-SVP, problem if,
given as input the basis of any ideal lattice for ¢ (i.e. even ‘worst-case’ instances), it
outputs a non-zero vector in the lattice of norm < ~ times the norm of the shortest
non-zero vector in the lattice. The following result shows that there exists a choice of
parameters for NTRU for which breaking the IND security of random instances is as
hard as the worst-case hardness of poly(n)-SVP in ideal lattices.

Theorem 4.1 ([71]). Fix ¢ > 0 and suppose n is a power of 2 such that ¢(x) =
x" 4 1 splits into n linear factors modulo a prime q¢ = Q(n*>*¢||p||*), for some
p € Rwithdegp < 1, and R = Z[z]/(¢(x)). There exist efficiently sampleable
distributions X4, X, Xg With norm parameters ¢ = n,/In(8ngq) - q1/2+5 and p = 8
with q/p = Q(nP)||p||?c and p = Q(n'*) such that the following holds: If
there exists an algorithm for breaking the IND security of NTRUp p g x5 xp,xs Which
runs in time poly(n) and has success probability 1/2 + 1/poly(n), then there exists a
poly(n)-time quantum algorithm for v-1deal-SVP4 with v = O(n>7>¢)||p||>¢"/?*=.
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Moreover, the decryption algorithm succeeds with probability 1 — (),

Before we discuss the proof of Theorem 4.1, we make some remarks on the choice
of parameters compared to those of the original NTRU system. The most significant
change is the use of a wider deviation parameter o > ¢'/? for the secret polynomials
f, g (compared to f, g with ternary coefficients in the original system) — this is used to
make the decision key cracking problem statistically hard. The non-zero distribution
X g for the error term e (which is zero in the original system) is introduced to make the
decision ciphertext cracking problem hard (as explained above). Another two technical
changes have been made: the modulus polynomial has been changed to ¢(z) = 2™+ 1
(rather than ¢(x) = 2™ — 1 in the original scheme) due to its irreducibility over Q,
and the modulus ¢ was chosen to satisfy the condition ¢ = 1 mod 2n, which implies
that " 4 1 splits completely modulo g. These properties (assumed in the rest of this
section) are needed for the computational reduction discussed in Section 4.4, between
the Ring-LWE problem and worst-case lattice problems.

By applying Proposition 3.3, the proof of IND security of NTRU in Theorem 4.1
decomposes into two parts. The first part in Section 4.3 studies the security of the
Decision Key Cracking Problem DNKC, while the second part in Section 4.4 looks at
the Decision Ciphertext Cracking Problem DNCC. Recall that the decision key cracking
problem asks to distinguish the distribution Dy of the quotient h = g/f € R; from
the uniform distribution Dy on Ry, when f and g are sampled from the distribution
Xo that is concentrated on a subset S of R consisting of elements with coefficients
of magnitude < . Since there are |S x S| ~ " pairs (f,g) in S x S, there are
two natural regions for this problem, depending on the value of o, that we call the
‘statistical region’ and the ‘computational region’.

In the ‘statistical’ region, we have [S x S| > |Ry| ~ ¢" (or o > q'/?), and we
heuristically expect that the distribution of & would ‘fill” Rj approximately uniformly,
i.e. that the distribution Dy would be close to the uniform one on R;. In the following,
we explain the proof from [71] that shows that this is indeed the case when o >
poly(n)ql/ 2, and the shape of the distribution Y, is a (discrete) Gaussian (restricted
to R7). Since the statistical distance between the distributions can be made negligibly
small, this shows the statistical hardness of the decision key cracking problem DNKC,
for o > poly(n)q'/2. By ‘statistical hardness’, we mean that in this region, even
adversaries with unlimited computational power cannot distinguish the decision key
cracking problem with non-negligible advantage.

In the ‘computational region’, we have |S x S| < |Ry| = ¢" (or o < ¢'/?). In this
case the size of |\S x S| is not sufficiently large to ‘fill” the space R}, and the distribution
of 1 must be far from uniform on Rj. In this case, there always exists a distinguisher
that achieves a non-negligible advantage between Dy and D1, and the best we can hope
for is that there does not exist an efficient distinguisher, i.e. that it is computationally
hard to distinguish Dy from D;. It is an interesting open problem to prove the compu-
tational hardness of this problem under a worst-case hardness assumption, such as the
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worst-case hardness of approx-SVP in ideal lattices. In fact, little seems to be currently
known even about the statistical properties of the distribution of A in the computational
region, and it would also be of interest to show how ‘well spread’ the distribution is
in Rj. Some relevant existing work that may prove useful for further investigation of
this direction includes the work of Shparlinski and Banks [7] who used exponential
sum tools to show that the inverses of small norm polynomials in R are well spread
(although they could only prove this in the statistical region, i.e. for polynomials of
norm > ql/ 2te ), and the work of Li and Roche-Newton, who use tools from additive
combinatorics to show (see remark after Theorem 1.4 in [42]) a ‘sum-product’ type
lower bound of the form Q(|S|'*9) for some constant § > 0 on the size of the support
of quotients of elements from a quite general class of subsets S of a finite field I, in the
‘computational region’ where |S| < |F|'/2. Finally, we remark that besides allowing
the use of smaller keys with o < ¢'/? in the basic NTRU scheme and thus leading to
improved efficiency, the hardness of the problem in the computational region also has
several novel applications, as we shall see in Section 5.

The proof of [71] that the ratio g/f is close to uniform on R7 in the statistical
region o > poly(n)ql/ 2, relies on sampling f and g from (modified) discrete Gaussian
distributions ., and reducing the problem of showing the closeness to uniformity of
h to showing the closeness to uniformity of a discrete gaussian distribution on Z>"
reduced modulo a certain NTRU-like lattice L. Using Fourier analysis, it was shown
by Micciancio and Regev in [50] that the latter problem, for an arbitrary lattice L,
can be reduced to upper bounding a geometric property of L called its smoothing
parameter, which is closely related to the last Minkowski minimum of the lattice. The
proof of [71] then reduces to bounding the smoothing parameter of the relevant NTRU-
like lattices. Accordingly, we first introduce the discrete Gaussian and smoothing
parameter tools from [50], that were further refined in [27, 56], and then come back to
explain how they were applied in [71].

4.2 Gaussian Distributions Modulo Lattices and Fourier Analysis

For z € R", and 0 € R, we let p,(z) = e~7lI?/7* denote a Gaussian function with
deviation parameter o evaluated at x, and v,(z) = o~ ™ - p,(z) the density function
of a continuous Gaussian random variable on R” with parameter o (note that o /v/27
is the usual standard deviation parameter). Given a lattice L C Z™ with basis B,
Micciancio and Regev [50] studied the density function

V(2) ¥ (v, mod L)(z) = Z Vo(lx +v)=0""" Z po(z+v)  (4.1)

veL veL

on the fundamental parallelepiped P(B) of L, obtained by reducing a sample from v,
modulo P(B). Intuitively, as the width parameter o of v, increases beyond the diame-
ter of the parallelepiped P(B), reducing the distribution v, modulo P(B) should “fill’
P(B) and result in an approximately uniform density for »/,. To make this intuition
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precise, Micciancio and Regev applied Fourier analysis. Namely, using the right-hand
side of (4.1) as the definition of v/, which is well defined for all x € R", one can
extend the domain of v/, from P(B) to all of R"™. Since L is closed under addition, it
is clear that the extended function v/, is periodic on L, i.e. v/ (x + v) = /() for any
x € R™ and v € L, and thus naturally has a Fourier series representation of the form

V<,7( ) = det Z (W e2mifz,w) det Z pl/a 27ri(ac,w>7 4.2)

wel wel

where the g, (w) = 0" p;/,(w) is the Fourier transform of p, evaluated at the vector
w in the dual lattice L. The Fourier coefficient det(L) - p, /o(0) = det(L [) =1/ det(L)
corresponding to the zero vector of L contributes the uniform (constant) term of v/’s
Fourier series (4.2), whereas all other Fourier coefficients det(L)- p, /o (w) correspond-
ing to the non-zero vectors w € L\ {0} contribute non-uniform terms in equation (4.2).
A natural measure of the non-uniformity of v/, is therefore the sum of the non-zero
Fourier coefficients

So(L)= Y pijolw). 4.3)

wEﬁ\{O}
Indeed, we have, for all z € P(B) that

T —— o
)=0 ;Lua(xﬂ)edew [1—S,(L), 1+ 8,(L)], (4.4)

and it follows that the statistical distance A of /. from the uniform density on P(B)
is at most 1S,(L). As o increases, the width 1/ where most of the mass of P1/o 18
concentrated, decreases and eventually drops below the length \; (ﬁ) of the shortest
non-zero vector of L. Therefore, for o > 1/X;(L), all the terms in the sum S, (L) are
in the small ‘“tail” of py/, so that S (L) (and hence also A) starts to rapidly decrease
with o, and can be made as small as any ¢ > 0 by choosing o sufficiently large.
Micciancio and Regev called this phenomena the smoorhing of the distribution v/ and
were led to the define the e-smoothing parameter n-(L) of a lattice L as the smallest
value of o such that S,(L) < e. To bound the smoothing parameter 7.(L) in the
‘smoothing region’, where ¢ = 27" is negligible, Micciancio and Regev applied a
lattice sum tail bound for the Gaussian function due to Banascyk [6], who proved that
for any lattice L € R™ and s > 0, we have

D pa(v) <273 pa(v), (4.5)

vEL\y/ns-B vEL

where B denotes the unit Euclidean ball in R”. Decomposing the sum on the right-
hand side of equation (4.5) into its contributions from points inside and outside v/nsB
gives > e\ mss Ps(V) < 27" 3 crnyms Ps(v). Taking s = 1/o with o >
v/ (L), we have L\ v/n/o - B = L\ {0} and L N (y/n/o - B) = {0}, which
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allowed Micciancio and Regev to conclude that S, (L) = p, /(,(ﬁ \ Vnjo) <277,
i.e. that 7,-n (L) < \/n/\(L). The transference bound A (L) > 1/\,(L) then gives
M-n(L) < v/nAn(L). A more refined analysis in [50] for general ¢ > 0 and further
refinement by Peikert [56] in terms of the infinity norm minimum Xfo(f/) gave the
following result.

Lemma 4.2 ([56, Le. 3.5],[50, Le. 3.3]). For any full-rank lattice L C R" and ¢ €
(0, 1), we have

In(2n(1 + 1/¢))

™

n.(L) < -min (A, (L), 1/X°(L)) .

Micciancio and Regev also studied discrete Gaussian distributions on lattices. For
a lattice L C R", areal 0 > 0 and a point ¢ € R", they defined the discrete Gaus-
sian distribution of support L, deviation o and center ¢ by Dy, .(z) = Z :((i:?) for
any z € L. They showed using the above Fourier approach that, in the ‘smoothing’
region where o > 21).(L) and ¢ is small, the statistical properties of the discrete Gaus-
sian distribution Dy, , . are similar to those of the corresponding continuous Gaussian

distribution p, .. For example, they showed that the first and second moments of
Dy oe(x) = % are bounded as

(T=c)
|Evepp o[z = cu)]| < 16_06 (4.6)
" o? 2me 27e
Epepy, [z —cu)f]€ - {1- 57— 14+ 7— @.7)

. . 2
for a unit vector u € R™, compared to the corresponding values 0 and 5 for p; ., and
that the norm of samples from Dy, ;. is bounded as

Pr [z —c|>ovn] < .2 4.8)

IHDL,O‘,C

1+
1—

()

compared to a bound 27" on the probability of the same event for = sampled from the
continuous distribution ps ..

Importantly for many subsequent applications and the next section, Gentry, Peikert
and Vaikuntanathan [27] showed that the above ‘smoothing’ phenomenon (4.4) for the
distribution of a continuous Gaussian p, . reduced modulo a lattice L', also holds for
a discrete Gaussian Dy ;. on a lattice L, when it is reduced modulo a sublattice L' for
which o > n.(L’).

Lemma 4.3 ([27, Cor. 2.8]). Let L' C L C R" be lattices. For any c € R", ¢ €
(0,1/2) and o > n-(L"), we have A(Dy, 5. mod L';U(L/L")) < 26 (here, U(L/L’)
denotes the uniform distribution on the finite quotient group L/L’).
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In [27], the above result was applied with L = Z™ and L' = {x € Z™ : A-x =
0 mod ¢} for some matrix A € Zy*™, in order to bound the distance to uniformity
of the distribution of A - z mod ¢ over the choice of = sampled from Dzm , .. They
then bounded the smoothing parameter of L’ with high probability for a uniformly
distributed matrix A in Z7**".

Before we leave our brief review of this topic, we remark that cryptographic ap-
plications need also to efficiently sample from such discrete Gaussian distributions.
Some applications, such as the NTRU key generation described next, require only
discrete Gaussians with support Z™, which can be realized as n independent one-
dimensional discrete Gaussian samples on Z. Other applications, such as identity-
based encryption (see, e.g.[27]), typically require discrete Gaussians Dy , on non-
orthogonal lattices L, for which the coordinates are not independent. Nevertheless, it
was shown in [27] that given a basis B = (by,...,b,) for an n-dimensional lattice
L, one can still sample from such Gaussians efficiently when ¢ is slightly greater than
|| B|| = max; ||b;|| by reducing it recursively to the one-dimensional case, via an algo-
rithm that is essentially a randomized version of the Babai nearest plane algorithm [5].
Using an improved variant of the latter algorithm [15], gives the following result.

Lemma 4.4 ([15, Le. 2.2]). There exists a polynomial-time algorithm that takes as
input any basis (b;); of any lattice L C 7" and 0 > /In(2n + 4) /7 max; ||b;||, and
returns a sample from the distribution Dy, .

Efficient sampling algorithms for discrete Gaussians were given recently in [22, 21,
18, 65].

4.3 Statistical Hardness of the NTRU Decision Key Cracking Problem

We are now ready to state the result of [71] on the statistical hardness of the decision
NTRU key cracking problem in the statistical region, and sketch the main steps in its
proof.

Theorem 4.5 ([71, 72]). Let n > 8 be a power of 2 such that ¢ = x™ + 1 splits into
n irreducible factors modulo prime ¢ > 5 and let R = Z[x]/(¢(x)). Let xo = D},
be the distribution of f € R obtained by sampling f from Dzn , and rejecting (ar;d
resampling f) if f ¢ Ry. Let 0 < 0 < 1/3 be a constant and suppose that

o >n-+/In(8nq) - ¢'/**0. 4.9)
Then the Decision Key Cracking Problem DNKC, 4 4 ., is statistically hard. More pre-
cisely, the NTRU key distribution Dy = {h = g/f € Ry : f,g <> D7 ,} is within

statistical distance A from the uniform distribution D = U (Ry), with

A < 210ng=Lon], (4.10)
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Before we sketch the proof of [71], we remark that in [72], the authors present a
generalization of this result to the case when ¢ = 2™ + 1 splits into any number &, €
{1,...,n} of irreducible factors mod ¢. In particular, for the case when k; = O(1),
they show that the factor n in the lower bound on ¢ in Equation (4.9) can be reduced to
approximately /n. We also remark that, to simplify the exposition below, the above
version of the result in [71, 72] omits the restriction f = 1 mod p on the distribution
Xo of f. This restriction can be readily handled by a suitable modification of the
argument (we refer to [71, 72] for details).

The proof of Theorem 4.5 proceeds as follows. The goal is to bound the statistical
distance A = %ZaeR;; Pryglg/f = a] — [R;|~'| by some small amount £. To do

that, it is sufficient to show that for an overwhelming majority of the a € Ry, the
corresponding term in the sum A satisfies

[Prlg/f = a] ~ Byl < Byl - @1

In turn, since the event g/ f = a is equivalent to fa—g = 0 and also to faa’ —ga’ =0
for any o’ € R, the termwise condition (4.11) is equivalent to showing that for the

overwhelming majority of the pairs (a1, a;) € (R;‘)z, the probability P4, 4,)(0) o
Prs q[fa1 + gar = 0] satisfies
| Plar.an) (0) = By ' < [Bg[ ™" - €. (4.12)
But, P4, 4,)(0) is just the probability that (f, g) € Lg, /q,» Where
def
Lo, jay = {(f,9) € R*: fai + gaz = 0 mod ¢}, (4.13)

is in fact the NTRU module (or lattice in Z>") corresponding to a; Jay € R;. Hence,
a sufficient condition for satisfying (4.12) is that for the majority of (a1, as), the dis-
tribution D of (f,g) reduced modulo the lattice L, Jay» 18 close (within statistical
distance < \R(’;|_1 - €) to uniform on Z*"/L,, /a,» OVer the choice of (f,g) sampled
from (D%J)z_ Now, the latter problem can almost directly be attacked using the
‘smoothing modulo a lattice’ Lemma 4.3, with L = Z>® and L' = Ly, ja,. reducing
the problem to that of bounding the smoothing parameter of the NTRU lattice Ly, /q,
for the majority of (aj, a). Indeed, the only issue preventing this direct application
of Lemma 4.3 here, is that the distribution (Dznﬁ)2 of (f,g) is supported on a set
72N (R;)2 which, unlike Z>", is not a lattice. Indeed, by the choice of ¢, we have
d(x) = [1im, ¢i(x) where ¢y, . .., ¢, denote the linear factors of ¢) mod ¢, and thus the
Chinese Remainder Theorem gives the isomorphisms R, ~ [[i" Z4[z]/(¢i(x)) =~
Fp and Ry ~ [[i,(Zg[2]/(6i(x)) \ {(q, ¢i(2))}) =~ (F;)". Accordingly, Stehlé
and Steinfeld handled this issue by decomposing Z>" N (R;)2 in terms of lattices as

follows:
2

iRy =(zr- ) Is| . (4.14)
SC{l,...,n}
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where forasubset S C {1,...,n}, Is denotes the ideal of R, generated by [ [, ¢ ¢:(x).

Similarly, they decomposed the non-lattice set Lzl Jas f Ly ja, N (RZ‘])2 in terms of

lattices as:

* *\2
V(R =Loya,— | Laya(s), (4.15)
SC{1,...n}

where L, /4, (Is) denotes the sublattice of L, /4, consisting of pairs (f, g) in which
both f and g belong to the same ideal I of R, (note that if S is the empty set, we have
L (Is) = Lq, /ay)- Thus, the numerator and denominator in the probability

Pla;.a)(0) = Dgan 5 (L 14))/ Dz2n o ((R)), (4.16)

(l]/az

could be decomposed by applying the inclusion-exclusion principle to the set decom-
positions (4.15) and (4.14), giving respectively:

Dy g (L 1) = Y, (=15 Dy (L, oy (I5)), 4.17)
SC{l1,...,n}
and
2
Dpng(RY) =1 Y. (=0 Dung(Is) | - (4.18)
SC{1,...,n}

Each term DZZn,a(Lm/az(IS)) (resp. Dyzn (Ig)) in the sum (4.17) (resp. (4.18) is
now in the form of a discrete Gaussian evaluated on a a lattice. This allowed Stehlé
and Steinfeld to apply smoothing Lemma 4.3 to each term for which the smoothing
condition 7. (Ly, /a,(Is)) < o holds and conclude that Dyzn ,(Lg, /a,(Is)) is close
to 1/det(Lq, /q,(Is)) = g~ IS for those terms. For other terms with |S| suffi-
ciently large so that (L, /q,(Is)) larger than o and the smoothing condition does
not hold, they used the fact that L,, /4,(Is) is a sub-lattice of L, /q,(Is:) for some
S’ C S with |S’| > en for which the smoothing condition does hold, so that the bound
DZ2”,U(La|/a2 (Ig)) < DZ2”,U (Lal/az (IS/)) ~ 1/ det(La]/a2 (Is)) holds, with the lat-
ter approximation obtained by the smoothing Lemma applied to L, /4, (Igr). Overall,
assuming the smoothing condition

0 > 1e(Lg, o, (1)) for |S| < e'nand e < §¢~" (4.19)

holds for |S| < &’n with some constant & > 0, this allowed approximating the sum
(4.17) as

n n

Dypn o (L 1) = Y (=DFg ) = (3 (= 1)Fq" M) = (¢ — 1)"q ",

k=0 k=0
(4.20)
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with an approximation error bounded as 20(m) 1=(4e)n - A similar argument was ap-

plied to (4.18) to obtain the denominator approximation
Dan o (Rg)*) ~ [RG[Pq ™", @.21)

so that [Py, 4,)(0) — 1/|Rj|| < 200 ¢!=(+€n "which leads to a statistical distance
bound of the desired form 2°(") q*E'".

The remaining step in the proof of Theorem 4.5 was to show that ¢ > n-+/In(8ngq)-
q'/**9 for some small § > 0 is sufficient to satisfy the smoothing condition (4.19).
To do so, Stehlé and Steinfeld proved an upper bound on the smoothing parameter
Ne(La, ja,(Is)) of the NTRU-like lattices L, /q,(Is), that holds with overwhelming
probability over random ay, az in Ry.

Lemma 4.6 ([72, Le.3.2 and Le 2.1]). Let n > 8 be a power of 2 such that ¢ = z" + 1
splits into n linear factors modulo a prime ¢ > 5 and let S C [n] with |S| < €'n.
Then for all except a fraction < 24" q=™" of o, € (Ry)™, we have n-(Lyg, 1q,(I5)) <

\/n In2mn(1+1/¢))/m - q%*ﬁ'/%&'

Taking ¢ < &g~ for some small § in this Lemma gives 7-(Lg, /q,(Is)) < n -
In(8ngq) - ¢"/**9 for a small 6, as required. Lemma 4.6 was proved by first applying
Lemma 4.2 to reduce the problem of bounding the smoothing parameter of the gen-
eralized NTRU lattice L, /4, (Is) to the problem of lower bounding the minimum of

the dual lattice L/a]/\a2 (Is). As shown in [71], this dual has a simple description of the

= a .
They then applied a counting argument to lower bound the minimum of this lattice,

upper bounding the number of (ay, az) for which L, /q,(Is) contains a given fixed
short vector and applying the union bound over all such ‘bad’ pairs (a1, a;). Due to

form L/al\/az(IS) L {(tl,tz) € R’ :3s € R, Vi, (t; mod q) = a; - smod Ig p.

the simple description of L/al/\a2 (Is) and the CRT isomorphism R} ~ (F)", the latter
counting problem reduced to the easy problem of counting the number of solutions to
linear equations over the field IF,.

4.4 Computational Hardness of the Ciphertext Cracking Problem

We now turn to explain the main ingredients in second part of the proof of Theo-
rem 4.1, i.e. the computational reduction between the decisional NTRU ciphertext
cracking problem DNCCy, 4 ¢,y,,x, and the worst-case hardness of y-Ideal-SVP,. This
reduction is essentially a special case of the hardness proof for a problem now known
in the field of lattice-based cryptography as Ring Learning With Errors (Ring-LWE)
problem. The decision and search variants of quite general variants of the problem
were shown hard by Lyubashevsky et al. [48], while a concurrent and independent
work by Stehlé et al. [73] showed an alternative (and conceptually more modular)
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proof of hardness for a search variant. We remark that since its introduction by Regev
in 2005 [61], the LWE problem and its variants have found many interesting crypto-
graphic applications; we refer the reader to [51] for a partial survey of applications,
and to the survey by Regev [62] on the hardness of the Ring-LWE problem and its
more general Learning with Errors (LWE) relative. Here, we only briefly summarize
the connection to and results relevant to NTRU.

Ring-LWE Problem. Let R, be as above. The decision Ring-LWE problem, de-
noted by R-LWE,, 4 4y, », for Ry and ‘small’ noise distribution x s is to distinguish,
given » = poly(n) independent identically distributed samples (a;,b;) € Ré for
i = 1,....,r, whether these samples were sampled from the distribution Dy(s) (de-
fined in the following) or the uniform distribution U (Ré) on pairs of elements from
R,. The distribution Dy(s) is defined as follows. For some uniformly distributed ‘se-
cret’ s € R, (chosen once and for all, i.e. the same s is used for all 7 samples from
Dy(s)), we sample (a;,b;) from distribution Dy(s) by sampling a; uniformly from
R, and noise term e; from the distribution x g concentrated on ‘small’ elements, and
setting b; = a; - s +e; € Ry. The search Ring-LWE problem is the defined in a similar
way, except that the given samples are always sampled from the distribution Dy(s),
and the goal is to compute s (and hence also the e;’s).

The following hardness result for the decision Ring-LWE problem is adapted from
the results in [48]. It works with the noise distribution Dg on R defined by sampling a
continuous €, from the continuous Gaussian distribution g with deviation parameter
B and rounding it to R.

Theorem 4.7 (Adapted from [48]). Fix ¢ > 0, and let n be a power of 2 such that ¢ =
x™ + 1 splits into n irreducible factors modulo prime q = poly(n), let x3 = Dg be
the rounded Gaussian distribution with parameter 3 = n'>>*¢ < ¢, and assume that

r = O(1). Then there exists a randomized polynomial-time quantum reduction from
7v-1deal-SVP to R-LWE,, ; 4 \ 5., With y = O(n!73+¢) . %.

In the NTRU application described below, the above hardness result is applied with
r = 2, which is the smallest number of samples for which the Ring-LWE problem may
be statistically solved. With somewhat more complex Gaussian-like noise distributions
X3, it is shown in [48] that one can handle a larger number » = poly(n) of samples
and obtain slightly better reduction parameters (such a distribution is used in [71, 72]).

Relation to Ciphertext Cracking Problems. We can now explain the connection
observed in [71, 72] between the NTRU ciphertext cracking problem and the Ring-
LWE problem. The DNCC distinguisher algorithm A can distinguish, given h uniform
in RZ, whether ¢ comes from the distribution Dy with ¢ = p - (hs + €), s sampled
from x, and e sampled from xg, or ¢ comes from D; = U(R,). Since p € R}, we
can modify A to A’ that can distinguish D{, from D;, where in Dj, ¢ = hs + e with
s sampled from x, and e sampled from yg (indeed, given ¢ sampled from either Dy,
or Dy, the modified distinguisher A’ maps cto ¢ = p- ¢ € Ry, and runs the original
distinguisher A on input ¢’ — this maps distribution Dy to D{, and D; to itself). This
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latter ciphertext cracking problem is of the same form as a single Ring-LWE sample,
except that here s comes from a ‘small’ distribution g instead of being uniform in R,
as in the Ring-LWE problem.

However, as observed in [4], the standard Ring-LWE problem with » = 2 samples
and noise distribution x4 (but s uniform in IZ;) can be easily reduced to the cipher-
text cracking Ring-LWE variant with one sample but small s, sampled independently
from the same distribution x5 as the noise e (this variant has been termed by [4] the
‘Hermite Normal Form’ variant of LWE). Indeed, one can map an instance of the
former (ay,by), (az,b2) to (h = —al_l cay,c = by — al_lblaz) (note that A is uni-
form in R; when a, ap are, and ¢ = he| 4+ ep when by, b, come from D, whereas
c is uniform in R, and independent of & when by, by come from U(R;)). The only
remaining difference between the latter Ring-LWE variant with » = 2 and the stan-
dard Ring-LWE problem is that here, the distribution of the a; is U(R;) instead of
U(R,). But, since the probability that (a;,as) sampled from U (Ré) falls in (R;)2
is (1 — 1/¢)> > 1 — 2n/q and this is non-negligible for ¢ > 2n, the hardness of
the standard Ring-LWE variant implies the hardness of the new variant. Stehlé and
Steinfeld were therefore able to obtain the following relation.

Lemma 4.8 (Adapted from [71]). Let n be a power of 2 such that ¢ = x™ + 1
splits into n irreducible factors modulo prime ¢ = poly(n), p € Ry and x, = xp-.
Then there exists a randomized polynomial-time reduction between the decision NTRU
ciphertext cracking problem DNCCy, p, q 6 x, x5 and the decision Ring-LWE problem
R-LWE,, 4.6, x,r With v = 2 samples.

Combining Lemma 4.8 and Theorem 4.7 allowed Stehlé and Steinfeld to obtain
the hardness of the decision key cracking problem based on worst-case hardness of
poly(n)-Ideal-SVP.

5 Recent Developments in Applications of NTRU

In this Section, we review two recent novel applications of the NTRU system, that add
extra powerful functionality to the basic NTRU encryption scheme, and provide fresh
motivation for the study of both old and new variants of the NTRU problem.

5.1 NTRU-Based Homomorphic Encryption

A homomorphic encryption scheme allows any party Bob holding ciphertexts ¢; =
Encpr, (m1), ..., ¢t = Encyy, (my) of some messages my, . .., m; encrypted with Al-
ice’s public key pk4, to compute a ciphertext ¢ = Encyy, (m) for a message m =
f(miy,...,my) that is some function f of the messages my, ..., m;. Here, the func-
tion f can be chosen by and known to Bob, whereas Bob may know nothing about
the input messages my, ..., m; or output message m that he is processing. Only Al-
ice, holding the secret key sk can decrypt the ciphertexts to access the messages.



22 R. Steinfeld

Given a sufficiently large class of allowed functions f, homomorphic encryption can
enable a range of exciting privacy-enhanced applications, including secure outsourced
computations for ‘cloud-based’ computing, private database queries, and others. The
concept of homomorphic encryption schemes was proposed in the 1970’s by Rivest et
al. [64], but until recently, all proposed realizations were very limited in the class of of
functions f allowed.

In a major breakthrough in 2009, Gentry [25] proposed the first plausible candidate
for a fully homomorphic encryption (FHE) scheme, allowing f to be an arbitrary func-
tion. Gentry’s scheme was based on problems on ideal lattices, with the scheme being
naturally homomorphic with respect to the underlying ring operations. Gentry’s origi-
nal scheme was quite inefficient, and several improved schemes based on the LWE and
Ring-LWE problem have now been proposed (e.g. [16, 14, 13, 28]), but one of the sim-
plest and possibly more practical candidates is the NTRU based fully homomorphic
encryption scheme proposed by Lopez-Alt et al. [43]. The scheme proposed in [43]
even has the novel feature that the ciphertexts combined homomorphically could have
been encrypted to multiple recipients (‘multikey fully homomorphic encryption’), so
that the resulting ciphertext ¢ can be decrypted only jointly by all of these recipients
together. This multikey feature has potentially interesting applications in secure mul-
tiparty computation protocols, but for simplicity, we focus below on the single key
variant of this scheme and refer the interested reader to [43] for details on the multikey
variant.

The starting point of the NTRU-based FHE scheme of [43] is the observation that
the basic NTRU encryption scheme has natural homomorphic properties with respect
to both addition and multiplication in the ciphertext ring R4, corresponding, respec-
tively, to addition and multiplication in the plaintext ring I2,, (in the following, one can
think of the case p = 2; in this case R, contains a subring isomorphic to the binary
field F,. Since any arbitrary function f can be written as a circuit over 5, a scheme
homomorphic over R, is fully homomorphic). That is, given two NTRU ciphertexts
ct = h-si+peg+my € Rgand o = h - 55 + per + my € R, for messages
m1,my € Sy, with respect to public keys h = pg/f € R;, we have

c1+c=h-(s1+ s2)+ple; + e2) + (my +my)

is an NTRU ciphertext with s = s; + sp, € = e; + e that decrypts to message
f-(e1+¢2) mod p = mj+m; mod p if the decryption condition ||p(gs+ fe)+m|oo <
¢/2 holds. Similarly, we also have

c1-ca = h®s1sy + h(si€h + s2€}) + pleres + ermy + eamy) + mimy,  (5.1)

where €, = pe; + m; for i = 1,2. This ciphertext can in fact be decrypted with the
secret key f2 to give the message f2 - (c; - ¢2) mod p = my - my mod p as long as the
decryption condition

1(pg)*s152 + (f9)(s1€h + s2€}) + f2(plerer + e1ma + e2my) + mima)|le < q/2
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holds. Note that the latter decryption condition is the bottleneck, and that if ||pg|eo ~
Iflloc = o and [|s;]|oc & ||€i]loo3 then the decryption condition is of the form
(o - Bpoly(n))? < q/2, compared to the condition (o - Bpoly(n) < ¢/2 for the ba-
sic (not-homomorphic) NTRU scheme, with the multiplicative homomorphism con-
tributing the squared term. As a consequence, even to be homomorphic for just
one multiplication, the NTRU scheme requires o3 < ¢'/?/poly(n), which necessi-
tates the hardness of the key cracking problem in the computational region, where
o < ¢'/%/poly(n), and gives new motivation for studying the hardness of this prob-
lem.

The above homomorphic property naturally extends to more than one multiplica-
tion, where each additional multiplication approximately squares the norm of the noise
terms in decryption (ignoring the poly(n) terms). As a consequence, the scheme can
be made homomorphic with respect to polynomial functions of multiplicative depth
up to d if (oﬂpoly(n))2d < q/2. With ¢ = 2™ and 0 = 8 = poly(n), this allows
the depth d to be up to O(logn), but with an even larger ‘computational region’ ratio
q'/*/o = Q2™ /poly(n)), which weakens the security of the key cracking problem
against approximate shortest vector problem algorithms (which become easy to solve
in poly(n) time when ¢ > 1). To allow larger homomorphic multiplicative depth d,
the authors of [43] adapt techniques originally developed in [14] for Ring-LWE based
FHE schemes, called relinearization and modulus reduction, which we now briefly
sketch.

The first obstacle in the above basic homomorphic NTRU scheme, is the exponential
growth in the degree 2¢ of the secret key fzd needed to decrypt a ciphertext after
d homomorphic multiplications, which implies a doubly-exponential growth in the
secret key norm || f2°||. To avoid this growth, the authors modified the scheme to use
the following relinearization procedure. The relinearization procedure is applied to a
ciphertext ¢ = c; - ¢, after each homomorphic multiplication operation as in (5.1), to
produce a new ciphertext ¢ that encrypts the same message m; - m; mod p as ¢, but
¢ can be decrypted with the original secret key f, rather than with the squared secret
f? which is needed to decrypt c. To achieve this, the scheme must be modified in the
key generation stage; in addition to publishing her NTRU public key h = pg/f € R},
the recipient Alice also publishes = log ¢ additional ring elements (. that consist of
‘pseudo-encryptions’ of her squared secret key f2:

Gr=h-s+pe,+27f> € R forT=0,...,|logq], (5.2)

where for each 7, s, and e, are sampled from g as in the usual NTRU encrption
algorithm. Note that ¢, has the form of an encryption of 27 2, but it is not quite a valid
encryption of this value since 27 is ‘large’ and thus typically outside the message space
Sy (hence the name ‘pseudo-encryption’). Nevertheless, the extra public ¢ allow the
product ciphertext ¢ = ¢ - ¢, of the form (5.1) to be relinearized as follows. Let ¢ =
>, ¢-27 denote the binary representation of ¢, where for each 7 € {0, ..., [logq]},
¢r € Ry is a {0, 1} coefficient polynomial whose coefficients consist of the 7°th bit
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in the binary representation of the coefficients of c. The relinearization procedure
computes the new ciphertext

¢ = Z ¢ G =h- (Z CrSr)+p- (Z crer) + 2 (Z c27). (5.3)

Now, recall that the term f2 - (3 _¢,;27) = f?c has the decryption form pe + m my
for some small e, so in fact ¢ has the form ¢ = h-§+ p - € + m; - my of a standard
NTRU ciphertext for m; - m, mod p decryptable with f (rather than f2) as required,
where s = ) _c;s; and & = ) _cre; + e are small thanks to the smallness of the
binary coefficients of c;.

The second obstacle that remains even in the above relinearized scheme, is that
the norm O(poly(n)zd) of the ciphertext terms § and é in the relinearized ciphertext
¢=h-5+p-€&+my-my € Ry still grows doubly exponentially in the multiplica-
tive depth d. The modulus reduction technique used in [43] addresses this problem by
applying an additional transformation to the relinearized ciphertext ¢ after each homo-
morphic multiplication. Namely, modulus reduction scales down the ciphertext ¢ over
Ry, to another ciphertext & € Ry over a ring Ry with a smaller modulus ¢ < ¢, such
that the noise terms in & are also approximately scaled down by the ratio ¢’ /g, while
preserving the secret key f € R and the encrypted message m - m, mod p. By choos-
ing ¢'/q = 1/poly(n), the scaling down ratio ¢’/q can compensate for the poly(n)
growth ratio due to the homomorphic multiplication, so that overall, the norm of the
noise terms does not grow after a homomorphic multiplication. The ‘catch’, of course,
is that each multiplication reduces the modulus ¢ of the underlying ciphertext space
R, by a poly(n) factor, so that the modulus decreases exponentially as go/poly(n)?
with the depth d, where g denotes the initial modulus, and thus the process can only
work for d = O(logq/logn). Nevertheless, this exponential scaling of the modu-
lus with the depth d is a big improvement over the doubly-exponential noise norm
growth with d in the basic scheme, allowing d = O(n®/logn) for ¢ = 2™, instead
of d = O(logn) for the basic scheme. Moreover, using a bootstrapping technique
originally due to Gentry [25], it is shown in [43] that the depth d achievable with
this improved scheme can be leveraged to realize fully homomorphic encryption, i.e.
homomorphic computation for functions of unbounded multiplicative depth.

Before we leave this topic, we point out that, besides its reliance on the hardness
of the NTRU key cracking problem in the computational region (as already observed
above), the security of the homomorphic NTRU scheme employing the relineariza-
tion technique above in fact relies on a stronger new circular security variant of the
problem, that may be easier than the classical cracking problems.

Decision Circular Key Cracking Problem DNCKC,, ;, ¢ 4 v, .x5.¢: Given (n,p, q, @)
and (h,{(-}-), distinguish whether (h,{(;}-</) is sampled from the distribution
Dy={(h=g/f € R;C = h-8;+pe; +27f> € Ry : f,9 < Xo,5r,6r <
Xs,1 < 7 < £)} or from the uniform distribution D; = U(R}) x U(RY).

Relating the hardness of this problem to the standard decision key cracking problem,
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or giving an efficient algorithm for this problem, are interesting open problems. The
term ‘circular security’ comes from the study of the security of encryption schemes
that encrypt functions of their own secret key. Some results are known in this area for
lattice based encryption schemes [4], but they do not seem directly applicable to the
above NTRU variant of this problem.

Finally, with respect to assumptions required for realizing FHE, we remark that,
by adapting techniques introduced by Brakerski for LWE and Ring-LWE based FHE
schemes, it was recently shown by Bos et al. [12] how to modify the NTRU-based FHE
scheme above to avoid the need for the hardness of the NTRU key cracking problem in
the computational region, allowing the use of keys generated in the statistical region,
for which the results of Section 4.3 could be applied (a more efficient variant that
does need the computational region assumption is also presented in [12]). In terms
of the lattice problem approximation factor needed for security, it was recently shown
in [17] that one can construct FHE schemes based on worst-case lattice problems with
a polynomial approximation factor asymptotically approaching (within an arbitrarily
small polynomial factor) that of known (non-FHE) public-key encryption schemes.

5.2 NTRU-Based Multilinear Maps

At around the year 2000, the new powerful tool of bilinear maps (also known as pair-
ings) was introduced into the field of public-key cryptography, and soon found many
interesting applications, including non-interactive key agreement protocols [67, 38],
identity-based encryption [9], and many others. While the original realization of bi-
linear maps was based on algebraic curves, researchers soon began to search for other
realizations, and explored the fascinating cryptographic consequences of generaliza-
tions to multilinear maps [10]. Until very recently, however, candidate realizations of
such multilinear remained elusive. But in a breakthrough result announced in 2012,
Garg, Gentry and Halevi [23] showed that a functionality essentially equivalent to
(and to some extent even more powerful than) the sought-after multilinear maps, can
be achieved using a suitable variant of the NTRU encryption scheme. However, simi-
larly to the NTRU-based FHE scheme from the previous section, the security of their
so-called graded encoding system relies on the hardness of new and not yet well under-
stood variants of the NTRU problems. In the following, we sketch a simplified variant
of the system proposed in [23], which is due to Langlois et al. [40]. We believe that
the simplified variant is more closely related to the NTRU scheme than the original
version in [23].

We first informally review the main requirements of a k-graded encoding scheme
over aring IR,,. Given some public parameters pk, the scheme has an efficient random-
ized sampling algorithm Samp that outputs a representative of an (almost) uniformly
distributed ‘level 0" element m € R,,. There is also a (possibly randomized) encoding
algorithm Enc that takes a ‘level 0’ element m € IR, and outputs a ‘level 1 encod-
ing’ ¢; = Ency(m) of m. One can think of an encoding Enc;(m) of m as similar
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to a homomorphic encryption of m, in the sense that it should be hard to recover m
from its encoding, and the encoding algorithm should have additive and multiplicative
homomorphic properties up to a multiplicative depth (’level’) k, i.e. there exist effi-
cient algorithms add and mul with the following properties. Given a level ¢ encoding
c1 = Enc;(m) and level j encoding ¢, = Enc;(m;) for level 0 elements m, my € Ry,
we have that add(par, 1, ¢2) = Enc;(m; +my) is alevel i encoding of m; +m, € R,
(here, we assume that j = 7), while mul(par, ¢1, ¢2) = Enc;yj(m;+my) isalevel i+
encoding of m; - my € R,. However, there is one major difference between graded
encodings and homomorphic encryption schemes: unlike an encryption of element m,
for correct functionality similar to that provided by multilinear maps, the encoding
Enc;(m) for i < k should nor satisfy semantic security, i.e. it should not hide all
partial information on m (on the other hand, at level > k + 1 the encodings should
hide information on the encoded element; see the k-graded decision Diffie-Hellman
problem below). In particular, given an encoding ¢ = Enc;(m) and the encoded ele-
ment m, it should be easy to verify that c is indeed an encoding of m, rather than of
some other element /. In fact, there should exist an efficient ‘extraction’ algorithm
Ext, such that given a level k encoding ¢ = Ency(m) of m and public parameters
pk, outputs a ‘canonical and random’ representative 7(m) = Ext(pk,c) € {0, 1} of
m, where ¢ should be proportional to the security parameter for the scheme. Namely,
the extracted representative r(m) should be dependent only on m and not on the ran-
domness in the encoding of m, and for a uniformly distributed element m € R, the
extracted representative should be almost uniformly distributed in {0, 1}¢.

A classical example application [23] of such a k-graded encoding scheme is con-
structing a non-interactive (k + 1)-party key agreement protocol, generalizing the
Diffie-Hellman 2-party protocol [20] and the 3-party protocol of Joux [38]. In this
case, for ¢ = 1,...,k + 1, party ¢ privately chooses an element m; € R, and
broadcasts the level 1 encoding ¢; = Enci(m;). The agreed shared key is K =
Ext(pk, Encg(mim; - - - my.y1), is the canonical representative of the element my - - - my ;.
The key K can be computed by the +th party, by first multiplying the level 1 encodings
of all other parties to get a level k encoding ¢’ of ] j+i M, and then using its private
level 0 element m; to compute a level k£ encoding ¢ = m; - cof my ... my4, followed
by applying Ext. An eavesdropping adversary, on the other hand, has to solve the k-
graded decision Diffie-Hellman problem: given level 1 encodings ¢; = Enc(m;) for
i=1,...,k+ 1 for uniformly distributed m; € R,, distinguish r(m; - - - my4;) from
a random string. One could hope that this problem is as hard as the k-graded Discrete
Log problem: given ¢ = Enc(m) for a uniformly distributed m € R, find m.

The NTRU-based construction of [23] for a k-graded encoding scheme, as simpli-
fied by [40], works as follows. The parameter generation algorithm is similar to the
one for the basic NTRUEncrypt scheme, but with the following modifications. The
public key is still of the form h; = pg;/f € R, with ‘small’ g;, f € R being sampled
from a distribution x, and f subject to the restriction f = 1 mod p. However, there
are m, such keys published, sharing the same denominator f but having independent
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gifori=1,...,m,'. Moreover, the choice of the polynomial p defining the encoded
element ring R, is different: instead of being a small public integer, p is chosen as
a secret small polynomial from some high entropy distribution ,. To facilitate the
extraction algorithm Ext, an additional element e, is published, where

er = ufk/p € Ry,

for some u of norm ||u|| = poly(n) - ¢'/2. The ‘level 0’ sampling algorithm Samp
samples m € R from a discrete Gaussian Dz» , with s chosen small compared with g
but sufficiently larger than the smoothing parameter 7-((p)) = O(poly(n) - ||p||) of the
ideal of R generated by p, so that by the smoothing Lemma 4.3, the level 0 element
m mod p is close to uniform on R,. To encode m, the ‘level 1’ encoding algorithm
computes ¢ = Enci(m) = >, his; + m € Ry, with s; small from x,. Note that ¢
has the form ¢ = pg’/f + mo, for small ¢’ which is essentially an NTRU ciphertext
of mp = m mod p, with no extra error terms pe;, as in the original NTRUEncrypt
scheme. The add and mul algorithms just perform addition and multiplication over
R, as in the basic homomorphic encryption scheme of the previous section. As a
consequence, level k encodings of mg have the form ¢ = pg’/f* + mq for small
g'. For z € Ry, let M SB(x) denote the polynomial whose coefficients consist of
the most-significant ¢ bits of each coefficient of x. Given such a level k encoding c,
the extraction algorithm Ext computes the representative r(mg) = Ext({h;},ex) =
MSBy(ep-c) = MSBy(ug'+uf*/pmo) = MSBy(ug”+u/pmyg) for some small g”.
Note that ug” is an element of ‘small” norm O(poly(n)* - ¢'/?) compared with ¢, if ¢ is
chosen sufficiently larger than poly(n)Zk, whereas u/pmg € R, is a large element due
to the large p~! factor and the fact that p does not divide hmg in R with overwhelming
probability. This means that the ¢ most-significant bits (when £ is chosen smaller than
log ¢ — log(||ug”||)) of (my) are, with high probability, determined only by the large
u/pmy term, that is dependent only on the encoded element 1 (and the fixed elements
u, p) and not on any randomness in the encoding, as required.

We conclude this section by stating the NTRU k-graded discrete-log problem that
is necessary for the security of the Diffie-Hellman key exchange based on the above
problem (actually the security of the k-graded Decision Diffie-Hellman is necessary,
but even the hardness of the simpler k-graded discrete-log problem is open).

k-graded NTRU Discrete-Log Problem DNDLy ;g 6 v, xo.x5xp.6" Given
(k,n,q,0). bt = pg1/f,. .. lum, = Dgm, [ f. ex = uf*/p € Rgand ¢ = 3=, hisi +
m € Ry, with p sampled from x,, = Dz, with n = poly(n), g ..., gm,, f, m sam-
pled from the ‘small’ distribution x, subject to f = 1 mod p with ¢ = poly(n) - ||p||,
S15--+,5m, sampled from the ‘small’ distribution xg with 3 = poly(n) - p, and u
sampled from the ‘small’ distribution y, with p = ¢'/?poly(n), find m’ with ||m’||
‘small’ (less than ¢) such that m’ = m mod p.

Note that ignoring ey, this problem is a variant of the NTRU ciphertext cracking
problem with a secret p. But the presence of e makes this problem quite different;

! Some desirable properties can be established for m,. = 2 (see [40] for more details).
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indeed knowledge of e, allows an element m/' in coset of 7 modulo p to be efficiently
recovered. In particular, the attacker can compute several quantities of the form v, =
er ([Li=1. s 2oicm, hipij)-(1 +hy)k=* for ‘small’ random p; ;. Since > i<, hipij
has the form (p - ¢%)/f with ‘small’ random g with j = 1,...,s while 1 + hy =
(f +pg1)/f = (14 pg!)/f with small g{, it follows that that the v, are of the form
vy = ugy if s = 1 and v, = upg, if s > 2 for some small random §,, where the
equality holds over R, not just over R,. From the latter multiples of v and up, one
can typically compute efficiently a (large norm) basis for the ideal (p) generated by p
(see Sec.6.3.3 in [23]). Then, given the encoding ¢ = ) . h;s; + m € Ry, one could
compute ¢/ = ey, - hy -c- (1 + hy)*=2 = ug; - (m + tp) € R for some ‘small’ ¢ and
similarly ¢ = ey -hy-(1+h1)*~! = ug; - (1+t'p) € R for some ‘small’ #’. Note that
¢ = ugym mod p and ¢’ = ug; mod p, so that m’ = ¢’ - (¢")~! mod p = m mod p,
assuming that ug; invertible in R,,. However, since the attacker’s basis for (p) has large
norm, the computed element m’ also has large norm, and, due to the apparent difficulty
of computing a short basis for the ideal (p), it still seems hard to efficiently compute
a short (norm less than ¢) representative (such as m) of the coset of m’ modulo (p).
We remark that other applications require the hardness of yet other interesting variants
of this problem. We refer the interested reader to [23, 40] as well as [24, 8], where
a variant of the GGH construction is applied to provide a candidate solution to the
problem of cryptographic program obfuscation which seems very promising in terms
of its potential applications (see [66, 11, 3] for some examples).

6 Conclusions

We surveyed recent developments in both the security analysis and applications of
the NTRU cryptosystem and its variants. Some of these developments motivate the
study of new computational problems on polynomial rings, whereas others help to
unify the field of lattice-based cryptography, by showing that the security of the NTRU
system can be based on the same foundations as more recent lattice-based schemes.
The simplicity of the NTRU system seems to give it potential efficiency advantages
compared with other known lattice-based systems (e.g., unlike other known public-key
encryption schemes based on the Ring-LWE problem, NTRU ciphertexts consist of
just a single ring element), and also seems to make it easier to construct some powerful
cryptographic functionalities, such as the multilinear maps discussed in Section 5.2
and the multikey homomorphic properties of the FHE scheme in Section 5.1. Yet the
full fundamental potential of the NTRU system, as well as that of other lattice-based
systems, is not completely clear at present. We hope this survey will encourage more
progress in this active field in the years to come.
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