
Lattice-Based Threshold-Changeability for Standard Shamir

Secret-Sharing Schemes ∗

Ron Steinfeld, Josef Pieprzyk, Huaxiong Wang

Centre for Advanced Computing – Algorithms and Cryptography

Dept. of Computing, Macquarie University, Australia

{rons, josef, hwang}@ics.mq.edu.au

Abstract

We consider the problem of increasing the threshold parameter of a secret-sharing scheme
after the setup (share distribution) phase, without further communication between the dealer and
the shareholders. Previous solutions to this problem require one to start off with a non-standard
scheme designed specifically for this purpose, or to have communication between shareholders. In
contrast, we show how to increase the threshold parameter of the standard Shamir secret-sharing
scheme without communication between the shareholders. Our technique can thus be applied
to existing Shamir schemes even if they were set up without consideration to future threshold
increases.

Our method is a new positive cryptographic application for lattice reduction algorithms, in-
spired by recent work on lattice-based list decoding of Reed-Solomon codes with noise bounded in
the Lee norm. We use fundamental results from the theory of lattices (geometry of numbers) to
prove quantitative statements about the information-theoretic security of our construction. These
lattice-based security proof techniques may be of independent interest.

Keywords: Shamir secret-sharing, changeable threshold, lattice reduction, geometry of num-
bers

1 Introduction

Background. A (t, n)-threshold secret-sharing scheme is a fundamental cryptographic scheme, which
allows a dealer owning a secret to distribute this secret among a group of n shareholders in such
a way that any t shareholders can reconstruct the secret, but no subset of less than t shareholders
can gain information on the secret. Classical constructions for (t, n)-threshold secret-sharing schemes
include the polynomial-based Shamir scheme [22] and the integer-based Chinese Remainder Theorem
(CRT) scheme [1].

A common application for (t, n)-threshold secret-sharing schemes is for achieving robustness of dis-
tributed security systems. A distributed system is called robust if system security is maintained even
against an attacker who manages to break into/eavesdrop up to a certain number of components of
the distributed system. For example, access control to a system can be enforced using a secret shared
among n system servers using a (t, n)-threshold secret-sharing scheme, while maintaining security
if less than t servers are compromised. In such applications, the threshold parameter t must be
determined by a security policy, based on an assessment which is a compromise between the value of
the protected system and attacker capabilities on the one hand (which require as high a threshold as
possible) and user convenience and cost on the other hand (which require as low a threshold as possi-
ble). In many settings, the system value and attacker capabilities are likely to change over time, thus
requiring the security policy and hence threshold parameter t to vary over time. In particular, an

∗This is the full version of a paper presented at Asiacrypt 2004, Dec. 5-9 2004, Jeju Island, South Korea.

1

increase in system value or attacker capabilities after the initial setup with a relatively low threshold
parameter t, will require an increase in the threshold parameter to a higher value t′ > t. The longer
the lifetime of the system, the more likely that such a change will be needed. Note that we assume
that all shareholders will cooperate honestly in making the transition to the larger threshold t′ > t,
since the attacker in our setting is an outsider.

Previous Solutions. A trivial solution to the problem of increasing the threshold parameter of a
(t, n)-threshold secret-sharing scheme to t′ > t is for the shareholders to discard their old shares and
for the dealer to distribute new shares of a (t′, n)-threshold secret-sharing scheme to all shareholders.
However, this solution is not very attractive, since it requires the dealer to be involved after the
setup stage and moreover requires communication between the dealer and each shareholder (such
communication may be difficult to establish after the initial setup stage).

A much better solution would allow the threshold to be changed at any time without any com-
munication between the dealer and shareholders after the setup stage. We say that such schemes
allow dealer-free threshold changeability. A trivial dealer-free threshold changeable scheme can be
constructed as follows: the dealer initially sets up n− t+1 threshold schemes for each possible future
threshold t′ ∈ {t, t + 1, . . . , n}, and gives to each shareholder n − t + 1 shares of the secret. Namely,
for each t′ ∈ {t, . . . , n}, the shareholder receives a share of the secret for a (t′, n)-threshold scheme.
Such a trivial scheme may not be applicable because of the following drawbacks:

(1) Non-Standard Initial Scheme: The dealer must plan ahead for future threshold increases by
initially setting up a non-standard (t, n)-threshold scheme designed specifically for threshold-
changeability, whose shares consist of n− t+1 shares corresponding to the n− t+1 underlying
(t′, n)-threshold schemes. Hence the trivial scheme cannot be applied to increase the threshold
of existing standard Shamir (t, n)-threshold schemes which were not originally designed for
threshold changeability and in which each shareholder has only a single share of one Shamir
(t, n)-threshold scheme.

(2) Large Storage/Communication Requirements for Shareholders: Each shareholder must receive
and store n − t + 1 shares, where each share is as long as the secret (assuming that perfect
security is desired). Hence the trivial scheme cannot be applied when storage or communication
costs for n − t + 1 shares are prohibitive.

Other ‘dealer-free’ solutions to the threshold increase problem have been proposed in the literature
(see related work below), but they all suffer from at least one of the two drawbacks above, or they
require communication between the shareholders.

Our Contributions. In this paper, we present a new method for increasing the threshold of the
standard Shamir (t, n)-threshold secret-sharing scheme [22], which does not have any of the draw-
backs discussed above. In particular, and in contrast to previous solutions, our method does not
require communication between the dealer and shareholders after the initial setup stage nor between
shareholders, and can be applied to existing Shamir schemes even if they were set up without con-
sideration to future threshold increase. Storage and communication costs are the same as for the
standard Shamir scheme.

The basic idea of our method is the following: to increase the threshold from t to t′ > t, the
shareholders add an appropriate amount of random noise to their shares (or delete a certain fraction
of the bits of their share) to compute subshares which contain partial information about (e.g. half
the most-significant bits of) the original shares. Since the subshares contain only partial information
about the original shares, a set of t subshares may no longer be sufficient to reconstruct the secret
uniquely, but if one observes a sufficiently larger number t′ > t of subshares then one can expect the
secret to be uniquely determined by these t′ subshares (e.g. if the subshares contain only half the
information in the original shares then one can expect that t′ = 2t subshares will uniquely determine

2

the secret)1. By replacing the share combiner algorithm of the original (t, n)-threshold secret-sharing
with an appropriate ‘error-correction’ algorithm which can uniquely recover the secret from any t′

subshares, we obtain the desired threshold increase from t to t′, leaving the secret unchanged. Note
that the only communication required for increasing the threshold is a public signal broadcast by the
share combiner to instruct the shareholders to modify their shares.

Our efficient ‘error-correction’ combiner algorithm for the Shamir secret-sharing scheme is constructed
using lattice basis reduction techniques. Thus, our method is a new positive cryptographic application
for lattice reduction algorithms. Furthermore, we make use of fundamental tools from the theory
of lattices (geometry of numbers) to prove quantitative statements about the information-theoretic
security and correctness of our construction. These lattice-based security proof techniques may be
of independent interest.

Although our threshold-increase method does not yield a perfect (t′, n)-threshold secret-sharing
scheme, we obtain a useful result about the information-theoretic security of our method, which
we believe suffices for many applications. Roughly speaking, we prove that for any desired ǫ > 0, our
method can be used to change the threshold to t′ > t (meaning that any t′ subshares can be used
to recover the secret) such that any ts < t′ − t′/t observed subshares leak to the attacker at most a
fraction ǫ of the entropy of the secret, where ǫ can be made as small as we wish by an appropriate
choice of security parameter.

Interestingly, our lattice-based methods can be adapted also to change the threshold of the standard
integer-based Chinese Remainder Theorem (CRT) secret-sharing scheme [1]. The basic common
structure of the CRT and Shamir schemes that allows us to apply lattice techniques in both cases is
that the shares can be expressed as known integer linear combinations of one or more secret integers
modulo other known integers. The differences between the schemes arise from the structure of the
different sets the above integers are chosen from, namely a set of prime moduli in the CRT scheme,
or a set of polynomials in the Shamir scheme, and accordingly, we use the different (but analogous)
properties of those sets to prove bounds on the properties of the different (but analogous) lattices
involved in our scheme (e.g. the length of shortest vectors in the lattice). We provide full details of
our results for the threshold changeable CRT scheme in a companion paper [26].

Related Work. Several approaches to changing the parameters of a threshold scheme in the absence of
the dealer have been proposed in the literature. The technique of secret redistribution [7, 19] involves
communication among the shareholders to ‘redistribute’ the secret with the new threshold parameter.
Although this technique can be applied to standard secret-sharing schemes, its disadvantage is the
need for secure channels for communication between shareholders. Methods for changing threshold
which do not require secure channels have been studied in [5, 17, 18, 16, 3], but they all require the
initial secret-sharing scheme to be a non-standard one, specially designed for threshold increase (as
a simple example of such a non-standard scheme, the dealer could provide each shareholder with
two shares of the secret: one share for a (t, n)-threshold scheme and one share for a (t′, n)-threshold
scheme). On the other hand, some of these non-standard schemes allow the secret to be changed for
the new (t′, n)-threshold scheme, so their security is maintained even if the ts shares of the original
(t, n)-threshold scheme are known (while in our scheme, the secret for the (t′, n)-threshold scheme is
the same as the secret for the original (t, n)-threshold scheme and hence we cannot achieve security
for ts > t observed subshares). Nevertheless, for security against outsiders breaking into honest
shareholders systems, it is reasonable to assume that shareholders will delete their original shares to
protect against future outsider intrusions, so for such applications the weaker security property of
our scheme should suffice.

Our scheme uses a lattice-based ‘error-correction’ algorithm which is a slight variant of an algorithm
for ‘Noisy Polynomial Approximation’ with noise bounded in the Lee norm [24]. This algorithm in

1We remark that this intuitive reasoning is not rigorous, and indeed there exist examples for which it is incorrect.

However, our results show that it is approximately true for the Shamir scheme.

3

turn is one of a large body of recent work on ‘list decoding’ of Reed-Solomon and Chinese Remainder
codes [11, 23, 8, 25]. We remark also that although the correctness proof of our scheme is based on the
work of [24], our security proof is new and the lattice-based techniques used may be of independent
interest.

We would also like to comment on the relation between our threshold increase method and the method
for making secret-sharing schemes robust against cheating shareholders using error-correction [20].
In both methods, the share combiner (for a scheme with threshold t) receives t′ > t ‘noisy’ shares and
applies an error-correction algorithm to overcome the noise and recover the secret. However, the type
of noise which needs to be corrected (and hence also the decoding algorithm) is inherently different
in the two cases. In the cheater robustness case, the noise vector (whose ith entry is the additive
error in the ith share) is bounded in the Hamming norm: if the number of cheating shareholders is
at most k then we know that up to k of the t′ shares will be arbitrarily corrupted while the remaining
shares will be correct. In our threshold increase case, the noise vector is bounded in the Lee norm:
we have that all t′ shares are corrupted but only by a small (in absolute value) additive noise. Note
that a Hamming-bounded noise is not suitable for our threshold-increase method: we require that
all shares be corrupted in an identical manner, to ensure that any subset of t shareholders cannot
obtain information on the secret, and any subset of t′ > t shareholders can recover the secret. On the
other hand, our Lee-bounded noise error-correction method cannot handle the Hamming-bounded
noise where some shares are arbitrarily corrupted.

Organization of This Paper. Section 2 presents notations, known results on lattices, and a counting
lemma that we use. In Section 3, we provide definitions of changeable-threshold secret-sharing
schemes and their correctness/security notions. In Section 4 we present the original Shamir (t, n)-
threshold secret sharing scheme, and our threshold-changing algorithms to increase the threshold to
t′ > t. We then provide concrete proofs of the correctness and security properties of our scheme.
Section 5 concludes the paper.

2 Preliminaries

2.1 Notation

Sets. For a finite set S, we denote by #S the size of S. For any set S and integer n, we denote by Sn

the set of all n-tuples of elements from S and by D(Sn) the set of all n-tuples of distinct elements
from S. For integer n, we denote by [n] the set {1, 2, . . . , n}. We use (A, B) to denote the set of
integers greater than A and less than B.

Vectors and Polynomials. For an n dimensional vector v, we write v = (v1, . . . , vn), where, for
i = 1, . . . , n, we denote by vi the ith coordinate of v. Given an n dimensional vector v and a subset
I = {i1, . . . , it} of [n] of size t, we denote by vI = (vi1 , vi2 , . . . , vit) the t dimensional vector formed
by coordinates of v whose indices are in the subset I (where, by convention, we may assume the
ordering i1 < i2 < . . . < it). For a polynomial a(x) = a0 + a1x + . . . + at−1x

t−1, we let ai denote
the coefficient of xi. For a ring R, we denote the set of all polynomials of degree at most t with
coefficients in the ring R by R[x; t].

Lee and Infinity Norms. For a prime p and an integer z we denote Lee norm of z modulo p as
‖z‖L,p = mink∈ZZ |z − kp|. Similarly, for a vector v ∈ ZZ

n, we define the Lee norm of v modulo p
by ‖v‖L,p = max1≤i≤n ‖vi‖L,p. For a vector z ∈ IRn, we denote the infinity norm of z by ‖z‖∞ =
max1≤i≤n |zi|. For integers a and p, we denote a mod p by ⌊a⌋p. For real z we define Int(z) = ⌈z⌉−1
as the largest integer strictly less than z.

Entropy. We denote by log(·) the logarithm function with base 2. For a discrete random variable
s with probability distribution Ps(·) on a set S, we denote by H(s) =

∑
x∈S Ps(x) log (1/Ps(x)) the

4

Shannon entropy of s. Let Ps(·|u) denote the conditional probability distribution of s given the event
u. We denote by H(s|u) =

∑
x∈S Ps(x|u) log(1/Ps(x|u)) the conditional entropy of s given the event

u.

2.2 Lattices

Here we collect several known results that we use about lattices, which can be found in [10, 13, 9].
Let {b1, . . . , bn} be a set of n linearly independent vectors in IRn. The set

L = {z : z = c1b1 + . . . + cnbn, c1, . . . , cn ∈ ZZ}

is called an n-dimensional (full-rank) lattice with basis {b1, . . . , bn}. Given a basis B = (b1, . . . , bn) ∈
IRn for a lattice L, we define the associated basis matrix ML,B to be the (full-rank) n × n matrix
whose ith row is the ith basis vector bi for i = 1, . . . , n. The quantity |det(ML,B)| is independent of
the choice of basis B. It is called the determinant of the lattice L and denoted by det(L).

Given a basis for lattice L, the problem of finding a shortest non-zero vector in L is known as
the shortest vector problem, or SVP. An algorithm is called an SVP approximation algorithm with
‖ · ‖∞-approximation factor γSV P if it is guaranteed to find a non-zero lattice vector c such that
‖c‖∞ ≤ γSV P minv∈L\{0} ‖v‖∞. The celebrated LLL algorithm of Lenstra, Lenstra and Lovász [15]
is a SVP approximation algorithm with polynomial running time (in the total bit length of the
rational input basis) which achieves ‖ · ‖∞-approximation factor γLLL = n1/22n/2.

In this paper we actually need to solve a variation of SVP called the closest vector problem (CVP):
given a basis of a lattice L in IRn and a “target” vector t ∈ IRn, find a lattice vector c such
that ‖c − t‖∞ is minimized. An algorithm is called a CVP approximation algorithm with ‖ · ‖∞-
approximation factor γCV P if it is guaranteed to find a lattice vector c such that ‖c − t‖∞ ≤
γCV P minv∈L ‖v − t‖∞. Babai [2] has shown how to convert the LLL algorithm into a polynomial
running time CVP approximation algorithm which achieves ‖ · ‖∞-approximation factor γBab =
n1/22n/2.

In our proof of security we use several fundamental theorems from the theory of lattices. The original
theorems are quite general, but the restricted versions stated below suffice for our purposes. First,
we need the following definition of successive Minkowski minima of a lattice.

Definition 2.1 (Minkowski Minima). Let L be a lattice in IRn. For i = 1, . . . , n, the ith successive
Minkowski minimum of L, denoted λi(L), is the smallest real number such that there exists a set
{b1, . . . , bi} of i linearly independent vectors in L with ‖bj‖∞ ≤ λi(L) for all j = 1, . . . , i.

Note that λ1(L) is just the shortest infinity-norm over all non-zero vectors in L. Note that usual
definitions of Minkowski minima refer to the Euclidean norm, whereas we use the infinity norm.
Next, we state Minkowski’s ‘first theorem’.

Theorem 2.1 (Minkowski’s First Theorem). Let L be a lattice in IRn and let λ1(L) denote the

first Minkowski minimum of L (see Definition 2.1). Then λ1(L) ≤ det(L)
1
n .

We will use the following point-counting variant of Minkowski’s ‘first theorem’, which is due to
Blichfeldt and van der Corput (see [10]).

Theorem 2.2 (Blichfeldt-Corput). Let L be a lattice in IRn and let K denote the origin-centered
box {v ∈ IRn : ‖v‖∞ < H} of volume V ol(K) = (2H)n. Then the number of points of the lattice L

contained in the box K is at least 2 · Int
(

V ol(K)
2n det(L)

)
+ 1.

Finally, we will also make use of Minkowski’s ‘second theorem’ [10].

5

Theorem 2.3 (Minkowski’s Second Theorem). Let L be a full-rank lattice in IRn and let
λ1(L),. . . ,λn(L) denote the n Minkowski minima of L (see Definition 2.1). Then λ1(L) · · ·λn(L) ≤
det(L).

2.3 An Algebraic Counting Lemma

The following is a fundamental lemma that we use, interestingly, for both the correctness and security
proofs of our construction. Fix a prime p defining the finite field ZZp, positive integer parameters
(n, t, B), and an arbitrary set A of polynomials of degree at least 1 and at most t over ZZp. The
lemma gives us an upper bound on the probability that, for n randomly chosen elements α1, . . . , αn

of ZZp, there will exist a polynomial a(x) ∈ A which has ‘small’ absolute value modulo p (less than
B) at all the points α1, . . . , αn. We remark that a similar (and more general) lemma was used in
the analysis of a polynomial approximation algorithm [24]. Note that the lemma does not hold in
general if we allow A to contain constant polynomials, since these polynomials may have constant
coefficient smaller than B.

Lemma 2.1. Fix a prime p, positive integers (n, t, B), and a non-empty set A of polynomials of
degree at least 1 and at most t with coefficients in ZZp. Let E(n, B, A, p) ⊆ ZZ

n
p denote the set of vectors

α ∈ ZZ
n
p for which there exists a polynomial a ∈ A such that ‖a(αi)‖L,p < B for all i = 1, . . . , n. The

size of the set E(n, B, A, p) is upper bounded as follows:

#E(n, B, A, p) ≤ #A · (2Bt)n.

Proof. Suppose that α = (α1, . . . , αn) ∈ ZZ
n
p is such that there exists a polynomial a ∈ A such that

‖a(αi)‖L,p < B for i = 1, . . . , n. (1)

It follows that there exist n integers r1, . . . , rn such that, for each i = 1, . . . , n, we have a(αi)− ri ≡ 0
(mod p) with |ri| < B and hence αi is a zero of the polynomial gi(x) = a(x) − ri over ZZp. But for
each i, gi is a polynomial of degree at least 1 and at most t over ZZp and hence has at most t zeros in
ZZp. So for each possible value for r = (r1, . . . , rn) ∈ (−B, B)n and a ∈ A, there are at most tn ‘bad’
values for α = (α1, . . . , αn) in (ZZp)

n such that (1) holds. Using the fact that there are less than
(2B)n possible values for r and less than #A possible values for a, the claimed bound follows. ⊓⊔

3 Definition of Changeable-Threshold Secret-Sharing Schemes

We will use the following definition of a threshold secret-sharing scheme, which is a slight modification
of the definition in [21].

Definition 3.1 (Threshold Scheme). A (t, n)-threshold secret-sharing scheme TSS = (GC, D, C)
consists of three efficient algorithms:

1. GC (Public Parameter Generation): Takes as input a security parameter k ∈ N and returns a
string x ∈ X of public parameters.

2. D (Dealer Setup): Takes as input a security/public parameter pair (k, x) and a secret s from
the secret space S(k, x) ⊆ {0, 1}k+1 and returns a list of n shares s = (s1, . . . , sn), where si is
in the ith share space Si(k, x) for i = 1, . . . , n. We denote by

Dk,x(·, ·) : S(k, x) ×R(k, x) → S1(k, x) × · · · × Sn(k, x)

the mapping induced by algorithm D (here R(k, x) denotes the space of random inputs to the
probabilistic algorithm D).

6

3. C (Share Combiner): Takes as input a security/public parameter pair (k, x) and any subset
sI = {si : i ∈ I} of t out of the n shares, and returns a recovered secret s ∈ S(k, x). (here I
denotes a subset of [n] of size #I = t).

The correctness and security properties of a (t, n)-threshold secret-sharing scheme can be quantified
by the following definitions, which are modifications of those in [21].

Definition 3.2 (Correctness, Security). A (t, n)-threshold secret-sharing scheme TSS = (GC, D, C)
is said to be:

1. δc-correct: If the secret recovery may fail only for a ‘bad’ set of public parameters with probability
pf at most δc. Precisely, pf is the probability (over x = GC(k) ∈ X) that there exist (s, r) ∈
S(k, x) × R(k, x) and I ⊆ [n] with #I = t such that Ck,x(sI) 6= s, where s = Dk,x(s, r) and

sI
def
= {si : i ∈ I}.

We say that TSS is asymptotically correct if, for any δ > 0, there exists k0 ∈ N such that TSS

is δ-correct for all k > k0.

2. (ts, δs, ǫs)-secure with respect to the probability distribution Pk,x of the secret on S(k, x): If,
with probability at least 1 − δs over the choice of public parameters x = GC(k), the worst-case
secret entropy loss for any ts observed shares is at most ǫs, that is

Lk,x(µI)
def
= |H(s) − H(s|sI = µI)| ≤ ǫs,

for all share values µ ∈ S1(k, x)× · · · ×Sn(k, x) and subsets I ⊆ [n] with #I = ts, where secret
s is sampled from the distribution Pk,x and s = Dk,x(s, r) for a uniformly random r ∈ R(k, x).
We say that TSS is asymptotically ts-secure with respect to Pk,x if, for any δ > 0 and ǫ > 0
there exists k0 ∈ N such that TSS is (ts, δ, ǫ · k)-secure with respect to Pk,x for all k > k0.

The following definition of the Threshold Changeability without dealer assistance for a secret sharing
scheme is a modification of the definition in [18].

Definition 3.3 (Threshold-Changeability). A (t, n)-threshold secret-sharing scheme TSS =
(GC, D, C) is called threshold-changeable to t′ with δc-correctness and (ts, δs, ǫs)-security with respect
to probability distribution Pk,x of the secret on S(k, x), if there exist n efficient subshare generation
algorithms Ei : Si(x, k) → Ti(x, k) for i = 1, . . . , n, and an efficient subshare combiner algorithm C′

such that the modified (t′, n)-threshold scheme TSS′ = (GC, D′, C′), with modified shares

D
′
k,x(s, r)

def
= (E1(s1), . . . ,En(sn)) ∈ T1(k, x) × · · · × Tn(k, x),

where (s1, . . . , sn) = Dk,x(s, r), is δc-correct and (ts, δs, ǫs)-secure with respect to Pk,x. TSS is called
asymptotically threshold-changeable to (ts, t

′) with respect to Pk,x if there exist algorithms Ei :
Si(k, x) → Ti(k, x) (i = 1, . . . , n) and C′ such that the (t′, n)-threshold scheme TSS′ defined above is
asymptotically correct and asymptotically ts-secure with respect to Pk,x.

The idea captured by the above definition is that the change of threshold from t to t′ is implemented
by getting each shareholder to replace his original share si by the subshare Ei(si) output by the
subshare generation algorithm Ei (the original share si is then discarded).

Remark on Outsider vs. Insider Attacks. Our security model addresses a passive outsider attacker
that can only observe up to ts subshares. Accordingly, we assume that shareholders cooperate
honestly in updating their shares to a higher threshold to protect against such outsider attacks. We
also assume that the outsider attacker only sees subshares of the new scheme, rather than also shares
of the original scheme. This does not model attackers who store some shares of the original scheme,

7

and then try to use those in conjunction with some subshares of the new scheme to recover the secret.
We heuristically expect the subshare security threshold ts against such attackers to drop by about
t′/t for each additional observed original shares, but leave the rigorous analysis of this scenario as an
open problem for future work.

Remark on δc-correctness of a (t, n)-threshold scheme. The δc-correctness requirement, although
probabilistic, is quite strong since it is only probabilistic in the choice of public parameter x but not
in the choice of the secret and the randomness used to generate the shares and subshares: for the
“good” values of x, the share combiner is guaranteed to recover the secret, whatever the value of
the secret and the values of the randomness used by the dealer and shareholders during subshare
generation.

Remarks on (ts, δs, ǫs)-security. The (ts, δs, ǫs) requirement guarantees that with at least 1 − δs

probability, GC will output a ‘good’ scheme parameter x for which any ts observed shares sI leak at
most Lk,x(sI) ≤ ǫs bits of entropy of the secret s. Note that: (1) The requirement that Lk,x(sI) ≤ ǫs

for all sI , is a worst-case requirement and hence stronger than only requiring that the average value
of Lk,x(sI) over the sI (which is known as the average mutual information between the secret and
the share vector) is at most ǫs, and (2) When the secret is uniformly distributed, the asymptotic
ts-security requirement says that the fraction of secret entropy which is leaked to the attacker by ts
observed shares can be made as small as we wish with a suitably large security parameter k.

4 Threshold-Changeability for Shamir Secret-Sharing

4.1 The Standard Shamir Scheme

The standard Shamir (t, n)-threshold secret sharing scheme is defined as follows.

Scheme ShaTSS = (GC, D, C): Shamir (t, n)-Threshold Secret-Sharing

1. GC(k) (Public Parameter Generation):

(a) Pick a (not necessarily random) prime p ∈ [2k, 2k+1] with p > n.

(b) Pick uniformly at random n distinct non-zero elements α = (α1, . . . , αn) ∈ D((ZZ∗
p)

n).
Return x = (p, α).

2. Dk,x(s,a) (Dealer Setup): To share secret s ∈ ZZp using t − 1 uniformly random elements a =
(a1, . . . , at−1) ∈ ZZ

t−1
p , build the polynomial a(x) = s+a1x+a2x

2+ . . .+at−1x
t−1 ∈ ZZp[x; t−1].

The ith share is σi = ⌊a(αi)⌋p for i = 1, . . . , n.

3. Ck,x(sI) (Share Combiner): To combine shares σI = (σi : i ∈ I) for some I ⊆ [n] with #I = t,
compute by Lagrange interpolation the unique polynomial b ∈ ZZp[x; t− 1] such that b(αi) ≡ σi

(mod p) for all i ∈ I. The recovered secret is s = ⌊b(0)⌋p.

4.2 Threshold-Changing Algorithms

Our threshold-changing subshare generation and combiner algorithms to change the (t, n)-threshold
scheme ShaTSS = (GC, D, C) into a (t′, n)-threshold scheme ShaTSS′ = (GC, D′, C′) are defined as
follows. Note that the subshare combiner algorithm runs an efficient CVP approximation algorithm
ACVP with ‖ · ‖∞-approximation factor γCV P on a lattice of dimension t′ + t. We define ΓCV P =
log(⌈γCV P + 1⌉) (if we use the Babai poly-time CVP algorithm, we have ΓCV P ≤ 1 + 0.5(t′ + t +
log(t′ + t))).

8

Scheme ShaTSS′: Changing Threshold to t′ > t

1. Ei(σi) (ith Subshare Generation): To transform share σi ∈ ZZp of original (t, n)-threshold
scheme into subshare si ∈ ZZp of desired (t′, n)-threshold scheme (t′ > t) the ith shareholder
does the following (for all i = 1, . . . , n):

(a) Determine noise bound H which guarantees δc-correctness (δc = O(1/poly(k)) is suitable):

i. Set H = ⌊pα/2⌋ with

ii. α = 1 − 1+δF
t′/t > 0 (noise bitlength fraction) and

iii. δF = t′/t
k

(
log
(
δ
−1/t′

c nt
)

+ ΓCV P + 1
)
.

(b) Compute Ei(σi) = si = ⌊αi · σi + ri⌋p for a uniformly random integer ri with |ri| < H.

2. C′
k,x(sI) (Subshare Combiner): To combine subshares sI = (si : i ∈ I) for some I = {i1, . . . , it′}

with #I = t′ (and guaranteed δc-correctness), do the following:

(a) Build the following (t′ + t) × (t′ + t) matrix MSha(αI , H, p), whose rows form a basis for
a full-rank lattice LSha(αI , H, p) in Qt′+t:

MSha(αI , H, p) =





p 0 . . . 0 0 0 . . . 0
0 p . . . 0 0 0 . . . 0
...

...
. . .

...
...

...
...

...
0 0 . . . p 0 0 . . . 0

αi1 αi2 . . . αit′ H/p 0 . . . 0
α2

i1
α2

i2
. . . α2

it′
0 H/p . . . 0

...
...

. . .
...

...
...

. . .
...

αt
i1

αt
i2

. . . αt
it′

0 0 . . . H/p





.

(b) Define t′ = (si1 , . . . , sit′ , 0, 0, . . . , 0) ∈ ZZ
t′+t.

(c) Run the CVP approximation algorithm ACVP on lattice LSha(αI , H, p) given by
MSha(αI , H, p) with target vector t′. Let c = (c1, . . . , ct′ , ct′+1, . . . , ct′+t) ∈ Qt′+t denote
the vector returned by ACVP, approximating the closest vector in LSha to t′.

(d) Compute the recovered secret ŝ = ⌊(p/H) · ct′+1⌋p.

Intuition. To get some intuition for the correctness of the subshare combiner algorithm, observe that
lattice LSha is constructed to contain a lattice vector a′ related to the secret polynomial a(x), while
the target vector t′ is ‘close’ to the lattice vector a′, so we may hope that the CVP approximation
algorithm ACVP will return a′, from which the coefficients of the secret polynomial, and hence the
secret s, can be easily recovered. Namely, consider the lattice vector a′ ∈ LSha obtained by multi-
plying (for i = 1, . . . , t) the (t′ + i)th row of basis matrix MSha by the (integer) coefficient of xi in
the secret polynomial x · a(x) = s ·x+ a1x

2 + a2x
3 + · · · at−1x

t, adding up these t scaled row vectors,
and then subtracting the appropriate integer multiples of the first t′ rows of MSha in order to reduce
modulo p the first t′ coordinates of the resulting vector a′. Since the (t′ + i)th row of MSha contains
in its first t′ coordinates the values of the monomial xi at the points αi1 , . . . , αit′ , it follows that the
first t′ coordinates of the lattice vector a′ contains integers congruent to αij ·a(αij) ≡ αij ·σij modulo
p. Hence, with the appropriate choice of the first t′ row multipliers for mod p reduction, the first t′

coordinates of a′ differ from the corresponding t′ subshares sij = ⌊αij · σij + rij⌋p (the first t′ coordi-
nates of the target vector t′) by the ‘small’ noise integers rij (with |rij | < H) added by the subshare
generation algorithm. Consequently, a′ is ‘close’ to t′, and we may hope that it will be recovered by

9

ACVP. In our proof of correctness in Section 4.4, we show that, with high probability over the choice
of the αi’s and for sufficiently large security parameters, a′ is indeed the closest vector to LSha by
a sufficient margin to guarantee that CVP approximation algorithm ACVP returns a′. Note that the
last t coordinates of a′ contain the (scaled) coefficients of the secret polynomial a(x), including the
secret s.

Remark 1 (Unique Secret Recovery). The reason for multiplying the shares σi by αi before adding the
noise ri, is that otherwise, the secret may not be uniquely recoverable, even given all n noisy subshares.
Indeed, ⌊a(αi) + ri⌋p = ⌊a(αi) + 1 + (ri − 1)⌋p, and typically |ri − 1| < H, so the subshare vector
s = (s1, . . . , sn) for secret s with noise integers ri would be equal to, and hence indistinguishable
from, the subshare vector for secret s′ = s + 1 with noise integers r′i = ri − 1. In contrast, in our
scheme (with multiplication by αi) subshare vectors of any two distinct secrets s 6= s′ (containing at
least t′ subshares) are unequal except with small probability (less than δc) over the random choice
of α1, . . . , αn’s. To understand the reason for this, note that the ith subshares of s and s′ are of the
form si = ⌊αi · a(αi) + ri⌋p and s′i = ⌊αi · a

′(αi) + r′i⌋p respectively, where polynomials a and a′ differ
in their constant coefficients s and s′ respectively. So an equality of subshares si = s′i for i = 1, . . . , t′

implies that αi · (a(αi) − a′(αi)) ≡ r′i − ri (mod p), i.e. the polynomial h(x) = x · (a(x) − a′(x)) has
a ‘small’ value r′i − ri (less than 2H in absolute value) at the points αi modulo p. The crucial point
is that h(x) has degree at least 1 (thanks to the multiplication of αi) and at most t, so, as shown in
Lemma 2.1, h(x) can have ‘small’ values (less than 2H in absolute value) only at a relatively small
‘bad’ set of up to 2H · t points in ZZp, and this ‘bad’ set is unlikely to be hit by all the randomly
chosen αi’s when t′ is sufficiently large. More precisely, since there are less than pt possibilities for
h(x), then, applying Lemma 2.1, the chance that a particular set of t′ αi’s will all be ‘bad’ (and hence
the corresponding t′ subshare vectors of s and s′ will be equal) is at most pt(2Ht)t′/pt′ . The error
probability bound we obtain for our subshare recovery algorithm is close to this bound, (see Eq. (4)
in the proof of Theorem 4.1). Note also that the above non-uniqueness probability upper bound is

non-trivial (less than 1) when t′ ·
(
1 − log(2Ht)

log(p)

)
> t. This is close to the secret recovery condition

t′ ·
(
1 − log(2H)

log(p)

)
> t obtained from following the heuristic intuitive reasoning discussed in Section 1,

where we expect that each noisy subshare contains a fraction of about
(
1 − log(2H)

log(p)

)
of the log(p) bits

of information about the secret polynomial a(x) in the original share, due to the addition of about
log(2H) bits of noise to the share. Namely, assuming the information on a(x) provided by distinct
subshares is additive, we heuristically expect to recover a(x) uniquely once the total information

t′ ·
(
1 − log(2H)

log(p)

)
· log(p) contained in the t′ subshares exceeds the total information t · log(p) in a(x).

Remark 2. Our method of adding a ‘small’ random noise integer ri with |ri| < H to the share multiple
αi · σi modulo p, is essentially equivalent (in the sense of information on the secret) to passing the
residues ⌊αi · σi⌋p through a deterministic function which chops off the log(2H) ≈ (1− 1

t′/t) · k least-

significant bits of the k-bit residues ⌊αi · σi mod p⌋p, and this also yields shorter subshares than in
our method above. However, since reducing the length of the original shares is not our main goal,
we have chosen to present our scheme as above to simplify the analysis.

Remark 3. Some special variants of the Shamir scheme use special values for the points αi, such as
αi = i for i = 1, . . . , n, to which the above method does not apply, because of its reliance on the
random choice of the αi’s. However, it turns out that our method can be modified to work even
for these special Shamir variants. The idea is to make up for the loss of randomness in the αi’s
by getting the shareholders to multiply their shares by additional random integers (say Bi ∈ ZZp)
prior to adding the random noise ri. The Bi’s are then sent along to the combiner with the noisy
subshares. We do not analyze this variant of our scheme in this paper.

Remark 4. The scheme allows more than one successive increase in the threshold by adding ‘ad-
ditional’ noise as required. For example, suppose si = ⌊αi · σi + ri⌋p is the ith subshare after

10

increasing the threshold from t to t′ > t by adding random ‘noise’ integer |ri| < H, and supppose
that H ′ ≈ (2R + 1)H for some integer R is the noise bound required by our scheme for increasing
the threshold from t to t′′ > t′. Then the ith shareholder can simulate the threshold increase from t′

to t′′ by choosing a uniformly random integer u with |u| ≤ R and modifying the ith subshare si to
a new subshare s′i = ⌊si + (2H) · u⌋p = ⌊αi · σi + r′i⌋p, where integer r′i = (2H) · u + ri. Note that
r′i = ri + (2H) · u is almost uniformly random in interval (−H ′, H ′) when ri is uniform in (−H, H)
and u is uniform in [−R, R], as required for changing to threshold t′′.

Remark 5. As we show in the following sections, the choice δc = O(1/poly(k)) achieves both asymp-
totic correctness and security.

4.3 Summary of Analysis Results

Our analysis results can be summarised by two main theorems.

The first theorem shows that the choice of the parameter δF used in our threshold changing algorithm
is sufficient to guarantee the δc-correctness of our scheme for all sufficiently large security parameters.

Theorem 4.1 (Correctness). The scheme ShaTSS′ with parameter choice δc = O(1/poly(k)) is
asymptotically correct. Concretely, for any choice of parameter δc (0 < δc < 1), the (t′, n)-threshold
scheme ShaTSS′ is δc-correct for all security parameters k satisfying the inequality k ≥ k′

0, where

k′
0 =

t′/t

t′/t − 1

(
log
(
δ−1/t′

c nt
)

+ ΓCV P + 2
)

.

The concrete security of our scheme is given by the second theorem. It shows that, for fixed (t′, n)
and with parameter choice δc = O(1/poly(k)), the (t′, n)-threshold scheme ShaTSS′ leaks at most
fraction ǫs/k = O(log k/k) = o(1) of the entropy of the secret to an attacker observing less than
t′ − t′/t subshares (for all except a fraction δs ≤ δc = o(1) of public parameters).

Theorem 4.2 (Security). The scheme ShaTSS′ with parameter choice δc = O(1/poly(k)) is asymp-
totically Int(t′ − t′/t)-secure with respect to the uniform probability distribution of the secret on ZZp.
Concretely, for any parameter choice δc > 0, the (t′, n)-threshold scheme ShaTSS′ is (ts, δs, ǫs)-secure
with:

ts ≤

 t′ − t′/t

1 + t′/t
k

(
log(δ

−1/t′
c nt) + ΓCV P + 1

)

 ,

δs = δc, ǫs = (β + 7)(ts + t) + ts log t + 1, β =
log
(
2δ−1

c

(
n
ts

))

ts + t − 1
,

for all security parameters k ≥ k0, where, letting m = ts + t and k′
0 as defined in Theorem 4.1,

k0 = max

(
k′

0 +
(t′/t + 1)2

t′/t − 1
(β + log t + 3), (β + 3)

(
m2 + m − 1

)
+ m (ts log t + log m) + ts log t + 1

)
.

We would like to make a couple of remarks on the security of our scheme.

First, the limitation ts ≤ t′ − t′/t for (close to perfect) security is inherent to schemes which increase
the threshold by adding small noise to shares, and is not due to our Shamir based implementation. As
remarked in Section 4.2, our approach of increasing the threshold from t to t′ by adding small noise
integers of bit length log(2H) ≈ (1− 1

m) ·k to the k bits shares is essentially equivalent to truncating
the shares to just their k/m most significant bits for m = t′/t. The information theoretic security
limitations of such schemes have been studied in [18], where it is pointed out that for any initial

11

perfect (t, n)-threshold scheme with a k bits secret and k bits shares, the (t′, n)-threshold scheme
obtained by truncating shares to k/m bits is a (t−1, t′, n) ramp scheme [6, 14]. It is known [6, 14] that
in any such ramp scheme, the entropy of the secret given ts observed shares (which is obviously zero
for ts ≥ t′ and equal to k for ts ≤ t−1) is upper bounded by t′−ts

m ·k in the ramp region t−1 ≤ ts ≤ t′.
It follows that for our scheme with m = t′/t, the entropy of the secret is substantially less than k bits
(so that perfect security cannot be achieved) when ts > t′ − t′/t subshares are observed, matching
asymptotically for k → ∞ (up to a factor 1 + o(1)) the upper bound on ts for which our security
result in Theorem 4.2 applies. On the other hand, in the case ts ≈ t′ − t′/t, it is an interesting open
problem whether our bound in Theorem 4.2 on the absolute secret entropy leaked by the observed
subshares is essentially tight or can be improved.

Second, we note that although we state in Theorem 4.2 a lower bound on the conditional Shannon
entropy of the secret H(s|sI = µI) for any observed share value µI , our proof shows the stronger
result that the stated bound is also a lower bound on the conditional min-entropy H∞(s|sI = µI) =
log(1/ maxs∈S(k,x) Pk,x(s|sI = µI)), and hence also a lower bound on the conditional Rényi entropy
of s given sI = µI . This means we can apply the privacy amplification results of [4] to derive a secret
s′ (by hashing s with a public randomly chosen function from a universal hash family) such that a
provably negligible absolute amount of entropy of s′ is leaked by the observed shares sI .

Before we present the proofs of these theorems, let us present some example parameter settings.

Example 1 (Concrete). Suppose we have n = 20 shareholders sharing a secret of length k + 1 = 1000
bits (using a prime modulus p ≈ 21000) with an original threshold t = 3, and we wish to increase
the threshold to t′ = 8 with δc = 2−20 correctness (subshare combiner error probability less than

1 in a million). We have t′/t ≈ 2.67, log(δ
−1/t′

c nt) ≈ 8.4. The lattice LSha used by the subshare
combiner has dimension t′ + t = 11. Assume we use the Babai CVP approximation algorithm ACVP

which has infinity-norm approximation factor γCV P ≤ (t′ + t)1/22(t′+t)/2 ≈ 214.5 so ΓCV P ≈ 7.2. The
subshare combiner parameters are δF ≈ 0.022, noise bitlength fraction α = 1 − 1+δF

t′/t ≈ 0.62, and

noise bound H = ⌊pα/2⌋ ≈ p1262. By Theorem 4.1, the subshare combiner will achieve δc = 2−20

correctness using t′ = 8 subshares as long as we use a security parameter k greater or equal to

k′
0 =

(
t′/t

t′/t−1

(
log
(
δ
−1/t′

c nt
)

+ ΓCV P + 1
))

≈ 29, which is satisfied by our choice k + 1 = 1000. The

security result Theorem 4.2 applies against attackers observing up to ts shares, where ts = 5. Notice
that this ‘security threshold’ ts is lower than t by about t′/t ≈ 3 (this is essentially due to the fact
that each subshare contains only approximately a fraction t/t′ = 0.375 of the information in the
original share, hence by correctness, for ts > t′ − t′/t observed subshares a constant fraction of the
secret entropy leaks to the attacker). For ts = 5 observed shares, except for a probability of at most
δs = δc = 2−20 over the choice of the αi’s, the entropy leaked to the attacker is at most ǫs ≈ 104.8 bits
(about 10% of the secret entropy). This bound holds for security parameters k exceeding k0 ≈ 820
bits, which is satisfied by our choice k + 1 = 1000.

Example 2 (Asymptotic). Asymptotically, suppose that we let original threshold t grow and set t′ =
c1t and n = c2t for some constants c1 < c2, using security parameter k = c3t

2 log t for some constant
c3 so p ≈ 2c3t2 log t, and we require correctness δc = t−c4 = o(1) for some constant c4. The lattice
LSha dimension is t′ + t = O(t), Babai approximation factor γCV P = 2O(t), and hence the subshare
combiner parameters increase as follows: ΓCV P = O(t), δF = O(1/t log t) = o(1), noise bitlength

fraction α = 1 − 1+o(1)
t′/t approaches 1 − t/t′ = 1 − 1/c1, and noise bound H ≈ p

1−
1+o(1)

t′/t approaches

p1−t/t′ = p1−1/c1 . The subshare combiner result Theorem 4.1 holds for secrets of lengths at least
k′

0 = O(t), while the security result Theorem 4.2 holds for secrets of lengths at least k0 = O(t2 log t),
so both requirements can be satisfied by our choice k = c3t

2 log t with a suitable choice for c3, giving
an entropy loss bound ǫs = O(t log t) for up to ts = ⌊(t′ − c1)/(1 + O(1/t log t))⌋ which approaches
⌊t′ − c1⌋ for large t, while the fraction of secret entropy lost ǫs/k = O(1/t) approaches zero for large
t.

12

4.4 Proof of Correctness

In this section we present a proof of our correctness result (Theorem 4.1).

Let us fix a subshare subset I ⊆ [n] with #I = t′. As explained in Section 4.2, we know by con-
struction of lattice LSha(αI) in the subshare combiner algorithm, that the dealer’s secret polynomial
a(x) = s+a1x+ . . .+at−1x

t−1 ∈ ZZp[x; t−1] gives rise to a lattice vector having its first t′ coordinates
congruent modulo p to the values of the secret polynomial x ·a(x) at the points αi1 , . . . , αit′ , and the
last t coordinates equal to the scaled coefficients of a(x). Namely, we have

a′ =

(
αi1a(αi1) − k1p, . . . , αit′a(αit′) − kt′p,

s

p
H,

a1

p
H, . . . ,

at−1

p
H

)
,

which is “close” to the target vector

t′ =
(
αi1a(αi1) − k1p + ri1 , . . . , αit′a(αit′) − kt′p + rit′ , 0, 0, . . . , 0

)
,

where, for j = 1, . . . , t′, kj =

⌊
αij

a(αij
)+rij

p

⌋
∈ ZZ is the multiple of p which should be subtracted

from the integer αija(αij)+ rij to reduce it modulo p and obtain the value sij = ⌊αija(αij)+ rij⌋p of
the ijth subshare. In particular we have, using |rij | < H for all j = 1, . . . , t′, that ‖a′ − t′‖∞ < H.
Consequently, since ACVP is a CVP approximation algorithm with ‖.‖∞ approximation factor γCV P ,
its output lattice vector c will also be “close” to the target vector, namely we have ‖c − t′‖∞ <
γCV P · H. Applying the triangle inequality, we conclude that the lattice vector z = c − a′ satisfies

‖z‖∞ = ‖c − a′‖∞ < (γCV P + 1)H. (2)

Now, either p
H ct′+1 ≡ p

H a′t′+1 ≡ s (mod p) in which case the combiner succeeds to recover secret s,
or otherwise we have the following ‘bad’ case:

p

H
zt′+1 =

p

H
ct′+1 −

p

H
a′t′+1 6≡ 0 (mod p). (3)

Hence, for fixed I, the combiner succeeds except for a fraction δI of ‘bad’ choices of αI ∈ D((ZZ∗
p)

t′),
for which LSha(αI) contains a ‘short’ and ‘bad’ vector z satisfying (2) and (3). To upper bound
δI , consider the polynomial f(x) = p

H zt′+1x + · · · + p
H zt′+tx

t. Note that, since z ∈ LSha, we have
f(αij) ≡ zj (mod p) and hence ‖f(αij)‖L,p < (γCV P + 1)H ≤ 2ΓCV P H for all j ∈ [t′] using (2).
Also, ⌊f(x)⌋p has zero constant coefficient and degree at least 1 and at most t over ZZp using (3).
Applying Lemma 2.1 (with parameters n = t′,B = 2ΓCV P H, #A ≤ pt) we conclude that such a ‘bad’

polynomial f exists for at most a fraction δI ≤ pt(2Bt)t′/#D
(
(ZZ∗

p)
t′
)

of αI ∈ D
(
(ZZ∗

p)
t′
)
, for each

fixed I. Hence, the probability δ that a uniformly chosen α ∈ D
(
(ZZ∗

p)
n
)

is ‘bad’ for some I ⊆ [n]
with #I = t′ is upper bounded as

δ ≤

(
n
t′

)
pt(2Bt)t′

#D
(
(ZZ∗

p)
t′
) . (4)

A straightforward calculation detailed below shows that the right-hand side of (4) is upper bounded

by δc for all k satisfying the inequality k ≥ k′
0, where k′

0 = t′/t
t′/t−1

(
log
(
δ
−1/t′

c nt
)

+ ΓCV P + 2
)
, as

claimed. To show the asymptotic correctness (for fixed n, t, t′ and increasing security parameter k),

note that with parameter choice δc = O(1/poly(k)), we have δ
−1/t′

c = O(poly(k)) so, for any fixed
δ > 0, we achieve δ-correctness whenever the conditions δc < δ and k ≥ O(log(knt)+ΓCV P +2) both
hold. Recalling that ΓCV P depends only on the lattice dimension t′ + t but not on k we have, since
log(k) = o(k) that both of the latter conditions sufficient for achieving δ-correctness are satisfied for
all sufficiently large k, as claimed.

13

We now show the remaining claim that the right-hand side of (4) is upper bounded by δc for all

k ≥ k′
0, with k′

0 = t′/t
t′/t−1

(
log
(
δ
−1/t′

c nt
)

+ ΓCV P + 2
)
.

First, observe that k ≥ k′
0 implies pα/2 ≥ 1. Indeed, using p ≥ 2k, the condition pα/2 ≥ 1 is

implied by the condition k · α ≥ 1. Plugging in the parameter choices α = 1 − 1+δF
t′/t and δF =

t′/t
k (log

(
δ
−1/t′

c nt
)

+ΓCV P +1) we find that k ·α ≥ 1 is equivalent to the condition k ≥ k′
0 as claimed.

The condition that the right-hand side of (4) is upper bounded by δc can be written as

M ·

(
n
t′

)
pt(2Bt)t′

pt′
≤ δc, (5)

where M = pt′/#D
(
(ZZ∗

p)
t′
)
. Rearranging this condition, and plugging in B = 2ΓCV P H gives the

equivalent condition

H ≤

(
1

2t2ΓCV P

)(
δcp

t′−t

M
(
n
t′

)
)1/t′

. (6)

Using H = ⌊pα/2⌋ ≤ pα/2 and α = 1 − 1+δF
t′/t , we see that (6) is implied by the condition

δF ≥
t′/t

log p

(
log t + ΓCV P + log

((
δ−1
c

(
n

t′

)
M

)1/t′
))

. (7)

Now observe that k′
0 ≥ log(n) + 1 ≥ log(2t′) since n ≥ t′, so k ≥ k′

0 implies p ≥ 2k ≥ 2t′ and hence
p − t′ ≥ p/2. Using this bound we get, for k ≥ k′

0 that

log
(
M1/t′

)
= log




(

pt′

(p − 1) · · · (p − t′)

)1/t′


 ≤ log




(

pt′

(p/2)t′

)1/t′


 = 1. (8)

Plugging (8) and the bounds log p ≥ k and log
((

n
t′

)1/t′
)

≤ log
(
(nt′)1/t′

)
= log n into (7) we get

assuming k ≥ k′
0 the sufficient condition

δF ≥
t′/t

k

(
log
(
δ−1/t′

c nt
)

+ ΓCV P + 1
)

,

which is satisfied by the parameter choice δF = t′/t
k

(
log
(
δ
−1/t′

c nt
)

+ ΓCV P + 1
)
. This shows that

the right-hand side of (4) is upper bounded by δc for all k ≥ k′
0, as claimed, which completes the

proof of the theorem. ⊓⊔

4.5 Proof of Security

This section contains a proof of our security result (Theorem 4.2).

Fix an observed subshare subset I of [n] of size #I = ts and observed subshare values µ ∈ ZZ
n
p . Using

the fact that the polynomial a ∈ ZZp[x; t−1] and the noise vector rI ∈ (−H, H)ts are chosen uniformly
at random, the conditional probability Pk,x(s|sI = µI) of the secret taking the value s ∈ ZZp given
that the observed subshare vector sI takes the value µI is given by:

Pk,x(s|sI = µI) =
#{(a, rI) ∈ T : αija(αij) + rij ≡ µij (mod p)∀j ∈ [ts] and a(0) ≡ s (mod p)}

#{(a, rI) ∈ T : αija(αij) + rij ≡ µij (mod p)∀j ∈ [ts]}
,

14

where T = ZZp[x; t − 1] × (−H, H)ts . Since p > 2H, we know that for each a ∈ ZZp[x; t − 1] there is
at most one rI ∈ (−H, H)ts such that αija(αij) + rij ≡ µij (mod p) for all j ∈ [ts]. Therefore the
above expression simplifies to

Pk,x(s|sI = µI) =
#Ss,p(αI , t, p, H, µI)

#S0,1(αI , t, p, H, µI)
, (9)

where, for any integers ŝ ≥ 0 and p̂ ≥ 1, we define the set

Sŝ,p̂(αI , t, p, H,µI)
def
= {a ∈ ZZp[x; t − 1] : ‖αija(αij) − µij‖L,p < H ∀j ∈ [ts] and a(0) ≡ ŝ (mod p̂)}.

We will derive a probabilistic lower bound on #S0,1 and upper bound on #Ss,p which both hold
for all except a fraction δI ≤ δs/

(
n
ts

)
of ‘bad’ choices for αI ∈ D((ZZ∗

p)
ts) assuming k ≥ k0 (with ts,

δs and k0 defined in the theorem statement). We then apply these bounds to (9) to get a bound
Pk,x(s|sI = µI) ≤ 2ǫs/p for all s (with ǫs defined in the theorem statement) so that for fixed I,
entropy loss is bounded as Lk,x(µI) ≤ ǫs, except for fraction δI of αI ∈ D((ZZ∗

p)
ts). It then follows

that Lk,x(µI) ≤ ǫs for all I ⊆ [n] with #I = ts except for a fraction δ ≤
(

n
ts

)
δI ≤ δs of α ∈ D((ZZ∗

p)
n)

assuming that k ≥ k0, which proves the theorem.

Reduction to Lattice Point Counting. We now derive the desired probabilistic upper and lower bounds
on #Sŝ,p̂. As a first step, we reduce the problem to a lattice ‘point-counting’ problem. The following
lemma shows that #Sŝ,p̂ is equal to the number of points of a certain lattice LSha (closely related to
the lattice used in our subshare combiner algorithm) contained in a (ts + t)-dimensional box of side
length 2H, centered on a certain non-lattice vector ŝI (for improved readability, we have placed the
proofs of the following and subsequent lemmas in separate appendices at the end of the paper).

Lemma 4.1. Fix positive integers (t, ts, p, H, p̂) such that p ≥ 2H and p̂ is a divisor of p. Let ŝ ∈ ZZp̂,
αI = (αi1 , . . . , αits) ∈ ZZ

n
p and µI = (µi1 , . . . , µits) ∈ ZZ

ts
p .Define LSha(αI , t, p, H, p̂) as the full-rank

lattice in Qts+t with basis consisting of the rows of the matrix

MSha(αI , t, p, H, p̂) =





p 0 . . . 0 0 0 . . . 0
0 p . . . 0 0 0 . . . 0
...

...
. . .

...
...

...
...

...
0 0 . . . p 0 0 . . . 0

p̂αi1 p̂αi2 . . . p̂αits 2H/(p/p̂) 0 . . . 0
α2

i1
α2

i2
. . . α2

its
0 2H/p . . . 0

...
...

. . .
...

...
...

. . .
...

αt
i1

αt
i2

. . . αt
its

0 0 . . . 2H/p





,

and define the vector µ̂I ∈ Qts+t by

µ̂I
def
=

(
µi1 − ŝαi1 , . . . , µits − ŝαits , H

(
1 −

1 + 2ŝ

p

)
, H

(
1 −

1

p

)
, . . . , H

(
1 −

1

p

))
.

Then the sizes of the following two sets are equal:

Sŝ,p̂(αI , t, p, H,µI)
def
= {a ∈ ZZp[x; t − 1] : ‖αija(αij) − µij‖L,p < H∀j ∈ [ts]

and a(0) ≡ ŝ (mod p̂)},

and
Vŝ,p̂(αI , t, p, H, µ̂I)

def
= {v ∈ LSha(αI , t, p, H, p̂) : ‖v − µ̂I‖∞ < H}.

Guiding Heuristics. Before we present our rigorous upper and lower bounds on the number #Vŝ,p̂

15

Figure 1: Geometric illustration of lattice point counting.

of lattice points in the box Tµ̂I
(H) =

def
= {v ∈ Qts+t : ‖v − µ̂I‖∞ < H}, we explain some guiding

geometric heuristics which our results make rigorous, in order to give more insight into the problem.
As illustrated in Figure 1(a) for the two-dimensional case, it is well known that the determinant
det(L) of a lattice L in IRts+t is the volume of any ‘fundamental parallelepiped’ (f.p.) of the lattice
which tiles the space IRts+t (where for a lattice L with basis vectors b1, . . . , bts+t we define the
associated f.p. as the set

∑ts+t
i=1 cibi over all real-valued coefficients c1, . . . , cts+t ∈ [0, 1)). Hence each

f.p. is associated with a unique lattice point in L which serves as the origin of the f.p. So, given a box
T in IRts+t having a volume vol(T) which is sufficiently large compared to the f.p. volume det(L), we
expect that the volume ratio vol(T)/ det(L) would give a good estimate for the number of points of
L contained in T . For our problem, the box Tµ̂I

(H) has volume vol(Tµ̂I
(H)) = (2H)ts+t, compared

to det(LSha(p̂) = p̂(2H)tpts−t, so according to the above heuristic, we expect that #V0,1 ≈ (2H)ts+t

(2H)tpts−t

(for the case p̂ = 1) and #Vs,p ≈ (2H)ts+t

(2H)tpts−(t−1) for p̂ = p, which implies the desired security result

Pk,x(s|sI = µI) = #Vs,p/#V0,1 ≈ 1/p. The validity condition vol(Tµ̂I
(H)) > det(LSha(p)) is

(2H)ts+t > p(2H)tpts−t, which implies, using 2H ≈ pα ≈ p
1− 1

t′/t , the expected bound ts < t′ − t′/t
on the number of observed shares.

Our proof below make the above heuristic estimates rigorous and gives quantitative bounds on the
estimation errors involved. In particular, one central issue addressed by our proof (in Lemma 4.3)
is upper bounding the probability of ‘bad’ instances of the lattice LSha having very ‘unbalanced’
f.p. due to the existence of short lattice vectors of norm λ1(LSha) much smaller than the Minkowski
bound det(LSha)

1/(ts+t). As illustrated in Fig 1(b), for such ‘bad’ lattices the number #V0,1 of lattice
points in the box Tµ̂I

(H) could be much smaller than the heuristic estimate vol(Tµ̂I
(H))/ det(LSha),

but fortunately, we show that the probability of such ‘bad’ instances of the lattice LSha is small when
the αi’s are chosen at random.

We now proceed to present our rigorous probabilistic lower and upper bounds on #Vŝ,p̂.

16

Finding a Lower Bound on #V0,1. Lower bounding the number #V0,1 of points of the lattice LSha

in a symmetric box Tµ̂I
(H)

def
= {v ∈ Qts+t : ‖v − µ̂I‖∞ < H} centered on vector µ̂I seems a difficult

‘non-homogenous’ problem because µ̂I is in general not a lattice vector. But by ‘rounding’ µ̂I to
a nearby lattice vector µ̂′

I (with rounding error ǫ = ‖µ̂′
I − µ̂I‖∞), we reduce the problem to two

simpler problems: (1) The ‘homogenous’ problem of lower bounding the number of lattice points in

an origin-centered box T0

def
= {v ∈ Qts+t : ‖v‖∞ < H − ǫ}, and (2) Upper bounding the largest

Minkowski minimum λts+t(LSha) of the lattice. This general reduction is stated precisely as follows.

Lemma 4.2. For any full-rank lattice L in IRn, vector µ ∈ IRn, and H > 0, we have

#{v ∈ L : ‖v − µ‖∞ < H} ≥ #{v ∈ L : ‖v‖∞ < H − ǫ},

where ǫ = n
2 · λn(L).

To solve the ‘homogenous’ counting problem (1) above we directly apply the Blichfeldt-Corput the-
orem (Theorem 2.2 in Section 2). To solve the problem (2) above of upper bounding λts+t(LSha),
we apply Minkowski’s “second theorem” (Theorem 2.3 in Section 2) to reduce this problem fur-
ther to the problem of lower bounding the first Minkowski minimum λ1(LSha). Namely, since
λi(LSha) ≥ λ1(LSha) for all i ∈ [ts], then Minkowski’s second theorem gives

λts+t(LSha) ≤
det(LSha)

λ1(LSha)ts+t−1
. (10)

Finally, to lower bound λ1(LSha) (i.e. the infinity norm of the shortest non-zero vector in LSha), we
use a probabilistic argument based on the algebraic counting Lemma 2.1 (similar to the argument
used in proving Theorem 4.1), to obtain the following result. Note that Lemma 4.3 would not make
sense if the conditions (12) and (14) depended on the choice of αI ; however this is not the case since
det(LSha(αI , p̂)) = p̂pts−t(2H)t and det(L′

Sha(αI)) = pts−t+1(2H)t−1 are fixed independent of αI .

Lemma 4.3. Fix positive integers (t, ts, p, H, p̂) and a positive real number β, such that p is a prime
satisfying

p ≥ max(2H, 2ts) (11)

and p̂ ∈ {1, p}. For each αI ∈ D
(
(ZZ∗

p)
ts
)
, let LSha(αI , p̂) denote the lattice in Qts+t with basis

matrix MSha(αI , p̂) defined in Lemma 4.1, and let L′
Sha(αI) denote the lattice in Qts+t−1 with basis

matrix M ′
Sha(αI) obtained from MSha(αI , p̂) by removing the (ts + 1)th row and column.

In the case p̂ = 1, if

1 ≤ 2
−
(
β+3+ ts log t

ts+t

)

det (LSha(αI , 1))
1

ts+t ≤ H (12)

then, for at least a fraction 1 − 2−β(ts+t) of αI ∈ D
(
(ZZ∗

p)
ts
)

we have

λ1(LSha(αI , 1)) ≥ 2
−
(
β+3+ ts log t

ts+t

)

det(LSha(αI , 1))
1

ts+t . (13)

In the case p̂ = p, if

1 ≤ 2
−
(
β+3+ ts log t

ts+t−1

)

det(L′
Sha(αI))

1
ts+t−1 ≤ H (14)

then, for at least a fraction 1 − 2−β(ts+t−1) of αI ∈ D
(
(ZZ∗

p)
ts
)

we have

λ1(L
′
Sha(αI)) ≥ λ1(LSha(αI , p)) ≥ 2

−
(
β+3+ ts log t

ts+t−1

)

det(L′
Sha(αI))

1
ts+t−1 . (15)

Combining the above results (for (ŝ, p̂) = (0, 1)) we obtain the desired lower bound on #V0,1, subject
to several conditions. The details follow.

17

Let us fix β > 0, whose actual value will be chosen later. We will say that αI ∈ D
(
(ZZ∗

p)
ts
)

is bad
if one of the bounds (13) or (15) does not hold for this αI . According to Lemma 4.3, if conditions
(11), (12) and (14) are satisfied by (t, ts, p, H, p̂, β), then the fraction δI of bad αI in D((ZZ∗

p)
ts) is

upper bounded as
δI ≤ δI(1) + δI(p) ≤ 2−β(ts+t) + 2−β(ts+t−1). (16)

Throughout the following derivation we assume that αI is not bad. Plugging the lower bound (13)
in the inequality (10) resulting from Minkowski’s Second Theorem gives

λts+t(LSha(αI , 1)) ≤ 2

(
β+3+ ts log t

ts+t

)
(ts+t)

· det(LSha(αI , 1))
1

ts+t . (17)

Hence, applying Lemma 4.2 we have #V0,1 ≥ #{v ∈ LSha(αI , 1) : ‖v‖∞ < H − ǫ}, where ǫ ≤

(ts+t
2)2

(
β+3+ ts log t

ts+t

)
(ts+t)

· det(LSha(αI , 1))
1

ts+t . So, if the condition

(
ts + t

2

)
2

(
β+3+ ts log t

ts+t

)
(ts+t)

· det(LSha(αI , 1))
1

ts+t ≤
H

2
(18)

holds, then

#V0,1 ≥ #{v ∈ LSha(αI , 1) : ‖v‖∞ < H/2} ≥ 2 · Int

(
(H/2)ts+t

2ts+t det(LSha(αI , 1))

)
+ 1, (19)

where we have used the Blichfeldt-Corput Theorem 2.2 to obtain the last inequality. Using 2Int(z)+
1 ≥ 2(z − 1) + 1 ≥ z for all z ≥ 1, we find that (19) implies, assuming in addition

(H/2)ts+t

2ts+t−1 det(LSha(αI , 1))
≥ 2, (20)

that

#V0,1 ≥
Hts+t

22(ts+t) det(LSha(αI , 1))
. (21)

Observe that our assumed condition (20) is equivalent to 2 det(LSha(αI , 1))
1

ts+t ≤ H/2 and hence,
recalling that β > 0, our condition (18) implies both conditions (20) and the right-hand side of (12).
We conclude that the lower bound (21) holds assuming that αI is not bad, (11) holds, the left-hand
side of (12) holds and (18) holds.

Finding an Upper Bound on #Vs,p. We first reduce the point counting problem in LSha(αI , p) to
a point counting problem in the lower-dimensional lattice L′

Sha(αI) defined in Lemma 4.3. This is
possible because all the vectors of LSha(αI , p) in the desired box have their (ts + 1)th coordinate
equal to 0.

Lemma 4.4. Let LSha(αI , p) ⊆ Qts+t and L′
Sha(αI) ⊆ Qts+t−1 be the lattices defined in Lemma 4.3,

let µ̂I be the vector in Qts+t defined in Lemma 4.1, and let µ̂′
I be the vector in Qts+t−1 obtained from

µ̂I by removing the (ts + 1)th coordinate. Then #Vs,p ≤ #V ′
s,p, where Vs,p

def
= {v ∈ LSha(αI , p) :

‖v − µ̂I‖∞ < H} and V ′
s,p

def
= {v ∈ L′

Sha(αI) : ‖v − µ̂′
I‖∞ < H}.

By comparing the total volume of the #Vs,p disjoint boxes of sidelength λ1(L
′
Sha) centered on the

lattice points in Tµ̂′

I
(H)

def
= {v ∈ Qts+t−1 : ‖v − µ̂′

I‖∞ < H}, to the volume of T̂µ̂′

I
(H)

def
= {v ∈

Qts+t−1 : ‖v− µ̂′
I‖∞ < H + λ1(L

′
Sha)/2} which contains those disjoint boxes, we reduce the problem

of upper bounding #Vs,p to the problem of lower bounding the λ1(L
′
Sha). This general reduction can

be stated as follows.

18

Lemma 4.5. For any lattice L in IRn, vector µ ∈ IRn, and H > 0, we have

#{v ∈ L : ‖v − µ‖∞ < H} ≤

(
2H

λ1(L)
+ 1

)n

.

So, combining Lemma 4.4 and Lemma 4.5 we have #Vs,p ≤ #V ′
s,p ≤

(
2H

λ1(L′

Sha(αI))
+ 1
)ts+t−1

.

Assuming that αI is not bad (using same definition of badness as above) and that conditions (11)
and (14) hold, we can apply the lower bound (15) on λ1(L

′
Sha(αI)) to obtain the upper bound

#Vs,p ≤



 2H

2
−
(
β+3+ ts log t

ts+t−1

)

det(L′
Sha(αI))

1
ts+t−1

+ 1




ts+t−1

. (22)

Using z + 1 ≤ 2z for z ≥ 1, we find that (22) implies, assuming in addition

2H

2
−
(
β+3+ ts log t

ts+t−1

)

det(L′
Sha(αI))

1
ts+t−1

≥ 1 (23)

that

#Vs,p ≤



 22H

2
−
(
β+3+ ts log t

ts+t−1

)

det(L′
Sha(αI))

1
ts+t−1




ts+t−1

≤ 2(β+5)(ts+t)+ts log t ·
Hts+t−1

det(L′
Sha(αI))

. (24)

Observe that our assumed condition (23) is implied by the right-hand side of (14). We conclude that
the upper bound (24) holds assuming that αI is not bad and that conditions (11) and (14) hold.

Putting it Together. We now put together the above results. Let us assume that the parameters
(t, ts, p, H, β) satisfy all the sufficient conditions specified above for the bounds (21) and (24) to hold
for non-bad choices of αI ; namely the assumed conditions are (11), left-hand side of (12), (18), and
(14) (below we will show that all these conditions are satisfied if k ≥ k0 and k0, ts and β are chosen
as in the theorem statement). Then, for each fixed I ⊆ [n] with #I = ts, for all except a fraction δI

of bad αI ∈ D((ZZ∗
p)

ts) (with δI upper bounded in (16)), plugging the bounds (21) and (24) in (9)
(using #Vs,p = #Ss,p and #V0,1 = #S0,1 by Lemma 4.1) we find

Pk,x(s|sI = µI) ≤
2(β+5)(ts+t)+ts log t · Hts+t−1/ det(L′

Sha(αI))

2−2(ts+t) · Hts+t/ det(LSha(αI , 1))
≤ 2(β+7)(ts+t)+ts log t+1p−1

for all s ∈ ZZp and µI ∈ (ZZp)
ts (where we have used det(LSha(αI , p̂)) = p̂pts−t(2H)t and

det(L′
Sha(αI)) = pts−t+1(2H)t−1) and hence conditional entropy is bounded as H(s|sI = µI) ≥

log(p/2(β+7)(ts+t)+ts log t+1) and entropy loss is bounded as

Lk,x(µI) = | log p − H(s|sI = µI)| ≤ (β + 7)(ts + t) + ts log t + 1 = ǫs (25)

for all µI ∈ (ZZp)
ts , as claimed in the theorem statement. From (16), the bound (25) holds for each

fixed I for all except a fraction δI ≤ 2−β(ts+t) + 2−β(ts+t−1) of bad αI ∈ D((ZZ∗
p)

ts). Hence, for each

fixed I, (25) holds except with probability at most 2−β(ts+t) +2−β(ts+t−1) over the uniformly random
choice of α ∈ D((ZZ∗

p)
n). Finally, by the union bound it follows that (25) holds for all I ⊆ [n] with

#I = ts except with probability at most

δs =

(
n

ts

)(
2−β(ts+t) + 2−β(ts+t−1)

)
≤

(
n

ts

)
21−β(ts+t−1) = δc

19

over the uniform choice of α ∈ D((ZZ∗
p)

n), as claimed in the theorem statement, assuming we set the
parameter β to the value

β =
log
(
2δ−1

c

(
n
ts

))

ts + t − 1
(26)

as defined in the theorem statement.

It remains to show that the conditions assumed above, namely (11), left inequality of (12), (18), and
(14), are all satisfied if k ≥ k0 and k0, ts and β are chosen as in the theorem statement.

First, we note that (11) is satisfied. This is because by definition we have 2H = 2⌊pα/2⌋ ≤ p since
α < 1, and also p ≥ 2k ≥ 2k0 ≥ 2ts, so p ≥ max(2H, 2ts) as claimed.

Next, we show that the left inequalities of both (12) and (14) are satisfied. Recall that det(LSha(αI , 1)) =
(2H)tpts−t and det(L′

Sha(αI)) = (2H)t−1pts−t+1. Thus the left inequality of (12) is equivalent to
(2H)tpts−t ≥ 2(β+3)(ts+t)+ts log t while the left inequality of (14) is equivalent to (2H)t−1pts−t+1 ≥
2(β+3)(ts+t−1)+ts log t. So using (11) and β > 0 we know that the left inequality of (12) implies the left
inequality of (14). So it suffices to show that

(2H)tpts−t ≥ 2(β+3)(ts+t)+ts log t. (27)

To do so, note that we may assume that ts ≥ t (since for ts < t, the scheme ShaTSS′ clearly has
perfect security thanks to the perfect security of the original (t, n)-threshold Shamir scheme ShaTSS).
Thus pts−t ≥ 1 and (27) is implied by

(2H)t ≥ 2(β+3)(ts+t)+ts log t. (28)

Using ts ≤ t′, (28) is satisfied if
2H ≥ 2(β+3)(t′/t+1)+t′/t log t. (29)

Now, by definition we have 2H ≥ 2⌊pα

2 ⌋ ≥ pα − 2 so (29) is satisfied if

pα ≥ 2(β+3)(t′/t+1)+t′/t log t + 2. (30)

Since β > 0 and t′/t > 1 we have (β + 3)(t′/t + 1) + t′/t log t ≥ 6, and using z + 2 ≤ 2z for z ≥ 6 and
p ≥ 2k, we know that (30) is satisfied if

2αk ≥ 2(β+3)(t′/t+1)+t′/t log t+1. (31)

Using the definitions α = 1 − 1+δF
t′/t and δF = t′/t

k

(
log
(
δ
−1/t′

c nt
)

+ ΓCV P + 1
)
, we get by straight-

forward manipulation that (31) is equivalent to the condition

k ≥
t′/t

t′/t − 1
·
(
log
(
δ−1/t′

c nt
)

+ ΓCV P + (β + 3)(t′/t + 1) + t′/t log t + 2
)

. (32)

Recalling that (see statement of Theorem 4.1) k′
0 = t′/t

t′/t−1

(
log
(
δ
−1/t′

c nt
)

+ ΓCV P + 2
)
, we see that

the right-hand side of (32) is equal to k′
0 + t′/t

t′/t−1((β + 3)(t′/t + 1) + t′/t log t) which is less than

k0 ≥ k′
0 + (t′/t+1)2

t′/t−1 (β + log t + 3), so k ≥ k0 implies (32), and hence the left inequalities of both (12)

and (14) are satisfied, as claimed.

We now show that the right inequality of (14) implies (18). Recalling that det(LSha(αI , 1)) =
2H
p det(L′

Sha(αI)) we see that the right inequality of (14) implies (18) as long as

2
−
(((

β+3+ ts log t
ts+t

)
(ts+t)+log(ts+t)

)
(ts+t)+1

)

p ≥ 2

(
β+3+ ts log t

ts+t−1

)
(ts+t−1)

. (33)

20

Using p ≥ 2k we find that (33) is implied by the condition

k ≥ (β + 3)(m2 + m − 1) + m(ts log t + log m) + ts log t + 1, (34)

where m = ts + t, and condition (34) holds by the theorem hypothesis k ≥ k0. Hence the right
inequality of (14) implies (18), as claimed.

Finally, we show that that the right inequality of (14) is satisfied. Recalling that det(L′
Sha(αI) =

(2H)t−1pts−(t−1), we see that the right inequality of (14) is equivalent to

pts−(t−1) ≤ 2

(
β+3+ ts log t

ts+t−1

)
(ts+t−1)−(t−1)

· Hts . (35)

Now, we know that pα/2 ≥ 2 because using p ≥ 2k and the definitions α = 1 − 1+δF
t/t and

δF = t′/t
k

(
log
(
δ
−1/t′

c nt
)

+ ΓCV P + 1
)

we see that the condition pα/2 ≥ 2 is satisfied if k ≥

t′/t
t′/t−1

(
log
(
δ
−1/t′

c nt
)

+ ΓCV P + 3
)

= k′
0 + t′/t

t′/t−1 , and the latter condition is satisfied since k ≥ k0

and k0 exceeds by definition the value k′
0 + t′/t

t′/t−1 .

Using pα/2 ≥ 2 we have that H ≥ ⌊pα/2⌋ ≥ pα/4. Using this we have that (35) is satisfied if

pts−(t−1) ≤ 2

(
β+3+ ts log t

ts+t−1

)
(ts+t−1)−(t−1)

·

(
pα

22

)ts

. (36)

Using the definitions α = 1 − 1+δF
t′/t and δF = t′/t

k

(
log
(
δ
−1/t′

c nt
)

+ ΓCV P + 1
)
, we get that (36) is

equivalent to the condition

ts ≤
(t′ − t′/t) + t′/t

log p

((
β + 3 + ts log t

ts+t−1

)
(ts + t − 1) − (2ts + t − 1)

)

1 + t′/t
k

(
log
(
δ
−1/t′
c nt

)
+ ΓCV P + 1

) . (37)

But since 3(ts + t − 1) − (2ts + t − 1) = ts + 2(t − 1) > 0, we have that the term
t′/t
log p

((
β + 3 + ts log t

ts+t−1

)
(ts + t − 1) − (2ts + t − 1)

)
is positive and hence (37) is satisfied by the choice

ts =

 t′ − t′/t

1 + t′/t
k log

(
δ
−1/t′
c nt

)
+ ΓCV P + 1



of the theorem statement.

Therefore the right inequality of (14) is satisfied. This completes the proof of the concrete claims
of the theorem. To show the asymptotic security claim (for fixed n, t, t′ and increasing security
parameter k) with parameter choice δc = O(1/poly(k)), observe that with this choice δs = δc = o(1)

and β =
log
(
2δ−1

c (n
ts
)
)

ts+t−1 = O(log k), so fractional entropy loss ǫs/k = O(log k/k) = o(1), and (recalling
that ΓCV P is independent of k), we have ts = ⌊(t′ − t′/t)/(1 + O(log k/k))⌋ so ts = Int(t′ − t′/t) for
all sufficiently large k, as claimed. This completes the proof of the theorem. ⊓⊔

An immediate consequence of the above results is the following.

Corollary 4.1. For any (t, n) and t′ > t, the standard Shamir (t, n)-threshold secret-sharing scheme
ShaTSS is asymptotically threshold-changeable to (Int(t′− t′/t), t′) with respect to the uniform secret
distribution.

21

5 Conclusions

We presented a new cryptographic application of lattice reduction techniques to achieve threshold-
changeability for the standard Shamir (t, n)-threshold scheme. We proved concrete bounds on the
correctness and security of our method, making use of fundamental results from lattice theory in our
analysis.

Our scheme raises several open problems.

Firstly, our security result is proven to hold only for sufficiently long security parameters k ≥ k0 =
Ω(t2 log t) whereas the correctness of the scheme holds for much smaller security parameters k ≥ k′

0 =
Ω(t). Therefore, in order to improve the practicality of the security result, an interesting problem
is to find an improved security proof which decreases the bound k0 to Ω(t), while at the same time
decreasing the bound ǫs on the leaked secret entropy to be o(t). A related open problem mentioned
above is to reduce the bound ǫs on the leaked secret entropy.

Secondly, in our security analysis we have assumed a passive attacker which is assumed to be an
outsider. In some cases, stronger security may be needed. For example, the threshold may be
increased only after several shareholders have already been compromised by the attacker. Against
such ‘insider attackers’ who know some original shares, the information-theoretic threshold would
be reduced below the desired value t′. In our scheme, we expect the effective information-theoretic
threshold to be reduced to about t′−(t′/t) ·(s+1) against insider attackers knowing s original shares,
but we leave for future work a rigorous analysis of this scenario. If private shareholder communication
is allowed, a known method of dealing with this problem is to use a share renewal protocol [12].
It would be interesting to design an efficient scheme which maintains its new threshold in this
insider attacker scenario with no shareholder communication (perhaps under a suitable computational
complexity assumption). Another security issue not handled by our scheme is ‘active attacks’ by
insiders who send corrupted subshares to the combiner to prevent recovery of the secret (‘denial of
service’ attack). One way to deal with this is to have more than t′ subshares sent to the combiner and
use an error correction algorithm that can correct the additional ‘Hamming’ noise due to corrupted
subshares. Efficiently implementing such a combiner for our scheme is another potential area for
future research.

Acknowledgements. We would like to thank Scott Contini and Igor Shparlinski for helpful dis-
cussions and encouragement to work on this problem. This work was supported by ARC Discovery
Grants DP0663452 and DP0451484 and DP0344444.

References

[1] C. Asmuth and J. Bloom. A Modular Approach to Key Safeguarding. IEEE Trans. on Information
Theory, 29:208–210, 1983.

[2] L. Babai. On Lovász’ Lattice Reduction and the Nearest Lattice Point Problem. Combinatorica, 6, 1986.

[3] S.G. Barwick, W.A. Jackson, and K.M. Martin. Updating the Parameters of a Threshold Scheme by
Minimal Broadcast. IEEE Trans. on Information Theory, 51:620–633, 2005.

[4] C.H. Bennett, G. Brassard, C. Crépau, and U.M. Maurer. Generalized Privacy Amplification. IEEE
Trans. on Information Theory, 41:1915–1923, 1995.

[5] C. Blundo, A. Cresti, A. De Santis, and U. Vaccaro. Fully Dynamic Secret Sharing Schemes. In CRYPTO
’93, volume 773 of LNCS, pages 110–125, Berlin, 1993. Springer-Verlag.

[6] R.M. Capocelli, A. De Santis, L. Gargano, and U. Vaccaro. A Note on Secret Sharing Schemes. In
Sequences II: Methods in Communications, Security, and Computer Science, pages 335–344, Berlin, 1993.
Springer-Verlag.

[7] Y. Desmedt and S. Jajodia. Redistributing Secret Shares to New Access Structures and Its Application.
Technical Report ISSE TR-97-01, George Mason University, 1997.

22

[8] O. Goldreich, D. Ron, and M. Sudan. Chinese Remaindering with Errors. IEEE Transactions on Infor-
mation Theory, 46:1330–1338, 2000.

[9] M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combinatorial Optimization.
Springer-Verlag, 1993.

[10] P. Gruber and C. Lekkerkerker. Geometry of Numbers. Elsevier Science Publishers, 1987.

[11] V. Guruswami and M. Sudan. Improved Decoding of Reed-Solomon Codes and Algebraic-Geometric
Codes. IEEE Trans. Inf. Th., 45:1757–1767, Sep. 1999.

[12] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung. Proactive Secret Sharing Or: How to Cope With
Perpetual Leakage. In CRYPTO ’95, volume 963 of LNCS, pages 339–352, Berlin, 1995. Springer-Verlag.

[13] E. Hlawka, J. Schoißengeier, and R. Taschner. Geometric and Analytic Number Theory. Springer-Verlag,
1991.

[14] W.A. Jackson and K.M. Martin. A Combinatorial Interpretation of Ramp Schemes. Australasian Journal
of Combinatorics, 14:51–60, 1996.

[15] A. K. Lenstra, H. W. Lenstra, and L. Lovász. Factoring Polynomials with Rational Coefficients. Mathe-
matische Annalen, 261:515–534, 1982.

[16] A. Maeda, A. Miyaji, and M. Tada. Efficient and Unconditionally Secure Verifiable Threshold Changeable
Scheme. In ACISP 2001, volume 2119 of LNCS, pages 402–416, Berlin, 2001. Springer-Verlag.

[17] K. Martin. Untrustworthy Participants in Secret Sharing Schemes. In Cryptography and Coding III, pages
255–264. Oxford University Press, 1993.

[18] K. Martin, J. Pieprzyk, R. Safavi-Naini, and H. Wang. Changing Thresholds in the Absence of Secure
Channels. Australian Computer Journal, 31:34–43, 1999.

[19] K. Martin, R. Safavi-Naini, and H. Wang. Bounds and Techniques for Efficient Redistribution of Secret
Shares to New Access Structures. The Computer Journal, 42:638–649, 1999.

[20] R.J. McEliece and D.V. Sarwate. On Sharing Secrets and Reed-Solomon Codes. Comm. of the ACM,
24:583–584, 1981.

[21] M. Quisquater, B. Preneel, and J. Vandewalle. On the Security of the Threshold Scheme Based on
the Chinese Remainder Theorem. In PKC 2002, volume 2274 of LNCS, pages 199–210, Berlin, 2002.
Springer-Verlag.

[22] A. Shamir. How To Share a Secret. Comm. of the ACM, 22:612–613, 1979.

[23] M.A. Shokrollahi and H. Wasserman. List Decoding of Algebraic-Geometric Codes. IEEE Transactions
on Information Theory, 45:432–437, March 1999.

[24] I.E. Shparlinski. Sparse Polynomial Approximation in Finite Fields. In Proc. 33rd STOC, pages 209–215,
New York, 2001. ACM Press.

[25] I.E. Shparlinski and R. Steinfeld. Noisy Chinese Remaindering in the Lee Norm. Journal of Complexity,
20:423–437, 2004.

[26] R. Steinfeld, J. Pieprzyk, and H. Wang. Dealer-Free Threshold Changeability for Standard CRT Secret-
Sharing Schemes. Finite Fields and their Applications, 12:653–680, 2006.

A Proof of Lemma 4.1

We define a mapping f : Vŝ,p̂ → Sŝ,p̂ and show that f is one to one and onto.

Defining f . Let b1, . . . , bts+t denote the basis for LSha where bi is the ith row of matrix MSha. For
each v ∈ Vŝ,p̂, let (kv

1 , . . . , kv
ts , k

v, av
1 , . . . , av

t−1) ∈ ZZ
ts+t denote the expansion coefficient vector for v

in basis b1, . . . , bts+t, i.e. v = kv
1 b1 + . . . + kv

tsbts + kvbts+1 + av
1bts+2 + . . . + av

t−1bts+t. To each such
v ∈ Vŝ,p̂, we associate the polynomial av = f(v) defined by

av = f(v) = ⌊ŝ + kvp̂⌋p + ⌊av
1⌋px + . . . + ⌊av

t−1⌋px
t−1 ∈ ZZp[x; t − 1].

23

To show that f indeed maps Vŝ,p̂ into Sŝ,p̂, note that v ∈ Vŝ,p̂ implies that ‖αijav(αij)−µij‖L,p < H
for all j ∈ [ts], and since av(0) ≡ ŝ + kvp̂ (mod p) we have from the fact that p ≡ 0 (mod p̂) that
av(0) ≡ ŝ (mod p̂). Thus av = f(v) ∈ Sŝ,p̂ for all v ∈ Vŝ,p̂, as required.

Showing that f is one to one. Suppose that f(v) = f(w) for some pair of vectors v = kv
1 b1 +

. . . kv
tsbts + kvbts+1 + av

1bts+2 + . . .+ av
t−1bts+t and w = kw

1 b1 + . . . kw
ts bts + kwbts+1 + aw

1 bts+2 + . . .+
aw

t−1bts+t in Vŝ,p̂, and define the associated polynomials

av(x) = kvp̂ + av
1x + . . . + av

t−1x
t−1

and
aw(x) = kwp̂ + aw

1 x + . . . + aw
t−1x

t−1.

Then f(v) = f(w) implies that
av(x) ≡ aw(x) (mod p). (38)

But, for each j ∈ [ts], we know that the jth coordinates satisfy vj ≡ αijav(αij) (mod p) and wj ≡
αijaw(αij) (mod p). It follows from (38) that vj and wj differ by an integer multiple of p for all
j ∈ [ts] while the fact that v and w are in Vŝ,p̂ implies ‖v−w‖∞ ≤ ‖v−µ̂I‖∞+‖w−µ̂I‖∞ < 2H ≤ p
so we conclude vj = wj over the integers. Similarly, for j ≥ ts + 1, (38) implies that vj and wj differ
by an integer multiple of 2H, so ‖v − w‖∞ < 2H implies vj = wj . This completes the proof that
f(v) = f(w) implies v = w, so f is one to one.

Showing that f is onto. Let a(x) = ŝ + k̂p̂ + a1x + . . . + at−1x
t−1 be any polynomial in Sŝ,p̂. We

construct a vector v ∈ Vŝ,p̂ such that f(v) = a as follows. We set

vj = αij (a(αij) − ŝ) + kjp = k̂p̂αij + a1α
2
ij + · · · + at−1α

t
ij + kjp for all j ∈ [ts],

where kj is an integer chosen such that
∣∣vj − µ̂Ij

∣∣ < H. It is clear that such an integer kj ex-
ists because using µ̂Ij = µij − ŝαij we have

∣∣vj − µ̂Ij

∣∣ =
∣∣αij (a(αij) − ŝ) + kjp − (µij − ŝαij)

∣∣ =∣∣αija(αij) − µij + kjp
∣∣ and the latter is less than H for suitable integer kj because a ∈ Sŝ,p̂ satisfies

(by definition of Sŝ,p̂), the condition ‖αija(αij) − µij‖L,p < H for all j ∈ [ts]. To complete the
definition of vector v, we set

vts+1 =
2H

p/p̂
k̂ and vj =

2H

p
aj−(ts+1) for j > ts + 1.

Observe that v is in lattice LSha and in fact has the basis expansion v = k1b1 + · · · ktsbts + k̂bts+1 +
a1bts+2 + · · · + at−1bts+t, so by definition of the mapping f we have

f(v) = ⌊ŝ + k̂p̂⌋p + ⌊a1⌋px + . . . + ⌊at−1⌋px
t−1 = a(x),

because the coefficients ŝ + k̂p̂ and a1, . . . , at−1 of a(x) are in ZZp. It remains to show that v satisfies
‖v − µ̂I‖∞ < H. We already know by construction that

∣∣vj − µ̂Ij

∣∣ < H for all j ∈ [ts]. For the case
j = ts + 1, we have

∣∣vts+1 − µ̂Its+1

∣∣ =
∣∣∣∣
2H

p/p̂
k̂ − H

(
1 −

1 + 2ŝ

p

)∣∣∣∣ =
∣∣∣∣
2H

p

(
ŝ + k̂p̂

)
− H

(
1 −

1

p

)∣∣∣∣ ,

which is less than H(1 − 1/p) < H for all ŝ + k̂p̂ ∈ ZZp. Similarly, for the case j > ts + 1, we have

∣∣vj − µ̂Ij

∣∣ =
∣∣∣∣
2H

p
aj−(ts+1) − H

(
1 −

1

p

)∣∣∣∣ ,

which is less than H(1− 1/p) < H for all aj−(ts+1) ∈ ZZp, as required. This completes the proof that

24

v ∈ Vŝ,p̂, so f is onto. ⊓⊔

B Proof of Lemma 4.2

We lower bound the number of lattice points in the box K1 = {v ∈ IRn : ‖v − µ‖∞ < H} of side
length 2H which is centered on the non-lattice vector µ, by the number of lattice points in the
box K2 = {v ∈ IRn : ‖v − µ′‖∞ < H − ǫ} of side length 2(H − ǫ), which is centered on a lattice
vector µ′. We obtain the lattice vector µ′ by ‘rounding’ the non-lattice vector µ to a ‘nearby’ lattice
vector. Suppose that the ‘rounding error’ satisfies ‖µ − µ′‖∞ ≤ ǫ. Then it is easy to see by the
triangle inequality that the box K2 defined above is fully contained within the box K1, and thus
the number of lattice points inside K2 is indeed a lower bound on the number of lattice points in
K1. In turn, since any lattice is invariant under additions of any lattice vector, it follows that the
number of lattice points in the box K2 is equal to the number of points in the origin-centered box
{v ∈ IRn : ‖v‖∞ < H − ǫ}, which is the desired result.

It remains to prove the claimed bound ǫ = n
2 λn(L) on the rounding error ‖µ − µ′‖∞. By definition

of the nth Minkowski minimum λn of the lattice, we know that there exists a set (b1, . . . , bn) of n
linearly-independent lattice vectors such that ‖bj‖∞ ≤ λn for all j = 1, . . . , n. Note that although the
vectors (b1, . . . , bn) do not necessarily form a basis for the lattice, they do necessarily form a basis for
the vector space IRn over IR. Hence any vector µ ∈ IRn can be expanded as µ = c1b1 + · · ·+ cnbn for
some real coefficients c1, . . . , cn. Now let µ′ denote the lattice vector which is obtained by rounding
the coefficients c1, . . . , cn to the nearest integers, i.e. we let

µ′ = ĉ1b1 + · · · + ĉnbn,

where for i = 1, . . . , n, ĉi denotes integer closest to ci. Then the rounding error is

‖µ − µ′‖∞ = ‖
∑

j

(cj − ĉj)bj‖∞ ≤
1

2

∑

j

‖bj‖∞ ≤
(n

2

)
λn,

as claimed. This completes the proof. ⊓⊔

C Proof of Lemma 4.3

Fix p̂ ∈ {1, p} and an arbitrary positive integer ∆ ≤ 2H. Let us find an upper bound on the
fraction δI(p̂) of αI ∈ D

(
(ZZ∗

p)
ts
)

for which λ1(LSha(αI , p̂)) < ∆. To do so, observe that any vector
va,k ∈ LSha(αI , p̂) has the form

v =

(
a(αi1) + k1p, . . . , a(αits) + ktsp, 2H

a1

p
, . . . , 2H

ats

p

)
,

for some polynomial a(x) = a1x+· · ·+atx
t ∈ ZZ[x; t] with a1 ≡ 0 (mod p̂) and k = (k1, . . . , kts) ∈ ZZ

ts .
We consider several cases.

The first case is a(x) = 0, i.e. ai = 0 for all i ∈ [t]. In this case, vj = kjp for j ∈ [ts] and vj = 0 for
j > ts. So if v is non-zero, there must exist j ∈ [ts] such that kj is a non-zero integer, which means
‖v‖∞ ≥ p ≥ 2H ≥ ∆ in this case.

The second case is a(x) 6= 0 but a(x) ≡ 0 (mod p). In this case, there must exist i ∈ [t] such that
ai is a non-zero integer but ai ≡ 0 (mod p). So ‖v‖∞ ≥ |vts+i| = |2H(ai/p)| ≥ 2H ≥ ∆ in this case
too.

The remaining third case is a(x) 6≡ 0 (mod p), and from the first two cases above, we conclude that

25

the fraction δI(p̂) defined above is equal to the fraction of αI ∈ D
(
(ZZ∗

p)
ts
)

for which there exists

a(x) ∈ ZZ[x; t] and k ∈ ZZ
ts satisfying

a(x) 6≡ 0 (mod p) and a1 ≡ 0 (mod p̂) and a0 = 0 (39)

and
‖v‖∞ < ∆. (40)

Let us now consider the case p̂ = 1. The existence of a(x) and k satisfying (39) and (40) implies

that â(x)
def
= ⌊a(x)⌋p is a polynomial in ZZp[x; t] of degree at least 1 (using (39)) and satisfying

‖â(αij)‖L,p ≤
∣∣a(αij) + kjp

∣∣ < ∆ for all j ∈ [ts] (using (40)). Also from (40) we know that the

coefficients of â satisfy â0 = 0 and ‖âi‖L,p ≤ |ai| <
(

∆
2H

)
p for all i ∈ [t], so â belongs to a subset

Â of ZZp[x; t] containing at most
(
2 ∆

2H p + 1
)t

polynomials. Applying Lemma 2.1 (with parameters

n = ts, B = ∆, #A ≤
(
2 ∆

2H p + 1
)t

) we conclude that such â (and hence also a and k satisfying (39)
and (40)) can exist for at most a fraction δI(1) of αI ∈ D

(
(ZZ∗

p)
ts
)
, where

δI(1) ≤

(
2 ∆

2H p + 1
)t

· (2∆t)ts

#D
(
(ZZ∗

p)
ts
) . (41)

Now, using ∆ ≥ 1 and p ≥ 2H we have 2 ∆
2H p ≥ 2 p

2H ≥ 2 so 22 ∆
2H p ≥ 2 ∆

2H p + 1. Plugging this
inequality in (41) we get

δI(1) ≤

(
#(ZZp)

ts

#D
(
(ZZ∗

p)
ts
)
)

·

(
22 ∆

2H p
)t

· (2∆t)ts

#(ZZp)ts
. (42)

Observe that
#(ZZp)ts

#D((ZZ∗

p)ts)
= pts

(p−1)···(p−ts)
≤ 2ts using p − ts ≥ p/2, which follows from the lemma

hypothesis that p ≥ 2ts. Using this and the fact that det(LSha(αI , 1)) = (2H)tpts−t we obtain

δI(1) ≤ 22(ts+t)+ts log t ∆ts+t

det(LSha(αI , 1))
. (43)

Hence, a sufficient condition for achieving δI(1) ≤ 2−β(ts+t) is to pick ∆ as an integer in the interval
[1, 2H] such that the right-hand side of (43) is at most 2−β(ts+t). Rearranging the latter sufficient
condition for ∆ we get

∆ ≤ 2
−
(
β+2+ ts log t

ts+t

)

det (LSha(αI , 1))
1

ts+t and 1 ≤ ∆ ≤ 2H.

Hence it suffices to pick

∆ = ⌊2
−
(
β+2+ ts log t

ts+t

)

det(LSha(αI , 1))
1

ts+t ⌋ ≥ 2
−
(
β+3+ ts log t

ts+t

)

det(LSha(αI , 1))
1

ts+t ,

with the latter inequality satisfied (and also ∆ ∈ [1, 2H]) due to the lemma hyptothesis that

1 ≤ 2
−
(
β+3+ ts log t

ts+t

)

det(LSha(αI , 1))
1

ts+t ≤ H.

This establishes the claims of the lemma in the case p̂ = 1.

We now consider the remaining case p̂ = p. Notice that in this case we have from (39) that a1 ≡ 0
(mod p). If t = 1, it follows that the third case a(x) 6≡ 0 (mod p) is not satisfied for any va,k ∈
LSha(αI , p), so δI(p) = 0 for t = 1, and from now on we may assume that t ≥ 2. Then, the existence

26

of a(x) and k satisfying (39) and (40) implies that â(x)
def
= ⌊a(x)⌋p is a polynomial in ZZp[x; t] of degree

at least 2 (using (39)) and satisfying ‖â(αij)‖L,p ≤
∣∣a(αij) + kjp

∣∣ < ∆ for all j ∈ [ts] (using (40)).

Also from (40) we know that the coefficients of â satisfy â0 = â1 = 0 and ‖âi‖L,p ≤ |ai| < (∆
2H)p

for 2 ≤ i ≤ t, so â belongs to a subset Â of ZZp[x; t] containing at most
(
2 ∆

2H p + 1
)t−1

polynomials.

Applying Lemma 2.1 (with parameters n = ts, B = ∆, #A ≤
(
2 ∆

2H p + 1
)t−1

) we conclude that
such â (and hence also a and k satisfying (39) and (40)) can exist for at most a fraction δI(p) of
αI ∈ D

(
(ZZ∗

p)
ts
)
, where

δI(p) ≤

(
2 ∆

2H p + 1
)t−1

· (2∆t)ts

#D
(
(ZZ∗

p)
ts
) . (44)

Now, using the bounds ∆ ≥ 1, p ≥ 2H and
#(ZZp)ts

#D((ZZ∗

p)ts)
= pts

(p−1)···(p−ts)
≤ 2ts as in the p̂ = 1 case

above, we obtain

δI(p) ≤ 2ts ·
(22 ∆

2H p)t−1 · (2∆t)ts

pts
. (45)

Using the fact that det(L′
Sha(αI)) = (2H)t−1pts−(t−1) we obtain

δI(p) ≤ 22(ts+t−1)+ts log t ∆ts+t−1

det(L′
Sha(αI))

. (46)

Hence, a sufficient condition for achieving δI(p) ≤ 2−β(ts+t−1) is to pick ∆ as an integer in the interval
[1, 2H] such that the right-hand side of (46) is at most 2−β(ts+t−1). Rearranging the latter sufficient
condition for ∆ we get

∆ ≤ 2
−
(
β+2+ ts log t

ts+t−1

)

det(L′
Sha(αI))

1
ts+t−1 and 1 ≤ ∆ ≤ 2H.

Hence it suffices to pick

∆ = ⌊2
−
(
β+2+ ts log t

ts+t−1

)

det(L′
Sha(αI))

1
ts+t−1 ⌋ ≥ 2

−
(
β+3+ ts log t

ts+t−1

)

det(L′
Sha(αI))

1
ts+t−1 ,

with the latter inequality satisfied (and also ∆ ∈ [1, 2H]) due to the lemma hyptothesis that

1 ≤ 2
−
(
β+3+ ts log t

ts+t−1

)

det(L′
Sha(αI))

1
ts+t−1 ≤ H.

This shows that λ1(LSha(αI , p)) ≥ 2
−
(
β+3+ ts log t

ts+t−1

)

det(L′
Sha(αI))

1
ts+t−1 for at least a fraction 1 −

2−β(ts+t−1) of αI ∈ D((ZZ∗
p)

ts).

To complete the proof of the lemma in the case p̂ = p, we observe that the (ts +1)th column (which is
removed to form L′

Sha(αI)) of the basis matrix for LSha(αI , p) has zero entries for all entries except
row ts +1. It follows that to each non-zero vector v′ ∈ L′

Sha(αI) there corresponds a non-zero vector
v ∈ LSha(αI , p) with the same entries as v′ and a zero entry added in the new coordinate ts + 1, so
‖v‖∞ = ‖v′‖∞. Hence λ1(L

′
Sha(αI)) ≥ λ1(LSha(αI , p)), as claimed. This completes the proof of the

lemma. ⊓⊔

D Proof of Lemma 4.4

The lemma follows from the fact (to be established below) that all vectors v ∈ Vs,p have their (ts+1)th
coordinate equal to zero. Indeed, using this fact we can define a one to one mapping f : Vs,p → V ′

s,p

as follows: for each v ∈ Vs,p we let v′ = f(v) be the vector in Qts+t−1 obtained from v by removing

27

the (ts + 1)th coordinate. For any v ∈ Vs,p, we have ‖v − µ̂I‖∞ < H and therefore ‖v′ − µ̂′
I‖∞ < H

because the corresponding coordinates of v,v′ and µ̂I ,µ̂
′
I are equal. Also v′ ∈ L′

Sha(αI) because the
(ts + 1)th coordinate of v is 0, so v can be written as an integer linear combination in the rows of
MSha(αI , p) with the coefficient of row (ts + 1) being 0, and hence v′ can be written as the same
integer linear combination of corresponding rows of M ′

Sha(αI). Thus f indeed maps Vs,p into V ′
s,p.

The mapping f is clearly one to one because f(v1) = f(v2) for some v1,v2 in Vs,p means by definition
of f that v1 and v2 are equal on all coordinates except possibly the (ts + 1)th, but in fact they are
also both equal to 0 in their (ts +1)th coordinate since v1,v2 are both in Vs,p (by the abovementioned
result). This proves that #V ′

s,p ≥ #Vs,p (in fact equality holds but we do not use this).

It remains to show that v ∈ Vs,p implies that vts+1 = 0. To see this, suppose towards a contradiction
that v ∈ Vs,p and vts+1 6= 0. But v ∈ LSha(αI , p), and from the definition of LSha(αI , p) it is clear
that vts+1 = k · 2H for some non-zero integer k. This means that |vts+1| ≥ 2H, which together with∣∣µ̂Its+1

∣∣ =
∣∣∣H(1 − 1+2ŝ

p)
∣∣∣ < H for all p̂ ∈ ZZp implies that

∣∣vts+1 − µ̂Its+1

∣∣ > H, which contradicts our

assumption that v ∈ Vs,p. So v ∈ Vs,p implies that vts+1 = 0, as required. This completes the proof
of the lemma. ⊓⊔

E Proof of Lemma 4.5

Let N denote the number of points of the lattice L in the box K1 = {v ∈ IRn : ‖v − µ‖∞ < H}.
Suppose that on each lattice point v in the box , we center an open box Sv = {z ∈ IRn : ‖z−v‖∞ <
λ1(L)/2} of side length λ1(L)/2. Note that as v runs through all lattice vectors in the box K1, the
boxes Sv are disjoint (because by the triangle inequality, the existence of a vector z in two of the
boxes Sv1 and Sv2 implies that ‖v1 − v2‖∞ < λ1(L), which is a contradiction since v1 − v2 is itself
a lattice vector), and occupy a total volume N · λ1(L)n.

On the other hand, applying the triangle inequality again, we have that all the above N disjoint
boxes Sv are contained within the box K2 = {z ∈ IRn : ‖v−µ‖∞ < H +λ1(L)/2}, which has volume
V ol(K2) = (2H + λ1(L))n.

It follows that
V ol(K2) = (2H + λ1(L))n ≥ N · λ1(L)n,

and therefore,

N ≤

(
2H

λ1(L)
+ 1

)n

,

as required. This completes the proof. ⊓⊔

28

