
On the Security of RSA with Primes Sharing Least-Significant Bits∗

Ron Steinfeld
Dept. of Computing,

Macquarie University, Australia
rons@ics.mq.edu.au

Yuliang Zheng
Dept. of Software and Information Systems,

University of North Carolina at Charlotte, USA
yzheng@uncc.edu

Abstract

We investigate the security of a variant of the RSA public-key cryptosystem called LSBS-RSA,
in which the modulus primes share a large number of least-significant bits. We show that low
public-exponent LSBS-RSA is inherently resistant to Partial Key Exposure (PKE) attacks in which
least-significant bits of the secret exponent are revealed to the attacker, and in particular that the
Boneh-Durfee-Frankel PKE attack [5] on low public-exponent RSA is less effective for LSBS-RSA
systems than for standard RSA. On the other hand, we show that large public-exponent LSBS-
RSA is more vulnerable to such attacks than standard RSA. An application to server-aided RSA
signature generation is proposed.

Key Words. RSA cryptosystem, Communication security, Cryptanalysis, Partial key exposure,
Boneh-Durfee-Frankel attack, Coppersmith algorithm, Least-Significant bits, Server-aided signa-
ture generation.

1 Introduction

The RSA public-key primitive has enjoyed very wide applicability in cryptography since its initial
publication in 1978 [19]. For this reason, the security of RSA has been extensively analyzed under
various attack scenarios. A research area of particular interest is the investigation of certain special
variants of RSA which are attractive for increasing computational efficiency. Such studies are espe-
cially important due to the relatively low computational power of modern portable devices which
need to perform cryptographic operations, such as smart cards and mobile phones.

In this paper, we study security properties of the RSA primitive under the following conditions:

(1) The prime factors p and q of the public RSA modulus N = pq have exactly α equal least-
significant bits, that is, p− q = r · 2α for some odd integer r. We call an RSA modulus N with
this property an α-Least-Significant-Bit-Symmetric modulus, or α-LSBS for short.

(2) The β least-significant bits of the RSA secret exponent d are available to the attacker (e.g.
they are included as part of the public-key). For this reason, this setting is called a Partial Key
Exposure (PKE) attack scenario.

(3) The RSA public-exponent e has bit length γ.
∗This is an extended version of an earlier paper presented at the Cryptographer’s Track RSA Conference (CT-RSA

2001), April 8-12 2001, San Francisco, USA [20].

1

We refer to the above RSA system as (α, β, γ)-LSBS RSA. We will sometimes refer to the standard
RSA system obtained when no bits of the secret exponent d are revealed, namely (α, 0, γ)-LSBS
RSA, as simply α-LSBS RSA. When the length γ of the public exponent e is a small constant, we
call the system a Low Public Exponent system. When γ is a constant fraction of the modulus length
n, we call the system a Large Public Exponent system.

We investigate the security of (α, β, γ)-LSBS RSA as a function of the system parameters (α, β, γ).
As is usually the case in cryptography, our goal is two-way: (1) To understand which regions of
the parameter space are insecure and must be avoided, and (2) To identify regions which appear
secure and can lead to improved efficiency of RSA implementations. In the latter case, we call the
cryptographic assumption that (α, β, γ)-LSBS RSA is a trapdoor one-way function, the (α, β, γ)-
LSBS RSA assumption.

Our main results can be summarised as follows.

Analysis of Intractability of Boneh-Durfee-Frankel PKE Attack for Low Public Expo-
nents. We analyze a PKE attack due to Boneh, Durfee and Frankel [5] for low public exponents
in the general case of (α, β, γ)-LSBS RSA (Boneh, Durfee and Frankel analyzed only the case of
(1, β, γ)-LSBS RSA). We show that the attack runs efficiently only when β ≥ n/4+α. In particular,
when β = n/4, the running-time of the attack is exponential in the number of shared Least-Significant
(LS) bits α, and hence intractable for even moderately large α. The attack gives a lower bound on
the insecurity of (α, β, γ)-LSBS RSA.

Reduction Between (α, β, γ)-LSBS and α-LSBS RSA for Low Public Exponents. We give
a reduction which complements the above attack and gives an upper bound on the insecurity of
(α, β, γ)-LSBS RSA (one wayness with β LS bits of d revealed) in terms of the insecurity of α-LSBS
RSA (one-wayness with no LS bits of d revealed). The reduction shows that, for low public exponents,
if β ≤ 2α then the one-wayness of (α, β, γ)-LSBS RSA follows from the one-wayness of α-LSBS RSA.

PKE Attacks for Large Public Exponents. We show that, unlike the low-exponent case, for
large public exponents it is very dangerous to reveal LS bits of d in an α-LSBS system with large α.
Our best attack (for prime public exponents) runs efficiently when α ≥ n/12 and β ≥ γ = n/6. As α
increases, the required size of β and γ decreases; in particular, for α = (1− ε)n/4 and any constant
ε > 0, our attack works efficiently already for β ≥ γ = ε · n/4 (we remark for comparison that the
best known attack on standard RSA moduli with β known LS bits of d and large public exponents
works efficiently only for β ≥ n/2 [3]).

Application to Server-Aided Signatures. We motivate the study of the security of LSBS-RSA
by giving a practical application - namely fast server-aided RSA signature generation.

1.1 A Motivating Application

Let N = pq denote an RSA modulus of length n bits, with p and q primes each of length about
n/2 bits. It is common in practice to use a low public exponent in the RSA public key system [19].
For these variants the public exponent e is chosen to be a small value (e.g. 3), independent of the
modulus length n. The advantage of this choice is that the encryption exponentiation x 7→ xe mod N ,
whose computational cost is linear in the length of e, can be performed very quickly. However, the
length of the secret exponent d = e−1 mod φ(N) is still long, that is n bits, and hence the decryption
exponentiation x 7→ xd mod N remains a computational bottleneck when it is performed in a low
speed device such as a smart card.

In many such cases, a possible solution for speeding up the decryption operation is to find a way
for the low-speed device (which we hereafter refer to as the card) to use a powerful but publicly
observable external server to perform some of the decryption computation, without leaking any
useful secret knowledge (such as the prime factors of N) to the server. Such a scheme has been

2

called a ‘Server-Aided-Secret-Computation’ (SASC), with the first such schemes for RSA proposed
by Matsumoto, Kato and Imai [14]. Many such schemes have been proposed, but many have been
shown to be insecure (see [17] for a recent example).

In Section 5 we show how our results on the security of α-LSBS can be used to construct a simple
Server-Aided-Signature-Generation protocol. For a modulus length of n = 2048 bit the protocol
reduces the computational cost for the card by a factor of up to about 10 with respect to the no-
aid situation, while still achieving a provable security against passive attacks assuming only the
one-wayness of α-LSBS RSA.

1.2 Related Work

A good general survey of attacks on the RSA system was given by Boneh [4].

In Asiacrypt ‘98, Boneh, Durfee and Frankel (BDF) described several interesting Partial Key Ex-
posure (PKE) attacks on the RSA system [5] (see [6] for a revised version). As introduced above,
in a PKE attack the attacker has access to a portion of the secret key, as well as the public key.
In particular, for low exponent RSA, BDF showed how to factor N (and hence recover the whole
secret exponent d) in time polynomial in n, given only the n/4 Least Significant (LS) bits of d. Our
work shows that this result actually only holds in the case of α-LSBS moduli with small α, and
that in general one in fact needs at least n/4 + α LS bits of d for the attack to be polynomial-time.
Additional PKE attacks on RSA with large public exponent were found by Blömer and May [3].

Hinek, Low and Teske [10] investigate the security of multi-prime RSA, in which the modulus N
has at least three prime factors. They conclude experimentally, that unlike our results for two prime
factors, the running time of the BDF partial key exposure attack is not exponentially related to the
number of shared LS bits of the prime factors (although they show that the attack is intractable in
the case of multi-prime moduli due to other reasons).

The prime factors of the α-LSBS moduli studied in this paper have α equal Least-Signficant bits. One
could also study the complementary case of RSA moduli with primes sharing Most-Significant (MS)
bits, which means that p and q are ‘close’. This case is of some historical significance, since there
exists a simple factoring algorithm due to Fermat (see [18] or [8]) which factors N = pq efficiently if
|p− q| ≤ 2n/4. Our simple factoring algorithm for α-LSBS moduli when α ≥ n/4 (see Corollary 3.1)
can be considered an analogue of Fermat’s algorithm. DeWeger [8] shows that RSA systems in which
p and q share MS bits are more vulnerable to attacks than random moduli when the secret exponent
d is small.

Finally, we mention that Lenstra [11] discusses techniques for generating RSA moduli with portions
of the modulus bits fixed to a desired value. These techniques also allow computational savings in
certain cases (e.g. by using moduli which are close to a power of 2). However, unlike the moduli
discussed by Lenstra, our proposed α-LSBS moduli have a potential speedup advantage by leaking
bits of d.

1.3 Contents of the Paper

This paper is organized as follows. In Section 2, we review the RSA trapdoor one-way function,
and present results on lattice algorithms and square-root algorithms modulo a power of 2, which
will be used in the paper. Section 3 looks at the difficulty of factoring α-LSBS moduli and gives
some important properties of these moduli. In Section 4 we investigate the security of α-LSBS RSA
under Partial Key Exposure (PKE) attacks, for both small and large public exponents. In Section 5
we propose an application of α-LSBS RSA to fast server-aided RSA signature generation. Finally,
Section 6 concludes with an open problem.

3

2 Preliminaries

2.1 The RSA Trapdoor One-Way Function

The well-known RSA trapdoor one-way function RSA = (GK, f, f−1), introduced in [19], is defined as
follows. On input a security parameter n, the key generation algorithm GK outputs a secret/public
key pair (sk, pk).

The public key pk = (N, e) consists of an RSA modulus N = pq with p and q primes and dlog2 Ne = n
(i.e. N is an n-bit modulus). In this paper we will be interested in the case when N is an α-LSBS
modulus, meaning that p − q = r · 2α for some odd r. We will also assume throughout the paper
that N is balanced, meaning that that the primes p and q are of approximately the same length of
n/2 bits. More precisely, we will assume that

p < q < 2N1/2 ≤ 2 · 2n/2. (1)

The public exponent e is an integer satisfying gcd(e, φ) = 1, where

φ = (p− 1)(q − 1) = N + 1− (p + q), (2)

is Euler’s phi function evaluated at N . We will use γ = dlog2 ee to denote the length of e. The
trapdoor key is the secret exponent d defined as the multiplicative inverse e−1 of the public exponent
e modulo φ. That is,

d = e−1 mod φ. (3)

Note that this key generation equation can also be written over the integers as

ed− 1 = k · φ, (4)

for some quotient integer k. Note that from (3) we have that d < φ and hence k = e ·(d/φ)−1/φ < e.

Given the public key (N, e) and input x ∈ ZZ∗N , the RSA trapdoor function evaluation algorithm
f outputs y = f((N, e), x) = xe mod N (this is also called the encryption operation). Given
the secret trapdoor d, and an input y ∈ ZZ∗N the RSA function inversion algorithm f−1 outputs
x = f−1((N, e, d), y) = yd mod N (this is also called the decryption operation). The RSA trapdoor
function is conjectured to be one-way. This means that, if p and q are chosen at random from
an appropriate probability distribution, and x is chosen uniformly at random from ZZ∗N , then given
(N, e, y) with y = xe mod N , it is infeasible to compute x.

2.2 Lattice-Based Factoring Algorithm for Partially Known Factors

In this paper we make use of an important algorithm due to Coppersmith [7] for factoring integers
with partially known prime factors. This algorithm was obtained by Coppersmith as an application
of a general algorithm (based on lattice reduction) for finding small integer solutions to bivariate
polynomials over the integers.

The following is a statement of this result for the general case when the least-significant bits are
given as a remainder modulo an arbitrary integer r (the original result of Coppersmith was for bits
modulo a power of 2— the generalized version given here was first stated in [5]).

Theorem 2.1. Let N = pq be an n-bit RSA modulus. If r ≥ 2n/4 and p0 = p mod r are given, then
we can factor N in time polynomial in n.

4

2.3 Square-Roots Modulo a Power of 2

In our analysis in Section 4.1.1, we need some elementary results on square-roots modulo a power
of 2, and the computational complexity of finding these roots. These results are summarised in the
following lemma.

Lemma 2.1. (1) Let d ≡ 1 (mod 8) and γ ≥ 3. Then there are exactly four solutions in ZZ2γ to the
congruence x2 ≡ d (mod 2γ). These solutions are of the form x = ±s + δ · 2γ−1 with δ ∈ {0, 1} and
s is any solution to x2 ≡ d (mod 2γ). Furthermore, there exists an algorithm that, given d and γ,
computes these four solutions in time O(γ2) bit operations.

(2) The set of solutions in ZZ2γ to the modular equation x2 ≡ c (mod 2γ) is summarised as follows.
Let m = m2(c) denote the multiplicity of 2 in c and let d = odd(c) = c/2m2(c).

(2.1) If γ ≤ m, there are 2bγ/2c solutions x ≡ 0 mod 2dγ/2e.

(2.2) If γ > m, there are no solutions if m is odd. Otherwise, if m is even, there are
three subcases.

If γ = m + 1, there are 2m/2 solutions x ≡ 2m/2 (mod 2m/2+1).

If γ = m + 2, there are 2 · 2m/2 solutions x ≡ ±2m/2 (mod 2m/2+2) if d ≡ 1
(mod 4) and none otherwise.

If γ ≥ m+3, there are 4 · 2m/2 solutions of the form x ≡ 2m/2(±s+ δ · 2γ−m−1)
(mod 2γ−m/2) with δ ∈ {0, 1} if d ≡ 1 (mod 8), and no solutions if d 6≡ 1
(mod 8). Here s is any solution to s2 ≡ d (mod 2γ−m).

Proof. Proof of (1). Well known - see, e.g. Exercise 7.9.38 in [1].

Proof of (2.1). Write x = 2αr for r odd. Since m ≥ γ, we have x2 ≡ 0 (mod 2γ), or equivalently
r222α ≡ 0 (mod 2γ). Since r is odd, this is equivalent to 22α ≡ 0 (mod 2γ), or α ≥ dγ/2e, meaning
the solutions are x ≡ 0 (mod 2dγ/2e) and there are 2γ−dγ/2e = 2bγ/2c such solutions in ZZ2γ .

Proof of (2.2). Since m < γ, we have from x2 ≡ c ≡ 2md (mod 2γ) that x2 ≡ 0 (mod 2m). Dividing
by 2m, we get x2

2m ≡ d (mod 2γ−m). Writing x = 2αr for r odd, we have 22α−mr2 ≡ d (mod 2γ−m).
But since d is odd then so is 22α−mr2, meaning 2α − m = 0, m must be even if a solution exists,
α = m/2, and

r2 ≡ d (mod 2γ−m). (5)

If γ = m+1, then (5) becomes r2 ≡ 1 (mod 2), which has as a unique solution r ≡ 1 (mod 2). Thus
the solutions in this case are x ≡ 2m/2 (mod 2m/2+1), as required.

If γ = m + 2, then (5) becomes r2 ≡ 1 (mod 4), which has two solutions r ≡ ±1 (mod 4) if d ≡ 1
(mod 4) and none otherwise. Thus the solutions in this case are x ≡ ±2m/2 (mod 2m/2+2), as
required.

If γ ≥ m + 3, then by part (1) of the Lemma we have that if d ≡ 1 (mod 8) then (5) has the four
solutions r ≡ ±s + δ · 2γ−m−1 (mod 2γ−m) in ZZ2γ−m , where δ ∈ {0, 1} and s is any solution to (5).
This gives x ≡ 2m/2(±s + δ · 2γ−m−1) (mod 2γ−m/2), as required. If d 6≡ 1 (mod 8) then (5) has no
solution for r because any such solution must satisfy r2 ≡ d (mod 8) and it is easily verified that the
latter congruence has no solutions if d 6≡ 1 (mod 8) and d is odd. ut

ut

5

3 Factoring α-LSBS RSA Moduli

A fundamental question in investigating the security of α-LSBS RSA is clearly the computational
complexity of factoring α-LSBS RSA moduli, since the difficulty of factoring is a necessary condition
for the one-wayness of α-LSBS RSA. Little is currently known in this area, but in this section we
summarize the current state of the art, as far as is known to the authors. We also show some
important properties of α-LSBS moduli which will be used in later sections.

3.1 Relation to the Standard RSA Factoring Problem

It is clear that as the number of shared LS bits α of p and q are reduced, the problem of factoring
an α-LSBS modulus approaches a standard problem of factoring a random RSA modulus. Indeed,
when the prime factors p and q of N are chosen randomly and independently, one would heuristically
expect that the probability that N = pq is an α-LSBS modulus is about 1/2α for α ≥ 1. Thus a
random RSA modulus is heuristically ‘on average’ a 2-LSBS RSA modulus. However, we will be
interested in the case when α is much larger, meaning a constant fraction of the modulus length n.
In this case, the probability that a random modulus is an α-LSBS modulus is exponentially small
and so the problem of factoring α-LSBS moduli may become easier than the standard problem.

3.2 Relation to the One-Wayness of α-LSBS RSA

The only known attack on the one-wayness of α-LSBS RSA is to factor the α-LSBS modulus N . This
situation is the same as for the standard RSA system, when no extra information is available [4].
Thus we conjecture that the breaking the one-wayness of α-LSBS RSA is as hard as the problem of
factoring α-LSBS moduli.

3.3 Leakage of α LS bits of p and 2α LS bits of p + q

With current state of knowledge, the asymptotic complexity of factoring α-LSBS RSA moduli appears
to remain about the same as that of the standard factoring problem until α reaches a threshold of
(1/4 − ε)n for an arbitrarily small constant ε > 0. The reason for the latter upper bound is that
α-LSBS moduli ‘leak’ the α shared LS bits of p and q and also the 2α LS bits of p + q, as shown in
the following lemma.

Lemma 3.1. Let N = pq denote an n-bit α-LSBS RSA modulus. There exists an algorithm A which,
given N , computes in time O(n2): (1) Four candidates for the α shared LS bits of p and q, and (2)
Four candidates for the 2α LS bits of s = p + q.

Proof. The algorithm A works as follows. Writing p = l + pH · 2α and q = l + qH · 2α with l < 2α

representing the α shared LS bits of p and q, we see that N ≡ pq ≡ l2 (mod 2α). Thus l is a solution
to the modular quadratic

x2 ≡ N (mod 2α). (6)

So the algorithm A applies Lemma 2.1 to compute in time O(n2) at most 4 candidates for l. This
proves part (1) of the lemma. To prove part (2), note that

N = pq = (l + pH · 2α) · (l + qH · 2α) = l2 + l(pH + qH)2α + pHqH22α,

and
s = p + q = 2l + (pH + qH)2α.

6

Consequently N − l2 ≡ l(pH + qH)2α (mod 22α), and since l is odd, it has a multiplicative inverse
l−1 modulo 22α which can be computed in time O(n2). So A computes sH

def= l−1 · (N − l2) mod 22α

and then s0
def= 2l + sH mod 22α. Since sH ≡ (pH + qH)2α (mod 22α), we see that

s0 ≡ 2l + (pH + qH)2α ≡ p + q (mod 22α),

as required (we get four candidates for s0 from the four candidates for l). This completes the proof
of part (2). ut

ut

From this lemma we immediately obtain the following corollary.

Corollary 3.1. Let N = pq denote an n-bit α-LSBS RSA modulus. If α ≥ n/4, then we can factor
N in time polynomial in n.

Proof. The factoring algorithm F applies Lemma 3.1 to compute four candidates for s0
def= p +

q mod 22α. But since 2α ≥ n/2, we have from p + q ≤ 4
√

N ≤ 2n/2+2 that s0 provides all except
possibly the 2 MS bits of p + q. Searching over these 2 bits gives 16 candidates for s

def= p + q. Since
p2 − (p + q)p + pq = 0, F knows that p is a solution to the quadratic

x2 − s · x + N = 0,

over the integers, which it can easily solve in polynomial time for each of the 16 candidates for s,
checking each solution until a factor of N is found. ut

ut

Note that if α is smaller than n/4 by even an arbitrarily small constant fraction ε > 0 of n, that is
if α = (1− ε)n/4, the running time of the above factoring algorithm already becomes asymptotically
exponential in n. More precisely, one has to try 2ε·n/2 values for s because there are ε · n/2 missing
MS bits of s.

Note also that the above algorithm makes use of the (1−ε)n/2 LS bits of s from part (2) of Lemma 3.1.
We can instead use the (1 − ε)n/4 LS bits of p from part (1) of Lemma 3.1 and search the missing
ε · n/4 MS bits of p to obtain the n/4 LS bits of p, using Coppersmith’s polynomial-time factoring
algorithm of Theorem 2.1 to try to factor N for each candidate. Although this algorithm remains
exponential in n, the exponent of 2 is reduced by half to ε · n/4.

In conclusion, it appears at present that as long as ε is sufficiently large that a set of size 2ε·n/4 is
infeasible to search, and n is sufficiently large that general-purpose factoring algorithms are infeasible,
there is no efficient factoring algorithm for (1−ε)n/4-LSBS RSA moduli. That is, we might conjecture
that TFL(n, ε) = min(TCL(n, ε), TGF (n)), where TFL(n, ε) is the time needed to factor an (1− ε)n/4-
LSBS RSA modulus, TCL(n, ε) = O(2n/4·ε) is the run-time of the factoring algorithm described above,
and TGF (n) is the run-time of the best general-purpose factoring algorithm. As a typical example,
it is estimated [12] that factoring a standard RSA modulus of length n = 2048-bit using the fastest
known general-purpose algorithm (Number Field Sieve) takes time about TGF (2048) ≈ 2103 · TDES ,
where TDES denotes the time to perform one encryption operation of the well-known DES symmetric
cipher [16]. Assuming conservatively that TCL(n, ε) ≈ 2n/4·ε ·TDES , we find from the above conjecture
that a (1−ε)n/4-LSBS RSA modulus achieves the same security level as a random n-bit RSA modulus
for n = 2048 as long as n/4 · ε ≥ 103, that is ε ≥ 0.2, approximately.

7

4 Partial Key Exposure Attacks on α-LSBS RSA (β > 0)

In this section we investigate the security of α-LSBS RSA under Partial Key Exposure (PKE) attacks
in which β > 0 LS bits of the secret exponent are known to the attacker. That is, we analyse the
security of the (α, β, γ)-LSBS RSA system introduced in the introduction. For all these attacks, the
attack input consists of the security parameters (α, β, γ), the α-LSBS modulus N (of length n bit),
the public exponent e (with log2 e = γ), and an integer d0 consisting of the β LS bits of the secret
exponent d (that is, d0 = d mod 2β). Note we assume that α is known for simplicity but clearly this
is no loss of generality since even if α is not made public there are only at most O(n) possible values
for it, so in polynomial time we can exhaustively search through this small number of possibilities.

4.1 PKE with Low Public Exponent (Small γ)

4.1.1 Analysis of Generalized Boneh-Durfee-Frankel Attack (β ≥ n/4 + α)

Boneh, Durfee and Frankel (BDF) presented in [5] a PKE attack on low public-exponent RSA when
n/4 LS bits of the secret exponent d are given. Prior to the results presented in this paper, it was
believed that this attack applies in general to all RSA moduli. However, as will be seen below,
our work shows that the original result of BDF actually applies only to the specific case of 1-LSBS
moduli, and can be stated as follows (following the publication [20] of a preliminary version of our
result, the authors of [5] produced a revised version of their paper [6] which contains the statement
below).

Theorem 4.1 (BDF). Given (N, e, d0), where N is an n-bit 1-LSBS RSA modulus, e is a public
exponent (with dlog2 ee = γ ≤ n/4 − 3) and d0 consists of the n/4 LS bits of the secret exponent d,
the BDF attack factors N within time bound O(γ2γ · TCop(n)). Here TCop(n) denotes the running
time of Coppersmith’s algorithm of Theorem 2.1.

In this section we analyze the Boneh-Durfee-Frankel (BDF) PKE attack on low public-exponent
RSA [5] in the case of α-LSBS moduli with arbitrary α. Note that the attack is presented and
analyzed here in a generalized form, assuming an arbitrary number β ≥ n/4 of exposed secret
exponent LS bits, rather than the fixed value β = n/4 assumed in [5], in order to obtain a success
lower bound on β in terms of α. We show that this attack becomes less effective as the sharing
parameter α increases. More precisely, following theorem shows that the attack is tractable only
when β ≥ n/4+α. For the case β = n/4, the running time of the attack for α-LSBS moduli is larger
by a factor of about 2α than the time bound of Theorem 4.1 obtained by BDF for the case of 1-LSBS
moduli, which shows that the attack is intractable in this case when α is large.

Theorem 4.2. Given (N, e, d0), where N is an n-bit α-LSBS RSA modulus, e is a public exponent
(with dlog2 ee = γ < β) and d0 consists of the β LS bits of the secret exponent d, the Generalized
BDF attack factors N within the following time bound:

TBDF (n) =





O
(
γ2γ · ⌈2n/4−β/2

⌉ · T ′Cop(n)
)

if β < 2(α− 1) + γ

O
(
γ2γ · ⌈2n/4+α−β

⌉ · T ′Cop(n)
)

if β ≥ 2(α− 1) + γ
(7)

Here T ′Cop(n) = TCop(n) + n2 and TCop(n) denotes the running time of Coppersmith’s algorithm of
Theorem 2.1.

Proof. The Generalized BDF attack attempts to recover the n/4 LS bits of p or q and then use
Coppersmith’s algorithm of Theorem 2.1 to efficiently factor N . To do this, the attack computes in

8

turn each element of a set X = {x1, ..., x|X|} of trial values for the n/4 LS bits of p or q, running
Coppersmith’s algorithm of Theorem 2.1 to try to factor N with each trial value xi. The set X is
guaranteed by construction to contain p0 and q0, the n/4 LS bits of p and q respectively. Hence
the attack factors N within time bound O

(
|X| · T ′Cop(n)

)
, where |X| denotes the size of set X and

T ′Cop(n) is the polynomial running time bound for Coppersmith’s algorithm plus the O(n2) time for
the other computations that the attack performs for each execution of Coppersmith’s algorithm.

The central part of the attack is the construction of the set X since it must be small enough (i.e.
polynomial in n) to make the attack tractable. It is constructed as the set of solutions to a quadratic
modular equation as follows. Recall that from the key generation equation (4), we have

ed− 1− k · φ = 0

and
φ = N + 1− p−N/p.

Defining the function f by f(x) def= N + 1− x−N/x, we have that f(p) = f(q) = φ and hence p and
q are roots of the quadratic equation

(ed− 1) · x− k · xf(x) = 0. (8)

Reducing (8) modulo 2β and using the fact that d0 = d mod 2β is known, we see that p0 = p mod 2β

and q0 = q mod 2β are roots of the modular equation:

kx2 + (ed0 − 1− k(N + 1))x + kN ≡ 0 (mod 2β). (9)

All the parameters appearing in the coefficients of (9) are known to the attacker with the exception
of k. However, since k = e · (d/φ)−1/φ, we have from d < φ that k < e and hence k ∈ {1, . . . , e−1}.
When e is small, it is feasible to exhaustively search through all possible candidates k′ ∈ {1, . . . , e−1}
for the true value of k. So the attack proceeds as follows. For each candidate k′ ∈ {1, ..., e − 1} for
the true value of k, the attacker forms the candidate modular quadratic equation

k′x2 + (ed0 − 1− k′(N + 1))x + k′N ≡ 0 (mod 2β). (10)

Let µ(k′) def= m2(k′) denote the multiplicity of 2 in k′. Note that ed0 − 1 ≡ ed − 1 ≡ kφ (mod 2β)
implies ed0−1 ≡ 0 (mod 2m2(k)+1). Thus the attacker can immediately reject candidates k′ for which
ed0 − 1 6≡ 0 (mod 2µ(k′)+1). Otherwise, dividing (10) by 2µ(k′) and multiplying by the multiplicative
inverse θ(k′) def= odd(k′)−1 mod 2β−µ(k′), we have that (10) becomes

x2 + [θ(k′)
ed0 − 1
2µ(k′) − (N + 1)]x + N ≡ 0 (mod 2β−µ(k′)). (11)

Let b(k′) def= θ(k′) ed0−1
2µ(k′) −(N +1) and c(k′) def= N denote the known coefficients of (11). By ‘completing

the square’ (using the fact that b(k′) is even), we find that (11) is equivalent to

[x + b(k′)/2]2 ≡ ∆(k′) (mod 2β−µ(k′)), (12)

where ∆(k′) def= (b(k′)/2)2 − c(k′). Note that if the candidate k′ is correct so k′ = k then, using
ed0 − 1 ≡ ed − 1 ≡ k(N + 1 − p − q) (mod 2β), the linear coefficient of (11) reduces to b(k) ≡
θ(k)k(N+1−(p+q))

2µ(k) − (N + 1) ≡ −(p + q) (mod 2β−µ(k)) and hence

∆(k) ≡ (b(k)/2)2 − c(k) =
(

p + q

2

)2

−N =
(

p− q

2

)2

(mod 2β−µ(k)).

9

Since m2(p− q) = α, it follows that if k′ = k then there are two subcases. In the case 2(α− 1) ≥ β−
µ(k), we have ∆(k) ≡ 0 (mod 2β−µ(k)). In the case 2(α−1) < β−µ(k), we have m2(∆(k)) = 2(α−1).

Accordingly, for each candidate k′ ∈ {1, . . . , e− 1}, the attacker solves (12) by applying the efficient
modular square-root algorithm of Lemma 2.1.

In the case 2(α−1) ≥ β−µ(k′), the attacker knows that ∆(k′) ≡ 0 (mod 2β−µ(k′)) (else k′ cannot be
equal to k and is immediately rejected), and obtains from part (2.1) of Lemma 2.1 that x+b(k′)/2 ≡ 0
(mod 2d(β−µ(k′))/2e). In this case the attacker knows d(β − µ(k′))/2e LS bits of x and needs to
exhaustively search the missing max(0, n/4−d(β − µ(k′))/2e) MS bits to get the n/4 LS bits necessary
to apply Coppersmith’s algorithm. Thus testing k′ in this case requires testing |X1(k′)| candidates
for the n/4 LS bits of p, where

|X1(k′)| =
⌈
2n/4−d(β−µ(k′))/2e

⌉
≤

⌈
2µ(k′)/2 · 2n/4−β/2

⌉
. (13)

In the case 2(α− 1) < β−µ(k′), the attacker has m2(∆(k′)) = 2(α− 1) (else k′ cannot be equal to k
and is immediately rejected), and obtains from part (2.2) of Lemma 2.1 in time O(n2) at most four
candidates for λ such that x + b(k′)/2 ≡ λ (mod 2β−µ(k′)−(α−1)). In this case the attacker has at
most 4 candidates for the β−µ(k′)−(α−1) LS bits of x and needs to exhaustively search the missing
max(0, n/4− (β−µ(k′)− (α− 1))) MS bits to get the n/4 LS bits necessary to apply Coppersmith’s
algorithm. Thus testing k′ in this case requires testing |X2(k′)| possible values for the n/4 LS bits
of p, where

|X2(k′)| ≤
⌈
2µ(k′)+1 · 2n/4+α−β

⌉
. (14)

Note that if β < 2(α−1)+γ then both |X1(k′)| and |X2(k′)| are upper bounded by
⌈
4 · 2µ(k′) · 2n/4−β/2

⌉

for all k′ ∈ {1, . . . , e−1} and if β ≥ 2(α−1)+γ then bound |X2(k′)| applies for all k′ ∈ {1, . . . , e−1}.
Hence, summing over all k′ ∈ {1, . . . , e− 1}, the total number |X| of possible values for the n/4 LS
bits of p that need to be tested is bounded as:

|X| =




O
(∑e−1

k′=1

⌈
2µ(k′)2n/4−β/2

⌉)
if β < 2(α− 1) + γ

O
(∑e−1

k′=1

⌈
2µ(k′)2n/4+α−β

⌉)
if β ≥ 2(α− 1) + γ

(15)

The claimed running-time TBDF (n) = O
(
|X| · T ′Cop(n)

)
now follows immediately from the fact that,

since γ = dlog2 ee,
e−1∑

k′=1

2µ(k′) =
γ−1∑

m=0

2m|H(m)| ≤
γ−1∑

m=0

2mbe/2mc ≤ γ2γ ,

where H(m) denotes the set of all k′ ∈ {1, . . . , e− 1} such that µ(k′) = m. This completes the proof
of the theorem. ut

ut

As explained in Section 3, when the prime factors p and q of N are chosen randomly and indpendently,
α is a small constant with high probability and so in that case our result reduces to that obtained
by BDF, namely that β ≥ n/4 suffices.

4.1.2 An intractability result for β ≤ 2α

In the previous section we showed that the BDF partial key exposure attack on low public-exponent
α-LSBS RSA is tractable only if β ≥ n/4 + α LS bits of d are available, rather than the bound
β ≥ n/4 shown by BDF [5] for small α. However, the BDF attack is only one specific attack, and

10

it is natural to ask whether it is possible to modify it or find another attack which works efficiently
for β ≥ n/4 even for large α. The following result shows that the existence of such an attack for
α ≥ n/8 would imply the existence of a polynomial-time factoring algorithm for α-LSBS moduli with
α ≥ n/8 (recall from Section 3 that the best known polynomial-time factoring algorithm for α-LSBS
moduli works only when α ≥ n/4).

Theorem 4.3. Suppose there exists a PKE attack algorithm A that, given (N, e, d0), factors N in
time TA(n), where N is an n-bit α-LSBS RSA modulus, e is a public exponent (with dlog2 ee = γ)
and d0 consists of the β ≤ 2α LS bits of the secret exponent d. Then there exists a factoring algorithm
F for α-LSBS moduli, that given only (N, e), factors N in time TF (n), with

TF (n) = O
(
2γ · (TA(n) + n2)

)
.

Proof. We show how to construct the factoring algorithm F. Given (N, e), F simply computes in
time O(2γ · n2) a set of 4 · 2γ candidates d′0 for d0 which is guaranteed to contain the correct d0,
the β LS bits of d, and runs A on input (N, e, d′0) for each candidate d′0 for d0. Thus F succeeds to
factor N in time TF (n) ≤ O

(
2γ · (TA(n) + n2)

)
, as claimed. To find the 4 · 2γ candidates for d0, F

does the following. First, F applies the algorithm of Lemma 3.1 to compute in time O(n2) up to
4 candidates for s0 such that s0 ≡ p + q (mod 22α). Now note that reducing the key generation
equation ed− 1 = k(N + 1− (p + q)) modulo 22α gives ed− 1 ≡ k(N + 1− s0) (mod 22α). Since e
is odd, it has a multiplicative inverse e−1 modulo 22α which can be computed in time O(n2) and we
have that

d ≡ e−1 · [1 + k(N + 1− s0)] (mod 22α).

As in the proof of Theorem 4.2, F knows that k ∈ {1, . . . , e−1}. So, for each candidate k′ {1, . . . , e−1}
for k and each of the four candidates s′0 for s0, F computes a corresponding candidate d′0 = e−1 · [1 +
k′(N + 1− s′0)] mod 22α for d mod 22α, and hence (using β ≤ 2α), F obtains that d′0 mod 2β = d0 for
one of the 4(e− 1) ≤ 4 · 2γ candidates for d′0, as required. This completes the proof. ut

ut

The proof of the above result shows more generally, that for low public exponents, α-LSbS RSA
‘leaks’ the 2α LS bits of the secret exponent d. Therefore, for β ≤ 2α and small γ, the one-wayness
of (α, β, γ)-LSBS RSA (PKE with β LS bits of d given) is equivalent to the one-wayness of (α, 0, γ)-
LSBS RSA (no bits of d given), which in turn, as explained in Section 3, is conjectured to be equivalent
to the problem of factoring α-LSBS moduli. We conclude that when β ≤ 2α and α = (1− ε)n/4 for
some constant ε > 0, then (α, β, γ)-LSBS RSA appears asymptotically as secure as standard RSA,
but has potential efficiency advantages, as illustrated in the proposed application in Section 5.

The result in this section will be used in Section 5 in conjunction with the following result of Boneh,
Durfee and Frankel [5].

Theorem 4.4 (BDF[5]). Suppose there exists a PKE attack algorithm A that, given (N, e, d0),
factors N in time TA(n), where N is an n-bit RSA modulus, e is a public exponent (with dlog2 ee = γ)
and d0 consists of the n/2 MS-bits of the secret exponent d. Then there exists a factoring algorithm
F, that given only (N, e), factors N in time TF (n), with

TF (n) = O (2γTA(n)) .

This result shows the for small public exponents, the n/2 MS bits of d are also ‘leaked’ from the
public information (N, e).

11

4.2 PKE with Large Public Exponent (γ ≥ n/6)

All the results of Section 4.1 are useful only for the case of a small public exponent e because of the
factor 2γ in the attack/reduction running times. In particular, the reduction of Theorem 4.3 also
deteriorates by a factor of 2γ and hence it does not rule out the possibility that when α and γ are
large, there may be an efficient PKE attack using β < 2α LS bits of d. Indeed, in this section we
show improved attacks which confirm this possibility.

4.2.1 First Attack (α ≥ n/8)

In the first attack, we assume that α ≥ n/8. We modify the Generalized BDF attack of Theorem 4.2
in two ways.

First, we use the assumption that α is large to eliminate the exhaustive search over 2γ elements
required to find k by computing k modulo 2min(2α,β)−m2(φ). This involves combining knowledge of
s0 = s mod 22α, the 2α LS bits of s = p + q (from Lemma 3.1 part 2) and the β LS bits of d. Thus
if min(2α, β)−m2(φ) > γ, this gives us all the bits of k.

Second, once we know k, we use it to compute s mod e by reducing the key generation equation
modulo e (note that this trick was also used in an attack with known Most Significant bits of d in [5]
to eliminate d once k is known), which allows us to compute s1 = s mod e. Now we know both
s mod e and s mod 22α and we use the Chinese Remainder Theorem (CRT) to combine them and
compute s2 = s mod e22α. Thus if γ + 2α ≥ n/2 we have all of s and we can then easily factor N as
in Corollary 3.1.

The precise statement and proof of this result follows.

Theorem 4.5. Given (N, e, d0), where N is an n-bit α-LSBS RSA modulus, e is a public exponent
(with dlog2 ee = γ ≤ min(2α, β)−m2(φ), where m2(φ) < min(2α, β) denotes the multiplicity of 2 in
φ = N + 1− (p + q)) and d0 consists of the β LS bits of the secret exponent d, there exists an attack
which factors N within time bound O(

⌈
2n/2−2α−γ

⌉
p(n)), where p(n) is a polynomial in n.

Proof. The attacker knows d0 = d mod 2β and, by applying Lemma 3.1 computes at most 4 candi-
dates for s0 = s mod 22α in time O(n2), where s = p + q. Hence, from the key generation equation
ed− 1 = kφ = k(N + 1− s), the attacker obtains the congruence

ed0 − 1 ≡ k(N + 1− s0) (mod 2min(2α,β)). (16)

Since N+1−s0 ≡ φ (mod 2min(2α,β)) and m2(φ) < min(2α, β), it follows that m2(N+1−s0) = m2(φ).
Thus N +1−s0 = λ ·2m2(φ) for some odd λ. By multiplying the congruence (16) by the multiplicative
inverse λ−1 of λ modulo 2min(2α,β) and dividing by 2m2(φ) the attacker obtains that

k ≡ λ−1 · ed0 − 1
2m2(φ)

(mod 2min(2α,β)−m2(φ)). (17)

Using (17) the attacker therefore obtains in time O(n2) four candidates for
k0

def= k mod 2min(2α,β)−m2(φ), and since k < e ≤ 2γ ≤ 2min(2α,β)−m2(φ), it follows that one of the
four candidates for k0 is equal to k.

Now the attacker has 4 candidates for k. Reducing the key generation equation modulo e gives that
k · (s− (N + 1)) ≡ 1 (mod e). Therefore (noting that gcd(k, e) = 1),

s ≡ k−1 + N + 1 (mod e)

and using this the attacker computes 4 candidates for s1
def= s mod e in time O(n2). So the attacker

obtains 4 candidate pairs for (s0, s1) where s0 = s mod 22α and s1 = s mod e. Since gcd(22α, e) = 1,

12

the attacker can use the Chinese Remainder Theorem to combine these two ‘portions’ of s and
computes s2

def= s mod 22αe. Since s2 is the remainder of s on division by 22αe we have s = u2·22αe+s2,
where the positive quotient integer u2 is upper bounded as

u2 ≤ s/(22αe) ≤ 8 · 2n/2−(2α+γ).

So, for each of the four candidates for s2 the attacker tries all possible
⌈
8 · 2n/2−(2α+γ)

⌉
candidates

for u2 to get O(
⌈
2n/2−(2α+γ)

⌉
) candidates for s = u2 · 22αe + s2. For each of these candidates for s,

the attacker tries to find p by solving the quadratic

x2 − s · x + N = 0,

and testing whether the solution divides N . When the correct value of s is reached, the factor p of
N will be found, after at most a running time of O(

⌈
2n/2−(2α+γ)

⌉
p(n)), where p(n) is the polynomial

running time of all computations involved in computing and testing each candidate for p. This
establishes the claimed running time for the attack and completes the proof. ut

ut

Summarizing, this attack is tractable when n/2−2α ≤ γ ≤ min(β, 2α)−m2(φ), which shows that we
must have α ≥ n/8 (note that m2(φ) is a small constant with high probability for a random α-LSBS
modulus). For example, for α = n/8 and γ = n/4, it suffices to have β ≥ n/4 LS bits of d, the same
bound for β as obtained by BDF for α = 1 and γ small. For even larger α = (1−ε)n/4 for a constant
ε < 1/2, we only need γ and β to exceed ε · n/2 for the attack to be tractable, much less than the
2α = (1− ε)n/2 bits lower bound on β of Theorem 4.3, which holds for small (constant) γ.

4.2.2 Second Attack (e prime, α ≥ n/12)

The second attack is a variant of the first which is tractable for even lower α, namely α ≥ n/12.
However, it also assumes that e is a prime. The first part of the attack involves computing four
candidates for k (under the assumption that γ ≤ min(2α, β) − m2(φ)) and hence four candidates
for s1 = s mod e exactly as in the proof of Theorem 4.5. But now, instead of using s1 to compute
s2 = s mod 22αe, we use it to compute p1 = p mod e by solving a quadratic modulo e (note that this
process of obtaining p mod e from s mod e has also has been in used in an attack in [5] given MS
bits of d). Then we use Chinese Remaindering together with Lemma 3.1 to get p2 = p mod 2αe and
try to factor N using p2 and Coppersmith’s algorithm of Theorem 2.1.

The precise statement and proof of this result follows.

Theorem 4.6. Given (N, e, d0), where N is an n-bit α-LSBS RSA modulus, e is a prime public
exponent (with dlog2 ee = γ ≤ min(2α, β)−m2(φ), where m2(φ) < min(2α, β) denotes the multiplicity
of 2 in φ = N + 1− (p + q)) and d0 consists of the β LS bits of the secret exponent d, there exists an
attack which factors N within time bound O(

⌈
2n/4−α−γ

⌉
p(n)), where p(n) is a polynomial in n.

Proof. The attacker computes four candidates for s1 = s mod e in time polynomial in n exactly as
in the proof of Theorem 4.5. We know that p1 = p mod e is a solution to the quadratic congruence

x2 − s1 · x + N = 0 (mod e). (18)

Since e is prime the the attacker can solve the congruence (18) in randomized polynomial time
(see [13]) to obtain 2 candidates for p1 for each of the 4 candidates for s1. Also, by applying Part
1 of Lemma 3.1, the attacker computes 4 candidates for p0 = p mod 2α. Since gcd(2α, e) = 1,
the attacker can use the Chinese Remainder Theorem to combine these two ‘portions’ of p and

13

computes 32 candidates for p2
def= p mod 2αe. If α + γ − 1 ≥ n/4 then it possible to factor N using

p2 and Coppersmith’s algorithm of Theorem 2.1. Otherwise, let p3 = p mod 2n/4−γ+1e. Note that
2n/4−γ+1e ≥ 2n/4 and hence it is possible to factor N given p3 using Theorem 2.1. But p2 is the
remainder of p3 on division by 2αe and we have p3 = u2 ·2αe+p2, where the positive quotient integer
u2 is upper bounded as

u2 ≤ p3/(2αe) ≤ 4 · 2n/4−(α+γ).

So, for each of the 32 candidates for p2 the attacker tries all possible 4 · 2n/4−(α+γ) candidates for
u2 to get 128 · 2n/4−(α+γ) candidates for p3. For each of these candidates for p3, the attacker runs
the algorithm of Theorem 2.1 to try to factor N . Thus N is factored after at most a running time
of 128 · 2n/4−(α+γ)p(n), where p(n) is the polynomial running time of all computations involved in
computing and testing each candidate for p3. This establishes the claimed run time for the attack
and completes the proof. ut

ut

In summary, this attack is tractable when n/4− α ≤ γ ≤ min(β, 2α)−m2(φ), which shows that we
must have α ≥ n/12. For example, for α = n/12 and γ = n/6, it suffices to have β ≥ n/6 LS bits
of d, which is smaller than the bound β ≥ n/4 obtained by BDF for α = 1 and γ small. For even
larger α = (1− ε)n/4 for a constant ε < 1/2, we only need γ and β to exceed ε ·n/4. Finally, we note
that, as explored in [5], the requirement for this attack that e is prime can be relaxed under some
conditions, e.g. when e has a small number of prime factors which are all known. This is because the
only requirement of the attack is that all solutions of the quadratic (18) can be found in polynomial
time.

5 Application to Server-Aided Signature Generation

The result of Theorem 4.3 in Section 4.1.2 that α-LSBS RSA with low public exponents ‘leaks’ the
2α LS bits of the secret exponent d, together with the result of Boneh, Durfee and Frankel (see
Theorem 4.4 in Section 4.1.2) that the n/2 MS bits of d are also leaked for low public-exponents,
opens the possibility of fast RSA Server-Aided Decryption or Signature Generation. In particular,
if α = (1 − ε)n/4, this means that one can reveal to the public server the majority of bits of d
except for the block of about n/2 − 2α = ε · n/2 ‘middle’ bits in positions n/2 − 1 down to 2α. By
offloading the exponentiation portion corresponding to the public bits of d to the fast server, the
card’s computation can be significantly reduced, while still provably achieving the same security as
the one-wayness of α-LSBS RSA.

We give the details of the scheme below.

5.1 Definition of SASG

We use the following general definition for SASG. Given a digital signature scheme DS = (GK, S, V)
with key-pair generation algorithm GK, signature generation algorithm S and signature verification
algorithm V, a Server-Aided Signature Generation (SASG) protocol consists of two interacting algo-
rithms: (1) A signature generation card with input the signing secret key sk, and (2) A fast aiding
server with input public key pk. The common input to both card and server is the message to be
signed M . At the end of the protocol between card and server, the card outputs a signature σ for the
scheme DS on message M with respect to the secret key sk. The pair (M, σ) can then be publicly
verified with respect to the public key pk using the normal verification algorithm V for scheme DS.

Efficiency. The computational efficiency of a SASG protocol is defined, naturally, the ratio by which
the computation time of card is smaller than the computation time of S, the standard signature

14

generation algorithm for the scheme DS. The communication overhead of a SASG protocol is total
bit-length of protocol messages exchanged between card and server in the protocol (this does not
include the length of M and σ).

Security. We can define two types of security of a SASG protocol based on the standard model of
existential unforgeability under adaptive chosen message attacks for digital signature schemes [9]. The
protocol is said to be CMA-Secure against Passive-Server attack if it is infeasible for an attacker to
produce an existential forgery on a ‘new message’ after polynomially many (in the security parameter
k of the scheme) protocol runs in which the attacker interacts with the card as a server with attacker-
chosen messages, but assuming that the attacker follows the protocol in sending all protocol messages
to the card (if the protocol is secure even when attacker is also allowed to deviate from the protocol
when sending messages to the card, we say that it is CMA-Secure against Active-Server attacks).

5.2 The Protocol

As mentioned the idea of the protocol is simple: we reveal the leaked bits 2α LS bits and n/2 MS
bits of d to the server. The underlying digital signature scheme can be any RSA-based one, but here
we use the classical FDH− RSA ‘Full Domain Hash’ scheme [2].

Let H(.) : {0, 1}∗ → ZZ∗N be cryptographic hash-function. The key generation algorithm GK generates
a public key (N, e, α, dpub) and a secret key (N, e, α, dsec) with N an α-LSBS RSA modulus, e a small
public exponent, and dpub and dsec consist of the public and secret portions of the secret exponent
d = e−1 mod φ, respectively. That is, write the binary representation of the secret exponent as d =∑n−1

i=0 di2i, where di ∈ {0, 1} represents the i’th significant bit of d. Then dsec
def= (1/22α)·∑n/2−1

i=2α di2i

and dpub
def= d − 22αdsec. On common input M , the SASG protocol for computing the signature

σ = H(M)d mod N consists of the following two steps:

(1) The server computes β1
def= H(M)dpub mod N and β2

def= H(M)2
2α

mod and forwards the pair
(β1, β2) to the card.

(2) The card outputs the signature σ
def= β1β

dsec
2 mod N .

5.2.1 Computational Efficiency

Suppose α = (1−ε)n/4. The length of the exponent dsec in the exponentiation performed by the card
is only n/2−2α = ε·n/2 bits, compared to the length of d, namely n bits, used in the standard signing
algorithm S. Since exponentiation time is linear in the length of the exponent, the computational cost
for the card is reduced by a factor of around 2/ε, which can be very significant, especially for ε < 1/2.
For example, if we use the conjecture in Section 3 on the difficulty of factoring (1− ε)n/4-LSBS RSA
moduli, we have that for n = 2048-bit moduli, ε can be made as small as 0.2 (approximately) while
leaving the security unchanged from that of random RSA moduli of length n = 2048 bit. Thus at this
level of security we can achieve a computational efficiency ratio of up to 2/0.2 = 10. We remark that
our technique is also useful when the Chinese Remainder Theorem is used to speed-up computation
by the card (see, for example [15]), achieving in these cases a computation saving for the card by a
factor of around 1/ε. The communication overhead of the protocol is 2n bits.

5.2.2 Security

In the Passive-Server attack setting, the only difference between the view of the attacker in the
SASG protocol to its view in the CMA attack on FDH− RSA is that in the former case the public
key contains dpub. But since β ≤ 2α and e is small, it follows from Theorems 4.3 and 4.4 that these

15

bits are ‘leaked’ by (N, e). Hence it follows that the protocol is CMA-secure against Passive-Server
attacks as long as the underlying FDH− RSA signature is CMA-secure, which follows in turn in the
random oracle model [2] from the one-wayness of the RSA primitive, which in our case is the α-LSBS
RSA assumption. Note that the protocol is not designed for security against active servers.

5.3 Practical Generation of α-LSBS RSA Moduli

In practice, generating α-LSBS RSA moduli in the natural way, i.e. picking one of the primes (say p)
randomly, and then testing candidate integers for q of the form q = (p+2α) mod 2α+1 +r ·2α+1 (with
a randomly chosen r) for primality, is asymptotically expected to be as efficient as the ‘standard’
independent primes generation algorithm for random RSA moduli, where each candidate for q is
chosen independently of p as a random odd integer. This is due to a quantitative version of Dirichlet’s
Theorem (see [18]), which implies that the density of primes less than a bound x in any arithmetic
progression q ≡ a (mod z) (with gcd(a, z) = 1) converges to (z/φ(z))·(1/ ln x). For the case z = 2α+1,
we have 2α+1/φ(2α+1) = 2 for all α ≥ 1. Therefore, the density of primes converges to 2/ ln x for both
the standard modulus generation search (where a = 1 and z = 2), as well as the α-LSBS modulus
generation search (where a = (p + 2α) mod 2α+1 and z = 2α+1).

6 Conclusion

We investigated the security of RSA under partial key exposure attacks for α-LSBS moduli, in which
the modulus prime factors share α least significant bits. We have also suggested an application for
α-LSBS RSA in fast public-server-aided RSA signature generation. It was shown that the saving in
computation using this technique is in the order of 1/ε if α-LSBS moduli with α = (1 − ε)n/4 are
used. This motivates further study of the complexity of factoring such RSA moduli for small ε. The
aim of such study would be either to strengthen confidence in the current conjecture that a time of
min(TGF (n), O(2ε·n/4)) is required to factor (1− ε)n/4-LSBS moduli (where TGF (n) is the run-time
of the best general-purpose factoring algorithm for n-bit RSA moduli), or to find a new factoring
algorithm for (1− ε)n/4-LSBS moduli which works in polynomial time even for some constant ε > 0.
In any case this would improve confidence in the limit on the effectiveness of the technique.

Acknowledgements. The authors would like to thank the anonymous referees of CT-RSA 2001 for
their helpful comments on a preliminary version [20] of some of the results in this paper.

References

[1] E. Bach and J. Shallit. Algorithmic Number Theory, Vol. I. MIT Press, Massachusetts, 1996.

[2] M. Bellare and P. Rogaway. The exact security of digital signatures: How to sign with RSA
and Rabin. In EUROCRYPT ’96, volume 1070 of LNCS, pages 399–416, Berlin, 1996. Springer-
Verlag.

[3] J. Blömer and A. May. New Partial Key Exposure Attacks on RSA. In Crypto 2003, LNCS,
pages 27–43. Springer-Verlag, 2003.

[4] D. Boneh. Twenty years of attacks on the RSA cryptosystem. Notices of the American Mathe-
matical Society (AMS), 46(2):203–213, 1999.

16

[5] D. Boneh, G. Durfee, and Y. Frankel. An Attack on RSA Given a Small Fraction of the Private
Key Bits. In ASIACRYPT ’98, volume 1514 of LNCS, pages 25–34, Berlin, 1998. Springer-
Verlag.

[6] D. Boneh, G. Durfee, and Y. Frankel. Exposing an RSA Private Key
Given a Small Fraction of its Bits. Available from author’s webpage at
http://www2.parc.com/csl/members/gdurfee/pubs.htm, 2002. Revised version of Asi-
acrypt ’98 paper.

[7] D. Coppersmith. Small Solutions to Polynomial Equations, and Low Exponent RSA Vulnera-
bilities. J. of Cryptology, 10:233–260, 1997.

[8] B. de Weger. Cryptanalysis of RSA with Small Prime Difference. Applicable Algebra in Engi-
neering, Communication and Computing, 13:17–28, 2002.

[9] S. Goldwasser, S. Micali, and R. Rivest. A Digital Signature Scheme Secure against Adaptively
Chosen Message Attacks. SIAM Journal on Computing, 17(2):281–308, 1988.

[10] M.J. Hinek, M.K. Low, and E. Teske. On some Attacks on Multi-Prime RSA. Cryptology ePrint
Archive, Report 2002/063, 2002. http://eprint.iacr.org/.

[11] A. Lenstra. Generating RSA Moduli with a Predetermined Portion. In ASIACRYPT ’98, volume
1514 of LNCS, pages 1–10, Berlin, 1998. Springer-Verlag.

[12] A.K. Lenstra. Unbelievable Security: Matching AES Security Using Public Key Systems. In
Asiacrypt 2001, volume 2248 of LNCS, pages 67–86, Berlin, 2001. Springer-Verlag.

[13] R. Lidl and H. Niederreiter. Finite Fields. Encyclopedia of Mathematics and its Applications.
Cambridge University Press, 1997.

[14] T. Matsumoto, K. Kato, and H. Imai. Speeding Up Secret Computations with Insecure Auxiliary
Devices. In CRYPTO ’88, volume 403 of LNCS, pages 497–506, Berlin, 1989. Springer-Verlag.

[15] A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryptography. Discrete
mathematics and its applications. CRC Press, 1997.

[16] National Bureau of Standards. Data Encryption Standard, Federal Information Processing Stan-
dards Publication 46-2, 1993.

[17] P. Nguyen and J. Stern. The Béguin-Quisquater Server-Aided RSA Protocol from Crypto ’95 is
not secure. In ASIACRYPT ’98, volume 1514 of LNCS, pages 372–379, Berlin, 1998. Springer-
Verlag.

[18] D. Redmond. Number Theory: an introduction. Number 201 in Monographs and textbooks in
pure and applied mathematics. Marcel Dekker, 1996.

[19] R. L. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital Signatures and
Public-Key Cryptosystems. Communications of the ACM, 21(2):120–128, 1978.

[20] R. Steinfeld and Y. Zheng. An Advantage of Low-Exponent RSA with Modulus Primes Sharing
Least Significant Bits. In Topics in Cryptology - CT-RSA 2001, volume 2020 of LNCS, pages
52–62, Berlin, 2001. Springer-Verlag.

17

