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Abstract
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our algorithm we need to be given about 2/3 of the bits of the output, which matches one of
the heuristic algorithms of D. Boneh, S. Halevi and N. A. Howgrave-Graham and answers one
of their open questions. However their more efficient algorithm that requires only 1/3 of the bits
of the output still remains heuristic.
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1. Introduction

1.1. Motivation

Since Boneh and Venkatesan [6,7] introduced the hidden number problem in 1996, it has
been generalised in a number of directions and has found a wide spectrum of applications
in cryptography and beyond, see [16] for a survey of relevent results and also [1] for some
recent developments and a new approach. Here we consider a modification of the original
problem which has been introduced by Boneh, Halevi and Howgrave-Graham [5].

More precisely, for a prime p, denote by IFp the field of p elements and always assume
that it is represented by the set {0, 1, . . . , p−1}. Accordingly, sometimes, where obvious,
we treat elements of IFp as integer numbers in the above range.

For integers x and m ≥ 1 we denote by bxcm the remainder of x on division by m.
Given an integer m and ` > 0, we denote by MSB`,m(x) any integer u such that

|bxcm − u| ≤ m/2
`+1.

Roughly speaking, MSB`,m(x) gives ` most significant bits of the remainder of x modulo
m. However, this definition is more flexible and suits better our purposes. In particular
we remark that ` in the above inequality need not be an integer.

Following Boneh, Halevi and Howgrave-Graham [5] we consider the following Modular
Inversion Hidden Number Problem, ModInv-HNP:

Recover a number α ∈ IFp such that for N elements t1, . . . , tN ∈ IFp \ {−α}, chosen
independently and uniformly at random, we are given N pairs(

ti,MSB`,p

(
1

α+ ti

))
, i = 1, . . . , N,

for some ` > 0.
Besides being of independent interest and giving an interesting example of yet another

natural problem of this type, see [16] for a survey, it has also been mentioned in [5] as a
building block for constructing efficient pseudorandom number generators and message
authentication codes. Motivated by these applications, here we modify and rigorously
analyze the algorithm outlined in [5, Section 3.1], using some ideas from [2–4]. We note
that our algorithm works only if for some fixed ε > 0 we have ` > (2/3 + ε)k for
a sufficiently large k-bit prime p. In [5] one can find another algorithm together with a
heuristic argument that it works already for ` > (1/3+ε)k, however it seems quite difficult
to give a rigorous analysis of this algorithm, which can be a serious drawback in various
cryptographic applications of ModInv-HNP (see [5] for some possible applications).

Throughout the paper we use log z to denote the binary logarithm of z.

1.2. Lattices and SVP problem

We recall that a lattice L is a set of all integer linear combinations of the form

L =

{
r∑
i=1

nibi | ni ∈ ZZ

}
,

for r linearly independent real vectors b1, . . . ,br in the s dimensional Euclidean space
IRs (note that r ≤ s). The set {b1, . . . ,br} is said to be a basis of L.
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One of the most fundamental problems in this area is the γ-shortest vector problem,
γ-SVP: given a real γ ≥ 1 and a basis of a lattice L in IRs, find a nonzero vector u ∈ L,
with the Euclidean norm ‖u‖ no more than γ times larger than the Euclidean norm of
the shortest nonzero vector in L, that is,

‖u‖ ≤ γmin{‖w‖ : w ∈ L, w 6= 0}.

For γ = 1 this problem is known as simply SVP, we refer to [10–14] for the state of art
and also surveys of previous results concerning different algorithms for γ-SVP.

1.3. Main results

We assume that we have access to a γ-SVP algorithm.

Theorem 1. Assume that for a prime number p we are given n+ 1 pairs(
ti,MSB`,p

(
1

α+ ti

))
, i = 1, . . . , n+ 1,

with

(t1, . . . , tn+1) ∈ (IFp \ {−α})n+1

chosen uniformly at random. Then α ∈ IFp can be recovered in deterministic polynomial
time and a single call to a γ-SVP algorithm on a (2n + 2)-dimensional lattice with
polynomially bounded basis, except with probability

P ≤ 2n+1(4h∆ + 1)3n+1

(p− 1)n
+

4(4h∆ + 1)3

p− 1

over the choices of t1, . . . , tn+1, when it either returns no answer or returns a wrong
answer, where

h = γ
√

2n+ 2 and ∆ =
⌈
p/2`+1

⌉
.

Theorem 1 implies that for almost all evaluation points, ModInv-HNP can be solved
in deterministic polynomial time if ` > (2/3 + ε)k where k is the bit length of p (for any
constant ε > 0). The following corollary gives a more precise statement, in two variants,
using two different SVP approximation algorithms. Although the run-time is polynomial
in k for any constant ε in both cases, the dependance on ε is different, and allows trading
off a larger run-time for a smaller minimum allowed value of k.

Corollary 1. Fix ε and δ with 0 < δ < ε < 1. Let

n0 =

⌈
2

9ε

⌉
,

let p be a k-bit prime and let ` > (2/3 + ε)k. There exist deterministic algorithms A1

and A2 such that given n0 + 1 pairs(
ti,MSB`,p

(
1

α+ ti

))
, i = 1, . . . , n0 + 1,

with

(t1, . . . , tn0+1) ∈ (IFp \ {−α})n0+1
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chosen uniformly at random, for k ≥ kν the algorithm Aν runs in time Tν , ν = 1, 2, and
recovers α ∈ IFp correctly with probability at least 1−p−δ over the choices of t1, . . . , tn0+1,
where

k1 =
⌈
c1ε
−1 log ε−1

⌉
and k2 =

⌈
c2ε
−2 (log log ε−1)2

log ε−1

⌉
,

for some absolute effectively computable constants c1 and c2, and

T1 = (2ε
−1

k)O(1) and T2 = (ε−1k)O(1).

Proof. Plugging ∆ = 2k−`+O(1) and p = 2k+O(1) in the first term of the error probability
bound in Theorem 1, and using that ` > (2/3 + ε)k we see that

2n+1(4h∆ + 1)3n+1

(p− 1)n
= h3n+12(3n+1)((k−`)+O(1))−(k+O(1))n

≤ h3n+12(3n+1)(k/3−kε+O(1))−(k+O(1))n

= 2(3n+1) log h+k/3−k(3n+1)ε+O(n).

Now a straightforward computation shows that the first term is upper bounded by p−δ/2
if the condition

(3n+ 1) · (ε− k−1(log h+ C0)) ≥ 1/3 + δ (1)

is satisfied (with some sufficiently large absolute constant C0). Assuming

k ≥ (2 log h+ C1) · ε−1 (2)

for a sufficiently large absolute constant C1, and using that δ < ε, we see that n ≥ n0
implies (1).

Furthermore, another straightforward computation shows that the second term in the
error probability of Theorem 1 is bounded by p−δ/2 if

k ≥ (3 log h+ C2) · (3ε− δ)−1.

(for a suitable absolute constant C2). It is easy to see that this condition on k is implied
by (1), provided that C0 is large enough, using δ < ε.

For A1, we apply the 1-SVP algorithm of [11] to a lattice of dimension s = 2n0 + 2,
which gives h =

√
2n0 + 2.

For A2, we use the 2O(s(log log s)2/ log s)-SVP algorithm of Schnorr [15] for s = 2n0 + 2,
which gives h = 2n0+1

√
2n0 + 2. Recalling the definition of n0, the stated bounds on k

follow.
This completes the proof. ut

Note that a trivial information theoretic lower bound on the number n0 + 1 of pairs(
ti,MSB`,p

(
1

α+ ti

))
, i = 1, . . . , n0,

needed to recover α is

n0 ≥
k − 1

`
− 1,

since α has entropy at least k−1 bits, and each pair provides at most ` bits of information
on α. Hence for the parameter choice ` > (2/3+ε)k, our algorithm works with n0 within
a constant factor of the lower bound, with a constant that varies inversely with ε.
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2. Proof of Theorem 1

2.1. Algorithm

We assume that
2h∆ ≤ 6h∆2 < p (3)

since otherwise the result is trivial (as the claimed bound on the probability exceeds 1).
Assume we are given n+ 1 pairs of integers (ti, ui) with

ui ≡
1

α+ ti
+ ei (mod p) (4)

for some integers ei with |ei| ≤ ∆, i = 1, . . . , n+ 1.
Rewriting these congruences as

α ≡ 1

ui − ei
− ti (mod p),

and eliminating α, we obtain

1

u1 − e1
− t1 ≡

1

ui − ei
− ti (mod p), i = 2, . . . , n+ 1,

which in turn implies

ui − ei − u1 + e1 ≡ (t1 − ti)(u1 − e1)(ui − ei) (mod p), (5)

for i = 2, . . . , n+ 1.
Denoting

Ai ≡ (t1 − ti)u1ui + u1 − ui (mod p),

B1,i ≡ −(t1 − ti)ui − 1 (mod p),

Bi,i ≡ −(t1 − ti)u1 + 1 (mod p),

Ci ≡ t1 − ti (mod p),

we write (5) as

Ai +B1,ie1 +Bi,iei + Cie1ei ≡ 0 (mod p), i = 2, . . . , n+ 1.

We now rescale the coefficients as

ai ≡ Ai∆−2 (mod p), b1,i ≡B1,i∆
−1 (mod p),

bi,i ≡ Bi,i∆−1 (mod p), ci ≡ Ci (mod p),

for i = 2, . . . , n+ 1, and notice that the vector

e =
(
∆2,∆e1, . . . ,∆en+1, e1e2, . . . , e1en+1

)
belongs to the lattice L consisting of solutions

x = (x0, x1, . . . , xn+1, x1,2, . . . , x1,n+1) ∈ ZZ2n+2

of the congruences

aix0 + b1,ix1 + bi,ixi + cix1,i ≡ 0 (mod p), i = 2, . . . , n+ 1.

x0 ≡ 0 (mod ∆2),

xj ≡ 0 (mod ∆), j = 1, . . . , n+ 1.

(6)
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We note that a (2n+ 2)× (2n+ 2) integral basis matrix

M = (Mi,j)
2n+1
i,j=0

whose rows generate L can be constructed efficiently as follows:
The first two columns are defined as follows: M0,0 = ∆2 and Mi,0 = 0 for i =

1, . . . , 2n + 1 (imposing the relation x0 ≡ 0 (mod ∆2)), and M1,1 = ∆ and Mi,1 = 0
for j 6= 1 (relation x1 ≡ 0 (mod ∆)).

For j ∈ {2, . . . , n+ 1}, there are two possible cases:
• If Cj 6≡ 0 (mod p), then Cj is invertible modulo p, and we set Mj,j = ∆ and Mi,j = 0

for i 6= j (we recall the relation xj ≡ 0 (mod ∆)) and M0,n+j ≡ −C−1j · Aj (mod p),

M1,n+j ≡ −C−1j · B1,j (mod p), Mj,n+j ≡ −C−1j · Bj,j (mod p), Mn+j,n+j = p, and

Mi,n+j = 0 for i 6∈ {0, 1, j, n+ j} (we recall the relation x1,i ≡ −c−1j · (ajx0 + b1,jx1 +
bj,jxj) (mod p)).

• If Cj ≡ 0 (mod p), then the relations xj ≡ 0 (mod ∆) and xj ≡ −ajx0 − b1,jx1
(mod p) hold. Since p and ∆ are coprime, the latter two congruences are equivalent
to the single congruence xj ≡ ∆ ·

⌊
∆−1

⌋
p
· (−ajx0 − b1,jx1) (mod p∆). Consequently,

we set M0,j ≡ −∆2 ·
⌊
∆−1

⌋
p
· Aj (mod p∆), M1,j ≡ −∆2 ·

⌊
∆−1

⌋
p
· B1,j (mod p∆),

Mj,j = p∆ and Mi,j = 0 for i 6∈ {0, 1, j} (relation xj ≡ ∆ ·
⌊
∆−1

⌋
p
· (−ajx0 − b1,jx1)

(mod p∆)), and Mn+j,n+j = 1 and Mi,n+j = 0 for i 6= n + j (we recall the relation
x1,n+j ∈ ZZ).
Clearly the Euclidean norm ‖e‖ of e satisfies the inequality

‖e‖ ≤
(
∆4 + · · ·+ ∆4

)1/2 ≤ √2n+ 2∆2.

We run the γ-SVP algorithm on the lattice L. Let

f = (∆2f0,∆f1, . . . ,∆fn+1, f1,2, . . . , f1,n+1) ∈ L,

where f0, . . . , fn+1, f1,2, . . . , f1,n+1 ∈ ZZ, be the returned approximation to the shortest
nonzero vector in L. So

‖f‖ ≤ γ · ‖e‖ ≤ γ
√

2n+ 2 ·∆2 = h ·∆2.

We have

|f0| ≤ ‖f‖∆−2 ≤ h,
|fi| ≤ ‖f‖∆−1 ≤ h ·∆, i = 1, . . . , n+ 1,

|f1,i| ≤ ‖f‖ ≤ h ·∆2, i = 2, . . . , n+ 1.

(7)

We now consider the vector

d = (0,∆d1, . . . ,∆dn+1, d1,2, . . . , d1,n+1) = f0e− f ,

where
di = f0ei − fi, i = 1, . . . , n+ 1,

and
d1,i = f0e1ei − f1,i i = 2, . . . , n+ 1.

Observe that if di = 0 for some i ∈ {1, . . . , n + 1} and also f0 6= 0, then we can
compute ei = fi/f0. To decide which of the integral ratios fi/f0 is indeed equal to ei, we
perform the following “consistency check”:
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• We form the set I ⊆ {1, . . . , n+ 1} of i = 1, . . . , n+ 1 with integral values of fi/f0 and
ui 6≡ fi/f0 (mod p). For every i ∈ I we compute

βi ≡
1

ui − fi/f0
− ti (mod p), 0 ≤ βi < p,

and also define hij , j = 1, . . . , n+ 1, by the conditions

hij ≡
1

βi + tj
− uj (mod p), |hij | < p/2,

(again discarding the values of i for which at least one inversion fails).
• We now choose the smallest i0 ∈ I for which for all j = 1, . . . , n + 1, the values hi0j

exist and satisfy |hi0j | ≤ ∆, and return βi0 . Otherwise we return failure.

2.2. Necessary conditions for failure

Let us define the quantities

Ei = d1,i − d1ei − die1, i = 2, . . . , n+ 1. (8)

Let us define the “bad” events

E1 : di 6= 0 or Ei 6= 0, for every i = 2, . . . , n+ 1,

E2 : f0 = 0 and E1 does not hold,

E3 : α 6= βi0 and E1 and E2 do not hold.

Note that we ignore the case of d1 6= 0 as below we shown in Section 2.4 that E2 impllies
d1 = 0.

As observed above, our algorithm succeeds (that is, βi0 = α) if E1, E2 and E3 do not
occur.

We now upper bound the probability of these bad events over the choice of t1, . . . , tn+1,
chosen uniformly at random from IFp \ {−α}.

We first derive some useful relations satisfied by the difference vector d. Using the
first n congruences in (6), we find that

b1,i∆d1 + bi,i∆di + cid1,i ≡ 0 (mod p). (9)

Note that for i = 1, . . . , n+ 1 we have

|di| = |f0ei − fi| ≤ h|ei|+ |fi| ≤ 2h ·∆ (10)

and also for i = 2, . . . , n+ 1,

|d1,i| = |f0e1ei − f1,i| ≤ h|e1ei|+ |f1,i| ≤ 2h ·∆2. (11)

We see that (9) implies

B1,id1 +Bi,idi + Cid1,i ≡ 0 (mod p), i = 2, . . . , n+ 1. (12)

Recalling the definition of B1,i, Bi,i, Ci, we find that

−d1 ((t1 − ti)ui + 1) + di (−(t1 − ti)u1 + 1) + d1,i(t1 − ti) ≡ 0 (mod p),

or

(t1 − ti) (−d1ui − diu1 + d1,i) ≡ d1 − di (mod p).
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Finally, using (4) we derive a quadratic congruence in ti:

Ui · t2i + Vi · ti +Wi ≡ 0 (mod p), i = 2, . . . , n+ 1, (13)

where

Ui ≡
di

α+ t1
− Ei (mod p),

Vi ≡ (t1 − α) ·
(
Ei −

di
α+ t1

)
+ di (mod p),

Wi ≡ α · (di − d1) + t1 ·
(
−diα
α+ t1

− d1 + αEi

)
(mod p),

(14)

and Ei is given by (8), i = 2, . . . , n+ 1.

2.3. Estimating the probability of E1

Assume that E1 holds. Let us fix some values of t1, di for i = 1, . . . , n+ 1, and d1,i for

i = 2, . . . , n+ 1. We now consider, the number of n-tuples

(t2, . . . , tn+1) ∈ (IFp \ {−α})n

satisfying (13).

We claim that for every i = 2, . . . , n + 1, the left hand side of (13) is a non-constant

polynomial of degree at most 2 in ti and hence has at most 2 solutions for ti. Thus we

have at most 2n such n-tuples.

Indeed, by our assumption, we know that either di 6= 0 or Ei 6= 0 holds.

In the case di 6= 0, using the inequality |di| ≤ 2h · ∆ < p, see (3), we have di 6≡ 0

(mod p). There are two subcases to consider:

• If Ei ≡ 0 (mod p), then (14) shows that Ui 6≡ 0 (mod p).

• If Ei 6≡ 0 (mod p) then Ui ≡ 0 (mod p) if and only if we have α+ t1 ≡ di/Ei (mod p),

which implies that Vi ≡ di (mod p) and hence Vi 6≡ 0 (mod p).

So the claim holds if di 6= 0.

In the case di = 0 and Ei 6= 0, from (11) we have that |Ei| ≤ 6h∆2 < p, so, re-

calling (3), we see that Ei 6≡ 0 (mod p), and then (14) shows that Ui 6≡ 0 (mod p), as

claimed.

Now, we see from (10) that the tuple (d1, . . . , dn+1) can take at most (4h∆ + 1)n+1

possible values. Furthermore, using the inequality |Ei| ≤ 6h∆2, we also see that the

tuple (E2, . . . , En+1) takes at most (12h∆2 + 1)n possible values. Since t1 can take p− 1

possible values and (t2, . . . , tn+1) at most 2n possible values, we conclude that there are

at most

2n(4h∆ + 1)n+1(12h∆2 + 1)n(p− 1) < 2n(4h∆ + 1)3n+1(p− 1)

tuples (t1, . . . , tn+1) for which the bad event E1 happens. So the probability of E1 is at

most

Pr[E1] ≤ 2n(4h∆ + 1)3n+1

(p− 1)n
. (15)
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2.4. Estimating the probability of E2

We first claim that E2 implies d1 = 0. Indeed, ¬E1 means that there exists j ∈
{2, . . . , n + 1} such that dj = 0 and Ej = 0. Then from (14), we see that Uj = Vj = 0
and Wj = −(α + t1) · d1. Hence (13) implies that Wj ≡ 0 (mod p), which leads to
d1 ≡ 0 mod p (since α+ t1 6≡ 0 (mod p)) and hence d1 = 0 (since |d1| < 2h∆ < p).

Now, let us consider the set

S = {i ∈ {2, . . . , n+ 1} : Ei = 0 and di = 0},

and denote its size by k. We claim that k < n. Indeed, from (8), we see that for each
i ∈ S we have Ei = d1,i. Therefore, if k = n then we have di = 0 for i = 1, . . . , n+ 1 and
d1,i = 0 for i = 2, . . . , n + 1, which implies (since f0 = 0) that f = 0, a contradiction.
Thus we must have k < n.

Now, let us fix t1, di for i = 2, . . . , n + 1, and d1,i for i = 2, . . . , n + 1 and consider,
for i = 2, . . . , n + 1 the number of solutions for ti satisfying (13). If i ∈ S, then the left
hand side of (13) is the zero polynomial so ti has p possible values. If i 6∈ S, we have
di 6= 0 or Ei 6= 0 so (as shown in the analysis of E1 above) the left hand side of (13) is
a non-constant polynomial of degree at most 2 and hence there are at most 2 possible
values for ti. Overall there are at most 2n−k(p − 1)k solutions for (t2, . . . , tn+1). There
are p − 1 possible values for t1. Furthermore, as before we see that there are at most
(12h∆2 +1)n−k possible values for Ei and (4h∆+1)n−k possible values for di with i 6∈ S.
So overall, there are at most

2n−k(4h∆ + 1)n−k(12h∆2 + 1)n−k(p− 1)k+1

< 2n−k(4h∆ + 1)3(n−k)(p− 1)k+1

tuples (t1, . . . , tn+1) for which the bad event E2 happens. So, since k < n, the probability
of E2 is at most

Pr[E2] ≤
n−1∑
k=0

(
2(4h∆ + 1)3

p− 1

)n−k
≤
∞∑
r=1

(
2(4h∆ + 1)3

p− 1

)r
. (16)

We see that

Pr[E2] ≤ 4(4h∆ + 1)3

p− 1
. (17)

Indeed, for 2(4h∆+1)3/(p−1) ≥ 1/2 it is obvious as we always have Pr[E2] ≤ 1; otherwise
it follows from (16).

2.5. Estimating the probability of E3

If E3 holds, then we have that βi0 and α 6= βi0 satisfy the relations

1

βi0 + tj
− uj ≡ hi0j (mod p)

and
1

α+ tj
− uj ≡ ej (mod p),
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for j = 1, . . . , n+1. Subtracting the last two relations and multiplying by (α+tj)·(βi0+tj)
we obtain the relation

α− βi0 ≡ (hi0j − ej)(α+ tj)(βi0 + tj) mod p,

with |hi0j | ≤ ∆, j = 1, . . . , n + 1. Clearly for every fixed βi0 and hi0j there are at most
two possible values of tj . Since there are p − 1 possibilities of βi0 and at most 2∆ + 1
possibilities for every hi0j , j = 1, . . . , n+ 1, as before we conclude that

Pr[E3] ≤ (2∆ + 1)n(p− 1)

(p− 1)n+1
=

(2∆ + 1)n

(p− 1)n
≤ Pr[E1]

which together with (15) and (17) concludes the proof.

3. Remarks

We note that a slightly more careful analysis of the event E2 in the proof of Theorem 1
allows to show that k = n − 1 with probability O(∆2/p) which improves the second
term in the probability estimate of Theorem 1. This however does not change the 2/3-
threshold in Corollary 1. It remains a challenging open problem to get a rigorous version
of the other (presumably more powerful) algorithm of [5] (or its appropriate modification)
which can potentially lead to the replacing 2/3 with 1/3. This algorithm is based on the
ideas of Coppersmith [8,9]. However the rigorous analysis of this approach seems to be
much more difficult which we pose an open question.

It is also interesting to check whether the recently emerged approach of Akavia [1] can
be applied to ModInv-HNP.

More generally, it is certainly interesting to study a general problem of recovering of an
unknown rational function ψ(X) ∈ IFp(X) from a sequence of k pairs (ti,MSB`,p (ψ(ti))),
i = 1, . . . , k.

Finally, it appears that ModInv-HNP in the case when the modulus p is also hidden is
a much more difficult problem to which no feasible approaches are known at the moment.
Thus this could be a very promising cryptographic primitive.
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