Chinese Remaindering with Multiplicative Noise

Igor E. Shparlinski
Department of Computing, Macquarie University
Sydney, NSW 2109, Australia
igor@ics.mq.edu.au
Ron Steinfeld
Department of Computing, Macquarie University
Sydney, NSW 2109, Australia
rons@ics.mq.edu.au

May 23, 2005

Abstract

We use lattice reduction to obtain a polynomial time algorithm for recovering an integer (up to a multiple) given multiples of its residues modulo sufficiently many primes, when the multipliers are unknown but small.

1 Introduction

For integers s and $m \geq 1$ we denote by $\lfloor s\rfloor_{m}$ the remainder of s on division by m. For an integer $A \geq 1$ we denote by $\mathcal{Z}[A]$ the set of integers in the interval $[0, A-1]$.

We consider the following problem. For an integer $a \in \mathcal{Z}[A]$ (for some positive integer A), we are given n multiples $y_{i}=\left\lfloor r_{i} \cdot a\right\rfloor_{p_{i}}$ of the residues of a modulo known primes p_{1}, \ldots, p_{n}, where the multiplier integers $r_{i} \neq 0$ are
unknown but small in absolute value, so that $\left|r_{i}\right|<p_{i}^{\alpha}$ for all $i=1, \ldots, n$, for some $\alpha<1$. Our goal is to recover the hidden integer a from $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)$ and $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right)$.

Note that in general the integer a cannot be recovered uniquely from the given information. In particular, the vector \mathbf{y} corresponding to the hidden integer a with multiplier vector $\mathbf{r}=\left(r_{1}, \ldots, r_{n}\right)$ also corresponds to the integer $\widetilde{a}=d \cdot a$ with multiplier vector $\widetilde{\mathbf{r}}=\left(r_{1} / d, \ldots, r_{n} / d\right)$, for any common divisor d of r_{1}, \ldots, r_{n}. Thus we are content with recovering the largest such integer, namely $D \cdot a$ where $D=\operatorname{gcd}\left(r_{1}, \ldots, r_{n}\right)$, rather than recovering a itself.

We give a polynomial time algorithm for the above "noisy" Chinese remaindering problem and show that it succeeds to recover $D \cdot a$ with overwhelming probability over a random choice of sufficiently many large primes whenever $\alpha<(1-\varepsilon) /(n+1)$ for any $\varepsilon>0$. Here, as in many other works of similar spirit, we use lattice algorithms. It is interesting to remark that the above threshold on the level of "noise" corresponds to that of [3] where a similar problem is considered for polynomial evaluation with multiplicative noise.

Clearly if the primes p_{1}, \ldots, p_{n} can be choosen in an advance, then we can simply take any n primes with $p_{i} \leq 2^{n}$ which in our settings with $\alpha<1 / n$ immediately implies that $\left|r_{i}\right|<2$, that is, $r_{i}= \pm 1$. Thus we know a^{2} $\left(\bmod p_{i}\right), i=1, \ldots, n$. Provided $A^{2} \leq p_{1} \ldots p_{n}$ this is enough to find a^{2} and therefore a. However, our algorithm works in a much more general situation.

We remark that several more variants of the "noisy" Chinese remaindering problem has been considered in the literature, see [2, 4, 6, 13]. In particular, the case of "additive noise" has been considered in [13] with a much more genereous bound on the level of noise. The authors of [13] left it as an open problem to find a cryptographic application for their algorithm. Recently, an application of this "additive noise" algorithm to changeable-threshold secret-sharing schemes was given in [14]. Although the "multiplicative noise" algorithm in this paper is not well suited for the application in [14] due to a weaker algorithmic result, we hope that the hardness of this problem may find application in cryptography (although its hardness needs further study).

Throughout the paper $\log z$ denotes the binary logarithm of $z>0$.

2 Lattices

Here we collect several well-known facts which form the background of our algorithm.

We review several related results and definitions on lattices which can be found in [5]. For more details and more recent references, we recommend to consult the brilliant surveys of Nguyen and Stern [9, 10].

Let $\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{s}\right\}$ be a set of linearly independent vectors in \mathbb{R}^{r}. The set

$$
\mathcal{L}=\left\{\mathbf{z}: \mathbf{z}=c_{1} \mathbf{b}_{1}+\ldots+c_{s} \mathbf{b}_{s}, c_{1}, \ldots, c_{s} \in \mathbb{Z}\right\}
$$

is called an s-dimensional lattice with basis $\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{s}\right\}$. If $s=r$, the lattice L is of full rank.

To each lattice \mathcal{L} one can naturally associate its volume

$$
\operatorname{vol}(\mathcal{L})=\left(\operatorname{det}\left(\left\langle\mathbf{b}_{i}, \mathbf{b}_{j}\right\rangle\right)_{i, j=1}^{s}\right)^{1 / 2}
$$

where $\langle\mathbf{a}, \mathbf{b}\rangle$ denotes the inner product, which does not depend on the choice of the basis $\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{s}\right\}$.

For a vector \mathbf{u}, let $\|\mathbf{u}\|$ denote its Euclidean norm.
Given a lattice \mathcal{L}, the problem of finding a shortest vector in a lattice which is known as the shortest vector problem, or SVP. For a lattice \mathcal{L}, with a given basis, we say that a certain lattice algorithm is polynomial time if its running time is bounded by a polynomials in s and the total bit length of components of the basis vectors of the lattice, which are assumed to be given as rational numbers. Unfortunately, there are several indications that the SVP is NP-complete (when the dimension grows), see [9, 10]. However, for a relaxed task of finding a short vector, $\mathbf{v} \in \mathcal{L}$ satisfying

$$
\|\mathbf{v}\| \leq \gamma_{s} \min \{\|\mathbf{z}\|: \quad \mathbf{z} \in \mathcal{L} \backslash\{0\}\}
$$

with some approximation factor γ_{s} may be more feasible.
Indeed, the celebrated $L L L$ algorithm of Lenstra, Lenstra and Lovász [8] provides a desirable solution with the approximation factor $\gamma_{s}=2^{s / 2}$ thus producing, in deterministic polynomial time a vector $\mathbf{v} \in \mathcal{L}$ satisfying

$$
\|\mathbf{v}\| \leq 2^{s / 2} \min \{\|\mathbf{z}\|: \mathbf{z} \in \mathcal{L} \backslash\{0\}\}
$$

Later developments of Schnorr [12] and quite recently by Ajtai, Kumar, and Sivakumar [1] lead to some (rather slight) improvements of our results.

3 Algorithm

The algorithm is given as input $(\mathbf{y}, \mathbf{p}, A)$, where $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{Z}^{n}$ and $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right) \in \mathcal{P}_{\ell}^{n}$, where $y_{i}=\left\lfloor r_{i} \cdot a\right\rfloor_{p_{i}}$ for $i=1, \ldots, n, a \in \mathcal{Z}[A]$, and \mathcal{P}_{ℓ} is a set of primes which exceed 2^{ℓ} for some integer length parameter $\ell \geq 1$. We also assume that we are given an SVP algorithm with approximation factor γ_{n}.

The algorithm is based on the observation that $\left(R / r_{i}\right) \cdot y_{i} \equiv R \cdot a\left(\bmod p_{i}\right)$ for all $i=1, \ldots, n$, where $R=\operatorname{lcm}\left(r_{1}, \ldots, r_{n}\right)$, and hence

$$
\sum_{i=1}^{n} \lambda_{i} \cdot\left(R / r_{i}\right) \cdot y_{i} \equiv R \cdot a \quad(\bmod P)
$$

where $P=p_{1} \ldots p_{n}$, and λ_{i} denotes the i th Chinese Remainder coefficient satisfying $\lambda_{i} \equiv 1\left(\bmod p_{i}\right)$ and $\lambda_{i} \equiv 0\left(\bmod p_{j}\right)$ for all $j \neq i$. This observation suggests to set up a lattice to search for the "small" linear combination coefficients (R / r_{i}) of $\lambda_{i} y_{i}$ which give a "small" residue $R \cdot a$ modulo P (the residue is "small" as long as P is sufficiently large compared to $R \cdot a$).

The Algorithm MultNoise-CRT proceeds as follows:

Algorithm MultNoise $-\operatorname{CRT}\left(\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right), \mathbf{p}=\left(p_{1}, \ldots, p_{n}\right), A, \gamma_{n}\right)$

1. Build the following $(n+1) \times(n+1)$ matrix B, whose rows form a basis for a full-rank lattice \mathcal{L} in \mathbb{Q}^{n+1} :

$$
B=\left(\begin{array}{ccccc}
1 & 0 & \ldots & 0 & \lambda_{1} \cdot y_{1} / A \tag{1}\\
0 & 1 & \ldots & 0 & \lambda_{2} \cdot y_{2} / A \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 1 & \lambda_{n} \cdot y_{n} / A \\
0 & 0 & \ldots & 0 & P / A
\end{array}\right)
$$

2. Run a polynomial-time SVP algorithm with approximation factor γ_{n} on input B. Denote by $\mathbf{b}=\left(b_{1}, \ldots, b_{n+1}\right) \in \mathcal{L}$ the vector returned by this algorithm, which approximates the shortest vector in \mathcal{L}.
3. Compute $z_{i}=A \cdot b_{n+1} / b_{i}$ for $i=1, \ldots, n$ (if any z_{i} is not an integer then the algorithm fails) and output $\widetilde{a}=\operatorname{gcd}\left(z_{1}, \ldots, z_{n}\right)$ as an estimate for the desired integer $\operatorname{gcd}\left(r_{1}, \ldots, r_{n}\right) \cdot a$.

4 Analysis

4.1 Heuristic and Necessary Conditions for Algorithm Success

As explained above, our algorithm works by first building a lattice \mathcal{L} which contains a "short" non-zero vector \mathbf{b}^{*} (such that the solution to our problem can be easily recovered from \mathbf{b}^{*}), and then searching the lattice for (an approximation to) the shortest non-zero vector, hoping that \mathbf{b}^{*} is the shortest non-zero vector in \mathcal{L}. Thus, a necessary condition for our algorithm to succeed by recovering the vector \mathbf{b}^{*} (or an integral multiple thereof) is that \mathbf{b}^{*} is the shortest non-zero vector in \mathcal{L}.

From the discussion in the previous section, one can see that $\mathbf{b}^{*}=$ $\left(R / r_{1}, \ldots, R / r_{n}, R \cdot a / A\right)$, where $R=\left|\operatorname{lcm}\left(r_{1}, \ldots, r_{n}\right)\right|$. Hence, in the worst case, the Euclidean length $\left\|\mathbf{b}^{*}\right\|$ of \mathbf{b}^{*} is approximately equal to R. On the other hand, we know by the Minkowski theorem in the geometry of numbers [5] that the Euclidean length $\lambda_{1}(\mathcal{L})$ of the shortest non-zero vector in any lattice \mathcal{L} of dimension s is at most $s^{1 / 2} \operatorname{det}(\mathcal{L})^{1 / s}$. For our lattice we have $s=n+1$ and $\operatorname{det}(\mathcal{L})=P / A$, so $\lambda_{1}(\mathcal{L}) \leq(n+1)^{1 / 2}(P / A)^{1 /(n+1)}$. Thus a necessary condition for having $\left\|\mathbf{b}^{*}\right\|=\lambda_{1}(\overline{\mathcal{L}})$ is that $R \leq(n+1)^{1 / 2}(P / A)^{1 /(n+1)}$. Putting

$$
\alpha=\frac{\log R}{\log P} \quad \text { and } \quad \beta=\frac{\log A}{\log P},
$$

we get the necessary condition

$$
\alpha \leq \frac{1-\beta+(1+1 / n) \log (n+1) /(2 \ell)}{n+1} .
$$

Therefore, the vector \mathbf{b}^{*} is not be the shortest vector in \mathcal{L} (and hence our algorithm fails) if the bit-length of the noise integers r_{i} exceeds approximately a fraction $(1-\beta) /(n+1)$ of the (average) bit-length of the prime moduli p_{1}, \ldots, p_{n}. Heuristically, we expect that this necessary condition for success is also approximately sufficient, that is, that our algorithm succeeds as soon as $\alpha \leq(1-\beta-\varepsilon) /(n+1)$ for some small $\varepsilon>0$, because in this case we expect that \mathbf{b}^{*} will be the shortest non-zero vector in \mathcal{L}. In the next section, we rigorously prove that this heuristic is correct with high probability when we choose the prime moduli randomly from a sufficiently large set.

4.2 Sufficient Condition for Algorithm Success

We now give a rigorous sufficient success condition for our algorithm which quite closely matches the heuristic sufficient condition (and the necessary condition) discussed above.

Theorem. For integer $n \geq 2, \ell, \alpha, A$ and real $c>0$ and $0<\delta<1$, such that $A \geq c^{n}$, fix a non-zero integer $a \in \mathcal{Z}[A]$ and n non-zero integer multipliers $\left(r_{1}, \ldots, r_{n}\right)$ with $\left|r_{i}\right|<2^{\alpha \ell}$ for all $i=1, \ldots, n$. Let \mathcal{P}_{ℓ} denote a set of primes all exceeding 2^{ℓ} with $\# \mathcal{P}_{\ell} \geq c 2^{\ell} / \ell$. If for

$$
\beta=\frac{\log A}{\ell n}, \quad \eta=\left\lceil(n+1)^{1 / 2}\right\rceil \gamma_{n}, \quad \rho=\log \left(2 A \eta R^{2}\right)
$$

the following condition holds

$$
\alpha \leq \frac{1-\beta-\varepsilon}{n+1}
$$

with

$$
\varepsilon=\frac{\log \left(\rho c^{-1}(3 \eta)^{1+1 / n} \delta^{-1 / n}\right)}{\ell},
$$

then, on input $\left(\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right), \mathbf{p}=\left(p_{1}, \ldots, p_{n}\right), A, \gamma_{n}\right)$, where $y_{i}=\left\lfloor r_{i} a\right\rfloor_{p_{i}}$ for $i=1, \ldots, n, \mathbf{p} \in \mathcal{P}_{\ell}^{n}$, Algorithm MultNoise-CRT computes Da where $D=\operatorname{gcd}\left(r_{1}, \ldots, r_{n}\right)$, in time polynomial in $\log \left(p_{1} \ldots p_{n}\right)$ for at least a fraction $1-\delta$ of prime bases $\mathbf{p} \in \mathcal{P}_{\ell}^{n}$.

Proof. We call a vector $\mathbf{b}=\left(b_{1}, \ldots, b_{n+1}\right) \in \mathcal{L}$ good if $A b_{n+1}=b_{i} r_{i} a$ for all $i=1, \ldots, n$. A vector which is not good is called bad.

First, we observe that if the SVP algorithm returns a good vector \mathbf{b}, then our algorithm recovers $z_{i}=r_{i} a$ for all $i=1, \ldots, n$ and hence $\widetilde{a}=$ $\operatorname{gcd}\left(r_{1}, \ldots, r_{n}\right) a$, so our algorithm succeeds.

Now we observe that by construction, the lattice \mathcal{L} contains the "short" good vector

$$
\mathbf{b}^{*}=\left(R / r_{1}, \ldots, R / r_{n}, R a / A\right),
$$

whose components are all less than $R=\operatorname{lcm}\left(r_{1}, \ldots, r_{n}\right)$, and whose Euclidean length is therefore less than $(n+1)^{1 / 2} R$. It follows that the lattice vector \mathbf{b} returned by the SVP algorithm has length less than $\gamma_{n}(n+1)^{1 / 2} R \leq \eta R$. So a sufficient condition for success of our algorithm is that the lattice \mathcal{L} does not contain any bad vectors of length less than $\eta \cdot R$, since this implies that b must be good.

For fixed a and \mathbf{r}, we now upper bound the number N of "bad" prime bases $\mathbf{p} \in \mathcal{P}_{\ell}^{n}$ for which the lattice \mathcal{L} contains a bad vector of length less than $\eta \cdot R$.

We call a bad vector $\mathbf{b}=\left(b_{1}, \ldots, b_{n+1}\right)$ a fully bad vector if $A \cdot b_{n+1} \neq$ $b_{i} \cdot r_{i} \cdot a$ for all $i=1, \ldots, n$ and partially bad otherwise.

Let \mathbf{b} denote a fully bad vector of length less than $\eta \cdot R$. The number of bases \mathbf{p} such that \mathcal{L} contains \mathbf{b} can be bounded by observing that by construction of \mathcal{L} we have for any lattice vector \mathbf{b} that

$$
A b_{n+1} \equiv b_{i} r_{i} a \quad\left(\bmod p_{i}\right), \quad i=1, \ldots, n .
$$

On the other hand, since \mathbf{b} is fully bad we know that $A b_{n+1} \neq b_{i} r_{i} a$ for all $i=1, \ldots, n$. So p_{i} divides the non-zero integer $u_{i}=A b_{n+1}-b_{i} r_{i} a$ for all $i=1, \ldots, n$. Since

$$
\left|u_{i}\right|<\left|A b_{n+1}\right|+\left|b_{i} r_{i} A\right| \leq A \eta R+A \eta R r_{i} \leq 2 A \eta R^{2},
$$

we know that p_{i} must be one of less than $\log \left(2 A \eta R^{2}\right) / \ell$ prime factors of u_{i} in \mathcal{P}_{ℓ}, for each $i=1, \ldots, n$. Thus there are less than $\left(\log \left(2 A \eta R^{2}\right) / \ell\right)^{n}$ bases \mathbf{p} for which \mathcal{L} contains \mathbf{b}, and since the number of fully bad vectors of length less than ηR is at most $(2 \eta R)^{n} 2 A \eta R$, we conclude that that there are

$$
N_{F}<2 A \eta R\left(2 \eta R \log \left(2 A \eta R^{2}\right) / \ell\right)^{n}
$$

bases \mathbf{p} for which \mathcal{L} contains a fully bad vector of length less than ηR.
Now we consider the case of a partially bad vector \mathbf{b} of length less than ηR. We claim in this case, that if the conditions

$$
\begin{equation*}
2 \eta R \cdot \max _{i=1, \ldots, n}\left|r_{i}\right| \leq 2^{\ell} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
a \not \equiv 0 \quad\left(\bmod p_{i}\right), \quad \text { for all } i=1, \ldots, n \tag{3}
\end{equation*}
$$

hold, then \mathcal{L} does not contain \mathbf{b}. To establish this claim, we suppose, towards a contradiction, that \mathcal{L} contains a partially bad vector \mathbf{b} of length less than ηR. Because \mathbf{b} is bad and is in \mathcal{L}, we know there exists $j \in\{1, \ldots, n\}$ such that

$$
\begin{equation*}
A b_{n+1} \neq b_{j} r_{j} a \text { and } A b_{n+1} \equiv b_{j} r_{j} a \quad\left(\bmod p_{j}\right) . \tag{4}
\end{equation*}
$$

On the other hand, because \mathbf{b} is partially bad, we know there also exists $i \in\{1, \ldots, n\}$ such that

$$
\begin{equation*}
A b_{n+1}=b_{i} r_{i} a . \tag{5}
\end{equation*}
$$

It follows from (3), (4), and (5) that $b_{i} r_{i}-b_{j} r_{j}=k \cdot p_{j}$ for some non-zero integer k, and therefore

$$
\begin{equation*}
\left|b_{j}\right|=\frac{\left|b_{i} r_{i}-k p_{j}\right|}{\left|r_{j}\right|} \geq \frac{1}{\left|r_{j}\right|}\left(\min _{\nu=1, \ldots, n} p_{\nu}-\eta R\left|r_{i}\right|\right) \tag{6}
\end{equation*}
$$

using the fact that $k \neq 0$ and $\left|b_{i}\right|<\eta R$. But the condition (2) implies that the right-hand side of (6) is lower bounded as

$$
\frac{1}{\left|r_{j}\right|}\left(\min _{\nu=1, \ldots, n} p_{\nu}-\eta R\left|r_{i}\right|\right) \geq \frac{1}{\left|r_{j}\right|}\left(\eta R \max _{\nu=1, \ldots, n}\left|r_{\nu}\right|\right) \geq \eta R
$$

and therefore (6) leads to a contradiction with our assumption that the length of \mathbf{b} is less than ηR, as required to prove our claim above.

We now show that both conditions (2) and (3) hold for all except at most $(\log A / \ell)^{n}$ bases \mathbf{p} in \mathcal{P}_{ℓ}^{n}. Since $\max _{i}\left|r_{i}\right|<2^{\alpha \ell}$, the condition (2) is implied by the condition

$$
\alpha \leq \frac{1-\ell^{-1} \log (2 \eta)}{n+1}
$$

But this latter condition follows from the assumption of the theorem that

$$
\alpha \leq \frac{1-(\beta+\varepsilon)}{n+1}
$$

and

$$
\beta=\frac{\log A}{\ell n} \geq \frac{\log c}{\ell}
$$

since we have

$$
\beta+\varepsilon \geq \frac{\log \left(\rho(3 \eta)^{1+1 / n} \delta^{-1 / n}\right)}{\ell} \geq \frac{\log (2 \eta)}{\ell}
$$

using $\rho \delta^{-1 / n} \geq 1$. Thus condition (2) is implied by the theorem hypotheses. Since $0<a<A$, we know that a has at most $\log A / \ell$ prime factors in \mathcal{P}_{ℓ} and therefore condition (3) also holds unless \mathbf{p} contains one of those primes. We conclude that, for all except

$$
N_{P}<(\log A / \ell)^{n}
$$

bases \mathbf{p} in \mathcal{P}_{ℓ}^{n}, both conditions (2) and (3) hold, and thus \mathcal{L} contains no partially bad vectors of length less than ηR.

Therefore, there are

$$
N=N_{F}+N_{P}<3 A \eta R\left(2 \eta R \log \left(2 A \eta R^{2}\right) / \ell\right)^{n}
$$

bases \mathbf{p} in \mathcal{P}_{ℓ}^{n} for which our algorithm may fail. It follows that for any $0<\tilde{\delta}<1$, the fraction of bases \mathbf{p} in \mathcal{P}_{ℓ}^{n} for which our algorithm may fail is at most $\tilde{\delta}$ if the following condition is satisfied:

$$
\frac{N}{\# \mathcal{P}_{\ell}^{n}}<\frac{3 A \eta R\left(2 \eta R \log \left(2 A \eta R^{2}\right) / \ell\right)^{n}}{\left(c 2^{\ell} / \ell\right)^{n}} \leq \tilde{\delta}
$$

Plugging in $A=2^{\beta \ell n}, R<2^{\alpha \ell n}$, and defining $\rho=\log \left(2 A \eta R^{2}\right)$, we find that the above condition is satisfied if

$$
(3 \eta)^{n+1}\left(\rho c^{-1}\right)^{n} 2^{(\beta+\alpha \cdot(n+1)-1) \ell n} \leq \tilde{\delta}
$$

which is equivalent to condition

$$
\alpha \leq \frac{1-\beta-\varepsilon}{n+1}
$$

where

$$
\varepsilon=\frac{\log \left(\rho c^{-1}(3 \eta)^{1+1 / n} \tilde{\delta}^{-1 / n}\right)}{\ell}
$$

By the theorem hypothesis this latter condition is satisfied with $\tilde{\delta}=\delta$, meaning that our algorithm fails for at most a fraction δ of bases \mathbf{p} in \mathcal{P}_{ℓ}^{n}, as claimed. This completes the proof of the theorem.

5 Remarks

Suppose we take for \mathcal{P}_{ℓ} the set of primes in the interval [$\left.2^{\ell}, 2^{\ell+1}\right]$. It is known [11] that a lower bound on the size of this set is $\# \mathcal{P}_{\ell} \geq 2^{\ell-1} / \ell$ for all $\ell \geq 5$. In this case, our result applies with $c=1 / 2$.

For the polynomial-time LLL SVP algorithm [8] we have $\log \eta=O(n)$ and $\log \rho=O(\log (n \ell))$ so in this case our algorithm succeeds for at least a fraction $1-\delta$ of \mathbf{p} in \mathcal{P}_{ℓ}^{n} whenever

$$
\alpha \leq \frac{1-\beta-\varepsilon}{n+1}
$$

for some positive ε with

$$
\varepsilon=O\left(\frac{\log (n \ell)+n^{-1} \log \left(\delta^{-1}\right)}{\ell}\right)
$$

Finally, we remark that although the condition $\alpha \leq(1-\beta-\varepsilon)(n+1)$ for some small $\varepsilon>0$ for Algorithm MultNoise-CRT is essentially optimal (in the sense that, as shown in Section 4.1, Algorithm MultNoise-CRT does not succeed to recover \mathbf{b}^{*} when $\alpha>(1-\beta+\delta) /(n+1)$ for small $\delta>0$), it remains an open problem whether there exist better polynomialtime algorithms for our multiplicative noise Chinese remaindering problem, which succeed even under "noisier" conditions, namely $\alpha>(1-\beta) /(n+1)$. In particular, a simple heuristic argument suggests that the solution to our problem remains unique as long as $\alpha<1-\beta-\varepsilon$ for some small $\varepsilon>0$. If our problem is computationally hard for

$$
\frac{1-\beta}{n+1}<\alpha<1-\beta-\varepsilon
$$

it may be possible to exploit it as the basis for the security of efficient cryptographic constructions. Finding such cryptographic applications of our problem (besides the generic uses of one-way functions) is another interesting research problem.

References

[1] M. Ajtai, R. Kumar and D. Sivakumar, 'A sieve algorithm for the shortest lattice vector problem', Proc. 33rd ACM Symp. on Theory of Comput., ACM, 2001, 601-610.
[2] D. Boneh, 'Finding smooth integers in shorts intervals using CRT decoding', J. Comp. and Syst. Sci., 64 (2002), 768-784.
[3] J. von zur Gathen and I. E. Shparlinski, 'Polynomial interpolation from multiples', Proc. 15th ACM-SIAM Symposium on Discrete Algorithms, SIAM, 2004, 1125-1130.
[4] O. Goldreich, D. Ron and M. Sudan, 'Chinese remainding with errors', IEEE Trans. Inform. Theory, 46 (2000), 1330-1338.
[5] M. Grötschel, L. Lovász and A. Schrijver, Geometric algorithms and combinatorial optimization, Springer-Verlag, Berlin, 1993.
[6] V. Guruswami, A. Sahai and M. Sudan, '"Soft-decision" decoding of Chinese remainder codes', Proc. 41 st IEEE Symp. on Found. of Comp. Sci., 2000, 159-168.
[7] R. Kannan, 'Algorithmic geometry of numbers', Annual Review of Comp. Sci., 2 (1987), 231-267.
[8] A. K. Lenstra, H. W. Lenstra and L. Lovász, 'Factoring polynomials with rational coefficients', Mathematische Annalen, 261 (1982), 515534.
[9] P. Q. Nguyen and J. Stern, 'Lattice reduction in cryptology: An update', Lect. Notes in Comp. Sci., Springer-Verlag, Berlin, 1838 (2000), 85-112.
[10] P. Q. Nguyen and J. Stern, 'The two faces of lattices in cryptology', Lect. Notes in Comp. Sci., Springer-Verlag, Berlin, 2146 (2001), 146180.
[11] J. B. Rosser and L. Schoenfeld, 'Approximate formulas for some functions of prime numbers', Illinois. J. Math., 6 (1962), 64-94.
[12] C. P. Schnorr, 'A hierarchy of polynomial time basis reduction algorithms', Theor. Comp. Sci., 53 (1987), 201-224.
[13] I. E. Shparlinski and R. Steinfeld, 'Noisy Chinese remaindering in the Lee norm', J. Compl., 20 (2004), 423-437.
[14] R. Steinfeld, J. Pieprzyk and H. Wang, 'Lattice-based thresholdchangeability for standard CRT secret-sharing schemes', Finite Fields and Their Applications, 2005 (To Appear).

