
Chinese Remaindering with Multiplicative
Noise

Igor E. Shparlinski

Department of Computing, Macquarie University
Sydney, NSW 2109, Australia

igor@ics.mq.edu.au

Ron Steinfeld

Department of Computing, Macquarie University
Sydney, NSW 2109, Australia

rons@ics.mq.edu.au

May 23, 2005

Abstract

We use lattice reduction to obtain a polynomial time algorithm for
recovering an integer (up to a multiple) given multiples of its residues
modulo sufficiently many primes, when the multipliers are unknown
but small.

1 Introduction

For integers s and m ≥ 1 we denote by bscm the remainder of s on division
by m. For an integer A ≥ 1 we denote by Z[A] the set of integers in the
interval [0, A− 1].

We consider the following problem. For an integer a ∈ Z[A] (for some
positive integer A), we are given n multiples yi = bri · acpi

of the residues of
a modulo known primes p1, . . . , pn, where the multiplier integers ri 6= 0 are

1

unknown but small in absolute value, so that |ri| < pα
i for all i = 1, . . . , n, for

some α < 1. Our goal is to recover the hidden integer a from y = (y1, . . . , yn)
and p = (p1, . . . , pn).

Note that in general the integer a cannot be recovered uniquely from the
given information. In particular, the vector y corresponding to the hidden
integer a with multiplier vector r = (r1, . . . , rn) also corresponds to the in-
teger ã = d · a with multiplier vector r̃ = (r1/d, . . . , rn/d), for any common
divisor d of r1, . . . , rn. Thus we are content with recovering the largest such
integer, namely D · a where D = gcd(r1, . . . , rn), rather than recovering a
itself.

We give a polynomial time algorithm for the above “noisy” Chinese re-
maindering problem and show that it succeeds to recover D · a with over-
whelming probability over a random choice of sufficiently many large primes
whenever α < (1 − ε)/(n + 1) for any ε > 0. Here, as in many other works
of similar spirit, we use lattice algorithms. It is interesting to remark that
the above threshold on the level of “noise” corresponds to that of [3] where a
similar problem is considered for polynomial evaluation with multiplicative
noise.

Clearly if the primes p1, . . . , pn can be choosen in an advance, then we can
simply take any n primes with pi ≤ 2n which in our settings with α < 1/n
immediately implies that |ri| < 2, that is, ri = ±1. Thus we know a2

(mod pi), i = 1, . . . , n. Provided A2 ≤ p1 . . . pn this is enough to find a2 and
therefore a. However, our algorithm works in a much more general situation.

We remark that several more variants of the “noisy” Chinese remaindering
problem has been considered in the literature, see [2, 4, 6, 13]. In particular,
the case of “additive noise” has been considered in [13] with a much more
genereous bound on the level of noise. The authors of [13] left it as an open
problem to find a cryptographic application for their algorithm. Recently,
an application of this “additive noise” algorithm to changeable-threshold
secret-sharing schemes was given in [14]. Although the “multiplicative noise”
algorithm in this paper is not well suited for the application in [14] due to
a weaker algorithmic result, we hope that the hardness of this problem may
find application in cryptography (although its hardness needs further study).

Throughout the paper log z denotes the binary logarithm of z > 0.

2

2 Lattices

Here we collect several well-known facts which form the background of our
algorithm.

We review several related results and definitions on lattices which can be
found in [5]. For more details and more recent references, we recommend to
consult the brilliant surveys of Nguyen and Stern [9, 10].

Let {b1, . . . ,bs} be a set of linearly independent vectors in IRr. The set

L = {z : z = c1b1 + . . . + csbs, c1, . . . , cs ∈ ZZ}
is called an s-dimensional lattice with basis {b1, . . . ,bs}. If s = r, the lattice
L is of full rank.

To each lattice L one can naturally associate its volume

vol (L) =
(
det (〈bi,bj〉)s

i,j=1

)1/2

,

where 〈a,b〉 denotes the inner product, which does not depend on the choice
of the basis {b1, . . . ,bs}.

For a vector u, let ‖u‖ denote its Euclidean norm.
Given a lattice L, the problem of finding a shortest vector in a lattice

which is known as the shortest vector problem, or SVP. For a lattice L, with
a given basis, we say that a certain lattice algorithm is polynomial time if
its running time is bounded by a polynomials in s and the total bit length
of components of the basis vectors of the lattice, which are assumed to be
given as rational numbers. Unfortunately, there are several indications that
the SVP is NP-complete (when the dimension grows), see [9, 10]. However,
for a relaxed task of finding a short vector, v ∈ L satisfying

‖v‖ ≤ γs min {‖z‖ : z ∈ L \ {0}}
with some approximation factor γs may be more feasible.

Indeed, the celebrated LLL algorithm of Lenstra, Lenstra and Lovász [8]
provides a desirable solution with the approximation factor γs = 2s/2 thus
producing, in deterministic polynomial time a vector v ∈ L satisfying

‖v‖ ≤ 2s/2 min {‖z‖ : z ∈ L \ {0}} .

Later developments of Schnorr [12] and quite recently by Ajtai, Kumar,
and Sivakumar [1] lead to some (rather slight) improvements of our results.

3

3 Algorithm

The algorithm is given as input (y,p, A), where y = (y1, . . . , yn) ∈ ZZn and
p = (p1, . . . , pn) ∈ Pn

` , where yi = bri · acpi
for i = 1, . . . , n, a ∈ Z[A], and

P` is a set of primes which exceed 2` for some integer length parameter ` ≥ 1.
We also assume that we are given an SVP algorithm with approximation
factor γn.

The algorithm is based on the observation that (R/ri)·yi ≡ R·a (mod pi)
for all i = 1, . . . , n, where R = lcm(r1, . . . , rn), and hence

n∑
i=1

λi · (R/ri) · yi ≡ R · a (mod P),

where P = p1 . . . pn, and λi denotes the ith Chinese Remainder coefficient
satisfying λi ≡ 1 (mod pi) and λi ≡ 0 (mod pj) for all j 6= i. This observa-
tion suggests to set up a lattice to search for the “small” linear combination
coefficients (R/ri) of λiyi which give a “small” residue R · a modulo P (the
residue is “small” as long as P is sufficiently large compared to R · a).

The Algorithm MultNoise-CRT proceeds as follows:

Algorithm MultNoise− CRT(y = (y1, . . . , yn),p = (p1, . . . , pn), A, γn)

1. Build the following (n+1)× (n+1) matrix B, whose rows form a basis
for a full-rank lattice L in Qn+1:

B =

1 0 . . . 0 λ1 · y1/A
0 1 . . . 0 λ2 · y2/A
...

...
. . .

...
...

0 0 . . . 1 λn · yn/A
0 0 . . . 0 P/A

. (1)

2. Run a polynomial-time SVP algorithm with approximation factor γn

on input B. Denote by b = (b1, . . . , bn+1) ∈ L the vector returned by
this algorithm, which approximates the shortest vector in L.

3. Compute zi = A · bn+1/bi for i = 1, . . . , n (if any zi is not an integer
then the algorithm fails) and output ã = gcd(z1, . . . , zn) as an estimate
for the desired integer gcd(r1, . . . , rn) · a.

4

4 Analysis

4.1 Heuristic and Necessary Conditions for Algorithm
Success

As explained above, our algorithm works by first building a lattice L which
contains a “short” non-zero vector b∗ (such that the solution to our problem
can be easily recovered from b∗), and then searching the lattice for (an ap-
proximation to) the shortest non-zero vector, hoping that b∗ is the shortest
non-zero vector in L. Thus, a necessary condition for our algorithm to suc-
ceed by recovering the vector b∗ (or an integral multiple thereof) is that b∗

is the shortest non-zero vector in L.
From the discussion in the previous section, one can see that b∗ =

(R/r1, . . . , R/rn, R · a/A), where R = |lcm(r1, . . . , rn)|. Hence, in the worst
case, the Euclidean length ‖b∗‖ of b∗ is approximately equal to R. On the
other hand, we know by the Minkowski theorem in the geometry of num-
bers [5] that the Euclidean length λ1(L) of the shortest non-zero vector in
any lattice L of dimension s is at most s1/2 det(L)1/s. For our lattice we have
s = n+1 and det(L) = P/A, so λ1(L) ≤ (n+1)1/2(P/A)1/(n+1). Thus a nec-
essary condition for having ‖b∗‖ = λ1(L) is that R ≤ (n+1)1/2(P/A)1/(n+1).
Putting

α =
log R

log P
and β =

log A

log P
,

we get the necessary condition

α ≤ 1− β + (1 + 1/n) log(n + 1)/(2`)

n + 1
.

Therefore, the vector b∗ is not be the shortest vector in L (and hence our
algorithm fails) if the bit-length of the noise integers ri exceeds approximately
a fraction (1 − β)/(n + 1) of the (average) bit-length of the prime moduli
p1, . . . , pn. Heuristically, we expect that this necessary condition for success
is also approximately sufficient, that is, that our algorithm succeeds as soon
as α ≤ (1 − β − ε)/(n + 1) for some small ε > 0, because in this case we
expect that b∗ will be the shortest non-zero vector in L. In the next section,
we rigorously prove that this heuristic is correct with high probability when
we choose the prime moduli randomly from a sufficiently large set.

5

4.2 Sufficient Condition for Algorithm Success

We now give a rigorous sufficient success condition for our algorithm which
quite closely matches the heuristic sufficient condition (and the necessary
condition) discussed above.

Theorem. For integer n ≥ 2, `, α, A and real c > 0 and 0 < δ < 1,
such that A ≥ cn, fix a non-zero integer a ∈ Z[A] and n non-zero integer
multipliers (r1, . . . , rn) with |ri| < 2α` for all i = 1, . . . , n. Let P` denote a
set of primes all exceeding 2` with #P` ≥ c2`/`. If for

β =
log A

`n
, η =

⌈
(n + 1)1/2

⌉
γn, ρ = log(2AηR2),

the following condition holds

α ≤ 1− β − ε

n + 1

with

ε =
log

(
ρc−1(3η)1+1/nδ−1/n

)

`
,

then, on input (y = (y1, . . . , yn), p = (p1, . . . , pn), A, γn), where yi = briacpi

for i = 1, . . . , n, p ∈ Pn
` , Algorithm MultNoise-CRT computes Da where

D = gcd(r1, . . . , rn), in time polynomial in log(p1 . . . pn) for at least a fraction
1− δ of prime bases p ∈ Pn

` .

Proof. We call a vector b = (b1, . . . , bn+1) ∈ L good if Abn+1 = biria for all
i = 1, . . . , n. A vector which is not good is called bad .

First, we observe that if the SVP algorithm returns a good vector b,
then our algorithm recovers zi = ria for all i = 1, . . . , n and hence ã =
gcd(r1, . . . , rn)a, so our algorithm succeeds.

Now we observe that by construction, the lattice L contains the “short”
good vector

b∗ = (R/r1, . . . , R/rn, Ra/A),

whose components are all less than R = lcm(r1, . . . , rn), and whose Euclidean
length is therefore less than (n + 1)1/2R. It follows that the lattice vector b
returned by the SVP algorithm has length less than γn(n+1)1/2R ≤ ηR. So
a sufficient condition for success of our algorithm is that the lattice L does
not contain any bad vectors of length less than η ·R, since this implies that
b must be good.

6

For fixed a and r, we now upper bound the number N of “bad” prime
bases p ∈ Pn

` for which the lattice L contains a bad vector of length less
than η ·R.

We call a bad vector b = (b1, . . . , bn+1) a fully bad vector if A · bn+1 6=
bi · ri · a for all i = 1, . . . , n and partially bad otherwise.

Let b denote a fully bad vector of length less than η · R. The number
of bases p such that L contains b can be bounded by observing that by
construction of L we have for any lattice vector b that

Abn+1 ≡ biria (mod pi), i = 1, . . . , n.

On the other hand, since b is fully bad we know that Abn+1 6= biria for all
i = 1, . . . , n. So pi divides the non-zero integer ui = Abn+1 − biria for all
i = 1, . . . , n. Since

|ui| < |Abn+1|+ |biriA| ≤ AηR + AηRri ≤ 2AηR2,

we know that pi must be one of less than log(2AηR2)/` prime factors of ui in
P`, for each i = 1, . . . , n. Thus there are less than (log(2AηR2)/`)n bases p
for which L contains b, and since the number of fully bad vectors of length
less than ηR is at most (2ηR)n2AηR, we conclude that that there are

NF < 2AηR(2ηR log(2AηR2)/`)n

bases p for which L contains a fully bad vector of length less than ηR.
Now we consider the case of a partially bad vector b of length less than

ηR. We claim in this case, that if the conditions

2ηR · max
i=1,...,n

|ri| ≤ 2` (2)

and
a 6≡ 0 (mod pi), for all i = 1, . . . , n (3)

hold, then L does not contain b. To establish this claim, we suppose, towards
a contradiction, that L contains a partially bad vector b of length less than
ηR. Because b is bad and is in L, we know there exists j ∈ {1, . . . , n} such
that

Abn+1 6= bjrja and Abn+1 ≡ bjrja (mod pj). (4)

On the other hand, because b is partially bad, we know there also exists
i ∈ {1, . . . , n} such that

Abn+1 = biria. (5)

7

It follows from (3), (4), and (5) that biri − bjrj = k · pj for some non-zero
integer k, and therefore

|bj| = |biri − kpj|
|rj| ≥ 1

|rj|
(

min
ν=1,...,n

pν − ηR|ri|
)

, (6)

using the fact that k 6= 0 and |bi| < ηR. But the condition (2) implies that
the right-hand side of (6) is lower bounded as

1

|rj|
(

min
ν=1,...,n

pν − ηR|ri|
)
≥ 1

|rj|
(

ηR max
ν=1,...,n

|rν |
)
≥ ηR,

and therefore (6) leads to a contradiction with our assumption that the length
of b is less than ηR, as required to prove our claim above.

We now show that both conditions (2) and (3) hold for all except at most
(log A/`)n bases p in Pn

` . Since maxi |ri| < 2α`, the condition (2) is implied
by the condition

α ≤ 1− `−1 log(2η)

n + 1
.

But this latter condition follows from the assumption of the theorem that

α ≤ 1− (β + ε)

n + 1

and

β =
log A

`n
≥ log c

`

since we have

β + ε ≥ log(ρ(3η)1+1/nδ−1/n)

`
≥ log(2η)

`

using ρδ−1/n ≥ 1. Thus condition (2) is implied by the theorem hypotheses.
Since 0 < a < A, we know that a has at most log A/` prime factors in P`

and therefore condition (3) also holds unless p contains one of those primes.
We conclude that, for all except

NP < (log A/`)n

bases p in Pn
` , both conditions (2) and (3) hold, and thus L contains no

partially bad vectors of length less than ηR.

8

Therefore, there are

N = NF + NP < 3AηR(2ηR log(2AηR2)/`)n

bases p in Pn
` for which our algorithm may fail. It follows that for any

0 < δ̃ < 1, the fraction of bases p in Pn
` for which our algorithm may fail is

at most δ̃ if the following condition is satisfied:

N

#Pn
`

<
3AηR(2ηR log(2AηR2)/`)n

(c2`/`)n
≤ δ̃.

Plugging in A = 2β`n, R < 2α`n, and defining ρ = log(2AηR2), we find that
the above condition is satisfied if

(3η)n+1(ρc−1)n2(β+α·(n+1)−1)`n ≤ δ̃,

which is equivalent to condition

α ≤ 1− β − ε

n + 1
,

where

ε =
log

(
ρc−1(3η)1+1/nδ̃−1/n

)

`
.

By the theorem hypothesis this latter condition is satisfied with δ̃ = δ, mean-
ing that our algorithm fails for at most a fraction δ of bases p in Pn

` , as
claimed. This completes the proof of the theorem. ut

5 Remarks

Suppose we take for P` the set of primes in the interval [2`, 2`+1]. It is
known [11] that a lower bound on the size of this set is #P` ≥ 2`−1/` for all
` ≥ 5. In this case, our result applies with c = 1/2.

For the polynomial-time LLL SVP algorithm [8] we have log η = O(n)
and log ρ = O(log(n`)) so in this case our algorithm succeeds for at least a
fraction 1− δ of p in Pn

` whenever

α ≤ 1− β − ε

n + 1

9

for some positive ε with

ε = O

(
log(n`) + n−1 log(δ−1)

`

)
.

Finally, we remark that although the condition α ≤ (1 − β − ε)(n + 1)
for some small ε > 0 for Algorithm MultNoise-CRT is essentially optimal
(in the sense that, as shown in Section 4.1, Algorithm MultNoise-CRT
does not succeed to recover b∗ when α > (1 − β + δ)/(n + 1) for small
δ > 0), it remains an open problem whether there exist better polynomial-
time algorithms for our multiplicative noise Chinese remaindering problem,
which succeed even under “noisier” conditions, namely α > (1− β)/(n + 1).
In particular, a simple heuristic argument suggests that the solution to our
problem remains unique as long as α < 1 − β − ε for some small ε > 0. If
our problem is computationally hard for

1− β

n + 1
< α < 1− β − ε,

it may be possible to exploit it as the basis for the security of efficient crypto-
graphic constructions. Finding such cryptographic applications of our prob-
lem (besides the generic uses of one-way functions) is another interesting
research problem.

References

[1] M. Ajtai, R. Kumar and D. Sivakumar, ‘A sieve algorithm for the
shortest lattice vector problem’, Proc. 33rd ACM Symp. on Theory of
Comput., ACM, 2001, 601–610.

[2] D. Boneh, ‘Finding smooth integers in shorts intervals using CRT
decoding’, J. Comp. and Syst. Sci., 64 (2002), 768–784.

[3] J. von zur Gathen and I. E. Shparlinski, ‘Polynomial interpolation
from multiples’, Proc. 15th ACM-SIAM Symposium on Discrete Al-
gorithms , SIAM, 2004, 1125–1130.

[4] O. Goldreich, D. Ron and M. Sudan, ‘Chinese remainding with errors’,
IEEE Trans. Inform. Theory , 46 (2000), 1330–1338.

10

[5] M. Grötschel, L. Lovász and A. Schrijver, Geometric algorithms and
combinatorial optimization, Springer-Verlag, Berlin, 1993.

[6] V. Guruswami, A. Sahai and M. Sudan, ‘“Soft-decision” decoding of
Chinese remainder codes’, Proc. 41st IEEE Symp. on Found. of Comp.
Sci., 2000, 159–168.

[7] R. Kannan, ‘Algorithmic geometry of numbers’, Annual Review of
Comp. Sci., 2 (1987), 231–267.

[8] A. K. Lenstra, H. W. Lenstra and L. Lovász, ‘Factoring polynomials
with rational coefficients’, Mathematische Annalen, 261 (1982), 515–
534.

[9] P. Q. Nguyen and J. Stern, ‘Lattice reduction in cryptology: An
update’, Lect. Notes in Comp. Sci., Springer-Verlag, Berlin, 1838
(2000), 85–112.

[10] P. Q. Nguyen and J. Stern, ‘The two faces of lattices in cryptology’,
Lect. Notes in Comp. Sci., Springer-Verlag, Berlin, 2146 (2001), 146–
180.

[11] J. B. Rosser and L. Schoenfeld, ‘Approximate formulas for some func-
tions of prime numbers’, Illinois. J. Math., 6 (1962), 64–94.

[12] C. P. Schnorr, ‘A hierarchy of polynomial time basis reduction algo-
rithms’, Theor. Comp. Sci., 53 (1987), 201–224.

[13] I. E. Shparlinski and R. Steinfeld, ‘Noisy Chinese remaindering in the
Lee norm’, J. Compl., 20 (2004), 423–437.

[14] R. Steinfeld, J. Pieprzyk and H. Wang, ‘Lattice-based threshold-
changeability for standard CRT secret-sharing schemes’, Finite Fields
and Their Applications , 2005 (To Appear).

11

