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Abstract

Several disparate phenomena, such as: (i) the flow behaviour of paints, coating and

inks (Glass et al., 1991), (ii) the treatment of diseases in the posterior segment of the eye

(Kirchhof et al., 2015), (iii) the development of food thickeners for people suffering from

mastication and swallowing disorders (O’Leary et al., 2010), (iv) the designing of scaffolds

with optimal characteristics for successful tissue engineering (El-Sherbiny and Yacoub, 2013),

and (v) the response of hagfish when attacked by predators (Böni et al., 2016), have all got

one feature in common - they are based on the unique properties of supramolecular networks

formed by associative (sticky) polymer solutions. Associative polymers are macromolecules

with attractive groups, and the reason for their use in such wide variety of applications is

because the interactions between the sticky groups can be tuned by varying their number,

strength of association and location in a polymer chain. Based on the position of stickers

in polymer chains, associative polymers are classified as (a) telechelic (with stickers at the

two ends of the chain) and (b) multi-sticker (with stickers along the polymer backbone). It

is important to understand the static, dynamic and rheological behaviour of these special

polymer solutions to design associative polymers for specific applications. In this project

we develop a mesoscopic simulation algorithm to simulate associative polymer solutions

with varying sets of parameters (such as concentration, chain length, number of stickers per

chain, spacing between the stickers, strength of association between the stickers and solution

temperature) in order to investigate the correlation of the underlying microscopic structure

with the dynamics and macroscopic viscoelasticity.

It is important to characterise the equilibrium structure and properties of sticky polymer

solutions in the dilute limit before attempting to understand the static and dynamic prop-

erties of a solution of sticky polymers in the semi-dilute or concentrated regimes. This has

been pursued here by investigating the swelling of a sticky polymer chain as a function of

the solvent quality, in other words, the thermal crossover behaviour. The universality of the

swelling of the radius of gyration of a homopolymer relative to its value in the θ-state, inde-
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pendent of polymer-solvent chemistry, in the crossover regime between theta and athermal

solvent conditions is well known. The addition of sticky monomers that have an attractive

affinity for each other along the polymer backbone reduces the quality of the solvent, leading

to an increase in the theta temperature of the sticky polymer solution. We examine the

swelling of the radius of gyration of a sticky polymer relative to its value in the altered theta

state. Using a novel potential to model the excluded volume interaction between monomers

on the sticky chain, and introducing a renormalised solvent quality parameter, we carry out

Brownian dynamics simulations to show that the swelling of sticky polymers is also universal,

and indeed identical to that of homopolymers in the thermal crossover regime. We have also

identified a θ-surface which determines the boundary between good solvent and poor solvent

conditions for sticky polymer solutions based on the sticker interaction strength. Addition-

ally, we find that the effective monomer size under θ-solvent condition, is identical in dilute

homopolymer and sticky polymer solutions.

A salient feature of associative polymer solutions is the formation of reversible gels and

networks at fairly low concentrations. The onset of gelation is governed by the polymer

concentration (c), the solution temperature (τ̂), the number of stickers per chain (f), the

spacing between the stickers along the chain backbone (`) and the strength of association

between the stickers (εst) (Rubinstein and Dobrynin, 1997)(Ishida and Tanaka, 1997)(Se-

menov and Rubinstein, 1998)(Dobrynin, 2004). Associative polymers generally undergo two

kinds of associations, one between stickers from within the same chain, called intra-chain

association and the other between stickers from different chains, known as inter-chain as-

sociations. Both these associations lead to the formation of micelles and networks at fairly

low concentrations. Depending on the solution temperature, associative polymer solutions

undergo a phase transition and get separated into a sol phase (with finite size clusters) and

a gel phase (with system spanning infinite size clusters) (Kumar and Douglas, 2001)(Baljon

et al., 2007). There has been a long standing debate regarding the incipient concentra-

tion for gelation as there are several definitions proposed in the literature based on the

free chain concentration, the cluster-size distribution or the scaling of viscosity, which all

correspond to different signatures of gelation (Flory, 1941)(Stockmayer, 1943)(Stockmayer,

1944)(Ishida and Tanaka, 1997)(Semenov and Rubinstein, 1998). In particular, Flory (Flory,
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1941) and Stockmayer (Stockmayer, 1943)(Stockmayer, 1944) independently proposed two

different models to characterise the post-gel regime, based on differing hypotheses of cluster

dynamics. Ishida and Tanaka (Ishida and Tanaka, 1997) subsequently developed a framework

based on lattice theory to explore the consequences of these differing pictures. They showed

that the number average chain-cluster size in the sol phase goes through a maximum at the

gelation concentration in Flory’s model, while it remains constant in Stockmayer’s model,

subsequent to the onset of gelation. Using an argument based on mean field theory, Rubin-

stein and Semenov obtain predictions in line with Flory’s model (Semenov and Rubinstein,

1998). Dobrynin (Dobrynin, 2004), on the other hand, developed a mean field theory for

associative polymer solutions based on lattice geometry and blob theory and derived scaling

relations to correlate the dependence of the fraction of intra-chain (p1) and inter-chain (p2)

conversions of stickers on the microscopic system parameters at equilibrium and derived ex-

pressions that identify the onset of gelation. In this work we have developed a multi-particle

Brownian dynamics algorithm with hydrodynamic interactions (HI) to simulate multi-sticker

associative polymer solutions in dilute and semi-dilute regimes and compared our model with

the predictions of the scaling theory by Dobrynin (Dobrynin, 2004).

We have identified three static signatures of gelation based on the percolation transi-

tion (Stauffer and Aharony, 1992), the maxima in the free-chain concentration (Semenov

and Rubinstein, 1998) and cluster-size distribution for chains (Kumar and Douglas, 2001).

However, the relationship between these static measures and the dynamics and rheological

response of associative polymer solutions remains unknown. As a result of the formation of

complex topologies in these polymer solutions, the relaxation behaviour is far more compli-

cated than can be explained by a simple Maxwell model. We have performed multi-chain

Brownian dynamics simulations to examine the dynamics and linear viscoelastic behaviour

of multi-sticker associative polymer solutions at finite concentrations. Equilibrium and shear

flow simulations are carried out to calculate linear viscoelastic properties such as zero-shear

rate viscosity and dynamic moduli (G′ & G′′). We have investigated the scaling with con-

centration of different characteristic relaxation times computed based on the decay of auto-

correlation functions and the scaling of dynamic moduli, which show a cross-over in the

scaling exponent near the concentration corresponding to the maxima in the free chain con-
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centration. Additionally, we have examined the scaling of the zero-shear rate viscosity with

concentration and interestingly found that the scaling exponent for the zero-shear rate vis-

cosity also shows a cross-over near the maximum in the free chain concentration. We also

explore how the time scales associated with the formation and breakage of chain clusters

affect the overall relaxation behaviour over a range of concentration.

The multi-particle Brownian dynamics algorithm developed in this work to study the

static and dynamic properties at equilibrium, along with the non-equilibrium rheological

response across a wide range of concentrations in the dilute and semi-dilute regimes for asso-

ciative polymer solutions, has enabled many of the unresolved questions about the dynamics

of associative polymer solutions to be addressed satisfactorily.

Another system studied in the present thesis consists of dilute solutions of polymeric

rings. Much of the dynamic and rheological response of polymer solutions are dependent

on the topological structure of the polymer chains. In many cases, the ends of the polymer

chains determine the static and dynamic behaviour of polymer solutions. For instance, the

relaxation behaviour of dangling ends in solutions of associative polymers or the decay of

end-to-end vector auto-correlation functions of polymer chains determine the dynamics and

viscoelasticity of the system. Ring polymers, on the other hand, are a special class of poly-

mers which do not have any ends. Due to such unique topology, solutions of ring polymers

exhibit properties which are not commonly observed in their linear chain counterparts. In

this sub-project we have studied the universal static and dynamic properties of polymeric

rings in the dilute solution using Brownian dynamics simulations. The universality of the

ratio of the radius of gyration to the hydrodynamic radius (URD) as a function of solvent

quality is well known for linear polymers. Here we show the universality of the ratio URD for

ring polymers as a function of solvent quality. Besides, a comparative study has been done

on the swelling ratio of the radius of gyration (αg), hydrodynamic radius (αH) and mean

stretch (αX) for linear and ring polymers. Using the swelling curve and universal ratio, URD,

we have suggested a method to determine the solvent quality of polymeric rings, which is

fundamentally important to model ring polymer solutions and predict the dynamics of real

experimental system more accurately.
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Chapter 1

Introduction

1.1 Dynamics of associative polymer solutions

In recent times, associative polymers have introduced a new domain in developing advanced

materials, and many scientists and engineers have ventured into the quest to unravel and

understand the static and dynamic properties of these special kinds of polymers. Associa-

tive polymers have sticky groups that can form reversible physical bonds which leads to

formation of reversible gels and networks. These polymers are broadly classified into two

classes, namely, telechelic polymers and multi-sticker polymers. Telechelic polymers have

attractive end groups, whereas, multi-sticker polymers have sticky groups along the polymer

backbone. Understanding the static and dynamic behaviour of associative polymers is of

major interest to tune their properties for various applications such as rheology modifiers,

adhesives, biomedical implants, adsorbents and many more. For instance, they are widely

used as rheology modifiers in the coating, paint, water-treatment and enhanced oil-recovery

industries, since their influence on solution viscosity can be adjusted molecularly by vary-

ing the chemistry and geometry of the associations, and macroscopically by changing the

temperature or concentration (Glass et al., 1991)(Tripathi et al., 2006). At sufficiently high

concentrations, when the suspending medium is water, associative polymers form hydrogels

whose transient viscoelastic networks have found numerous applications as tissue engineering

scaffolds (El-Sherbiny and Yacoub, 2013), food thickeners (O’Leary et al., 2010), drug deliv-

ery carriers, soft electronics, and sensors (Rossow and Seiffert, 2015)(Voorhaar and Hoogen-
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Chapter 1. Introduction

boom, 2016)(Tsitsilianis, 2010). Many of these uses involve the application of flow fields that

influence and control the formation and duration of associations, and the evolution of the

transient network structures. A fundamental understanding of the nonequilibrium dynamics

of physically associative polymers is consequently essential for the rational design of these

systems. Successful formulation of associative polymer systems for these various applications

has largely rested on using polymer chemistry to engineer innovative polymers, followed by

extensive experimental investigation to select the most suitable candidates. It is not possible

currently to specify a priori the particular macromolecular architecture, the precise number,

strength and location of the attractive groups, the appropriate solution temperature and

concentration, and the particular flow conditions which would achieve optimal product per-

formance. Several computational studies have been carried out aimed at making progress in

this direction, i.e., towards improving the understanding of the non-equilibrium response of

network structures, and deciphering the connection between molecular topology and macro-

scopic behaviour, using a variety of different techniques based on coarse-grained bead-spring

chain models for polymers (van den Brule and Hoogerbrugge, 1995)(Hernández Cifre et al.,

2003)(Hernández Cifre et al., 2007)(Sprakel et al., 2009)(Myung et al., 2015)(Castillo-Tejas

et al., 2016). In this work, we propose a novel alternative approach based on a muliti-particle

Brownian dynamics simulation methodology that accounts for hydrodynamic interactions,

and which can potentially capture both static and dynamic properties at equilibrium, along

with the nonequilibrium rheological response of associative polymer solutions, across a range

of concentrations that span the dilute and unentangled semidilute regimes.

In solution, association between the sticky groups can take place due to hydrophobic

interaction, hydrogen bonds, reversible covalent bonds, ionic interaction or metal-ligand co-

ordination. These interactions lead to formation of cross-links and networks as shown in the

Fig. 1.1. The structures formed in the solution depend on the position of sticky groups, num-

ber of stickers per chain, strength of association between the stickers, concentration of the

solution and also on the solution temperature (Rubinstein and Dobrynin, 1997)(Chassenieux

et al., 2011). Rubinstein and Dobrynin (Rubinstein and Dobrynin, 1997) have discussed some

important properties and phenomena related to solutions of associative polymers. They note

that sol-gel phase transition is an important characteristic of associative polymer solutions
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Figure 1.1: Example of multiple crosslinks in telechelic polymers. (a) Ionic multiplets, (b) hy-
drophobic aggregates. Numbers show multiplicity of junctions. Reproduced from(Tanaka, 2011)

and the concentration and temperature of the solution are the guiding factors for such a phase

transition. The concentration at the onset of gelation in different types of solvent is still a

debated issue. In the seminal work on the scaling theory of associative polymer solutions,

Rubinstein and Semenov (Semenov and Rubinstein, 1998)(Rubinstein and Semenov, 2001)

have proposed analytical predictions for gelation transition and inter-relationship among

various parameters such as, chain length, number of stickers per chain, solution concentra-

tion and strength of association. Dobrynin further developed the scaling theory to establish

relationships between microscopic interactions between stickers and monomers with system

parameters and chain topology (Dobrynin, 2004). In order to validate the proposed simu-

lation methodology, we report here the results of a detailed comparison of its predictions

of equilibrium static properties with the analytical predictions of the scaling theories of Se-

menov and Rubinstein (Semenov and Rubinstein, 1998) and Dobrynin (Dobrynin, 2004).

As will be seen, these results set the stage for a subsequent study of the equilibrium and

nonequilibrium dynamics of associative polymer solutions within a systematic and coherent

framework.

The viscoelastic and rheological behaviour of associative polymers emerges from the

dynamical swapping between various chain conformations in response to the deformation

imposed on the gels and network. As a result, the relationship between structure and the

rheological response of associative polymers is a complex one. The differences in response

between telechelic and multi-sticker polymers highlight the striking influence that molecular
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Figure 1.2: Storage and loss moduli for (a) telechelic (reproduced from (Suzuki et al., 2012)), and
(b) multi-sticker (reproduced from (Wagner and McKinley, 2017))

topology and dynamics have on macroscopic observables (Suzuki et al., 2012)(Wagner and

McKinley, 2017). The loss and storage moduli of telechelic associative polymer systems

are typically well described by a Maxwell model with a single relaxation time as shown in

Fig. 1.2 (a) for HEUR (hydrophobic ethoxylated urethane) solution (Suzuki et al., 2012).

On the other hand, multi-sticker systems exhibit broad power law relaxation spectra with no

readily discernible characteristic time scale, as displayed in Fig. 1.2 (b) for saliva (Wagner

and McKinley, 2017). Origin of the differences in behaviour between these two systems is

currently not well understood. The scale-free fractal microstructure of the transient network

for multi-sticker systems is believed to lead to scale-free power law relaxation behaviour.

However, this has not been systematically investigated to date.

Experiments have shown that telechelic solutions exhibit characteristic shear thickening

behaviour at intermediate shear rates (Suzuki et al., 2012), as shown in Fig. 1.3 (a), while it is

not necessarily present in multi-sticker solutions. Fig. 1.3 (b) demonstrates the elimination of

shear thickening with the addition of urea to a multi-sticker polysaccharide solution (Mamaku

gum), due to the disruption of hydrogen bonds that are responsible for the development

of the transient network (Jaishankar et al., 2015). The existence of shear thickening at
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tbh]

Figure 1.3: Viscosity as a function of shear rate in (a) a telechelic HEUR solution (from (Suzuki
et al., 2012)) and (b) a polysaccharide (Mamaku gum) solution in which interactions are driven by
hydrogen bonding (from (Jaishankar et al., 2015))

intermediate shear rates is attributed to the delicate interplay of the finite extensibility of

chains segments, and enhanced numbers of stress-bearing polymer strands resulting from

the flow (Tripathi et al., 2006). Recent experimental observations (Suzuki et al., 2012),

however, suggest that the network structure remains close to the equilibrium state and

demands an alternative explanation for the presence of shear thickening. There is no general

agreement regarding the origin of shear thickening in telechelic polymer solutions, nor is

its absence in multi-sticker solutions clearly understood. Moreover, there is no currently

existing comprehensive understanding of the interplay between the microscopic topology

and macroscopic viscoelasticity of associative polymer solution. In the present work we

attempt to address some of these phenomena in order to bridge the gap in knowledge of

the relationships between the viscoelasticity and microstructure in the case of multi-sticker

associative polymer solutions.

1.2 Dynamics of ring Polymers

Polymer solutions have become an ubiquitous part in the development of a wide variety of

consumer goods, medical products and technological applications such as paints and coating,

drug delivery systems, food processing and so on. A major role in the development of

many of these applications is played by the topological structure of the polymer chains.
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Ring polymers are a special class of polymer which is devoid of free ends. These polymers

represent the same class of molecules as the circular DNA found in chromosomes of bacteria,

mitochondria, chloroplasts. Due to the absence of any free ends, polymeric rings show

some unique static and dynamic behaviours. For instance, unlike linear DNA, replication

in circular or ring DNA is much easier. However, there are significant challenges related

to knotting and entanglement in circular DNA. Ring polymers also have a phenomenal

effect on modifying the rheological behaviour of a polymer solution. Whereas much of our

understanding regarding the dynamics of linear polymers is well established, the properties

of ring polymers are not yet fully understood. One such phenomenon is the transition from

tank-treading to tumbling motion of polymeric rings in shear flow (Chen et al., 2013)(Wang

et al., 2019). Recent studies have attempted to visualise and explain this problem based

on single molecule experiments (Tu et al., 2020) and numerical simulations (Chen et al.,

2013)(Wang et al., 2019). However, the effect of the strength of shear flow and molecular

orientation during the flow on such transition is not properly understood. Moreover, it

should be admitted that even before understanding these non-equilibrium phenomena in the

solution of ring polymers, it is essential to understand the equilibrium static and dynamic

properties for these polymers. In case of linear homopolymers, ratios involving radius of

gyration, hydrodynamic radius or mean stretch are found to show universal behaviour as

a function of solvent quality in the limit of infinite chain length (Sunthar and Prakash,

2006)(Zhu et al., 2016). However, for polymeric rings the universality of these properties

as a function of solvent quality and in presence of hydrodynamic interactions are not yet

well-established.

In this project we have developed a Brownian dynamics simulation algorithm to simulate

polymeric rings in the dilute limit which has the potential to investigate and explain the

microscopic phenomena associated with the unique behaviours discussed above. At present

we have carried out equilibrium simulations to establish the universality of different static

and dynamics properties of dilute solutions of ring polymers. This work is fundamentally

important for the development of a model for ring polymer solutions that is capable of

predicting experimental observations of ring polymer dynamics, at equilibrium and in flow.

The thesis is organised as follows. In Chapter 2 we introduce the modelling and simulation
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methodology for associative polymer solutions. The swelling behaviour of sticky polymers

in dilute solutions is investigated in Chapter 3. Chapter 4 discusses the universal static

properties of associative polymer solutions in the dilute and semi-dilute regimes. Different

static signatures of gelation in associative polymer solutions are also studied in this chapter.

The dynamic signatures of gelation in associative polymer solutions are characterized in

Chapter 5. The universality of the equilibrium static and dynamic properties of dilute ring

polymer solutions is examined in Chapter 6. Finally, the key conclusions are summarised in

Chapter 7.
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Chapter 2

Modelling and Simulations

In this chapter we discuss the details of the associative polymer model and basic governing

equations of the Brownian dynamics (BD) simulation. Although several previous computa-

tional studies of associative polymer solutions have been based on Brownian dynamics as

the simulation technique, they differ from each other in a number of different aspects. For

instance, while in some studies entire micelles are coarse-grained to single particles (Sprakel

et al., 2009)(Park and Ianniruberto, 2017), others represent individual polymer chains as

bead-spring dumbbells (van den Brule and Hoogerbrugge, 1995)(Hernández Cifre et al.,

2003)(Cass et al., 2008). Whereas in some recent investigations of the shear flow of associa-

tive polymer solutions, bead inertia has been taken into account in the context of Langevin

dynamics of bead-spring chains (Omar and Wang, 2017)(Furuya and Koga, 2018), in earlier

enquiries, associative polymers in shear flow have been modelled as non-interacting dumb-

bells (Hernández Cifre et al., 2003), or non-interacting bead-spring chains (Hernández Cifre

et al., 2007), with beads switching between associated and dissociated states. None of these

previous investigations, however, have taken hydrodynamic interactions into account.

The recent numerical investigations of associative polymer solutions by the Jülich group

using multiparticle collision dynamics (MPCD) (Myung et al., 2014)(Myung et al., 2015), and

by Castillo-Tejas et al. (Castillo-Tejas et al., 2016) using nonequilibrium molecular dynam-

ics (NEMD), automatically account for hydrodynamic interactions through the exchange of

momentum between the beads on polymer chains and solvent molecules, since the latter are

simulated explicitly. By implementing an attractive interaction potential between selected
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beads on the chain to model the association between sticker monomers, these pioneering

studies have essentially extended the framework for studying semidilute polymer solutions

to one that is capable of describing associative polymer solutions. In this work we intro-

duce an alternative approach for describing associative polymer solutions that accounts for

hydrodynamic interactions and is based on Brownian dynamics simulations. As in recent

extensions of MPCD and NEMD, the proposed methodology is an extension of an algo-

rithm developed previously to study semidilute polymer solutions, but in contrast to these

methods, treats the solvent implicitly (Jain et al., 2012).

In Brownian dynamics simulations of associative polymer solutions, the forces acting on

the monomers in a chain are broadly classified into two groups. (i) Non-bonded interactions

between sticker-sticker, sticker-monomer or monomer-monomer, arising due to the short-

range excluded volume or associative interactions and long-range hydrodynamic interactions.

(ii) Bonded interactions due to the inter-linkages of the monomers in a polymer chain. In

the following sections the modelling of each of these interactions are discussed in the context

of BD simulations.

2.1 Polymer Model

In a BD simulation, polymer chains are modelled as a sequence of beads connected by springs,

commonly known as a bead-spring chain model (Bird et al., 1987a). Each polymer chain is

coarse-grained into a sequence of Nb beads connected by Nb − 1 massless springs (as shown

schematically in Fig. 2.1) that represent the entropic force between the adjacent beads. For

associative polymers sticky groups are distributed along the chain backbone, as represented

by the green beads in Fig. 2.1. In the limit of finite concentration an ensemble of such

bead-spring chains is considered to be immersed in a Newtonian solvent. The simulation is

set by introducing a cubic box of edge length L with periodic boundary conditions (PBC) in

all directions to simulate an infinite system (Frenkel and Smit, 1996). Within the simulation

box a total of Nc chains each having Nb beads are generated to produce a bulk monomer

concentration of c = N/V , where, N = Nb×Nc and V = L3 is the volume of the simulation

box.
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Figure 2.1: Schematic of bead-spring chain polymer model for associative polymer. Qµ−1 =
rµ − rµ−1 represents the connector vector between bead µ − 1 and µ. The green coloured beads
represent the stickers.

2.2 Role of Hydrodynamic Interactions in Brownian

Dynamics Simulations

We provide here a brief discussion of the role of hydrodynamic interactions in BD simulations.

Hydrodynamic interactions have been successfully incorporated over the past several decades

in computational studies of polymer solution dynamics in the dilute concentration regime,

both by methods that treat the solvent explicitly, such as non-equilibrium molecular dynam-

ics (NEMD) (Aust et al., 1999)(Petera and Muthukumar, 1999)(Kairn et al., 2004)(Kröger,

2004)(Todd and Daivis, 2007), and by Brownian dynamics (BD) simulations (Ermak and Mc-

Cammon, 1978)(Fixman, 1981)(Zylka, 1991)(Jendrejack et al., 2000)(Prabhakar and Prakash,

2002)(Larson, 2005)(Prakash, 2019). In BD, solvent degrees of freedom are eliminated com-

pletely and their effect is taken into account through long-range dynamic correlations in the

stochastic displacements of the beads. These studies have established beyond doubt that

the inclusion of hydrodynamic interactions is essential for investigating dynamic properties

not only in the equilibrium and linear viscoelastic regimes, but also the far from equilibrium

non-linear rheological material functions (Larson, 2005)(Shaqfeh, 2005)(Prakash, 2019). Ac-

counting for hydrodynamic interactions in the semidilute regime of concentration, on the
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other hand, is challenging since both intra and inter-molecular interactions need to be taken

into consideration, particularly in the case of the latter since hydrodynamic interactions

are long-ranged in space. Significant advances have been made over the last decade in

our capacity to simulate semidilute polymer solutions due to the development of a variety

of mesoscopic simulation techniques based on coarse-grained bead-spring chain models for

polymer molecules (Ahlrichs and Dünweg, 1999)(Stoltz et al., 2006)(Kapral, 2008)(Dünweg

and Ladd, 2009)(Gompper et al., 2009)(Jain et al., 2012)(Saadat and Khomami, 2015)(Jain

et al., 2015). These algorithms are able to describe long polymers that overlap with each

other while maintaining a low segment density, and are also able to capture the interaction of

segments with each other through solvent-mediated hydrodynamic interactions. While some

of the simulation techniques, such as the hybrid lattice Boltzmann-molecular dynamics (LB-

MD) approach (Ahlrichs and Dünweg, 1999)(Dünweg and Ladd, 2009) and the hybrid mul-

tiparticle collision dynamics-molecular dynamics (MPCD) method (Kapral, 2008)(Gompper

et al., 2009) are explicit solvent methods, the Brownian dynamics simulation technique, as

mentioned above, treats the solvent implicitly (Stoltz et al., 2006)(Jain et al., 2012)(Saadat

and Khomami, 2015)(Jain et al., 2015).

As is well known, hydrodynamic interactions (HI) begin to get screened at the overlap

concentration c∗, and get completely screened only in a polymer melt (Rubinstein and Colby,

2003)(A.Jain et al., 2012). The effects of HI are confined at sufficiently long times (Ahlrichs

et al., 2001) to length scales below the size of a correlation blob, which shrinks with increasing

concentration. In the unentangled semidilute regime, hydrodynamic interactions essentially

determine the rich and complex dynamics of polymer solutions over a wide range of concen-

tration (Rubinstein and Colby, 2003)(A.Jain et al., 2012)(Prakash, 2019). It can therefore

be anticipated that hydrodynamic interactions will also significantly influence dynamic prop-

erties, like the on-and-off time scales for stickers, single-chain and network relaxation time,

of associative polymer solutions studied in the present work. In the following section we

briefly explain the governing equations for the BD simulations and the expressions used to

model hydrodynamic interactions, the excluded volume interaction and spring forces. The

algorithm implemented for the simulations of associative polymer solutions is an extension

of the code developed by Jain et al. (Jain et al., 2012)(Jain, 2013) to simulate semi-dilute
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solutions of homopolymers.

2.3 Governing Equations For Brownian Dynamics Sim-

ulation

The governing equation in BD simulations is a stochastic differential equation describing

the evolution of the position vector rµ(t) of a bead µ with time t. The Euler integration

algorithm for the non-dimensional Itô stochastic differential equation governing the position

vector rµ(t) is given in it’s most general form as (Stoltz et al., 2006),

rµ(t+ ∆t) = rµ(t) + (κ · rν(t)) ∆t+
∆t

4

N∑
ν=1

Dµν · (Fs
ν + FSDK

ν ) +
1√
2

N∑
ν=1

Bµν ·∆Wν

(2.1)

Here the length and time scales are non-dimensionalised with lH =
√
kBT/H and λH =

ζ/4H, respectively, where T is the absolute temperature, kB is the Boltzmann constant,

H is the spring constant, and ζ = 6πηsa is the Stokes friction coefficient of a spherical

bead of radius a where ηs is the solvent viscosity. The quantity κ = (∇v)T is a 3 × 3

tensor, with v corresponding to the unperturbed solvent velocity field. In absence of any

external flow field this term is considered to be zero. ∆Wν is a non-dimensional Wiener

process with mean zero and variance ∆t. The components of ∆Wν are obtained from a real-

valued Gaussian distribution with zero mean and variance ∆t. Bµν is a non-dimensional

tensor whose evaluation requires the decomposition of the diffusion tensor Dµν , defined as

Dµν = δµνδδδ + ΩΩΩµν , where δµν is the Kronecker delta, δδδ is the unit tensor, and ΩΩΩµν is the

hydrodynamic interaction tensor. Defining the matrices D and B as block matrices consisting

of N × N blocks each having dimensions of 3 × 3, with the (µ, ν)-th block of D containing

the components of the diffusion tensor Dµν , and the corresponding block of B being equal

to Bµν , the decomposition rule for obtaining B can be expressed as B · Bt = D. In the

present study, the regularized Rotne-Prager-Yamakawa (RPY) tensor is used to compute

hydrodynamic interactions (HI),
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ΩΩΩµν = ΩΩΩ(rµ − rν) (2.2)

where

ΩΩΩ(r) = Ω1δδδ + Ω2
rr

r2
(2.3)

with

Ω1 =


3
√
π

4

h∗

r

(
1 +

2π

3

h∗2

r2

)
for r ≥ 2

√
πh∗

1− 9

32

r

h∗
√
π

for r ≤ 2
√
πh∗

and

Ω2 =


3
√
π

4

h∗

r

(
1− 2π

3

h∗2

r2

)
for r ≥ 2

√
πh∗

3

32

r

h∗
√
π

for r ≤ 2
√
πh∗

The hydrodynamic interaction parameter h∗ is the dimensionless bead radius in the bead-

spring model, defined as h∗ = a/(
√
πkBT/H). The decomposition of the diffusion tensor has

been achieved with the help of Fixman’s polynomial approximation based on the Chebyshev

technique which has been widely used earlier for both single chain (Fixman, 1986)(Prab-

hakar and Prakash, 2004)(Prabhakar et al., 2004) and multi-chain BD simulations (Jain

et al., 2012)(Stoltz et al., 2006)(Saadat and Khomami, 2015). The challenge of simulat-

ing semidilute solutions arises from the sum
∑

ν Dµν · (Fs
ν + FSDK

ν ) in Eq. (2.1), which is

conditionally convergent. Here it is evaluated using an optimized Ewald summation tech-

nique developed previously by Jain et al. Jain et al. (2012). At equilibrium, in absence of

any external flow field the static properties are found to be independent of hydrodynamic

interactions. Under such a condition HI is switched off in the BD simulations by setting

ΩΩΩµν = 0.

Fν represents all the non-hydrodynamic forces acting on bead ν due to all other beads.

For an associative polymer solution this can be represented as Fν = Fs
ν + Fasso

ν + Fexv
ν . Here

Fs
ν is the force due to bonded interaction between adjacent beads, Fasso

ν is the sticker-sticker

associative interaction force, Fexv
ν is the force due to sticker-monomer or monomer-monomer

excluded volume interaction. In the following section details of the models used for the

bonded and non-bonded interactions are discussed in the context of associative polymer
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solutions.

2.4 Bonded Interactions

In the context of the bead-spring polymer chain model, the bonded interaction represents

the force exerted by the connecting springs between adjacent beads. In the present study

we have used a finitely extensible non-linear elastic (FENE) potential to model the entropic

spring force (Warner, 1972). FENE force law consists of a spring constant that increases with

increase in extension, which limits the maximum stretchability of the polymer chains. Such

a model is useful to explain important rheological observations, such as the shear thinning

of polymer solutions (Ryder and Yeomans, 2006). The spring force acting on bead ν is

represented as Fs
ν = Fc(Qν) − Fc(Qν−1), where Fc(Qν−1) is the force acting on the spring

connecting bead ν−1 and ν along the direction of the connector vector, as shown in Fig. 2.1,

where Qν−1 = rν − rν−1. The FENE spring potential is given as,

UFENE = −1

2
Q2

0 ln

(
1− r2

Q2
0

)
(2.4)

where Q0 is the dimensionless maximum stretchable length of a single spring, and kBT is

used to non-dimensionalise energy. Note that the notation Q2
0 used here is the same as the

more commonly used FENE b-parameter (Bird et al., 1987a)(Prabhakar and Prakash, 2004).

The spring force on a bead resulting from UFENE is denoted by Fs
ν .

2.5 Non-bonded Interactions

The attractive and repulsive components of the monomer-monomer, sticker-monomer or

sticker-sticker interactions are modelled using a modified Lennard Jones potential (SDK

potential) proposed by Soddemann, Dünweg and Kremer (Soddemann et al., 2001), which
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Figure 2.2: Graphical representation of the SDK potential, USDK, as a function of the distance
between interacting molecules, r, for different values of well depth ε.

is graphically represented in Fig. 2.2. The potential in its dimensionless form is given by,

USDK =



4

[(σ
r

)12
−
(σ
r

)6
+

1

4

]
− ε; r ≤ 21/6σ

1

2
ε

[
cos (α

( r
σ

)2
+ β)− 1

]
; 21/6σ ≤ r ≤ rc

0; r ≥ rc

(2.5)

where rc is the cutoff radius, ε is the potential well depth and α and β are constants. The

variable r and parameters σ and rc are non-dimensionalised with respect to the length scale

lH and the potential well depth ε is non-dimensionalised in terms of kBT . Here σ is the

non-dimensional distance at which conventional Lennard-Jones potential goes to zero. The

value of the non-dimensional distance, σ, is taken to be 1 in the present study. The repulsive

part of the potential for 0 < r ≤ 21/6 σ is modelled by a truncated Lennard-Jones (LJ)

potential similar to the Weeks-Chandler-Anderson (WCA) potential (Weeks et al., 1971)

shifted by an amount of −ε (ε is a positive real number). The attractive tail is modelled
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by a cosine function whose derivative at r = 21/6 σ and cut-off r = 1.5σ is zero. Unlike

the LJ potential, which has a long attractive tail, the short ranged attractive tail of the

SDK potential smoothly approaches zero at a finite distance rc, which leads to an increase

in the simulation efficiency (Soddemann et al., 2001). In the Monte Carlo and molecular

dynamics simulations previously carried out by Soddemann et al. (Soddemann et al., 2001)

and Steinhauser (Steinhauser, 2005), the value of the cutoff radius, rc, was taken to be

1.5σ based on the interaction between the nearest neighbours. The constants α and β are

determined by applying the two boundary conditions, namely, USDK = 0 at r = rc, and

USDK = −ε at r = 21/6σ. Based on these two boundary conditions, α and β are calculated

by solving the following set of equations,

21/3α + β = π(rc
σ

)2
α + β = 2π

(2.6)

Considering the value of the cut-off radius rc = 1.5σ, Eq. (2.6) can be solved to determine

α = 3.1730728678 and β = −0.85622864544. This gives a smooth and continuous function

going from the repulsive to the attractive domain. It is worth noting that the strength of

attraction can be varied by changing the well depth ε without altering the repulsive part of

the potential. It provides a very good handle to control the strength of attraction between

the stickers without varying the hardcore repulsion. However, in the context of Brownian

dynamics simulations we have found that it is required to change the value of the cutoff

radius rc to 1.82σ in order to reproduce the asymptotic scaling at different solvent quality

for the polymer solutions. A detailed discussion on the rationale to choose the particular

value of rc is provided in Appendix A.

In associative polymer solutions, the potential well-depth for the backbone monomer-

monomer interaction is defined by εbb, whereas, that for the sticker-sticker interaction is

defined by εst. In the present study a sticker is modelled to associate with only one other

sticker, which is defined as the functionality (ϕ) of the stickers being equal to 1. For each pair

of monomers µ and ν, we introduce a Boolean variable qµν ∈ {0, 1}. qµν is zero whenever at

least one of the two monomers is a backbone monomer, while for a pair of sticker monomers,
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qµν is zero if no bond exists between the two stickers, and qµν = 1 for a bonded pair of sticker

monomers. The attractive strength, ε of the SDK potential for a pair of monomers µ and ν

is then given by

ε = (1− qµν) εbb + qµν εst (2.7)

where, as mentioned earlier, backbone monomer-monomer interactions are denoted by εbb,

and the sticker monomer-monomer interactions are denoted by εst. Typically, εst ≥ εbb. At

each time step, the simulation algorithm updates the variables qµν for stickers according to

the following simple rules:

1. Whenever two stickers µ and ν come within the cutoff radius of the SDK potential,

rc, the value of qµν is changed from zero to one, provided that both stickers are not

bonded to other stickers.

2. If three stickers are within the interaction range rc, the decision regarding which pairs

of beads stick together is made according to a scheme that depends on the bead num-

ber label of each of the stickers. Thus if stickers ζ, δ and ρ, with ζ < δ < ρ are

within interaction range rc, then ζ and δ form a pair with qζδ = 1, and the sticker

ρ remains unbound with qζρ = qδρ = 0. When more than three stickers are within

the interaction range, the same scheme is implemented by treating each bead pair in

turn and considering their respective bead number labels. While the choice of which

pairs to stick based on bead number labels may seem arbitrary, it turns out that the

scheme is effectively equivalent to picking the sticking pairs at random when three

or more stickers are within the interaction range. Since the probability of three and

higher body interactions amongst stickers is very low, and since we have considered a

large ensemble of chains distributed randomly in a simulation box (implying random

labelling of the stickers), the two schemes effectively produce the same results. This

is explicitly demonstrated in Appendix B by comparing the predictions of different

equilibrium static properties when the two different sticking rules are implemented.

3. As soon as the distance between two stickers µ and ν becomes greater than rc, qµν is

reset to zero, and new bondings may occur.
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A knowledge of the monomer coordinates and the values of qµν is clearly sufficient to calculate

the interaction energy of the system uniquely. For the sake of simplicity, we have implemented

a rule where bond formation or breakage is determined purely by whether sticker pairs are

within or outside the cut-off radius. Typically, bond formation or breakage is determined by

implementing a Monte-Carlo scheme based on a Boltzmann weight (Hoy and Fredrickson,

2009)(Sing and Alexander-Katz, 2011). In a sense, the current rule can also be considered

as a special case of a method based on a Boltzmann weight, where the activation energy

barrier for binding is zero, such that the probability of bond formation is unity whenever a

sticker pair is within the cut-off radius, while the activation energy for unbinding is infinite,

implying that bonds break only when the relative distance between previously stuck pairs is

larger than the cut-off radius.

2.6 Conclusions

The stochastic differential equation, Eq. 2.1, described in this chapter will be integrated for

different cases considered in the subsequent chapters. (i) The equilibrium static properties

are evaluated in Chapter 4 by setting κ = 0 and ΩΩΩµν = 0 in Eq. 2.1. (ii) In Chapter 5, the

equilibrium dynamics are studied with κ = 0 and ΩΩΩµν 6= 0, where, h∗ = 0.2. (iii) Simple

and oscillatory shear flow simulations are carried out in Chapter 5 with κ 6= 0 and h∗ = 0.2.

The same governing equations are used for simulations in the single chain dilute limit in

Chapter 3 and Chapter 6, but here HI is treated for a single chain rather than using an

Ewald sum.
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Chapter 3

Universality of the collapse transition

of sticky polymers

3.1 Introduction

Sticky polymer solutions consist of chains with sticky groups that can form reversible phys-

ical bonds, which in turn lead to the formation of reversible gels and networks. Due to the

relative affinity of sticky groups for each other, sticky polymer chains are more collapsed or

less swollen at a given temperature compared to the corresponding homopolymer made up

of only the backbone or non-sticky monomers of the same molecular weight. For example,

at the θ temperature for the homopolymer, simple linear polymer chains in a dilute solution

follow random walk (RW) statistics, whereas, the introduction of sticky groups leads to a de-

crease in the size of the chain due to relatively poorer solvent quality. Indeed the whole phase

diagram for homopolymers (Grosberg and Khokhlov, 1994)(Rubinstein and Colby, 2003) is

expected to be modified due to the presence of stickers (Semenov and Rubinstein, 1998)(Ru-

binstein and Semenov, 1998)(Dobrynin, 2004). In many applications like mist control or

drag reduction of aviation fuel, it is necessary to have long, swollen, physically associated

polymer chains in a single-phase solution (David et al., 2009b)(David et al., 2009a). For such

applications, it is important to estimate the renormalised solvent quality of a sticky polymer

solution in order to have some knowledge of chain conformations and the relative location

of the system in the phase-space of temperature and concentration.
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The universality of the swelling of the radius of gyration of a homopolymer relative to

its value in the theta state in the crossover regime between theta and athermal solvent

conditions is well established (Kumar and Prakash, 2003)(Miyaki and Fujita, 1981), and

known to independent of polymer-solvent chemistry. The addition of sticky monomers that

have an attractive affinity for each other along the polymer backbone reduces the quality of

the solvent, leading to an increase in the theta temperature of the sticky polymer solution. In

this chapter we address the question of how to compute the solvent quality of dilute sticky

polymer solutions and examine the swelling of the radius of gyration of a sticky polymer

relative to its value in the altered theta state. We carry out Brownian dynamics simulations

to show that the swelling of sticky polymers is also universal, and indeed identical to that

of homopolymers in the thermal crossover regime. Additionally, we find that the effective

monomer size under theta solvent conditions, is identical in dilute homopolymer and sticky

polymer solutions. As will be discussed subsequently, we consider the possibility that a

first-order collapse might also exist in a certain parameter region for the particular model

studied here, making the current observation a non-trivial one.

For homopolymers, it is well-known that in the limit of large molecular weight, static

properties of polymer chains in dilute solution, such as the radius of gyration Rg, follow uni-

versal power laws in both θ and athermal solvents. Furthermore, experiments and theoretical

studies indicate that in the region between θ and athermal solvents universal behaviour in

terms of crossover scaling is still observed. For such systems the mean size of the polymer

is a function of both the temperature (T ) and the molecular weight (M) which combine

to form a single variable, the solvent quality, z = k(1 − Tθ/T )
√
M , where Tθ indicates the

temperature corresponding to a θ-solvent and k is a chemistry-dependent constant. A plot

of the swelling ratio, αg, which is the ratio of Rg in a good solvent to that in a θ-solvent,

against the solvent quality z, for T > Tθ, collapses data on a universal master curve for a

wide variety of polymer-solvent systems with an appropriate choice of the constant k (Hay-

ward and Graessley, 1999)(Miyaki and Fujita, 1981)(Vidakovic and Rondelez, 1985)(Bercea

et al., 1999). Within the framework of Brownian dynamics (BD) simulations, this collapse

has been demonstrated by Kumar and Prakash (Kumar and Prakash, 2003).

To the best of our knowledge, there are no studies exploring the universal swelling be-
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haviour of dilute solutions of sticky polymers. Here we have used a novel potential, proposed

by Soddemann et al. (Soddemann et al., 2001) (which we denote as the SDK potential) to

investigate the effect of stickers on the solvent quality and the swelling behaviour of sticky

polymers in dilute solutions, using the methodology of Kumar and Prakash (Kumar and

Prakash, 2003). The sticky macromolecules are modelled as multi-sticker chains with f eq-

uispaced stickers positioned along the backbone of each chain (except at the chain ends where

there are no stickers) separated by ` spacer (or backbone) monomers. A sticker is assumed

to associate with only one other sticker (i.e. with functionality ϕ = 1). Such systems can be

easily designed in experiments (David et al., 2009b)(David et al., 2009a)(Guo et al., 2005).

The key idea is to investigate various systems characterised by different parameters, and

to check if the typical characteristics of a second-order θ collapse are observed. Since this

indeed appears to be valid in our model, we are able to verify the universality of the swelling

of sticky polymer solutions.

The advantage of using the SDK potential is that it can be used to represent both the

backbone monomer-monomer interactions, and the sticker monomer-monomer interactions,

with a simple choice of the attractive well-depth of the potential. In the former case this

is denoted by εbb, while in the latter it is denoted by εst. We find that the effective solvent

quality of a sticky polymer solution can be represented in terms of these variables, along

with the clear identification of the θ-temperature. As a consequence, the swelling of sticky

polymer chains can be examined as a function of the various parameters that control their

static properties.

This chapter consists of the following sections. Section 3.2 discusses the principal govern-

ing equations and the details of the various interactions. The estimation of the well depth

of the SDK potential that determines the θ-point for homopolymer solutions is described

in Section 3.3. The description of the universal swelling of homopolymers, which forms the

framework within which the universal behaviour of sticky polymer solutions is discussed, is

taken up in Section 3.4. The determination of the θ-temperature of sticky polymer solutions,

in terms of the appropriate value of the well depth of the SDK potential, is considered in

Sec 3.5.1, while the universal swelling of sticky polymers is examined in Sec 3.5.2. The main

conclusions of this chapter are summarised in Section 3.6. The optimisation of the cut-off
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radius of the SDK potential and the considerations that lead to the choice of a particular

value, are discussed in Appendix A.

3.2 Governing Equations and Simulation Details

In the present study we have simulated a single polymer chain, modelled as a sequence

of coarse-grained bead-spring chain with Nb beads connected by Nb − 1 entropic springs.

The evolution of the bead position vector, rµ, is governed by the following Itô stochastic

differential equation, as discussed in Section 2.3,

rµ(t+ ∆t) = rµ(t) +
∆t

4

N∑
ν=1

Dµν · (Fs
ν + FSDK

ν ) +
1√
2

N∑
ν=1

Bµν ·∆Wν (3.1)

The only difference between Eq. (3.1) and Eq. (2.1), described in Chapter 2, is in the treat-

ment of hydrodynamic interactions (HI). In the present case HI is treated considering a

single chain without any periodic images, which does not require the implementation of an

Ewald summation, as discussed in Chapter 2. In this work we have adopted an implicit

predictor-corrector algorithm, similar to that suggested by Öttinger (Öttinger, 1996) and

implemented in their study by Prabhakar et al. (Prabhakar and Prakash, 2004), to solve the

Itô stochastic differential equation.

A finitely extensible nonlinear elastic (FENE) spring potential, defined in Eq. 2.4, is

used to represent the interaction between adjacent beads. All the simulations reported in

this work use a value of Q2
0 = 50.0.

Note that a large value of Q0, as used here, implies a very soft potential that admits the

possibility of self-crossing of the chain. This would pose a severe problem if we were interested

in the dynamics of dense entangled systems. However, all our investigations in this thesis

aim at the study of statics and dynamics of polymer solutions in the dilute and semi-dilute

unentangled regimes. It is well known that in these regimes topological constraints do not

play a role. Rather on the contrary, self-crossings are expected to speed up the exploration

of phase space, and are hence advantageous for our purposes.

The excluded volume and associative interactions between pairs of beads are modelled by
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the SDK potential Soddemann et al. (2001), as described in Chapter 2, with a cutoff radius,

rc = 1.82σ.

From the sticking rules defined in Section 2.5, it becomes clear that the update rules give

rise to a well defined configuration space of the system in the sense of statistical mechanics,

such that the partition function exists. As long as there are only pairs of stickers µ and

ν within interaction range, it is clear that the corresponding qµν has to be one, while in a

situation, where, for example, three stickers are all within interaction range of each other,

there are three possibilities to form the bond, corresponding to the three sides of the triangle

formed by the three stickers. Since all three cases are dynamically accessible, each of them

must appear in the partition function. In this context, it should be emphasised that our

simulation setup aims at modelling reversible sticker bonds.

Note also that other update rules, and/or other values of ϕ, may well be conceivable,

which would then give rise to a different configuration space, and a correspondingly altered

statistical mechanics of the system.

In the current scenario, the presence of the additional degrees of freedom, qµν , poses

a question about the existence of a second-order θ transition. There are various exam-

ples in statistical mechanics where the coupling to an additional degree of freedom turns a

second-order phase transition into a first-order transition. Some of these examples, which

are relevant to the present work, are discussed in Section 3.6.

The simulations are carried out for different chain lengths, Nb, ranging from 25 to 90

beads per chain, with an equilibration run of about 8 Rouse relaxation times (estimated

analytically as given in Bird et al. (Bird et al., 1987a)) and a production run of 6 to 8

Rouse relaxation times with a non-dimensional time step size ∆t = 0.001. Data from each

independent trajectory in the simulations are collected at an interval of 1000 to 5000 non-

dimensional time steps over the entire production run and time averages are calculated over

each of the trajectories. Average equilibrium properties and error of mean estimates are

evaluated over an ensemble of such independent time averages consisting of 1000 to 2000

independent trajectories. In the case of sticky polymers, an additional pre-equilibration run

of 2 to 3 Rouse times is carried out with a chain without stickers.
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3.3 The θ-point for homopolymers

3.3.1 The radius of gyration

Figure 3.1: Comparison of the ratio Rg2/(Nb − 1) as a function of the strength of interaction, εbb,
for different values of chain length, Nb. The solid lines represent the results obtained by Steinhauser
(Steinhauser, 2005) for Nb = 50 and Nb = 100 and the broken lines are the results obtained from
BD simulation.

For a linear polymer chain, the mean-squared radius of gyration (R2
g) follows the universal

scaling law R2
g ∼ (Nb − 1)2ν , where,

R2
g := 〈R2

g〉 =
1

2N2
b

Nb∑
p=1

Nb∑
q=1

〈r2pq〉 (3.2)

with angular brackets representing ensemble averages, and rpq = |rq − rp| being the inter-

bead distance. The value of the Flory exponent, ν, depends on the solvent quality. At the

θ-temperature, linear polymer chains follow RW statistics, with ν = 1/2, leading to the ratio

R2
g/(Nb − 1) to be independent of the chain length, Nb. Whereas, in the case of good and

poor solvents, ν takes the values 3/5 and 1/3, respectively (Rubinstein and Colby, 2003).
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For polymer chains with the SDK potential representing the excluded volume force, the

temperature dependence can be captured with the potential well-depth, εbb. The value, εbb =

0 (which is equivalent to a WCA potential), represents the athermal limit, where the chain is

fully swollen. With increasing values of εbb, a unique value is reached, at which the repulsive

and attractive interactions between pairs of beads are precisely balanced, leading to θ-like

conditions. The value of εbb at the θ-point can be estimated by plotting the ratio R2
g/(Nb−1)

versus εbb for different chain lengths, Nb, and finding the point of intersection at which curves

for different values of Nb intersect, as shown in Fig. 3.1 (Steinhauser, 2005)(Huissmann

et al., 2009). In Fig. 3.1 we have reproduced the results obtained by Steinhauser for a single

homopolymer chain (Steinhauser, 2005), where, FENE spring is used with a spring constant

H = 30kBT/σ
2 and finite extensibility parameter b = 2.25. The simulations are carried out

with a value of the cutoff radius for SDK potential, rc = 1.5σ. The value of σ is chosen

to be unity to make our length scale comparable with the length scale used by Steinhauser.

BD simulations of a single polymer chain are carried out with 25 and 50 beads per chain for

εbb values ranging from 0.2 to 1.0.

Fig. 3.1 shows a very good agreement of the BD simulations with the published re-

sult (Steinhauser, 2005). The value εbb ∼ 0.66, where all the curves intersect, is identified

as the theta point. On the other hand as εbb → 0, we obtain the athermal limit, where

R2
g ∼ (Nb− 1)1.2. Beyond εbb equal to 0.7 the chain is in totally collapsed regime and follows

the poor solvent scaling R2
g ∼ (Nb − 1)2/3 (Steinhauser, 2005). In this context, it can be

perceived that an advantage of the SDK potential over the conventional LJ potential is that

the complete range of solvent qualities, from poor to athermal, can be explored by varying

the single parameter, εbb. It has been found that although the universal scaling laws hold

in θ, good and poor solvent for a bead-spring chain interacting with the SDK potential and

FENE spring force law with constant H = 30kBT/σ
2 and b = 2.25 (stiff spring), it fails to re-

produce the scaling with a relatively non-stiff spring, such as with parameters H = kBT/σ
2

and b = 50.0. This issue has been resolved by judiciously choosing the cutoff radius, rc,

which is discussed further in Appendix A.

Following this procedure, the θ-point for a homopolymer chain with beads connected by

FENE springs having a maximum stretchable length of Q0
2 = 50.0, and rc = 1.82σ as the
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cut-off radius of the SDK potential, is found to occur at εbb = εθ = 0.45, as displayed in

Fig. 3.2

Figure 3.2: The ratio R2
g/(Nb− 1) versus the well depth of the SDK potential, εbb, to estimate the

θ-point for cutoff radius rc = 1.82σ. The symbols represent simulation data and the dotted lines
are drawn to guide the eye. The θ-point is estimated as the intersection of all the curves and leads
to εbb = 0.45.

3.3.2 The second virial coefficient

In addition to the determination of the θ-point from the scaling of radius of gyration, there

is an alternative method based on the second osmotic virial coefficient (B2), which involves

the determination of the potential of mean force, U(r), between a pair of polymer chains

with their centres of mass separated by a distance r (Dautenhahn and Hall, 1994)(Withers

et al., 2003)(Narros et al., 2013). Following the procedure discussed by Dautenhahn et

al. (Dautenhahn and Hall, 1994), U(r) is calculated as follows. Two independent chain

configurations are chosen from two sets of equilibrated single chain conformations (each

having 2000 conformations) and are randomly oriented with respect to each other, with

their centres of mass separated by a distance r. For a set of values of r ranging from 0
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(a) (b)

Figure 3.3: (a) The effective potential, U(r)/kBT , as a function of the separation distance, r/Rg,
between the centres of mass of a pair of homopolymer chains at different values of potential well
depth, εbb. (b) The second osmotic virial coefficient, B2, as a function of potential well-depth, εbb,
for different chain lengths. The estimated value of the θ-point, εθ, from the second virial coefficient
is 0.42± 0.03.

to 5 times the radius of gyration, all such possible two chain configurations (about 4 × 106

configuration pairs) are considered. For each configuration pair i, the interaction energy,

φi(r), between the two chains is evaluated by computing the pair-wise potential for all pairs

of beads, one taken from each chain such that

φi(r) =

Nb∑
p=1

Nb∑
q=1

USDKi(rpq). (3.3)

Here φi(r) is computed using the SDK potential to account for the pair-wise interaction of

the beads and the indices p and q corresponds to chain 1 and 2, respectively. Finally the

effective potential is evaluated from φi(r) from the expression

exp (−U(r)/(kBT )) = 〈exp (−φi(r)/(kBT ))〉 (3.4)
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where the term on the right hand side of Eq. (3.4) is an ensemble average over all con-

figuration pairs. The second virial coefficient is then easily calculated by evaluating the

integral Rubinstein and Colby (2003)

B2 =

∫ ∞
0

2πr2(1− exp[−U(r)/kBT ]) dr. (3.5)

Positive values of B2 indicate that the polymer solution lies in the good solvent regime, while

negative values indicate that it is under poor solvent conditions. At the θ-point, B2 = 0.

Figure 3.3 (a) shows the effective potential, U(r)/kBT , as a function of the distance,

r/Rg, between the centres of mass. For short chains, the potential of mean force depends

on chain length, but for sufficiently long chains it saturates within error bars (Krakoviack

et al., 2003)(Withers et al., 2003)(Narros et al., 2013). These are typically fairly small but

non-negligible for deep well depths, small distances, and long chains. At small distances

sampling is difficult, since for most random pairs the Boltzmann factor is very small due

to chain overlap and the strong repulsion of the SDK potential. Therefore, the average is

strongly dominated by those few configurations where this is not the case, and this gives

rise to an effectively very small sample size (Krakoviack et al., 2003)(Dautenhahn and Hall,

1994)(Narros et al., 2013). This problem is aggravated for increasing chain lengths and well

depths.

Figure 3.3 (b) is a plot of B2 as a function of the potential well depth, εbb. B2 vanishes

at εbb = 0.42 ± 0.03, independently of chain length. This estimate of the θ-point is in

good agreement, within error bars, with the value calculated previously from the scaling of

R2
g (εθ ≈ 0.45). Since both methods lead to approximately the same estimate, the value

εθ = 0.45 has been used for all further calculations. The estimation of θ-point is necessary to

establish the universal swelling behaviour of homopolymers, the discussion of which is taken

up in the following section.
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3.4 Universal swelling of homopolymers

The swelling of homopolymers interacting with an SDK potential as the source of the ex-

cluded volume force is investigated in this section. The results are compared with the

swelling of experimental polymer-solvent systems and earlier predictions of BD simulations,

where the excluded volume interactions are modelled by a narrow Gaussian potential given

by (Öttinger, 1996)(Prakash and Öttinger, 1999)

E(rµν) =

(
z∗

d∗3

)
kBT exp

{
−1

2

r2µν

d∗2

}
(3.6)

Here, rµν = (rµ − rν), d
∗ is a non-dimensional parameter that measures the range of in-

teractions, and z∗ is the non-dimensional strength of excluded volume interactions. In the

context of the narrow Gaussian potential, the solvent quality is defined by z = z∗
√
Nb,

which takes into account the dependence on both temperature and chain length. Kumar

and Prakash performed BD simulations with the narrow Gaussian potential to obtain the

universal swelling ratio as a function of solvent quality z (Kumar and Prakash, 2003). Es-

sentially, they obtained α2
g at a particular value of z by carrying out simulations for different

chain lengths Nb, where the parameter z∗ was evaluated using the expression z∗ = z/
√
Nb,

for each choice of Nb. The data accumulated for various values of Nb was then extrapolated

to the limit of Nb →∞ to obtain the asymptotic α2
g value, at the chosen value of z. The re-

sults are plotted in Fig. 3.4 and fitted with an expression suggested earlier by renormalisation

group calculations (Schäfer, 1999)(Freed, 1987)(des Cloizeaux and Jannink, 1990)

α2
g = (1 + az + bz2 + cz3)m (3.7)

with fit parameters a = 9.528, b = 19.48 ± 1.28, c = 14.92 ± 0.93 and m = 0.133913 ±

0.0006 (Yamakawa, 1971)(Schäfer, 1999)(Kumar and Prakash, 2003). The fitted curve is

the universal thermal crossover swelling curve predicted by BD, and acts as a reference for

collapsing swelling data for a range of polymer-solvent systems as discussed below.

Kumar and Prakash (Kumar and Prakash, 2003) showed that experimental data acquired

previously (Miyaki and Fujita, 1981) for α2
g versus z, in a variety of different polymer-solvent
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Figure 3.4: Universal swelling behaviour of the radius of gyration, α2
g, as a function of the solvent

quality, z. The red filled circles and the blue filled squares are simulation results with the SDK
potential, which is compared with BD simulations obtained with the narrow Gaussian potential (Ku-
mar and Prakash, 2003), and with experimental results for polystyrene in two solvents (Miyaki and
Fujita, 1981). The solid line represents the curve fit corresponding to Eq. (3.7).

systems, could also be described by the same universal curve. This is done by defining the

experimental solvent quality by z = kexpt τ̂
√
M , where τ̂ = 1 − (Tθ/T ) and adjusting kexpt,

which is a chemistry dependent constant, in order to achieve data collapse (Kumar and

Prakash, 2003). Swelling data (Miyaki and Fujita, 1981) for polystyrene in cyclohexane at

36◦C, and in benzene at 25◦C and 30◦C, obtained in this manner are shown in Fig. 3.4. We

have adopted a similar approach to check whether polymer chains with the SDK potential

follow the same universal swelling behaviour. The solvent quality is defined here in terms of

the potential well depth as

z = kSDK

(
1− εbb

εθ

)√
Nb (3.8)

where kSDK is a constant dependent on the interaction potential and τ̂SDK = (1 − εbb/εθ)

is equivalent to the temperature dependent term, τ̂ , defined earlier. Note that the factor
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(1− εbb/εθ) is defined in such a way that in the limit of a θ-solvent its value is zero, while in

the good solvent limit (εbb = 0), τ̂SDK = 1. The value of kSDK is obtained by the following

procedure. Simulations are carried out for different values of chain length Nb and well

depths εbb, and the mean-squared radius of gyration R2
g is calculated in each case. The

swelling, α2
g, relative to the size of the chain under θ-solvent conditions, R2

gθ (obtained from

a simulation with εbb = εθ = 0.45), is calculated in each case, and the corresponding values

of z are determined from the universal swelling curve given by Eq. (3.7). Finally, values of z

obtained in this manner are plotted as a function of (1− εbb/εθ)
√
Nb, and the resultant curve

is fitted with a straight line as shown in Fig. 3.5. From the slope one finds kSDK = 0.1586.

Figure 3.5: Solvent quality z versus the factor (1− εbb/εθ)
√
Nb for polymer chain interacting with

SDK potential. The symbols are the simulation data and the straight line gives a linear fit through
the data points with slope 0.1586.

The swelling of polymer chains with Nb = 65 and Nb = 75, obtained with the SDK

potential for a set of values of z obtained in this manner, is compared in Fig. 3.4 with earlier

results from BD simulations and experimental measurements of the swelling of polystyrene

in cyclohexane and benzene. It is clear that the SDK potential reproduces the universal

swelling behaviour in the thermal crossover regime obtained previously with the narrow
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Gaussian potential. It is worth noting here, however, that in the case of the SDK potential,

we have not extrapolated finite chain data to the long chain limit, as was done for the narrow

Gaussian potential. We found that this was unnecessary since the results for Nb = 65 and

Nb = 75 already lie on the universal curve.

3.5 θ-point and swelling of sticky polymers

As mentioned earlier, the inclusion of sticky groups decreases the effective solvent quality.

The purpose of this section is to present results which establish, within the studied parameter

range, that the collapse of the sticky polymer chain is a standard second order θ transition.

We show this by demonstrating that all the methods that have been applied to homopoly-

mers, both for the localisation of the θ transition (as discussed in the Section 3.3), and for

the study of the universal scaling for the swelling (as discussed in the previous section) is

transferable.

3.5.1 θ-point for sticky polymer solutions

Scaling of the radius of gyration

For the sticky chain, we keep εbb and ` fixed, and study R2
g as a function of εst, which we use

as the control parameter that drives the transition. Following the procedure described in

Section 3.3.1 for homopolymers, intersection plots for R2
g/(Nb−1) versus εst are presented in

Fig. 3.6, which allows us to find the θ-point for various choices of εbb and `, εθst = εθst(εbb, `).

The error in εθst is estimated by linear interpolation between the data points adjacent to

the intersection, combined with standard error propagation. We will show shortly that for

our model, εθst can be determined by an alternative simpler, and perhaps more accurate,

procedure.

It is interesting to note that the ratio R2
g/(Nb−1) at the θ-point, denoted by R2

gθ
/(Nb−1),

assumes a constant value, as shown in Fig. 3.7, for monomers interacting via the SDK

potential, irrespective of the spacer length and backbone solvent quality. It is also evident

that the value of the ratio R2
gθ
/(Nb − 1) is the same for both homopolymers and sticky
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(a) (b)

(c) (d)

Figure 3.6: The ratioR2
g/(Nb−1) as a function sticker strength, εst, for a single sticky polymer chain

with backbone monomer attraction strengths, εbb = 0.3 and 0.4, respectively, and spacer length,
` = 4, 5 and 6, as indicated in the various figure legends. In all the cases the stickers associate with
functionality equal to 1. The errorbars for εst at the point of intersection are estimated by an error
propagation scheme discussed in Section 3.5.1.
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polymers, suggesting that the Kuhn step length is the same in both cases, and is independent

of the presence of sticky groups. This implies that one does not need to do simulations for

each and every system in order to estimate the θ-point and calculate the corresponding R2
gθ

.

This, of course, simplifies matters substantially. It is worth emphasising, however, that this

is most probably a special feature of our model, and probably will no longer be true for

chemically more realistic models.

Figure 3.7: The ratio R2
g/(Nb − 1) at the θ-point, denoted by R2

gθ
/(Nb − 1), for different chain

lengths, Nb, spacer monomer, `, and backbone monomer attraction strength, εbb. The dashed line
corresponds to the constant value of the ratio R2

gθ
/(Nb − 1), which is estimated to be 0.603.

Calculation of the second virial coefficient

For sticky polymers, the estimation of the θ-point from the second virial coefficient was

carried out as was done for homopolymers (see Section 3.3.2), with a set of about 5×107−108

configurations of chain pairs. Since the Boolean variables qµν (see Section 3.2) were not stored

in the course of the simulations, it was necessary in situations where there were three stickers

within interaction distance of each other, to define qµν by some rule. Following the sticking

rule defined in Section 3.2, we picked the two stickers according to the order of monomer
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` εbb εθst (from R2
g scaling) εθst (from B2)

4 0.3 3.05± 0.61 3.231± 0.012

5 0.4 1.50± 0.33 1.215± 0.065

6 0.3 4.20± 0.63 −

6 0.4 2.10± 0.74 −

Table 3.1: Comparison between the θ-points estimated from the scaling of radius of gyration
and second virial coefficient for solutions of sticky polymers with different spacer lengths, `, and
backbone monomer interaction strengths, εbb.

labels to be bonded. For the rare case of four or more stickers, we proceeded in an analogous

fashion.

Figures 3.8 show the effective interaction potentials and second virial coefficients for

systems with spacer lengths ` = 4, 5, and εbb = 0.3, 0.4. One sees that even though the

method is hampered by similar problems as in the homopolymer case, it is nevertheless

possible to locate the θ-point with reasonable accuracy, which is actually significantly better

than that obtained from the scaling of R2
g. The results are summarised in Table 3.1. With

increase in spacer length (` = 6) and sticker strength, the sampling gets poorer and less

efficient, as explained in Section 3.3.2, such that it was not possible to determine the θ-point

by the virial coefficient method satisfactorily.

The θ-surface for sticky polymers

Since the location of the θ-point, εθst, depends on both ` and εbb, the full phase diagram of the

system is three-dimensional, with a two-dimensional surface of θ-points separating the good

and poor solvent regions. Figure 3.9 is a schematic representation of such a surface, where

we confine attention to the physically interesting case εst > εbb. This implies that under θ

conditions for the chain as a whole, the backbone is in a relatively good solvent (εbb < εθ),

meaning that the conformations are the result of a competition between backbone-backbone

repulsion and sticker-sticker attraction.
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(a) (b)

(c) (d)

Figure 3.8: ((a) and (c)) The effective potential, U(r)/kBT , as a function of the separation distance,
r/Rg, between the centres of mass of a pair of sticky polymer chains at different values of sticker
strength, εst. ((b) and (d)) The second osmotic virial coefficient, B2, as a function of the sticker
strength, εst, for different chain lengths. The estimated value of the θ-point, εθst, from the second
virial coefficient is 3.231 ± 0.012 and 1.215 ± 0.065 for ` = 4, εbb = 0.3 and ` = 5, εbb = 0.4,
respectively.
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Figure 3.9: (Color online) Schematic of a θ-surface in terms of the scaled variables (εst/εθ − 1)
plotted against the scaled backbone solvent quality, (1− εbb/εθ), and spacer length, `. Points above
the surface indicate solutions of sticky polymers in poor solvent whereas points below the surface
represents solutions in a good solvent.

3.5.2 Universal swelling of sticky polymers

In order to study the universal swelling for the sticky chain, a suitable definition of the

solvent quality parameter z is required. Based on our choice of εst as the independent

control parameter that drives the transition, it is logical to generalise Eq. (4.4) as

z = g(`, εbb)

(
1− εst

εθst(`, εbb)

)√
Nb (3.9)

where g(`, εbb) is a material dependent function of spacer length (`) and backbone monomer

interaction strength (εbb). In the limit of εst = εbb, the effective solvent quality becomes

the same as that of the corresponding homopolymer, and the sticky chain becomes indis-

tinguishable from it (see Eq.(2.7)). By definition, for εst = εθst the overall solvent quality

z = 0.

For obtaining the swelling curve for sticky polymers, one can exploit the simplification

that comes from the constancy of the ratio R2
gθ
/(Nb−1), independent of all other parameters,

which renders the need for extra simulations to calculate R2
gθ

superfluous. Simulations are

carried out for different values of `, εbb, εst, and Nb, and the swelling ratio, α2
g, is then

calculated for each set of these parameters. For values of ` and εbb for which εθst is known,
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sticky polymer

homopolymer

Figure 3.10: Universal swelling of the radius of gyration, α2
g, as a function of the solvent quality, z.

The swelling of the sticky polymers with different spacer lengths, `, and backbone monomer attrac-
tion strengths, εbb, is compared with the swelling of homopolymers, as indicated in the figure. The
sticker functionality is equal to 1 in all cases. The solid line represents the curve fit corresponding
to Eq. (3.7).

g(`, εbb) can be estimated using the same technique as was used to find kSDK in the case of

homopolymers, discussed in Section 3.4. The results are tabulated in Table 3.2. Plotting

α2
g versus z, as displayed in Fig. 3.10, shows that the swelling of sticky polymers relative to

its θ state follows the same universal curve already presented in Fig. 3.4 for homopolymer

systems.

The existence of the universality of the swelling of sticky polymers, which has been

established above, can be used to determine the θ-point εθst(`, εbb), along with g(`, εbb), for

any pair of values of ` and εbb, without the complicated analysis of subsection 3.5.1. One

only needs data for two different εst values, while Nb, `, and εbb are being kept fixed. The

swelling curve allows us to transform the α2
g values to corresponding solvent qualities z.

Therefore, inserting all known parameters into Eq. (3.9) gives rise to two equations with

two unknowns which, after solution, provide the desired values g(`, εbb) and εθst(`, εbb). A

sample calculation to demonstrate the above method is as follows. The parameters chosen
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` εbb g(`, εbb)

4 0.3 0.0415± 0.0021

6 0.3 0.0437± 0.0024

5 0.4 0.0113± 0.0011

6 0.4 0.0124± 0.0011

Table 3.2: Estimated values of the function g(`, εbb) for different values of spacer length, `, and
backbone monomer interaction strength, εbb.

are Nb = 64, ` = 4, εbb = 0.3 and the two sticker strengths are εst = 1.0 and 2.5. Considering

R2
gθ
/(Nb − 1) = 0.603, the values of α2

g obtained from the simulations for the given set

of parameters are equal to 1.245 and 1.105 for εst = 1.0 and εst = 2.5, respectively. The

corresponding values of z are estimated from Eq. (3.7) to be 0.2635 and 0.096 for εst = 1.0 and

εst = 2.5, respectively. Substituting the values of z in Eq. (3.9) and simultaneously solving

the two linear equations for the unknowns, gives εθst(`, εbb) = 3.36 and g(`, εbb) = 0.047, which

is, within error bars, consistent with the previously estimated values of εst(`, εbb) = 3.05±0.61

and g(`, εbb) = 0.0415± 0.0021 (see Fig. 3.6 (a) and Table 3.2).

A comparison of the values of εθst obtained from the semi-analytical estimation procedure

discussed above with that from full-blown simulations as carried out in the context of Fig. 3.6,

for different spacer monomers ` and backbone solvent qualities εbb, is shown in Fig. 3.11. The

plot shows a satisfactory agreement between the two methods and implies that the calculation

of εθst using Eq. (3.9) provides a reasonable estimate of the θ-point for the sticky polymer

systems. Fig. 3.11 also suggests, as expected intuitively, that the sticker strength at the

θ-point, εθst, increases monotonically with spacer length, `, for a given value of εbb. With an

increase in spacer monomers, the sticker density along the polymer backbone decreases, and

it requires a much higher attractive strength for the stickers to make the chain follow RW

statistics. In all our simulations, the value of the sticker strength εst is taken to be greater

than εθ, while εbb < εθ. The corresponding increase in solvent quality for the backbone is

thus compensated by an increased attraction between the stickers. At εbb = εθ, the backbone

is in a θ-solvent condition, and under such circumstances the sticker strength at the θ-point,
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Figure 3.11: Sticker strength under θ-solvent conditions, εθst, versus the spacer length, `, for
different backbone attraction strengths, εbb. The open symbols represent the elaborate procedure
for obtaining εθst described in Section 3.5.1, while the filled symbols are obtained by the semi-
analytical procedure described in Section 3.5.2. The dashed line is drawn to guide the eye. The
constant straight line indicates the limiting value of εθst, as discussed in the context of Eq. (3.9).

εθst, is equal to εθ, which is the limiting value of εθst, indicated by the constant straight line

in Fig. 3.11 and discussed previously in the context of Eq. (3.9).

3.6 Discussion and conclusions

Using the Soddemann-Dünweg-Kremer potential to model excluded volume interactions, and

defining a renormalised solvent quality for sticky polymer solutions, the swelling of the radius

of gyration has been shown to be identical to the universal swelling of homopolymers in the

thermal crossover regime. Additionally, the Kuhn segment length under θ conditions, for

our model, is found to be the same for chains with and without stickers. This allows, in

combination with the known universal swelling curve, a fairly easy determination of the

two-dimensional θ-surface embedded in the three-dimensional (`, εbb, εst) phase diagram.

The collapse transition observed here is a standard second-order transition and as a
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consequence, all scaling laws and universal properties are faithfully reproduced. In the

parameter range that we have studied, a strong first-order transition can be ruled out. In

hindsight this is perhaps not too surprising, since the only theoretical possibility for the

existence of first-order behaviour arises from a strong coupling of the conformational degrees

of freedom to the Boolean degrees of freedom that describe functionality. As seen from

Eq. (2.7), the strength of the coupling is directly proportional to εst − εbb. In the parameter

range where we did the simulations, this difference was never very large. For this reason,

the possibility of a first-order transition in the opposite limit εst − εbb � 1 cannot be ruled

out within the framework of the current investigation.

One might then consider a situation where the backbone is under very good solvent

conditions, εbb = 0, while εst is so large that nevertheless a collapse would occur. Note that

in such a situation the transition would be entropy-driven rather than energy-driven. This

is so because the condition ϕ = 1 for the bonds would lead to a complete saturation, with

no residual attraction being left. The reason for a collapsed conformation would then be

merely entropic because such a state allows for many more possibilities to form bonds than a

swollen chain, which would only allow association of stickers that are near each other on the

chain. Note, however, that such a situation would essentially be impossible to simulate with

standard Brownian dynamics, simply because the breaking of a once-formed bond would be

extremely rare. It might be possible to investigate such a situation with advanced Monte

Carlo algorithms like parallel tempering (Earl and Deem, 2005), but this is beyond the scope

of the present investigation.

There are a number of previous studies, in the context of models for both synthetic and

biological polymer solutions, where a first-order rather than a second-order transition has

been observed. For instance, in the model proposed by Jeppesen and Kremer (Jeppesen and

Kremer, 1996) for the phase-behaviour of polyethylenoxide in water, each monomer has a

Boolean degree of freedom that enters the interaction energy. Depending on the strength

of the coupling parameter, they find a second or first-order transition, with the first order

transition being entropy driven for reasons similar to those discussed above. More recently,

Scolari et al. (Scolari and Lagomarsino, 2015) have developed a model for the folding of chro-

mosomes due to self-attraction, and the formation of loops due to bridging proteins. Their
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model is similar to that used here for sticky polymers, with the bridging interactions (which

are distributed uniformly along the backbone of the polymer) playing the role of stickers.

However, their model differs from the one used here in certain key aspects. Firstly, the in-

teraction energy in their system can be completely determined from the position coordinates

of the beads, and secondly their functionality is not restricted to one. As a result, there are

no additional Boolean degrees of freedom, and complex micellar structures are formed with

multiple stickers forming clusters. Within the framework of such a model, for certain pa-

rameter values, they observe a first order collapse transition which is driven by competition

between the energy gained from forming a core of bridging monomers versus the entropy lost

by looping backbone monomers. Another relevant recent work where a first-order transition

has been observed is by Michieletto et al. (Michieletto et al., 2016), who have examined the

3D dynamics of chromatin folding coupled to 1D dynamics of epigenetic spreading, with

a semiflexible bead-spring chain as a model for chromatin fiber. In this model, each bead

can have two possible colours, with the colour denoting the epigenetic state and like colours

attracting each other. The addition of the colour variable to position coordinates, leads

to additional Boolean degrees of freedom, with the interaction energy not being calculable

by chain conformation alone. Beads are recoloured periodically with a standard Metropolis

acceptance criteria based on the energy difference between beads that are spatially prox-

imate. Unlike in the present model, where the number of stickers is fixed, the number of

strongly attracting like-coloured monomers is not constant but calculated dynamically based

on proximity and energy of neighbouring monomers. It is observed that a critical value of

attraction between like colours exists that separates the chain conformations into a swollen

state, with the colours distributed homogeneously along the chain, and a collapsed globular

state, with one colour dominant. It is argued that the first-order transition arises because of

the coupling between 3D folding dynamics of the polymer and the 1D epigenetic spreading.

Interestingly, in contrast to the present model, a second-order transition is never observed

for the parameter values that have been examined.

Though the universal swelling of the radius of gyration in dilute sticky polymer solutions

in the thermal crossover regime has been demonstrated here with the help of the Soddemann-

Dünweg-Kremer potential, which has many desirable properties, we expect this behaviour
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to be independent of the specific choice of the excluded volume potential. We hope that this

intriguing behaviour predicted by simulations will be tested and validated against careful

experiments in the future.
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Chapter 4

Universal scaling and characterisation

of gelation in associative polymer

solutions

4.1 Introduction

An essential feature of physically associative polymer solutions is the prevalence of intra-

chain and inter-chain associations between the attractive groups on the chains, which lead

to the formation of gels and network structures. While gelation in associative polymer so-

lutions at a moderate concentration is a well know phenomenon, there has always been a

long standing debate to identify gelation transition in these systems because of the differ-

ent competing definitions of the transition, corresponding to different signatures of gelation.

Scaling relations have been proposed for associative polymer solutions based on mean field

theory and lattice theory to characterise gelation by correlating the intra-chain (p1) and

inter-chain (p2) association fraction of the stickers with various parameters that define the

system, such as the number of attractive groups (stickers) on a chain (f), the number of

monomers between two stickers (or the spacer length `), the strength of association be-

tween the stickers (εst), the monomer concentration (c), and the solution temperature (T ).

Apart from a preliminary Monte Carlo study Kumar and Panagiotopoulos (1999), these
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predictions have, to our knowledge, so far not been thoroughly tested through simulations.

In this work we have developed a multi-particle Brownian dynamics simulation algorithm

with a Soddemann-Duenweg-Kremer potential that accounts for pairwise excluded volume

interactions between both backbone monomers and associating groups (stickers) on a chain,

to describe the static behaviour of associative polymer solutions, across a range of concen-

trations into the semidilute unentangled regime. The formulation adopted in the present

work enables a careful examination of the predictions of the mean field theory for the scal-

ing dependence of p1 and p2 on system parameters. In the mean-field theory, proposed by

Dobrynin (Dobrynin, 2004), different regimes of scaling behaviour are identified depending

on the monomer concentration, the density of stickers on a chain, and whether the solvent

quality for the backbone monomers corresponds to θ or good solvent conditions. In the

present study, simulation results validate the predictions of the mean-field theory across a

wide range of parameter values in all the scaling regimes. The value of the des Cloizeaux

exponent, θ2 = 1/3, proposed by Dobrynin for sticky polymer solutions, is shown to lead to

a collapse of simulation data for all the scaling relations considered here.

With increasing monomer concentration, associative polymer solutions undergo a tran-

sition from the sol to the gel phase with the appearance of an incipient system spanning

network. Dobrynin has pointed out that within the framework of a mean-field lattice based

theory for associative polymer solutions, it is not possible to identify the location of the sol-gel

transition, since chains are not distinguished as belonging to the sol or the gel phase (Do-

brynin, 2004). As a result, in order to describe the phase behaviour of associative polymer

solutions within mean-field theory, Dobrynin (Dobrynin, 2004) assumes a modified form of

the Flory-Stockmayer expression (Flory, 1953)(Stockmayer, 1944)

p2 =
1

(1− p1)f − 1
(4.1)

which relates the degree of inter-chain conversion p2 at the gelation threshold, to the number

of stickers on a chain available for inter-chain association, (1 − p1)f . In the original Flory-

Stockmayer theory it is assumed that the fraction of intra-chain associations p1 is zero (which

is expected to hold at high concentrations), leading to following well known simple relation
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at the location of the sol-gel transition

p2 =
1

f − 1
(4.2)

It should be noted that the Flory-Stockmayer theory assumes that the gel network is a treelike

structure and prohibits the formation of loops (Rubinstein and Colby, 2003). Semenov and

Rubinstein (Semenov and Rubinstein, 1998), on the other hand, show that Eq. (4.2) can

be formally derived if one assumes that the sol-gel transition coincides with the monomer

concentration at which the concentration of free chains in the system (i.e. those with no

inter-chain associations) undergoes a maximum. In real polymer networks, one expects that

the formation of loops is a common occurrence. In the formalism adopted in the present work,

the formation of cyclic structures is not prohibited, and as a result, we are able to examine

both the validity of Eq. (4.1), and the assumption of Semenov and Rubinstein (Semenov

and Rubinstein, 1998) regarding the coincidence of the sol-gel transition with the free chain

concentration maximum.

Interestingly, from an equilibrium statics point of view (as opposed to a rheological char-

acterisation (Winter and Chambon, 1986)(Li and Aoki, 1997)(Li et al., 1997)), there does not

appear to be a commonly agreed definition of the concentration at which the sol-gel transi-

tion occurs. Descriptions of gelation based on percolation models define the sol-gel transition

as the concentration at which the first system spanning network appears (Rubinstein and

Colby, 2003). Alternatively, the sol-gel transition is also identified as the concentration

at which the probability distribution of chain cluster sizes becomes bimodal (Kumar and

Panagiotopoulos, 1999). In this interpretation, it is expected that in the sol phase the prob-

ability of finding a cluster with m chains decreases monotonically with increasing m, while

the appearance of a second peak in the probability distribution, at a non-zero value of m,

signals the onset of gelation. It is not clear if the three definitions of the sol-gel transition,

namely, the appearance of the system spanning network, the appearance of bi-modality in

the chain cluster size probability distribution, or the occurrence of a maximum in the free-

chain concentration, are all located at the same monomer concentration, and if the degree of

inter-chain conversion p2 is related to the number of stickers on a chain available for inter-
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chain association by Eq. (4.1), in all the three definitions. These questions are examined

in the present work, and we show that while the three different definitions are located at

different monomer concentrations, the dependence of p2 on p1 and f is given by Eq. (4.1) in

all three cases, for sufficiently long chains.

The outline of this chapter is as follows. In Section 4.2, model for the associative polymer

solutions implemented in the multi-particle Brownian dynamics algorithm is described. In

Section 4.3, a brief summary of the predictions of scaling theories (Semenov and Rubinstein,

1998)(Dobrynin, 2004) for the degrees of intra-chain and inter-chain conversions as a func-

tion of system parameters, is given. These predictions provide a basis for identifying the

quantities that need to be evaluated by simulations, and a framework for the interpreta-

tion of simulation results. Essentially, the theories identify three different regimes of scaling

behaviour depending on the solvent quality of the backbone monomers, the monomer con-

centration and the density of stickers along the backbone. Section 4.4 discusses the choice

of various simulation parameter values that enables the exploration of these different scaling

regimes. Simulation predictions for the dependence of the degrees of conversion on spacer

length and concentration, at constant temperature and sticker strength, are discussed in sub-

section 4.5.1, while subsection 4.5.2 first examines the influence of temperature and sticker

strength, before combining the dependencies on all system parameters together in master

plots. The cross-over in the scaling behaviour from one regime to the other is discussed

in subsection 4.5.3. A comparison of the scaling of radius of gyration with concentration

between homopolymer and sticky polymer solutions is carried out in subsection 4.5.4 and

the behaviour of a sticky polymer solution in which the chains as a whole are under θ-solvent

conditions, is considered in subsection 4.5.5. In Section 4.6 we briefly discuss the role played

by hydrodynamic interactions on the time scales for equilibration of different static prop-

erties. Section 4.7 considers the sol-gel transition and the various definitions that are used

to find its location, and the validity of the modified Flory-Stockmayer expression at the

gelation threshold (Eq. (4.1)) is examined. An interesting correlation observed between the

breakdown of scaling predictions and the occurrence of phase separation is highlighted in

Section 4.8. Finally, the key results of this chapter are summarised in the concluding section.
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4.2 Model for associative polymer solutions

The sticky polymers have been modelled here as a linear sequence of Nb coarse-grained beads

connected by Nb − 1 entropic springs (Bird et al., 1987a), as described in Chapter 2. Each

polymer is a multi-sticker chain with f equispaced stickers positioned along the backbone

(except at the chain ends where there are no stickers) separated by ` spacer (or backbone)

monomers. A sticker is assumed to associate with only one other sticker (i.e. with func-

tionality ϕ = 1). In general, while the proposed methodology can support any value for ϕ,

the specific choice of ϕ = 1 is made here in order to compare simulation predictions with

the analytical predictions of Semenov and Rubinstein (Semenov and Rubinstein, 1998) and

Dobrynin Dobrynin (2004), where this constraint on sticker functionality has been chosen

for the sake of simplicity. Note that once ` and f are fixed, the number of beads in a chain

can be calculated from,

Nb = (f + 1)`+ f (4.3)

An associative polymer solution is modelled as an ensemble of such bead-spring chains,

immersed in an incompressible Newtonian solvent. A total of Nc chains are initially enclosed

in a cubic and periodic cell of edge length L, giving a total of N = Nb×Nc beads per cell at

a bulk monomer concentration of c = N/V , where V = L3 is the volume of the simulation

cell.

The bonded interactions between the beads are represented by a FENE spring force with

FENE b-parameter, b = 50.0. The short-ranged backbone-backbone and backbone-sticker

excluded volume interactions and the sticker-sticker associative interaction are modelled by

the SDK potential, described in Section 2.5. In Chapter 3, we have examined the collapse

transition of dilute sticky polymer solutions and found it convenient to use the SDK poten-

tial (Soddemann et al., 2001) as an alternative to the Lennard-Jones potential, to model the

pair-wise interactions between both the backbone and sticker monomers. In this section,

we briefly summarise some of the key results of Chapter 3 that are relevant to the present

chapter. This is necessary because the predictions of the scaling theories of Semenov and

Rubinstein (Semenov and Rubinstein, 1998) and Dobrynin Dobrynin (2004), with which we

plan to compare the results of simulations, depend on which of three different scaling regimes
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the sticky polymer solution belongs to.

For homopolymer solutions, we have shown in Chapter 3 that when the SDK potential is

used in conjunction with Brownian dynamics simulations, the expected asymptotic scaling

behaviour, in all regimes of solvent quality, is obtained with rc = 1.82σ (for which α =

1.5306333121 and β = 1.213115524). Since only backbone monomer-monomer interactions

exist for homopolymers, the well-depth ε is equal to εbb for all bead pairs. In Chapter 3,

it is shown, both from the scaling of the radius of gyration with chain length and from an

estimation of the second virial coefficient, that θ-solution conditions are reproduced for εbb :=

εθ = 0.45. As a consequence, the choice εbb < 0.45 leads to good solvents, while εbb > 0.45

leads to poor solvents. In particular, by defining the solvent quality z = kSDK τ̂
√
Nb, where

the parameter τ̂ is defined in terms of the potential well-depth by,

τ̂ =

(
1− εbb

εθ

)
(4.4)

we show that by an appropriate choice of the constant kSDK, simulation predictions of the

swelling ratio αg, which is the ratio of the radius of gyration Rg in a good solvent to that in

a θ-solvent, can be collapsed on to the universal swelling curve of αg versus z that describes

the thermal crossover between θ and good solvents (Schäfer, 1999). Note that τ̂ corresponds

physically to (1−Tθ/T ), so that in accordance with its definition in the experimental litera-

ture, (Schäfer, 1999)(Hayward and Graessley, 1999)(Pan et al., 2014b)(Pan et al., 2014a) the

solvent quality z ∼ (1− Tθ/T )
√
M , where Tθ is the θ-temperature, and M is the molecular

weight.

As mentioned earlier, the introduction of stickers on chains alters the solvent quality of

a polymer solution. In particular, we have shown in Chapter 3 that the well-depth of the

SDK potential, εθst, at which θ-solution conditions are observed in sticky polymer solutions

is different from that for homopolymer solutions (εθ), and that it depends on the backbone

well-depth εbb and spacer length `. A schematic representation of this dependence is shown in

Fig. 3.9, where the two-dimensional surface corresponds to values of εθst(`, εbb) that separate

good and poor solvent regions. Since εbb < εθ < εst, chain conformations are a result

of a competition between backbone-backbone repulsion and sticker-sticker attraction. As
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indicated in Fig. 3.9, the value of εθst keeps increasing: (i) as the backbone solvent quality

gets better at a given value of `, and (ii) with increasing spacer length, at a given value of

εbb.

As will become evident in subsequent sections, the behaviour of dilute sticky polymer

solutions summarised here is very helpful for estimating sticky chain parameters and the well-

depths of the SDK potential that lead to simulation results in the precise scaling regimes

defined in the theory of Dobrynin (Dobrynin, 2004), thereby enabling a direct comparison

between them.

4.3 Scaling relations for fractions of associated stickers

The phase behaviour of physically associative polymer solutions has been described theoreti-

cally by a number of different analytical approaches (Rubinstein and Dobrynin, 1997)(Ishida

and Tanaka, 1997)(Semenov and Rubinstein, 1998)(Dobrynin, 2004)(Tanaka, 2011)(Tanaka

and Matsuyama, 1989)(Erukhimovich et al., 2001)(Ozaki and Koga, 2020). The majority of

these studies only treat the presence of inter-chain associations and neglect the formation

of intra-chain associations, which is a reasonable approximation at sufficiently high polymer

concentrations. The theory developed by Dobrynin (Dobrynin, 2004), on the other hand,

explicitly accounts for the presence of intra-chain associations as well. In the present work,

since the simulations can predict both intra and inter-chain degrees of conversion, we com-

pare our results with the predictions of Dobrynin’s theory. It should be noted, however,

that the scaling predictions by Semenov and Rubinstein (Semenov and Rubinstein, 1998)

are identical to those of Dobrynin (Dobrynin, 2004) for the fraction of stickers bonded by

inter-chain associations.

An expression for the free energy of an associative polymer solution has been derived by

Dobrynin (Dobrynin, 2004) with the help of a lattice based mean-field theory, combined with

blob scaling arguments to describe polymer chain conformations in semidilute solutions. By

minimising the free energy with respect to both intra and inter-chain degrees of conversion,

equations for the dependence of the equilibrium degrees of conversion p1 and p2 on system

parameters, such as T , c, `, εst, etc., are obtained. A brief discussion on the derivation of the
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scaling relations is given in Appendix C. Though Dobrynin (Dobrynin, 2004) also estimates

the phase diagram of associative polymer solutions in the temperature and concentration

plane, we do not attempt to map out the entire phase diagram with simulations in the

present work. In section 4.7, however, we briefly consider the relationship predicted by

simulations between the monomer concentration, c, and the number of stickers, f , along

the gelation line that separates the sol and gel phases, and compare with the prediction of

scaling theory.

(number of monomers
in a thermal blob)

(number of monomers
in a correlation blob)

(a) (b)

(c)

Figure 4.1: Three scaling regimes when the chain of backbone monomers is in a good solvent.
Stickers are indicated by red circles. (a) ` < gT < gc (Regime I), (b) gT < ` < gc (Regime II) and
(c) gT < gc < ` (Regime III).

Dobrynin (Dobrynin, 2004) derives separate sets of relations for the fractions p1 and

51



Chapter 4. Universal scaling and characterisation of gelation in associative polymer
solutions

p2, depending on the quality of the solvent with respect to the backbone monomers (i.e.,

whether they are in θ or good solvents), and the number of monomers between two stickers

(`). In particular, when the chain of backbone monomers is under good solvent conditions,

three separate regimes are identified that are best understood in terms of the schematic

representation in Fig. 4.1, which is inspired by a similar figure in Ref. 24.

As is well known, semidilute polymer solutions that lie in the double crossover region of

solvent quality and concentration can be described in terms of thermal and correlation blobs,

which represent the dependence on solvent quality z and scaled concentration c/c∗ (A.Jain

et al., 2012)(Prakash, 2019). The size of a thermal blob is denoted by ξT , with gT numbers

of monomers in it, while the size of a correlation blob is denoted by ξc, with gc numbers of

monomers in it. The three regimes defined by Dobrynin (Dobrynin, 2004) depend on the

relative magnitudes of `, gT and gc, as indicated in Fig. 4.1.

A central element in Dobrynin’s theory is the estimation of the probability of two stick-

ers coming together to form a bond. Under θ-solvent conditions this is straightforward to

determine since a polymer chain obeys random walk statistics and the probability of contact

between two monomers on a chain is proportional to the probability of loop formation be-

tween two ends of a Gaussian chain segment (Rubinstein and Colby, 2003)(Dobrynin, 2004).

For a segment of chain with ` monomers between stickers, this implies that the probability

of sticker contact is pθ(`) ∼ `−3/2. The situation is more complicated in a good solvent, and

depends on which of the three regimes in Fig. 4.1 is relevant. In Regime I (Fig. 4.1 (a)), since

there are many stickers in a thermal blob, and a chain segment within a thermal blob obeys

random walk statistics, the sticker association probability is governed by the same physics

as for a chain under θ-solvent conditions. On the other hand, in Regime II (Fig. 4.1 (b)), the

calculation of the probability that two stickers come into contact involves two steps. First

two thermal blobs must come into contact, followed by two stickers within these thermal

blobs coming together to form a bond. Since thermal blobs follow self-avoiding walk statis-

tics, their probability of contact is equivalent to the probability that two internal monomers

of a chain in a good solvent come into contact. This problem was first solved using renor-

malisation group methods by des Cloizeaux (des Cloizeaux, 1980), who derived the following

expression for the probability of contact between two internal monomers on a self-avoiding
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walk chain,

pgood ∼
[

δ

r(n)

]3+θ2
(4.5)

where δ is the spatial distance between the two monomers, r(n) is the root mean squared

end-to-end distance between the two monomers, which are considered to be separated by

n monomers along the chain backbone, and θ2 is a geometrical exponent, the so-called des

Cloizeaux exponent (Redner, 1980)(Witten and Prentis, 1982)(Duplantier, 1989)(Hsu et al.,

2004). The numerical value of θ2 will be discussed shortly below. Once the thermal blobs

are in contact, the probability that two stickers within them come into contact is estimated

using the same expression as for two monomers on a segment of a chain under θ-solvent

conditions. Using similar arguments, Dobrynin (Dobrynin, 2004) also derives the probability

of two stickers coming into contact when the good solvent conditions for the chain backbone

correspond to those represented by Regime III.

With this background, the relevant relations for the degrees of intra and inter-chain con-

version derived by Dobrynin (2004) are displayed in Table 4.1. Note that p = p1 + p2 is

the total fraction of associated stickers. Table 4.1 (a) displays the most general form of

the relations when the backbone monomers are under good solvent conditions, for the three

different scaling regimes that have been identified in Fig. 4.1. The relations are in terms

of `, gT , gc, and gss. The function gss is assumed to depend exponentially on an effective

associating energy ε̃a, which is a combination of the interaction energy between stickers,

εst, and the Flory-Huggins interaction energy between monomer and solvent molecules on

adjacent lattice sites, εps. In the context of scaling theory, where the solvent is treated ex-

plicitly, the magnitude of gss can be chosen independently from `. When the spacer segment

length ` is changed while keeping εst fixed, it is possible to control the influence of gss on

chain statistics independently by appropriately tuning εps. The situation is more subtle in

the model adopted in the present work, since the solvent is treated implicitly rather than

explicitly. It is not possible to keep εst and εbb fixed, and vary only ` without also simulta-

neously influencing chain statistics, since as exemplified by the schematic representation in

Fig. 1, the effective interaction energy between stickers, which determines the conformations

of polymer chains in a sticky polymer solution, is a complex function of εst, εbb, and `. As a
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(a)
p1(1− p1/2)

(1− p)2
p2

(1− p)2
p1(1− p1/2)

p2

Regime I gss `
−3/2 gss `

−1 g
−1/2
T (gT/gc)

ν(3+θ2)−1 gT
1/2 `−1/2 (gc/gT )ν(3+θ2)−1

Regime II gss `
−3/2 (gT/`)

ν(3+θ2)− 3
2 gss `

−1 g
−1/2
T (gT/gc)

ν(3+θ2)−1 (gc/`)
ν(3+θ2)−1

Regime III gss `
−3/2 (gT/gc)

ν(3+θ2)− 3
2 gss `

−1 g
−1/2
T (gT/gc)

ν(3+θ2)−1 (gc/`)
1/2

ν = 3
5

; θ2 = 1
3

; gT = τ̂−2 ; gc = τ̂
−6ν−3
3ν−1 c

− 1
3ν−1 = τ̂−

3
4 c−

5
4

(b)
p1(1− p1/2)

(1− p)2
p2

(1− p)2
p1(1− p1/2)

p2

θ-solvent gss `
−3/2 gss `

−1 c `−1/2 c−1

Regime I gss `
−3/2 gss τ̂

−1/4 `−1 c5/4 τ̂ 1/4 `−1/2 c−5/4

Regime II gss τ̂
−1 `−2 gss τ̂

−1/4 `−1 c5/4 τ̂ 3/4 `−1 c−5/4

Regime III gss τ̂
−5/8 `−3/2 c5/8 gss τ̂

−1/4 `−1 c5/4 τ̂−3/8 `−1/2 c−5/8

Table 4.1: Relations for the intra-chain and inter-chain association fractions, predicted by Do-
brynin (Dobrynin, 2004). Table (a) corresponds to the three scaling regimes that arise when the
backbone monomers are under good solvent conditions. The expressions are in terms of the spacer
length `, the number of monomers in a thermal blob gT , the number of monomers in a correlation
blob gc, and the function gss, which depends on the effective sticker strength. Note that p = p1+p2
is the total fraction of associated stickers. Table (b) gives the corresponding relations for the case
when the backbone monomers are under θ-solvent conditions, along with the simplified forms of the
relations for good solvents when gT and gc are expanded in terms of the backbone solvent quality
parameter τ̂ , the monomer concentration c, and the specific choices ν = 3/5 and θ2 = 1/3 are
made.

consequence, the function gss depends on all three of these variables, and in general cannot

be varied independently of spacer length `. The nature of this dependence is discussed in

more detail in section V B. Table 4.1 (b) gives the simplified form of the equations for good

solvent conditions that are used in the current work, along with the corresponding relations

for the case when the backbone monomers are under θ-solvent conditions. Before discussing

the derivation of these simplified relations, however, it is worth making a few remarks about

the des Cloizeaux exponent θ2.

The value θ2 = 0.71 was derived by des Cloizeaux (des Cloizeaux, 1980) approximately

using renormalised field theory. Subsequently, it was shown by Witten (Witten and Prentis,

1982) and Duplantier (Duplantier, 1989) that θ2 could be related analytically to critical
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exponents that characterise star polymers. The critical exponents for star polymers with up

to 80 arms have been obtained extremely accurately by Hsu et al. (Hsu et al., 2004), using

Monte Carlo simulations with the PERM algorithm. Based on the expression connecting θ2

to the critical exponents of stars derived by Duplantier (Duplantier, 1989), and using the

values computed for these exponents by Hsu et al. (Hsu et al., 2004), one can determine that

θ2 = 0.8142(17). This is probably the most refined value of the des Cloizeaux exponent that

has been estimated to date. In addition to reporting the value for the exponent θ2 derived by

des Cloizeaux (des Cloizeaux, 1980), Dobrynin (Dobrynin, 2004) also estimates a value for

θ2 using an alternative argument. Essentially, by equating the probability of binary contact

between monomers within a correlation blob (in the context of the mean field theory) to

the contact probability given by Eq. (4.5), Dobrynin (Dobrynin, 2004) obtains θ2 = 1/3,

which is considerably different from the value of the des Cloizeaux exponent derived from

combining analytical arguments with Monte Carlo simulations. However, the latter value

has been obtained for a self-avoiding walk chain in the dilute limit. The value of θ2 in the

context of associative polymer solutions at finite concentrations, where both Flory screening

and attractive interactions between stickers is present, is currently unknown. We will show

subsequently that using θ2 = 1/3 leads to excellent collapse of simulation data under a wide

range of conditions.

The simplified form of Dobrynin’s relations can be obtained by expanding gT and gc in

terms of the backbone solvent quality parameter τ̂ , and the monomer concentration c. Within

the blob scaling ansatz, for a semidilute solution in the double crossover region, the number

of thermal blobs NT , and the number of correlation blobs Nc on a chain, are determined

solely by the solvent quality z, and the scaled concentration c/c∗, respectively (A.Jain et al.,

2012)

NT = z2

Nc =
( c
c∗

) 1
3ν−1

(4.6)

where ν is the Flory exponent, and the overlap concentration c∗ is defined by,

c∗ =
Nb

(4π/3)Rg0
3 (4.7)
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Here, Rg0 :=
√
〈R2

g0〉 is the radius of gyration of a homopolymer chain of backbone monomers

in the dilute limit. It follows that,

gT =
Nb

NT
∼ τ̂−2

gc =
Nb

Nc
= Nb

( c
c∗

)− 1
3ν−1

(4.8)

In a good solvent, since a homopolymer is a self-avoiding walk of thermal blobs, Rg0 =

ξT (Nb/gT )ν , where ξT = bg
1/2
T , and b is the size of a monomer. It follows that, c∗ ∼

N1−3ν
b g

3ν−3/2
T , and from Eq. (4.8),

gc = τ̂
−6ν−3
3ν−1 c

− 1
3ν−1 (4.9)

Substituting for gT and gc from Eqs. (4.8) and (4.9) into the general scaling relations in

Table 4.1 (a), and setting ν = 3/5 and θ2 = 1/3, leads to the expressions displayed in

Table 4.1 (b). The choice of simulation parameters that enable the validation of these

scaling predictions, and the details of the simulation algorithm are discussed in the next

section.

4.4 Choice of parameters and details of simulations

In order to establish the validity of scaling laws, one would ideally vary independent vari-

ables such as the concentration and temperature, and parameters such as the number of

stickers, spacer length and so on, over a very wide range of values so as to capture not only

the asymptotic regimes, but also the crossover behaviour from one regime to another. In

the present instance, this goal is constrained due to several factors. Firstly, the different

scaling regimes are not obtained by varying the magnitude of a single variable. This is un-

like, for instance, in the case of homopolymer solutions where one can go from the dilute

to the concentrated entangled regime via the semidilute unentangled, semidilute entangled

and concentrated unentangled regimes, by just varying the concentration (Rubinstein and

Colby, 2003). Secondly, the need to remain in the good solvent regime of the sticky polymer
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solution (i.e., below the θ-surface shown schematically in Fig. 3.9) in order to avoid phase

separation imposes constraints on the choice of parameter values. Finally, the use of the

Brownian dynamics simulations methodology, which has the advantage of accurately pre-

dicting dynamic properties due to the incorporation of hydrodynamic interactions, makes

the computations very intensive (even in the absence of HI). Each of these points are dis-

cussed in greater detail in section 4.4.1 below, while the particulars of the current algorithm

are given in sections 4.4.2 and 4.4.3.

4.4.1 Simulation contraints

In Dobrynin’s scaling theory (Dobrynin, 2004), the different scaling regimes depend on the

relative magnitudes of the spacer length `, the number of monomers in a thermal blob gT ,

and the number of monomers in a correlation blob gc (as shown schematically in Fig. 4.1).

As a result, in order to traverse from Regime I (` < gT < gc) to Regime II (gT < ` < gc)

it is necessary to change either ` or the solvent quality parameter τ̂ (which affects gT ).

Changing the concentration (which would change gc) would have no effect, provided both gT

and ` were maintained less than gc. On the other hand, in order to traverse from Regime II

(gT < ` < gc) to Regime III (gT < gc < `), one can either change ` or the concentration c.

Changing τ̂ would have no effect provided gT was always maintained the smallest of the three

magnitudes. Note that Dobrynin’s scaling theory does not consider the case where gc < gT ,

which would occur for concentrations c > c∗∗, where c∗∗ represents the concentration at

which ξc = ξT . These considerations imply that it is not possible to move all the way from

Regime I to Regime III through the change of a single variable, such as the concentration.

Since τ̂ is given by Eq. (4.4), the values of τ̂ are in the range, 0 ≤ τ̂ ≤ 1, for 0 ≤ εbb ≤ εθ

(which follows from the requirement that the backbone monomers must be in a good solvent),

and consequently, 1 ≤ gT ≤ ∞ (setting all unknown pre-factors equal to 1). Since the values

of concentration are in the range 0 ≤ c/c∗ ≤ c∗∗/c∗, we have, Nb (c∗∗/c∗)−
1

3ν−1 ≤ gc ≤ ∞.

The lower bound is always satisfied provided gT < gc. While conceptually, both gc and gT

can be greater than Nb, the spacer length `, which is an input parameter in the simulations,

must satisfy, 1 ≤ ` ≤ Nb. Since there must be at least one or more thermal blobs in a

chain for good solvent conditions, gT must be less than Nb in Regime I. For this reason, and
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in order to satisfy the constraint with regard to `, gT must be less than Nb in Regimes II

and III, while gc cannot be greater than Nb in Regime III.

With this background, we can now consider the constraints that exist in each of the

regimes with respect to the choice of parameters. Consider Regime I, where ` < gT < gc.

Since a reasonable length of spacer segment must be chosen to enter the scaling regime, the

value of ` cannot be too small. The value of gT increases rapidly from 1 as εbb increases from

0 to εθ (since gT = [1− (εbb/εθ)]
−2). While it is consequently not difficult to achieve gT > `,

its value cannot be too large, since the need to maintain Nb ≥ gT would lead to excessive

computational cost from simulating long chains (as discussed in greater detail below). The

requirement that the scaled concentration c/c∗ must be such that gc > gT , connects the

range of variation of c/c∗ to the choice of εbb. As can be seen from Eq. (4.8), a large value of

c/c∗ implies choosing a large value of Nb in order to satisfy the constraint on gc. Clearly, for

a given chain length Nb, there is a limit to how closely εbb can approach εθ (since gT ≤ Nb),

and also an upper bound on the choice of c/c∗ (since gc > gT ).

The value of εbb also affects the choice of sticker strength εst. It is clear from Fig. 3.9

that for a given value of `, the value of εθst decreases with increasing εbb. As will be seen

later, in order to avoid phase separation with increasing concentration, it is necessary for

εθ < εst < εθst, which corresponds to good solvent conditions for the sticky polymer solution

as a whole. At the same time, it is necessary to sufficiently separate the values of εbb and εst

in order to achieve a reasonable frequency and duration of association between stickers, and

to distinguish between sticky and homopolymer solutions.

Of the three scaling regimes, it is relatively easiest to simulate Regime II (gT < ` < gc),

since gT can be chosen to have a small value by choosing εbb close to zero. This also leads

to a fairly wide range of permissible values for c/c∗. Nevertheless, for large values of `,

maintaining gc > ` would require larger and larger values of Nb for increasing values of c/c∗

(as can be seen from Eq. (4.8)), leading to excessive computational cost.

The smallest value of the scaled concentration permissible in Regime III is c/c∗ = 1.

This is because, for this value (from Eq. (4.8)) gc = Nb, and Regime III requires that

gc < ` (≤ Nb). As discussed above, it is straightforward to achieve a small value of gT by

choosing εbb close to zero. However, both the requirements that c/c∗ ≥ 1 and ` > gc, lead
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to significant computational costs since they imply an increase in the number of monomers

in a simulation cell, associated with an increase in the number of chains in a box, and large

values of Nb, respectively.

It is clear from the discussion above that for given values of εst and Nb, simulations in

any one of the three different scaling regimes can be carried out by appropriately choosing

the values of `, εbb and c/c∗. The range of values of these parameters that can be explored is,

however, very dependent on the chain length Nb. Provided that large enough values of Nb

are used, it would in principle be possible to thoroughly examine both the asymptotic scaling

behaviour in all the different regimes, and the crossover between them. The computational

intensity of the current Brownian dynamics algorithm, however, places quite stringent re-

strictions on the range of values that can be explored. The majority of the results reported

here have been carried out on Australia’s peak research supercomputer based at the National

Computational Infrastructure. Details of the machine, and the computational cost estimates

for simulating chains of various lengths Nb, spacer lengths `, and concentrations c/c∗ have

been given in Appendix E. It suffices here to say that while Nb = 34, ` = 6, c/c∗ = 2.0 re-

quires roughly 3 hours of CPU time, Nb = 79, ` = 15, c/c∗ = 6.5 requires around 3 days and

9 hours of CPU time for obtaining data at these individual concentrations, from a typical

simulation. This computational intensity has implied that we have only been able to explore

a limited range of parameter values. Nevertheless, as will be seen from the results presented

below, the simulations are adequate to reach clear conclusions regarding the validity of the

scaling predictions in the different regimes, and to tease out some aspects of the crossover

behaviour. It is hoped that future improvements in the BD algorithm will enable a more

complete examination of the predictions of the scaling theory.

Table 4.2 summarises all the values of parameters (with gT and gc rounded to the nearest

integer) used in the current simulations in order to explore the different scaling regimes.

4.4.2 Simulation details

The protocol described below is followed with regard to the selection of parameter values

listed in Table 4.2. For any choice of values of Nb and εbb, single chain simulations are

carried out to determine Rg0 and the end-to-end vector Re0. Note that the finite extensibility
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parameter is set to Q0 =
√

50 in all the simulations reported here. The size of the simulation

box is then fixed at L = 2Re0 to ensure that chains do not overlap with themselves in the

periodic cell. Once L is determined, the monomer concentration c (and consequently gc) can

be adjusted by choosing the number of chains Nc in a simulation cell, since c = (Nc×Nb)/L
3.

The scaled concentration c/c∗ (with c∗ defined in Eq. (4.7)) can also then be estimated.

Finally, the choice of the number of stickers f per chain determines the number of spacer

monomers ` between stickers. In this manner, the relative magnitudes of `, gT and gc can be

varied to probe each of the three scaling regimes that arise when the backbone monomers are

under good solvent conditions. In the case when the backbone monomers are under θ-solvent

conditions, two different procedures are followed here. In the first, we set εbb = εθ = 0.45 in

the SDK potential to reproduce θ conditions for the backbone, and in the second, we neglect

excluded volume (EV) interactions altogether, i.e., we simulate ghost chains that can cross

themselves and each other.

Once the parameter choices are made, a typical simulation consists of a pre-equilibration

run of about 3 to 4 Rouse relaxation times for a system of chains with only backbone

monomers and no stickers, followed by the introduction of stickers and an equilibration run

of about 5 to 8 Rouse relaxation times. Finally, sampling is carried out over a production

run of about 5 Rouse relaxation times. Time averages, from each independent trajectory,

are calculated during the production run, from a set of data collected at intervals of 1000

to 5000 non-dimensional time steps between sampling points. Ensemble averages and error

of mean estimates of different equilibrium properties are then computed over a collection

of such independent time averages, evaluated from 64 to 128 independent trajectories. All

simulations without HI have been carried out with a non-dimensional time-step ∆t = 0.001.

In the absence of hydrodynamic interactions, the CPU time for the BD algorithm used

here to determine all the static properties, scales linearly with system size N , for a fixed

simulation box size L. It should be noted, however, that when the box size is increased, for

instance to accommodate chains with a larger number of beads Nb, there is a large change

in the pre-factor for the calculation of CPU time, due to various changes in bookkeeping,

such as neighbour lists and so on.
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(Nb, `, f) εbb εst gT c/c∗ gc

θ

(24, 4, 4) No EV 5.0 – 0.1− 1.6 –
(34, 4, 6) No EV 5.0 – 0.1− 0.5 –
(34, 6, 4) No EV 2.5 – 0.1− 0.6 –
(29, 4, 5) 0.45 5.0 – 0.2− 0.8 –
(34, 4, 6) 0.45 5.0 – 0.2− 1.2 –
(34, 6, 4) 0.45 2.5 – 0.1− 0.6 –
(29, 4, 5) 0.3 2.5 9 0.7− 2.0 45− 12

Regime I (34, 4, 6) 0.3 2.5 9 0.8− 1.6
45− 19

(` < gT < gc) (34, 6, 4) 0.3 2.0 9 0.8− 1.6
(34, 6, 4) 0.35 2.5 20 1.0− 1.5 34− 20
(24, 4, 4) 0.0 5.0 1

0.5− 1.9

57− 11
(29, 5, 4) 0.0 5.0 1 69− 13
(34, 4, 6) 0.0 5.0 1

81− 15Regime II (34, 6, 4) 0.0 5.0 1
(gT < ` < gc) (34, 6, 4) 0.0 4.0 1

(39, 4, 7) 0.0 5.0 1 93− 17
(44, 4, 8) 0.0 5.0 1 105 - 20
(64, 12, 4) 0.0 5.0 1 152 - 29

Regime III (64, 12, 4)
0.0 5.0 1 4.0− 6.5

11− 6
(gT < gc < `) (79, 15, 4) 14− 8
Sticky θ chain (34, 6, 4) 0.35 3.6 20 0.2− 6.0 254− 4

Table 4.2: Parameter sets used to simulate the different scaling regimes of associative polymer
solutions that arise when the backbone monomers are under θ and good solvent conditions, and
when the sticky chain as a whole is under θ solvent conditions. Note that gT must be less than
Nb in Regime I in order for the chain to be under good solvent conditions. It must also satisfy
the constraint gT < ` < Nb in Regimes II and III. On the other hand it is possible for gc > Nb in
Regimes I and II, but must satisfy gc < ` < Nb in Regime III.

4.4.3 Computation of clusters

The estimation of the fraction of associated intra and inter-chain stickers (required for the

validation of scaling relations), and the enumeration of the number of chains in a cluster

(required for the identification of the gelation transition), are both carried out here with the

help of the cluster computation algorithm proposed by Sevick et al. (Sevick et al., 1988) A

brief description of the application of the algorithm in the context of sticky polymer solutions

is given here.

To compute the intra-chain and inter-chain associations between stickers, a connectiv-

ity matrix for sticky beads is constructed such that, for any pair of stickers i and j, the

corresponding element in the connectivity matrix has a value equal to 1 for direct contact
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(rij ≤ rc) and 0 otherwise. Clearly, in general, there can also be stickers which are not in

direct contact but still belong to the same cluster through indirect contacts. The Sevick et

al. (Sevick et al., 1988) algorithm also takes this into account and generates a reduced con-

nectivity matrix, where each linearly independent column of the matrix represents a cluster

of stickers which are either in direct or indirect contact. The total number of such inde-

pendent columns gives the number of clusters in the system. In the simulations carried out

here, however, there are no indirect contacts between stickers since they always associate in

pairs (the functionality of stickers has been chosen to be one). All the necessary information

regarding the state of intra-chain or inter-chain association, of every sticker in the system,

is recovered by appropriately labelling the non-zero elements in each independent column of

the reduced connectivity matrix.

A similar connectivity matrix is also constructed for entire chains to determine whether

they are either directly or indirectly connected to other chains via at least one sticky bead.

Note that in this case there can be indirect contacts between chains, since there is typically

more than one sticker per chain. The information on the number of chains in a cluster,

or the spatial span of a cluster of chains, can be obtained from the columns of the chain

connectivity matrix.

4.5 Validation of scaling relations for degrees of con-

version

It is clear from the values given in Table 4.2 for the various simulation parameters used in the

results reported here, that a more extensive variation of parameters has been carried out in

Regime II compared to the other regimes. As discussed above, this is essentially because of

the relative ease of simulating Regime II, both due to the physics of sticky polymer solutions,

and due to the constraints of the current computational algorithm. All the same, as will be

clear from the results in this section, the simulations that have been carried out in Regimes I

and III are still sufficient to establish the validity of the scaling relations in these regimes.

The scaling relations summarised in Table 4.1 are examined here in two steps. We first
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consider the dependence of the degrees of intra and inter-chain conversion on the length of

the spacer segment between stickers, `, and the monomer concentration c in Section 4.5.1,

followed by an examination of their dependence on the solvent quality parameter, τ̂ , and the

function of the effective sticker strength, gss in Section 4.5.2. The crossover behaviour from

Regime I to Regime II, and from Regime II to Regime III is examined in Section 4.5.3. The

difference in the scaling of the radius of gyration with concentration between homopolymers

and sticky polymers is discussed in Section 4.5.4. Finally, the special situation where the

sticky polymer chain as a whole is under θ-solvent conditions is examined in Section 4.5.5.

The data presented in this section for the dependence of Rg, p1 and p2 on the various

parameters {Nb, `, f, εbb, εst, c, c/c
∗}, in the form of figures, is also given in tabular form in

the Appendix F, so that they are readily available for comparison with any model predictions

that may be made in the future.

4.5.1 Dependence on spacer length and monomer concentration

The dependence of p1 and p2 on ` and c is considered in this section, while keeping τ̂ and

sticker strength εst constant, in each of the different scaling regimes. We first consider the

case where the backbone monomers are under Regime I conditions, followed by a consider-

ation of Regimes II and III. The case of θ-solvent conditions for the backbone is examined

simultaneously with Regime II.

Regime I

The validity of scaling predictions for Regime I, as given in the first row of Table 4.1 (b)

with ` < gT < gc, with τ̂ and sticker strength εst held constant, are shown in Figs. 4.2.

It should be noted that in order to express the ratio involving intra-chain and inter-chain

associations only as a function of concentration, c, the spacer length (`) dependence has

been absorbed into the y-axis. According to the prediction of scaling theory in Regime I, the

ratio [p1(1− p1/2)/(1− p2)] `3/2 is expected to be independent of monomer concentration

c. On the other hand, Figure 4.2 (a) appears to suggest a weak dependence of this ratio on

concentration. It should be noted that while the fraction of intra-chain associated stickers p1
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Figure 4.2: The dependence of ratios involving (a) intra-chain (b) inter-chain degrees of conversion,
and (c) the ratio of intra-chain and inter-chain association fractions, on the monomer concentration,
c, with the chain backbone under Regime I (` < gT < gc) conditions. The spacer length dependence
is absorbed in the y-axis. Simulations are carried out at constant solvent quality parameter τ̂ , and
a constant sticker strength εst, except in (c) where two different values of εst have been considered.
The values ν = 3/5 and θ2 = 1/3 have been used (see Table 4.1). The dashed and the solid lines
are drawn with slopes equal to the prediction by scaling theory, while symbols represent simulation
data.
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decreases with increasing concentration, the total fraction of associated stickers p increases

with increasing concentration due to the dominant role played by the increase in the fraction

of inter-chain associated stickers p2 with increasing concentration. The reason for such an

increase in the total fraction is because of the availability of more stickers with the increase

in concentration. It should be noted that the stickers have limited functionality (= 1), which

hinders the formation of association if the stickers are already bounded. But with increase

in concentration the number of free stickers available for bond formation simply increases.

On the other hand, opportunity for the formation of inter-chain bonds is more than that of

intra-chain associations as the number of chains per unit volume increases with increase in

concentration. Whereas, the number of intra-chain bonds is always limited to the number of

stickers in a chain, which is independent of concentration. This explains why the inter-chain

association dominates with increase in concentration. An illustration of this phenomenon

is provided in Figure 4.3 by plotting the intra-chain and inter-chain conversion fractions

as a function of scaled concentration, c/c∗, for Regime I. Similar trends are also observed

in Regime II and III and the θ-condition as discussed is the subsequent sections. Such

a behaviour might be responsible for the observed weak dependence, but simulations for

larger chain lengths would be needed to confirm that it is not a result of finite size effects.

According to scaling theory, the ratio [p2/(1− p2)] ` increases with concentration in this

regime with an exponent of 1.25 (when θ2 is chosen to be 1/3), which is validated by the

simulation results displayed in Fig. 4.2 (b). Finally, as can be seen in Fig. 4.2 (c), the ratio

of these conversions, [p1(1− p1/2)/p2] `
1/2, also largely follows the predicted dependence on

concentration. This can be expected given the weak dependence of the ratio involving p1 on

concentration, and the dominant role played by the ratio involving p2. Apart from the overall

agreement between the predictions and simulation results, there are a few other observations

worth noting.

In Regime I, only the ratio involving p2 depends on the des Cloizeaux exponent θ2, as

reflected in its dependence on the monomer concentration c (see first row in Table 4.1 (a)).

It is striking to observe that the choice of value of θ2 = 1/3, derived by Dobrynin (Dobrynin,

2004), leads to a collapse of data for all the simulation parameters examined in Figs. 4.2 (b).

This observation is more rigorously illustrated in the scaling behaviour for Regime II which
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Figure 4.3: Variation of intra-chain (p1) and inter-chain (p2) association fractions as a function of
scaled monomer concentration, c/c∗, for a sticky polymer solution in Regime I.

is investigated for a wider range of parameters.

Even though the spacer length ` has been absorbed into the y-axis for consistency with the

representation in other regimes as shown later, the dependence on ` has not been examined

in Figs. 4.2 since all the simulations have been carried out for a single value of ` = 4. This is

because, as discussed earlier in Section 4.3, changing ` changes the effective sticker strength

gss, even if εst is held constant. Interestingly, however, according to scaling theory, the ratio

of intra-chain and inter-chain association fractions, [p1(1− p1/2)/p2] `
1/2, is independent of

sticker strength since both intra-chain and inter-chain association fractions have the same

dependence on gss. As a result, different values of ` and εst should have no influence on

the value of this ratio. This is demonstrated in Fig. 4.2 (c) for two values of `, and a few

different values of εst. A similar collapse of data for a wider range of values of `, and εst is

demonstrated for this ratio in Regime II below.

It should be noted that when there are many values of chain length Nb involved in the

same plot, it is not possible to plot the dependence of the ratios involving p1 and p2 on c/c∗,

since c∗ depends on Nb. The dependence on c/c∗ for a single value of Nb is consequently

shown in the insets to Figs. 4.2 (a) and (b), to give an idea of the range of values of the

scaled concentration that have been examined here. The range of values of c/c∗ examined
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in all the scaling regimes is also indicated in Table 4.2.

θ-solvent and Regime II

The scaling relations corresponding to θ-solvent and Regime II conditions for backbone

monomers are given in the first and third rows of Table 4.1 (b), respectively, and the results of

simulations in these regimes, with τ̂ and sticker strength εst constant, are shown in Figs. 4.4.

In order to display both cases in the same set of plots, the dependence on spacer length ` is

absorbed into the y-axis in Figs. 4.4 (a) and (c), noting that `ν(3+θ2) reduces to the θ-solvent

case for ν = 1/2 and θ2 = 0, and to the Regime II case when ν = 3/5 and θ2 = 1/3. This

substitution is not necessary for the fraction of inter-chain associations (Fig. 4.4 (b)), since

the dependence on ` is the same in both cases. Interestingly, as discussed in greater detail

in Section 4.5.2 below, it turns out that gss does not depend on ` for the special case when

εbb = 0, i.e., when the backbone monomers are in an athermal solvent. This independence

enables an examination of the dependence of the degrees of conversion on ` in Regimes II

and III, independently of εst, unlike in the θ-solvent and Regime I regimes. We now consider

the Regime II and θ-solvent cases in turn.

The scaling with monomer concentration of the ratios involving the intra-chain and inter-

chain degrees of conversion, under Regime II conditions, can be seen in Figs. 4.4 (a) and (b) to

obey scaling predictions (given in the second row of Table 4.1 (b)). Similar to the observation

in Regime I, the choice of value θ2 = 1/3, leads to data collapse across the entire range of

parameter values considered in Regime II as well. It is clear from Table 4.1 (a) that θ2

appears in the scaling exponents for both the variables ` and c in Regime II. The impressive

collapse of data seen in Figs. 4.4 consequently provides convincing evidence of the validity

of Dobrynin’s estimate of the θ2 exponent in sticky polymer solutions.

Another observation from Figs. 4.4, which is common to both the intra and inter-chain

association fractions in Regime II, is that the collapse of data for different values of ` indicates

that the dependence on spacer length is captured accurately by scaling theory. Note that the

exponent of ` in the ratio involving p1 is 2 (for ν = 3/5 and θ2 = 1/3), and as a consequence,

a variation of ` between 4 and 12 in Figs. 4.4 (a) represents an exploration over a considerably

wide range of the values of `. Concurrently, Fig. 4.4 (c) shows that the ratio of intra-chain
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(a) (b)

(c)

Figure 4.4: The dependence of ratios involving (a) intra-chain (b) inter-chain degrees of conversion,
and (c) the ratio of intra-chain and inter-chain association fractions, on the monomer concentration,
c, with the chain backbone under θ-solvent and Regime II (gT < ` < gc) conditions. The spacer
length dependence is absorbed in the y-axis. Simulations are carried out at constant solvent quality
parameter τ̂ and sticker strength εst, except in (c) where two different values of εst have been
considered. The values of θ2 and ν are 0 and 1/2, respectively for the backbone under θ-solvent
conditions, and 1/3 and 3/5, respectively, for chains with εbb = 0 (see Table 4.1). The dashed
and the solid lines are drawn with slopes equal to the prediction by scaling theory, while symbols
represent simulation data.
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(a) (b)

Figure 4.5: Variation of intra-chain (p1) and inter-chain (p2) association fractions as a function
of scaled monomer concentration, c/c∗, for (a) a sticky polymer solution with Nb = 64, ` = 12,
f = 4, εbb=0 and εst, where the parameters correspond to Regime II and III and (b) sticky polymer
solution with θ-backbone.

and inter-chain conversions, [p1(1− p1/2)/p2] `, also follows the predicted scaling. Moreover

this ratio is independent of the effective sticker strength, since both intra and inter-chain

degrees of conversion have an identical dependence on gss. As can be seen from Fig. 4.4 (c),

this prediction is supported by simulations that show data collapse for several different values

of εst.

Recall that the case with backbone monomers under θ-solvent conditions has been simu-

lated here with two different approaches. The first is to neglect excluded volume interactions

altogether, and to treat, as is commonly done, the simulation of θ conditions to be identical

to simulating ideal (or ghost) chains that can cross each other. The second approach is to

use a value of εbb = εθ = 0.45, which has been shown to reproduce scaling predictions for

homopolymer chains consistent with θ-solvent conditions. As can be seen from Table 4.1 (b),

scaling theory predicts that in this case as well, the ratio [p1(1− p1/2)/(1− p2)] `3/2 is in-

dependent of monomer concentration. Fig. 4.4 (a), which displays the results of the two

approaches, demonstrates the validation of this prediction. When the SDK potential with

εbb = εθ is used, the numerical value of the ratio is identical to that for the Regime II case
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(with the appropriate scaling with ` taken into account). On the other hand, the value of

the ratio is higher for the case of ideal chains. As will be demonstrated in Section 4.5.2, this

difference arises from a difference in the function gss in the two cases.

The exponent θ2 is not relevant for backbone monomers under θ-solvent conditions, and

according to Table 4.1 (b), scaling theory predicts that the ratio [p2/(1− p2)] ` increases

linearly with concentration in this case. As can be seen from Fig. 4.4 (b), this prediction is

validated by both the approaches used here to simulate a backbone chain under θ-solvent

conditions. It is clear from Fig. 4.4 (c) that the ratio of intra and inter-chain degrees of

conversion, [p1(1− p1/2)/p2] `
1/2, also follows the predicted dependence on monomer con-

centration c. A discussion of the dependence on the variables ` and εst, in this case, is

postponed to Section 4.5.2. In the both the good solvent condition and θ-solvent condition,

the individual degrees of conversion for the intra-chain and inter-chain association, shown

in Figs. 4.5 are found to follow a similar trend with concentration, c/c∗, as observed in

Regime I. It should be noted that the range of concentration shown in Figure 4.5 (a) span

both Regime II and III (with good solvent quality for the backbone). As will be seen subse-

quently, the values of concentrations depicted in Figs. 4.4 (a) and (b) and listed in Table 4.2

for the good solvent backbone are well into the regime where the sticky polymer solution is

in the gel phase. As a consequence, all the simulation results presented here so far, clearly

indicate that the scaling relations hold true in both the sol and gel phases, and as pointed

out by Dobrynin (Dobrynin, 2004), do not distinguish between them.

Regime III

The constraints associated with carrying out simulations in Regime III (gT < gc < `) have

been detailed in Section 4.4.1. We have considered two values of chain length, Nb = 64 and

79, respectively, in this regime, with spacer lengths ` = 12 and 15. According to Eq. (4.8),

with Nb = 64, gc < 11, for c/c∗ > 4, while with Nb = 79, gc < 14, for c/c∗ > 4. Thus, with

the number of monomers in a thermal blob gT = 1 (since εbb = 0), any value of c/c∗ in the

range 4 < c/c∗ < 28 (33) (corresponding to gc ≈ 1 for Nb = 64 (79)) would correspond to

Regime III conditions for both these values of chain length. As indicated in the insets to

Figs. 4.6 (a) and (b) and Table 4.2, a range of values of c/c∗ from 4 to 6.5 has been simulated
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Figure 4.6: The dependence of ratios involving (a) intra-chain (b) inter-chain degrees of conversion,
and (c) the ratio of intra-chain and inter-chain association fractions, on the monomer concentration,
c, with the chain backbone under Regime III conditions. The spacer length dependence is absorbed
in the y-axis. Simulations are carried out at constant solvent quality parameter τ̂ = 1, and constant
sticker strength, εst = 5.0. The values of θ2 and ν are 1/3 and 3/5, respectively (see Table 4.1).
Insets in (a) and (b) show the range of concentration in terms of c/c∗. The dashed and the solid
lines are drawn with slopes derived from the prediction and the symbols are simulation data.
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here to explore Regime III, due to limitations of the computational cost for simulating larger

values of c/c∗.

Similar to the simulation results observed in the previous two regimes, Figs. 4.6 show

that the scaling of the intra-chain and inter-chain conversion ratios with monomer concen-

tration in Regime III, at constant τ̂ and εst, are also in good agreement with the theoretical

prediction (given in the third row of Table 4.1 (b), assuming θ2 = 1/3). The absorption of

the dependence on spacer length into the y-axis and the collapse of data seen for the two

different values of ` simulated here, is inline with the predicted dependence on ` by scaling

theory. However, it would be desirable to carry out simulations for a greater range of values

of ` for a thorough validation of the scaling prediction. The deviation from scaling theory

observed in Fig. 4.6 (a) for the simulated value of the ratio involving p1 at the highest value

of c, when Nb = 64, suggests that there are probably too few monomers in a correlation blob

(gc ≈ 6) for the scaling ansatz to be valid at this chain length. This is, however, not the case

when Nb = 79, or for the ratio involving p2 (at both the values of chain length used here),

since it can be seen from Figs. 4.6 (a) and (b), respectively, that scaling predictions for both

the ratios are confirmed by simulation results.

4.5.2 Dependence on solvent quality parameter and sticker strength

Defining the quantities,

α =
ν θ2

3ν − 1
, and β = ν(3 + θ2),

the scaling relations for the ratios involving intra and inter-chain degrees of conversion given

in Table 4.1 can be represented by the following common expressions in both Regimes I

and II,
p1(1− p1/2)

(1− p)2
`βi τ̂ 2βi−3 ∼ gss ; i = 1, 2

p2
(1− p)2

` τ̂α c−(1+α) ∼ gss

(4.10)

where β1 = β − (1/2) applies in Regime I, and β2 = β applies in Regime II. Setting ν =

3/5 and θ2 = 1/3, gives α = 1/4 and β = 2, and leads to the recovery of the simplified

relations displayed in Table 4.1 (b), for these two scaling regimes. The representation of
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(a) (b)

Figure 4.7: Scaling of the ratios involving intra-chain and inter-chain degrees of conversion as a
function of sticker strength, εst, for systems in (a) Regime I and (b) Regime II. Symbols represent
results of simulations, while the lines are drawn to guide the eye.

the scaling relations in the forms given in Eqs. (4.10), focusses attention on the function of

effective sticker strength, gss. According to scaling theory (Dobrynin, 2004), for fixed values

of backbone solvent quality parameter τ̂ (or equivalently, εbb), and spacer length `, the ratios

involving intra and inter-chain degrees of conversion should depend exponentially on εst.

This expectation is clearly fulfilled in both the scaling regimes, as can be seen in Figs. 4.7,

for the particular parameter values that have been examined here.

As discussed previously, in the present implicit solvent model, the function gss depends

on all three variables εst, εbb, and `, and cannot, in general, be varied independently of spacer

length `. Here we propose the form,

gss = A(εbb, `) exp [B(εbb, `) εst] (4.11)

which accounts for the expected dependence on all the three parameters. The functions

A(εbb, `) and B(εbb, `) can be determined by fitting simulation data. Since both the ratios

involving intra and inter-chain degrees of conversion have the same dependence on gss, they
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can be combined to maximise the data available for the purpose of fitting,

p1(1− p1/2)

(1− p)2
`βi τ̂ 2βi−3 +

p2
(1− p)2

` τ̂α c−(1+α) = 2A(εbb, `) exp [B(εbb, `) εst] (4.12)

Values of the functions A and B obtained in this manner, for the various choices of εbb and

` used here, are displayed in Table 4.3.

` εbb A B

6 0.0 4.65 0.76

4 0.3 6.17 0.70

6 0.35 5.07 0.72

Table 4.3: Values of the functions A(εbb, `) and B(εbb, `) in Eq. (4.12), for different spacer lengths,
`, and backbone monomer interaction strengths, εbb, determined from fitting data from simulations
carried out in scaling regimes I and II.

` εbb A1 B1 A2 B2

4 0.45 0.673 0.638 5.25 0.781

4 no EV 1.614 0.611 9.672 0.693

6 0.45 0.369 0.797 3.477 0.879

6 no EV 1.06 0.73 5.44 0.87

Table 4.4: Values of the functions A1(εbb, `) and A2(εbb, `), and B1(εbb, `) and B2εbb, `), for different
spacer lengths, `, determined from fitting data from simulations carried out for backbone monomers
under θ-solvent conditions. The two approaches correspond to using the SDK potential with εbb =
εθ = 0.45, and ghost chains with no excluded volume interactions.

Simulations carried out for the case where backbone monomers are under θ-solvent con-

ditions indicate that the function gss is not the same for the ratios involving intra and

inter-chain degrees of conversion, and that they cannot be combined together, as was done

in Eq. (4.12) for backbone monomers under good solvent conditions. The scaling relations

for the two ratios in the θ-solvent case, displayed in the last row of Table 4.1 (b), can be

recovered from Eqs. (4.10) by setting βi = 3/2 and α = 0. Using A1(εbb, `) and B1(εbb, `) to

denote the functions occurring in the fit to the function gss for the ratio involving p1, and
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similarly, A2(εbb, `) and B2(εbb, `) for the ratio involving p2, their estimated values are given

in Table 4.4.

Interestingly, as mentioned earlier, for the case when εbb = 0 (which is the value used

here to simulate the good solvent conditions corresponding to Regimes II and III), it can

be seen from Fig. 4.8 that the function gss appears to be independent of spacer length `.

This lack of dependence is responsible for the collapse of data for different values of ` shown

in Figs. 4.4 (a) and (b) for Regime II, and Figs. 4.6 (a) and (b) for Regime III, while the

dependence of gss on ` in Regime I, and for backbone monomers under θ-solvent conditions,

implies that a similar collapse cannot be considered for these cases.

Figure 4.8: Scaling of the sum of the ratios involving intra-chain and inter-chain association
fractions (see Eq. (4.12)) as a function of sticker strength, εst, for three systems with Nb = 34,
` = 6, f = 4; Nb = 34, ` = 4, f = 6, and Nb = 64, ` = 12, f = 4, with εbb = 0, at c/c∗ = 1.4. The
symbols are the simulation data and the solid line is an exponential fit to the data. Note that for
Regime II depicted here, α = 1/4 and β = 2.

The validation of the scaling relations displayed in Table 4.1 (b) for the ratios involving

p1 and p2, in terms of all the relevant scaling variables, for (i) backbone monomers under

good solvent conditions corresponding to Regimes I and II, and (ii) backbone monomers

under θ-solvent conditions, is demonstrated in the respective subfigures of Fig. 4.9. It is
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(a) (b)

(c) (d)

Figure 4.9: Master plots demonstrating validation of scaling relations for, (i) the ratio involving
the intra-chain degree of conversion p1, in (a) Regimes I and II, and (c) θ-solvent conditions for
backbone monomers, and, (ii) the ratio involving the inter-chain degree of conversion p2, in (b)
Regimes I and II, and (d) θ-solvent conditions for backbone monomers, plotted as a function of
monomer concentration, c, for different spacer segment lengths `, sticker strengths, εst, and solution
temperatures, τ̂ . The exponent α = 1/4. The dashed and the solid lines are drawn with slopes
equal to the prediction by scaling theory, while symbols represent simulation data.
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clear that when the dependence of the effective sticker strength on the spacer length ` is

taken into account, then all the simulation data can be collapsed onto master plots for the

dependence of the ratios involving p1 and p2 on monomer concentration c. Note that the weak

dependence on concentration observed for the ratio involving p1 in Regime I (contradictory to

the prediction of scaling theory) appears to persist at other values of εst as well. The values

of the ratio in the Regimes I and II approach each other with increasing concentration.

Whether the weak power law dependence on c in Regime I persists at higher concentrations

and higher chain lengths needs further examination. Even though Eq. (4.10) indicates that

the ratio p1(1− p1/2)/(1− p)2 depends on τ̂ in Regime II, the choice εbb = 0 implies that

τ̂ = 1, and consequently it does not appear on the y-axis label in Fig. 4.9 (a). Nevertheless,

it is worth noting that the pre-factor to the solvent quality parameter τ̂ affects the value of

the ratio displayed in Fig. 4.9 (a) for Regime II.

In the case of θ-solvent conditions for the backbone, we have seen in Figs. 4.4 that

although the scaling of the ratios involving p1 and p2 with concentration are identical for

the two models used to simulate θ conditions for the backbone, the pre-factors are different,

which results in a difference in the numerical values. Nevertheless, from Fig. 4.9 (c) and

Fig. 4.9 (d) we can conclude that the difference in the pre-factors arises from the factor, gss,

which is found to be different for the two models for the θ-solvent condition. By absorbing

the dependence of gss in the y-axis we observe the expected data collapse, as can be seen in

Figs. 4.9 (c) and (d).

4.5.3 Crossover behaviour between the scaling regimes

The crossover between Regimes I and II is driven by the solvent quality parameter τ̂ , while

that between Regimes II and III is driven by the concentration c, as discussed earlier in

Section 4.4.1. Within the constraints of the relatively narrow range of parameters that

have been explored here (due to the computational intensity of the Brownian dynamics

simulations), a preliminary examination of the crossover behaviour between Regimes I and II

is shown in Figs. 4.10 (a) and (b), and that between Regimes II and III is displayed in

Figs. 4.10 (c) and (d).

The dependence of the ratio involving p1 on the concentration c, in scaling regimes I
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(a) (b)

(c) (d)

Figure 4.10: Crossover behaviour between the different scaling regimes. (a) Change in the ratio
involving the intra-chain degree of conversion p1 from Regime I, where ` < gT < gc to Regime II,
where gT < ` < gc, due to a change in the solvent quality parameter τ̂ . (b) Change in the ratio
involving the inter-chain degree of conversion p2 from Regime I to Regime II due to a change in
τ̂ . (c) Change in the ratio involving the intra-chain degree of conversion p1 from Regime II, where
gT < ` < gc, to Regime III, where gT < gc < `, due to a change in the concentration c. (d) Change
in the ratio involving the inter-chain degree of conversion p2 from Regime II to Regime III, due to
a change in c.
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and II, has been plotted together in Fig. 4.9 (a), and discussed in that context. With regard

to the dependence on the solvent quality parameter τ̂ , it is clear from first and second rows of

Table 4.1 (b), that the ratio is independent of τ̂ in Regime I, and it scales with an exponent

−1 in Regime II. As a consequence, when plotted as a function of τ̂ , we expect to see a

constant value in Regime I, and then a crossover into Regime II with an asymptotic slope

of −1. With the current set of simulations, however, this behaviour cannot be observed due

to the paucity of values of τ̂ at which the simulations have been carried out. Essentially,

two value of τ̂ = 0.22 and 0.33 have been used in Regime I, and its value has been set equal

to one in Regime II. The values of the ratio at these values of τ̂ , with the dependence on `

and gss absorbed into the y-axis, are displayed in Fig. 4.10 (a). While it would be possible

to obtain data at other values of τ̂ in Regime II, the marginal difference in the magnitude

of the ratio in the two regimes would make it difficult to observe the −1 exponent in this

regime. Further, the weak dependence on concentration leads to the scatter of the data seen

in Regime I. Clearly, simulations of much longer chains, and over a wider range of values of

τ̂ , would be required to adequately describe the crossover of the ratio involving p1 between

Regimes I and II.

The dependence on concentration c of the ratio involving p2 is predicted to be the same in

both Regimes I and II according to scaling theory (see first and second rows of Table 4.1 (b)),

which has been verified by the simulation results displayed in Fig. 4.9 (b). In order to examine

the dependence of the ratio on just τ̂ , the concentration has been absorbed into the y-axis

in Fig. 4.10 (b). To avoid the overlaying of data at different concentrations on top of each

other, their average value has been reported in the figure. Similarly, the dependence on `

and gss has also been absorbed into the y-axis, as was done previously in Fig. 4.9 (b). Scaling

theory predicts that the ratio depends on τ̂ with an exponent α = −1/4 in both Regimes I

and II. This expectation is verified in Fig. 4.10 (b), where the values of the ratio at τ̂ = 0.22

and 0.33 correspond to Regime I, and the values at τ̂ = 1 correspond to Regime II. The

crossover between the two regimes appears to be smooth, though it is desirable to confirm

this with additional data points in both regimes.

The crossover between Regimes II and III has been examined for a single system with

Nb = 64 and ` = 12, since amongst the many data sets used in the current simulations, it is
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one that spans both regimes. Recall that according to scaling theory, the ratio involving p1

is independent of concentration in Regime II and scales as c5/8 in Regime III, while the ratio

involving p2 scales as c5/4 in both Regimes II and III. These asymptotic scaling regimes and

the crossover between them is displayed in Figs. 4.10 (c) and (d), where, in the latter, the

dependence on concentration has been absorbed into the y-axis to highlight the crossover

behaviour. As displayed in Table 4.2, in the simulations carried out here, the upper bound of

the scaled concentration c/c∗ in Regime II is 1.9, while the lower bound in Regime III is 4.0.

With these bounds in mind, it is clear that the ratio involving p1 appears to leave Regime II

around c/c∗ = 1, but already exhibits Regime III scaling by c/c∗ = 2. On the other hand,

while the ratio involving p2 also appears to leave Regime II around c/c∗ = 1, it displays the

asymptotic scaling of Regime III only by c/c∗ = 4. As discussed earlier in section 4.4.1, the

actual lower bound to Regime III is c/c∗ = 1. As a result, it is expected that for longer

chain lengths, the ratio will exhibit asymptotic Regime III scaling at smaller values of c/c∗.

While within scaling theory, the pre-factor for the dependence of the ratio involving p2 on

concentration c is the same in both regimes, simulations seem to indicate that it may be

different in the two regimes since the asymptotic constants displayed in Figs. 4.10 (d) are

not the same. Establishing the true nature of the crossover, and the values of the pre-factors

with greater certainty would require simulations with longer chains.

4.5.4 Scaling of radius of gyration

It is interesting to observe the variation with c/c∗ of the radius of gyration ratio, R2
g/R

2
g0HP ,

displayed in Fig. 4.11, of an individual chain in a sticky polymer solution, and compare

it with the behaviour of a chain in a homopolymer solution. Here, Rg0HP is the radius

of gyration of the homopolymer chain in the dilute limit. The asymptotic scaling law for

the radius of gyration ratio as a function of the scaled concentration c/c∗, in semidilute

unentangled homopolymer solutions, is well known (Doi and Edwards, 1986)(Daoud et al.,

1975)(Pelissetto, 2008)(Huang et al., 2010),

R2
g

R2
g0

∣∣∣∣
HP

=
( c
c∗

)(2ν−1)/(1−3ν)
(4.13)
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Equation (4.13) describes the shrinking of individual chains with increasing concentration due

to the presence of Flory screening. It is clear from the filled red symbols, which are the results

of current simulations, and the yellow stars, which are the results of MPCD simulations by

Huang et al. (Huang et al., 2010), that the radius of gyration ratio for homopolymer solutions

is constant at low concentrations (as expected for dilute solutions), and then decreases in a

broad crossover region between c/c∗ = 0.4 to c/c∗ ≈ 3, as it changes from the dilute to the

asymptotic semidilute scaling regime, where it decreases with a power law. The dashed black

line in Fig. 4.11 is drawn with slope equal to the asymptotic scaling exponent −0.25. On

the other hand, the filled green and purple symbols, representing sticky polymer solutions

with backbone under athermal solvent (εbb = 0), reflect a very different behaviour.

Figure 4.11: Ratios of the radius of gyration as a function of scaled concentration, c/c∗. R2
g0HP and

R2
g0SP are the mean-squared radius of gyration of the homopolymer (HP) and the sticky polymer

(SP), respectively, in the dilute limit. The backbone monomers in both polymers are in an athermal
solvent. The filled red symbols represent data for homopolymer solutions obtained from current
simulations, while the yellow stars are from MPCD simulations by Huang et al. (Huang et al., 2010)
The filled green squares and purple diamonds represent sticky polymer solutions. The filled blue
right triangles represent a situation in which the sticky polymer chain as a whole is under θ-solvent
conditions. These different scenarios are achieved with different backbone monomer interaction
strengths, εbb, sticker strengths, εst, and spacer lengths `. The dashed line is the theoretical scaling
prediction (Eq. (4.13)) for unentangled semidilute homopolymer solutions. The filled blue line is
drawn to guide the eye.

The ratio of the radius of gyration for a chain in a sticky polymer solution to that for an
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equivalent homopolymer chain in the dilute limit, R2
g0SP/R

2
g0HP , is less than one because of

the presence of stickers and the concomitant existence of intra-chain associations. Its value,

determined from single chain simulations, is indicated by the filled black line in Fig. 4.11.

At low concentrations, the magnitude of the ratio (filled green symbols) remains close to

the dilute limit value, and appears to increase gradually with increasing concentration. The

gradual increase can be ascribed to the increase in inter-chain associations with increasing

concentration, that occur at the expense of intra-chain associations. It could also be a

finite size effect, which could be confirmed with simulations for longer chains. The start of

the crossover into the semidilute regime due to Flory screening seems to be delayed until

c/c∗ ≈ 2, and it is clear from Fig. 4.11 that the crossover seems to persist beyond c/c∗ = 6,

with the asymptotic scaling regime not yet reached at this concentration, as indicated by

the filled blue line. It should be noted the onset of this crossover is expected to depend on

the parameters εst, εbb and `. These dependencies have not been studied in the present work

and are worthy of investigation in the future. The behaviour displayed in Fig. 4.11 indicates

that polymer conformations in solutions of sticky polymers are significantly different from

those of homopolymer chains in good solvent conditions, upon which the scaling theory is

based. This aspect will be considered further in Section 4.5.5 below, when sticky polymer

solutions in which chains as a whole are under θ-solvent conditions (εbb = 0.35, εst = 3.6)

(filled blue triangles in Fig. 4.11) are discussed.

4.5.5 θ-solvent conditions for sticky polymer chains

The scaling relations listed in Table 4.1 have all been derived by considering the quality of the

solvent relative to backbone monomers on the sticky polymer chain (Dobrynin, 2004), with

the spacer length between stickers, solvent quality parameter and the monomer concentration

determining the particular scaling regime that is relevant. In this section, we briefly consider

a situation that has not been not treated so far within the framework of scaling theory,

namely, one in which the sticky polymer chain as a whole is under θ-solvent conditions. As

discussed in Section 4.2, θ-solvent conditions for a sticky polymer chain can be realised by

setting εst equal to the corresponding value of εθst, for the given values of εbb and `.

The dependence of the ratios involving p1 and p2 on c, for a system in which the sticky
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(a) (b)

Figure 4.12: The dependence of ratios involving (a) intra-chain, and (b) inter-chain degrees of
conversion, on the monomer concentration, c, with sticky polymer chains under nearly θ-solvent
conditions for sticky chains as a whole. This is achieved, for a chain with Nb = 34, ` = 6, f = 4, and
εbb = 0.35, by setting εst = 3.6, which is close to the value εθst = 3.4 computed for these parameter
values. The dashed and the solid lines are drawn with slopes that are a good fit to the symbols,
which represent simulation data.

polymer chains as a whole are under θ-solvent conditions, is displayed in Figs. 4.12 (a)

and (b), respectively, for a chain with Nb = 34, ` = 6, f = 4, and εbb = 0.35. For these

parameter values, using the method discussed previously in Chapter 3, it can be shown that

εθst ≈ 3.4 ± 0.4. The simulation results reported in Figs. 4.12 were carried with εst = 3.6,

which is in the range of values required to achieve θ-solvent conditions. It is clear from the

figures that the observed dependence on monomer concentration of the intra and inter-chain

association fractions is unlike that seen in any of the scaling regimes studied previously.

Before discussing the results in this section, it is worth making a few remarks about the

system that has been studied here (Nb = 34, ` = 6, f = 4, εst = 3.6) in the context of the

scaling theory. Firstly, in terms of just the backbone monomers, the chain is under good

solvent conditions, since εbb = 0.35 < εθ = 0.45. It is the presence of stickers that makes the

conditions θ-like for the overall chain. Since εbb is held fixed at a value of 0.35, the number

of monomers in a thermal blob is fixed at gT = 20, independent of the concentrations
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Figure 4.13: Variation of intra-chain (p1) and inter-chain (p2) association fractions as a function of
scaled monomer concentration, c/c∗, with sticky polymer chains under nearly θ-solvent conditions
for sticky chains as a whole.

that have been studied. Since the overall chain under θ-solvent conditions has not been

considered in the scaling theory, a wide range of concentrations has been explored here

(0.2 ≤ c/c∗ ≤ 6), independent of the bounds imposed by the different scaling regimes. For

the chain of backbone monomers, this variation of c/c∗ implies that the number of monomers

in a correlation blob varies in the range 254 ≥ gc ≥ 4. It is straightforward to show from

Eq. (4.8) that gc < gT for c/c∗ > 1.5, and gc < ` = 6, for c/c∗ > 4.0. Both these situations

have not been examined within the framework of scaling theory, even for sticky polymer

chains under good solvent conditions.

With this discussion in mind, it can be observed from Figs. 4.12 (a) and (b) that both

association fractions exhibit a crossover in scaling behaviour at around c/c∗ ≈ 1. The ratio

involving p1 is fairly independent of concentration until this crossover value, at which point

the dependence grows and reaches an asymptotic slope of about 0.37. In order to more

clearly examine the dependence on concentration of the ratio involving p2, its value has

been divided by c on the y-axis. Clearly, the scaling with concentration is linear at low

concentrations, similar to that observed for chains whose backbone monomers are under

θ-solvent conditions. Beyond the value of c/c∗ ≈ 0.7, the slope assumes a value of ≈ 1.18,
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which is less than the slope of 1.25 observed for chains with backbones under good solvent

conditions. However, for c/c∗ & 4, the ratio deviates from this scaling presumably due to

the number of monomers in a correlation blob becoming smaller than the spacer length ` as

a result of the relatively short chain length, Nb = 34, used in the current simulations.

It is instructive to study the dependence on concentration of both the degrees of conver-

sion in conjunction with the variation with c/c∗ of the radius of gyration ratio, R2
g/R

2
g0SP

,

displayed in Fig. 4.11 (filled blue right triangles, y-axis on the right of figure). For a ho-

mopolymer solution under θ-solvent conditions, this ratio is constant, independent of con-

centration, since there is no Flory screening. In the case of the sticky polymer chains under

θ-solvent conditions considered here, the radius of gyration ratio appears to be a weak func-

tion of concentration. The ratio increases gradually, followed by a slow decrease beyond the

threshold value of c/c∗ ≈ 1, which coincides with the value at which the change in concen-

tration dependence is observed for the ratios involving p1 and p2 in Figs. 4.12. The initial

increase in size can be correlated with the reduction in the intra-chain association fraction

p1 displayed in Fig. 4.13, in which it can be seen that p1 rapidly decreases beyond c/c∗ ≈ 1,

with the inter-chain association fraction p2 then becoming the dominant mode of association.

The scaling of the radius of gyration behaviour observed here for a sticky polymer chain

under overall θ-conditions may well be due to finite size effects. In principle, one expects

that for sufficiently long chains, the renormalization of the solvent quality that occurs due to

setting εst = εθst would lead to a true θ-state, with a radius of gyration that is independent of

concentration. The special case considered in this section has not been investigated further

here. Nevertheless, the preliminary results clearly indicate that the scaling behaviour of

the intra and inter-chain association fractions is intimately connected to the underlying

conformations of the sticky polymer chains.
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4.6 Hydrodynamic interactions and time to equilibra-

tion

As is well known, hydrodynamic interactions (HI) begin to get screened at the overlap con-

centration c∗, and get completely screened only in a polymer melt (Rubinstein and Colby,

2003)(A.Jain et al., 2012). However, for a wide range of concentration in the dilute and semi-

dilute unentangled regimes, hydrodynamic interactions significantly influence the dynamic

properties of polymer solutions (Rubinstein and Colby, 2003)(A.Jain et al., 2012)(Prakash,

2019). Considering the effects of HI on the dynamics of homopolymer solutions, it can be

presumed that HI will have significant influence on the dynamics of sticky polymer solutions

as well. It seems worthwhile therefore to examine the role of HI in associative polymer

solutions, to determine the concentration beyond which they begin to get screened, and to

establish whether there is a concentration beyond which their influence on dynamics can be

safely ignored. While hydrodynamic interactions have no effect on equilibrium static proper-

ties, they do, nevertheless, play a role in determining the timescale over which equilibration

is achieved. In this section, the influence of HI on the time taken by the intra and inter-chain

association fractions, and the radius of gyration, to reach their respective stationary values,

is examined.

The hydrodynamic interaction is modelled by the regularised Rotne-Prager-Yamakawa

tensor, as described in Section 2.3 in the context of Brownian dynamics simulations. For all

the simulation results reported in this section, we use a value of hydrodynamic interaction

parameter h∗ = 0.2.

As mentioned in Section 4.4, prior to sampling equilibrium data, a typical simulation

involves two equilibration steps. In the first, a run of about 3 to 4 Rouse relaxation times

is carried out for a system of chains with only backbone monomers and no stickers. In

the second step, stickers are introduced and a further run of about 5 to 8 Rouse relaxation

times is carried out. For the results discussed in this section, hydrodynamic interactions are

switched on at the end of the first step, simultaneously with the introduction of stickers.

The transient trajectories during the second equilibration step are sampled in order to study

the influence of hydrodynamic interactions.
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Figure 4.14: The transient variation of (a) the intra-chain, and (b) the inter-chain association
fractions, for two different concentrations, and the time evolution of the radius of gyration at
the scaled concentrations, (c) c/c∗ = 0.2, and (d) c/c∗ = 0.4. Simulations with and without
hydrodynamic interactions (HI) have been displayed for both properties, with the former carried
out with the hydrodynamic interaction parameter, h∗ = 0.2. The dashed vertical lines indicate
the time required for equilibration. The choice of simulation parameters leads to a sticky polymer
solution in scaling Regime II.
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The transient variation of the intra and inter-chain association fractions are shown in

Figs. 4.14 (a) and (b), respectively, for two different scaled concentrations, c/c∗ = 0.2 and

c/c∗ = 0.4, and the time evolution of the radius of gyration at the same two values of

concentration, are shown in Figs. 4.14 (c) and (d), respectively. The simulation parameters

are such that, within the framework of scaling theory, the system lies in Regime II (see

Fig. 4.1 (b)). For both the degrees of conversion and the radius of gyration, simulations

with and without hydrodynamic interactions have been displayed. Since both are static

properties, their equilibrium values are unaffected by hydrodynamic interactions, and as can

be clearly observed in Figs. 4.14, this is indeed the case, with the results of simulations with

and without hydrodynamic interactions being identical at sufficiently long times, when the

systems have equilibrated.

Interestingly, it appears from Fig. 4.14 (a) and (b), that both p1 and p2 are unaffected by

hydrodynamic interactions for the entire period of observation, from the moment the stickers

are turned on to the time at which equilibration is achieved (denoted by the dashed vertical

lines). Both the degrees of conversion are seen to increase with increasing concentration.

On the other hand, while the time to equilibration for p1 is the same at c/c∗ = 0.2 and

c/c∗ = 0.4, it takes longer for p2 to equilibrate at the higher concentration. It is worth

noting that for the sticker strength examined here, the time required for the equilibration

of p1 and p2, which is a reflection of the diffusive timescale for stickers to find each other

in space, is significantly shorter than the time required for the equilibration of the radius of

gyration, which is a property of the chain as a whole.

In contrast to their lack of influence on the degrees of conversion, hydrodynamic interac-

tions appear to have a pronounced influence on the time needed for the radius of gyration

to equilibrate at c/c∗ = 0.2. As can be seen from the two trajectories in Fig. 4.14 (c)

that correspond to simulations with (green squares) and without hydrodynamic interactions

(purple circles), a stationary state is reached by a non-dimensional time, t/λH ≈ 400, in the

former case, while it requires t/λH ≈ 650 in the latter case. At the higher value of scaled

concentration, c/c∗ = 0.4, however, even though the transient trajectories are different, both

simulations with and without hydrodynamic interactions appear to reach a stationary state

by a non-dimensional time, t/λH ≈ 650 (see inset to Fig. 4.14 (d)). This suggests that the
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influence of hydrodynamic interactions decreases with increasing concentration, as may be

expected with the onset of screening in unentangled semidilute solutions. As observed from

the results in the main paper, the value of the scaled concentration, c/c∗ = 0.2, corresponds

to a system in the sol phase, while according to at least one of the signatures of gelation

considered in this work, which will be shortly discussed in the following section, the value

c/c∗ = 0.4, corresponds to a system in the gel phase. As a consequence, we may expect that

dynamic properties such as relaxation times in the sol phase will be significantly affected

by the presence of hydrodynamic interactions. While in this section we have discussed the

effect of hydrodynamic interactions only on the equilibration time of static properties, it

has a far stronger impact on the scaling of various dynamic properties and viscoelasticity of

associative polymer solutions, considered in detail in Chapter 5.

4.7 Characterisation of gelation and the gelation line

The mean-field theoretical framework has been used by Semenov and Rubinstein (Semenov

and Rubinstein, 1998) and Dobrynin (Dobrynin, 2004) to map out the phase diagram of

associative polymer solutions in the temperature-concentration plane, and within the phase

diagram, to identify different domains in the single phase sol and gel states. Essential to

the demarcation of the different phase boundaries in these theories, is the use of the original

Flory-Stockmayer expression, Eq. (4.2), that relates the fraction of inter-chain associations

p2 at the sol-gel transition to the number of stickers f on a chain. Typically, Eq. (4.2), rather

than the Dobrynin modified (Dobrynin, 2004) Flory-Stockmayer expression, Eq. (4.1), is used

since the fraction of intra-chain associations p1 is considered to be negligibly small. While

this is a reasonable assumption at sufficiently high concentrations, p1 and p2 are of compa-

rable magnitudes for most of the concentrations examined here. Consequently, substituting

Eq. (4.1) (rather than Eq. (4.2)) into the expression for p2 in the second of Eqs.(4.10), leads

to the following expression for the dependence of the monomer concentration, cg, along the
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gelation line that separates the sol and gel states, on all the system parameters,

cg ∼

 τ̂
νθ2

(3ν−1) `

[(1− pg1)f − 1](1− pg)2gss


3ν−1

ν(3+θ2)−1

(4.14)

Here, pg1 is the fraction of intra-chain associated stickers and pg is the total fraction of

associated stickers at the sol-gel transition. Clearly, both Eq. (4.1) and Eq. (4.14) are

testable elements of the scaling theory, which have not been examined so far by molecular

simulations. In this work, we examine the validity of Eqs. (4.1) and (4.14) in a limited way,

i.e., we confine our attention to determining the dependence of p2 on p1 and f , and the

variation of cg along the gelation line, for fixed values of the solvent quality parameter τ̂ and

sticker strength εst, in the special case where the backbone monomers are in good solvent

conditions corresponding to scaling regime II. Additionally, we examine the dependence of

pg1 and pg on `, and on f , in order to eliminate them from Eq. (4.14), and as a consequence,

obtain the dependence of cg on just the sticky chain properties, ` and f .

In order to verify if the prediction of the gelation line by scaling theory is accurate,

it is first necessary to locate the concentration at which the sol-gel transition occurs. As

mentioned in Section 4.1, there are at least three different approaches in the literature with

regards to this question, and here we examine each of them in turn.

From a geometric perspective, the inception of gelation can be defined as the monomer

concentration at which a system spanning network occurs (Stauffer and Aharony, 1992)(Tanaka

and Matsuyama, 1989)(Tanaka, 1998). The concentration at which such a percolation transi-

tion occurs, denoted here by cg1 , can be determined by calculating the probability of finding a

cluster of chains that spans the simulation box, and estimating how this probability changes

with changing concentration. The so-called spanning probability is computed here by identi-

fying the chains that belong to a cluster from the chain connectivity matrix, and comparing

the maximum span of the cluster with the box size, L. If the span of a cluster of chains

along any direction is greater than or equal to the box size, the cluster is identified as system

spanning. The spanning probability is computed over an ensemble of 64 to 128 independent

trajectories, where each trajectory consists of a set of data collected at an interval of 1000 to
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(a) (b)

Figure 4.15: Spanning probability (SP) as a function of monomer concentration in Regime II for
(a) Nb = 24, ` = 4, f = 4 and (b) Nb = 34, ` = 4, f = 6, with sticker strength, εst = 5.0. The point
of divergence of the curves at different box sizes, L, is assumed to represent the concentration at
the gelation threshold, and is indicated as occuring at cg1/c

∗ ≈ 0.3.

5000 non-dimensional time steps over the entire production run. For an infinitely large sim-

ulation box, the probability of finding a cluster that spans the entire box, at a low monomer

concentration below the gelation threshold, is essentially zero. With increasing concentra-

tion, the spanning probability is expected to undergo a sharp transition at the monomer

concentration that corresponds to the percolation transition, and instantly attain a value of

one. For a finite box size, however, the variation of spanning probability with concentration

is expected to be more gradual, since even at low concentrations, there is a finite probability

of finding a system spanning cluster. In this case, the gelation threshold can be determined

by computing the spanning probability for a number of systematically increasing box sizes.

It is expected that if the studied systems are large enough, their spanning probability curves

will intersect at a common point, which represents an accurate estimate of the percolation

threshold (Stauffer and Aharony, 1992)(Christensen and Moloney, 2005). Here, simulations

have been carried out for three different box sizes, and in each case, the spanning probability

(SP) has been computed as a function of monomer concentration, as displayed in Fig. 4.15.
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Figure 4.16: Chain cluster-size distribution as a function of monomer concentration in Regime II
for (a) Nb = 24, ` = 4, f = 4, and (b) Nb = 34, ` = 4, f = 6, with sticker strength, εst = 5.0. The
onset of bimodality, which is assumed to represent a signature of gelation, occurs at cg2/c

∗ ≈ 1.0,
for each of the three chain lengths.

Rather than each box size leading to a distinctive spanning probability curve, which inter-

sect at a unique point, it is observed that at low concentrations, the curves for different box

sizes overlap within error bars, probably as a result of insufficiently long chains and the box

sizes not being large enough. Beyond a certain scaled concentration, however, the curves are

seen to separate and diverge. The location of this change in behaviour has been identified

here as the concentration at which percolation transition occurs. The value of the scaled

concentration, cg1/c
∗ ≈ 0.3, is found to be independent of chain length, for systems with a

fixed spacer length `, sticker strength εst, and backbone monomer solvent quality εbb, as can

be seen in Fig. 4.15.

In associative polymer solutions, the existence of geometric percolation does not nec-

essarily imply the existence of a persistent network since the bonds between stickers are

weak and reversible (Kumar and Panagiotopoulos, 1999)(Kumar and Douglas, 2001). As

mentioned earlier, an alternative approach Kumar and Panagiotopoulos (1999)(Kumar and

Douglas, 2001) identifies the occurrence of an incipient gel in sticky polymer solutions with

the onset of bimodality in the chain-cluster size distribution, P (m), where m is the number
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of chains in a cluster. Fig. 4.16 displays P (m) computed here at different monomer concen-

trations, for two different values of chain length Nb, at the specified values of `, εst and εbb.

The plots suggest that the distribution function decreases monotonically with increasing m

at low monomer concentrations, but becomes bimodal with increasing concentration. The

occurrence of a peak at a large cluster size is considered to be correlated with the existence

of percolating chain-clusters. Here, the concentration at which the slope of P (m) versus m

first becomes positive, at some value of m, is considered to be the location of the sol-gel

transition, and is denoted by cg2 . For the given parameter values, the onset of bimodality

is found to occur at cg2/c
∗ ≈ 1.0, which is significantly higher than cg1/c

∗, the location of

the percolation transition. The value of the gelation concentration, cg2/c
∗, is found to be

independent of chain length, as in the case of cg1/c
∗. It is apparent from Fig. 4.15 that

as the monomer concentration approaches cg2/c
∗, the spanning probability tends to unity,

suggesting that, at this concentration, there is a significant increase in the probability of

finding a cluster with size sufficiently large to span the entire system.

Figure 4.17: Free chain concentration as a function of monomer concentration in Regime II for
different chain lengths with spacer length, ` = 4, sticker strength, εst = 5.0 and εbb = 0. The
maxima in the free-chain concentration is observed at cg3/c

∗ ≈ 0.5.
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The third and final signature of gelation considered here is the proposal by Semenov and

Rubinstein (Semenov and Rubinstein, 1998) that the maxima in the free chain concentra-

tion coincides with the sol-gel transition. Recall that this assumption is the basis for their

derivation of Eq. (4.2). Figure 4.17 is a plot of the free chain concentration versus monomer

concentration, for various values of chain length Nb, at the specified values of `, εst and εbb.

Free chains, i.e., those with no inter-chain associations, are essentially chain clusters with

only one chain in them, and can consequently be identified with the help of the same cluster

computation algorithm used here for determining the other two signatures of gelation. The

value of the concentration corresponding to the maximum for each symbol set in Fig. 4.17,

denoted here by cg3 , is established by fitting a parabola to the data close to the maxima, and

finding the location at which the slope is zero. We find that cg3/c
∗ ≈ 0.5, which lies between

the two scaled concentrations, cg1/c
∗ and cg2/c

∗, the locations of the sol-gel transition from

the two approaches discussed previously. As is clear from Fig. 4.17, consistent with the ob-

servations for cg1/c
∗ and cg2/c

∗, the scaled concentration cg3/c
∗, is also independent of chain

length. The fact that cg3/c
∗ > cg1/c

∗ implies that, even after a system spanning network

is formed, new chains added to the system join the sol-phase for a range of concentrations,

before joining the gel-phase.

According to Flory-Stockmayer theory (Flory, 1953)(Stockmayer, 1944) (appropriately

modified by Dobrynin (Dobrynin, 2004)), the gel-point coincides with the value of c/c∗ at

which p2 = 1/[(1 − p1)f − 1]. The variation of inter-chain conversion, p2, and the ratio

1/[(1− p1)f − 1] with scaled concentration, c/c∗, is presented in Figs. 4.18 for systems with

different chain lengths, Nb, at constant `, εst and εbb. Clearly, the points of intersection

between the two curves in the different subfigures of Figs. 4.18 are the Flory-Stockmayer

theory estimates of c/c∗ at the gel point, in all these cases. The estimate of the gel-point

appears to be independent of chain length, and close to the value evaluated from the onset

of bimodality in the chain-cluster size distribution, i.e., c/c∗ ≈ 1.

It is intriguing that the two gelation concentrations cg1/c
∗ ≈ 0.3 and cg3/c

∗ ≈ 0.5, corre-

sponding to the inception of a system spanning network, and to the free-chain concentration

maximum, respectively, occur below the overlap concentration, while that corresponding to

the onset of bimodality cg2/c
∗ ≈ 1.0, is more in accord with the intuitive expectation of gela-

94



Chapter 4. Universal scaling and characterisation of gelation in associative polymer
solutions

(a) (b)

(c) (d)

Figure 4.18: Variation of inter-chain conversion, p2, and the ratio 1/[(1 − p1)f − 1] with scaled
concentration, c/c∗, for systems with chain lengths (a) Nb = 34, (b) Nb = 39, (c) Nb = 44 and (d)
Nb = 64. For all the chain lengths, the values of spacer length, ` = 4, sticker strength, εst = 5,
and backbone monomer interaction strength, εbb = 0, are held constant. The values of c/c∗ at the
point of intersection of the two curves for various chain lengths are (a) 0.98, (b) 0.95, (c) 0.93 and
(d) 0.89.

tion occurring at cg ≈ c∗. This is perhaps related to the fact that geometrical percolation

can occur even though the solution is not solid-like, which is the common understanding of a

gel. As shown previously Kumar and Douglas (2001), the volume fraction at the percolation

threshold is a function of the sticker-sticker interaction strength εst, and it approaches the

onset of solid-like behaviour with increasing εst. For relatively low values of εst, while a

system spanning network might occur, the frequent pairing and unpairing of stickers leads

to a gel that is not rigid Kumar and Douglas (2001). Indeed, as shown by the simulation

snapshots in Figs. 4.19, there is no discernible change in the distribution of chains across the

simulation cell when the geometrical (and free-chain maximum concentration) is crossed. It
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(a) (b)

(c)

Figure 4.19: Snapshots of the simulation box for a system with parameters {Nb = 34, ` = 4, f =
6, εbb = 0, εst = 5} at (a) c/c∗ = 0.2, (b) c/c∗ = 0.5 and (c) c/c∗ = 1.0. The red beads indicate
inter-chain associations, while the green beads represent intra-chain associations.
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would be interesting to study the dependence of the three gelation signatures on the sticker

strength, and to examine if any of the estimates of the sol-gel transition concentration de-

termined here coincides with that identified through rheological experiments (Winter and

Chambon, 1986)(Li and Aoki, 1997)(Li et al., 1997), which would identify the transition to

solid-like behaviour. Addressing this question satisfactorily would require the incorporation

of hydrodynamic interactions, in order for the dynamics of sticky polymer solutions to be

captured accurately.

(a) (b)

Figure 4.20: Scaling of inter-chain degree of conversion, pgi2 , at the gel-point in Regime II, predicted
by the three different signatures of gelation, with (a) (1− p1)f − 1, and (b) the number of spacer
monomers `, for systems with constant number of stickers f , and different chain lengths Nb. The
sticker strength and backbone solvent quality are kept constant at εst = 5.0 and εbb = 0, respectively.
Each symbol shape represents a system with a particular chain length Nb and the dashed lines are
the Flory-Stockmayer theory predictions at each of the gelation signatures.

Having determined the concentrations at the gel-point predicted by the different signa-

tures of gelation, we can now verify if the dependence of pg2 on pg1 and f coincides with the

prediction of the modified form of the Flory-Stockmayer theory (Flory, 1953)(Stockmayer,

1944)(Dobrynin, 2004). In other words, we can check if the dependence of pgi2 on [(1−pgi1 )f−1]

obeys Eq. (4.1), where gi = g1, g2, g3, represents the three signatures of gelation. It is clear

from Fig. 4.20 (a) that for all the three signatures of gelation, pg2 follows a linear scaling
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with the inverse of ((1 − pgi1 )f − 1) for sufficiently long chains as predicted by Eq. (4.1).

Compared to gelation signatures g2 and g3, however, the approach to linear scaling for g1

occurs at larger values of Nb. As mentioned earlier, the Flory-Stockmayer theory estimate

of the gel-point matches well with the gel-point determined from the onset of bimodality in

the chain-cluster size distribution (g2).

The independence of the value of c/c∗ at the gel-point from chain length Nb has been

demonstrated for all the gelation signatures by keeping the spacer length ` fixed, while

varying the number of stickers f per chain. In Fig. 4.20 (b), the dependence of the fraction

of inter-chain associations at the gel-point, pgi2 , on the spacer length, ` (and consequently,

Nb), for the three signatures of gelation, is displayed for chains with a fixed number of stickers

f . Clearly, pgi2 is independent of `. Since pgi2 = 1/[(1 − pgi1 )f − 1], and pgi2 is independent

of `, this implies that pgi1 should also be independent of `, at fixed values of f . This is

demonstrated shortly below.

The verification of the expression for the gelation line, Eq. (4.14), as mentioned earlier,

is examined here for the restricted case of constant τ̂ and εst. Further, we wish to eliminate

the quantities (1− pg1)f − 1 and (1− pg)2 from Eq. (4.14) so as to determine the dependence

of cg on just the sticky chain properties, ` and f . In order to do so, the dependence of

(1−pgi1 )f−1 and (1−pgi)2 on ` and f is displayed in Figs. 4.21. It is clear from Fig. 4.21 (a)

that at a fixed value of `, (1− pgi)2 is independent of f for all the three different signatures

of gelation, while Fig. 4.21 (b) implies that for a fixed value of f , (1 − pgi)2 scales linearly

with ` in all three cases. Fig. 4.21 (c) suggests that when ` is constant, [(1 − pgi1 )f − 1]

scales linearly with f , for sufficiently long chains. Finally, as anticipated above, Fig. 4.21 (d)

indicates that when f is constant, pgi1 tends to a constant value, independent of `, when Nb

becomes large. As observed earlier, the approach to asymptotic behaviour is slower in the

case of g1, compared to that of g2 and g3.

Substituting the dependences on ` and f for the quantities [(1− pg1)f − 1] and (1− p2g),

summarised in Figs. 4.21, into Eq. (4.14), leads to the following expression for the monomer
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Figure 4.21: Scaling with the number of stickers per chain, f , and the spacer length, `, in Regime II,
of the quantities (1−pgi)2 [(a) and (b), respectively], and [(1−pgi1 )f −1] [(c) and (d), respectively],
that occur in Eq. (4.14), for the different signatures of gelation.
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concentration along the gelation line,

cgi ∼

 τ̂ νθ2
(3ν−1)

f gss


3ν−1

ν(3+θ2)−1

∼ f −
4
5 (4.15)

where the assumptions of constant τ̂ and εst, and the values, ν = 3/5 and θ2 = 1/3, have

been used to derive the second expression, which indicates that cgi depends only on f and not

on `. It is clear from the results displayed in Fig. 4.22, that simulations validate the revised

expression for the gelation line, Eq. (4.15), for all the three different signatures of gelation.

The overlapping of data corresponding to different values of `, for systems with f = 4, also

demonstrates the independence of cgi from the number of spacer monomers between stickers.

It is undoubtedly desirable to verify experimentally both the general and restricted forms of

the dependence of cgi on system parameters given in Eq. (4.15), as it would simultaneously

permit an evaluation of the correctness of the scaling of p2 predicted by Eq. (4.1), the

dependences revealed in Figs. 4.21, and the correct value of the des Cloizeaux exponent θ2.

4.8 Phase separation and the breakdown of scaling

A solution of sufficiently long polymers under poor solvent conditions will phase separate with

increasing monomer concentration. This applies both to homopolymer solutions (Rubinstein

and Colby, 2003), and to sticky polymer solutions (Dobrynin, 2004). In the case of sticky

polymer solutions, we have calculated in Chapter 3 the second osmotic virial coefficient B2

by determining the potential of mean force, U(r), between a pair of polymer chains with their

centres of mass separated by a distance r (Dautenhahn and Hall, 1994)(Withers et al., 2003).

We have shown that for a chain of lengthNb, with given values of the backbone solvent quality

εbb, and spacer length `, this procedure can be used to determine the value of sticker strength

εθst at which the sticky polymer chain as a whole behaves as a chain under θ-solvent conditions,

i.e., when B2 becomes zero. For instance, for a chain with Nb = 34, ` = 4, and εbb = 0.3, the

second virial coefficient B2 = 0 for εθst ≈ 3.2. Note that even though the backbone monomers

are under good solvent conditions (since εbb = 0.3 < εθ = 0.45), the chain as a whole is under
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Figure 4.22: Gelation concentration, cgi , as a function of the number of stickers in a chain (see
Eq. (4.15)), for the three different signatures of gelation in Regime II. The sticker strength and
backbone solvent quality are kept constant at εst = 5.0 and εbb = 0, respectively. Each symbol
shape represents a system with a particular chain length Nb, spacer length ` and number of stickers
per chain f and the dashed lines are the scaling predictions for each of the gelation signatures.

θ-solvent conditions due to the affinity of the stickers for one another. It is clear then that a

sticky polymer chain with Nb = 34, ` = 4, εbb = 0.45 and εst = 5, will be under poor solvent

conditions (i.e., the second virial coefficient B2 < 0), since, firstly the backbone monomers

are under θ-solvent conditions, and secondly, the sticker strength, εst = 5, is greater than

εθst ≈ 3.2, determined for the case εbb = 0.3. We can anticipate that a solution of such sticky

polymers will phase separate with increasing concentration, and indeed this seems to be the

case as discussed below.

We have previously shown that simulation results validate the predictions of scaling

theory for sticky polymers, as displayed in Figs. 4.4 for a range of concentrations. The plot

of the ratio [p2/(1− p2)] is reproduced in Fig. 4.23 (a), but this time at higher concentrations

than shown previously. It is very clear that for sufficiently high concentrations, simulation

data departs from the linear line representing the prediction of scaling theory, for both

the approaches pursued here to simulate backbone monomers under θ-solvent conditions.
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It seems likely that the breakdown of scaling theory coincides with the occurrence of phase

separation, as indicated in the snapshots from simulations displayed in Figs. 4.23 (b) and (c).

These figures represent snapshots of a system with Nb = 24, ` = 4, and εst = 5.0, under

θ-solvent conditions for backbone monomers, at two different concentrations, c/c∗ = 0.3 and

c/c∗ = 1.0. The purple coloured beads belong to chains that are all a part of the same cluster.

The grey coloured beads belong to chains that are not part of the cluster represented by

the purple beads. At the relatively low concentration of c/c∗ = 0.3, Fig. 4.23 (b) appears to

suggest that there exist only small sized clusters, containing only a few chains, that are fairly

homogeneously dispersed in the simulation cell. With increasing concentration, more free

chains combine with existing clusters, along with the combination of clusters themselves,

to give rise to increased cluster sizes, with more constituent chains in each cluster. At

sufficiently high concentrations, such as at c/c∗ = 1.0, the snapshot displayed in Fig. 4.23 (c)

suggests that most of the chains have clumped together to form a single large cluster. Note

that since the simulation box has periodic images in the three coordinate directions, all

the purple beads representing the single cluster are in fact in the neighbourhood of each of

the corners of the box. The aggregation of chains in the cluster does not span the system

homogeneously, suggesting that the solution has phase separated at some concentration,

0.3 < c/c∗ < 1.0, which is the range in which the scaling theory also breaks down.

The situation is very different for a sticky polymer system in which the chains have

backbone monomers under very good solvent conditions. Under these circumstances, as

indicated schematically in Fig. 3.9, the sticker strength εθst required for the sticky chain as

a whole to be under θ-solvent conditions keeps increasing as εbb → 0. The solvent quality

for the sticky chain as a whole remains good in spite of the presence of stickers, and phase

separation does not occur with increasing monomer concentration. As a consequence, it can

be anticipated that unlike for chains with backbone monomers under θ-solvent conditions,

scaling predictions will remain valid even at high concentrations. This has already been

commented upon in the context of Fig. 4.4 in section 4.5.1, where it was pointed out the

scaling relations remained valid even after the system is well into the gel phase. These

observations are confirmed in Figs. 4.24, where in subfigure (a) it can be seen that the ratio

involving the inter-chain degree of association scales with monomer concentration according

102



Chapter 4. Universal scaling and characterisation of gelation in associative polymer
solutions

10-2 10-1 100
100

101

102

10-1 100
100

101

102

(a)

(b) (c)

Figure 4.23: (a) Rescaled inter-chain degree of association as a function of monomer concentration,
with backbone monomers under θ-solvent conditions. For Nb = 24, θ-solvent conditions for the
backbone are obtained by simulating ghost chains, while for Nb = 34, θ-solvent conditions for
the backbone are obtained by using the SDK potential with εbb = εθ = 0.45. Inset is a plot of
the ratio versus c/c∗, for the case Nb = 24. The solid lines are drawn with slopes equal to the
prediction by scaling theory, while symbols represent simulation data. (b) and (c) Snapshots from
the simulations for the system with Nb = 24 in sub-figure (a), at concentrations c/c∗ = 0.3, and
c/c∗ = 1.0, respectively. The purple coloured beads belong to chains that are all a part of a single
cluster, while the colour grey is used to represent beads in chains that do not belong to this cluster.
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Figure 4.24: (a) Rescaled inter-chain degree of association as a function of monomer concentration,
with backbone monomers under good solvent conditions corresponding to scaling regime II. The
solid line is drawn with slope equal to the prediction by scaling theory, while symbols represent
simulation data. (b) Snapshot from the simulations for systems with Nb = 34, ` = 4, εbb = 0, and
εst = 5.0, at concentration c/c∗ = 1.6. Beads coloured purple are from chains that are all a part
of the same system spanning cluster, while the grey coloured beads belong to chains that are not
part of this cluster.

to the prediction of scaling theory even at the highest concentrations examined here, while

subfigure (b) indicates that at the scaled concentration c/c∗ = 1.6, there exists a system

spanning cluster, and that the chains are distributed homogeneously across the system, with

no sign of phase separation.

4.9 Summary and conclusions

A multi-particle Brownian dynamics simulation algorithm, with hydrodynamic interactions

incorporated, which was formerly developed to describe semidilute polymer solutions (Jain

et al., 2012), has been extended to describe associative polymer solutions. Pairwise interac-

tions between monomers that are on the chain backbone and between the stickers themselves,

have been described with the SDK potential (Soddemann et al., 2001)(Santra et al., 2019),

which has advantages compared to other excluded volume potentials.
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The main static properties that have been evaluated here are the intra-chain and inter-

chain degrees of conversion p1 and p2, respectively, and their dependence on system param-

eters such as the length of the chain, Nb, the number of stickers on a chain f , the distance

between two stickers, `, the solvent quality parameter, τ̂ , and the monomer concentration,

c.

Comparisons have been carried out with the predictions of a lattice-based mean-field

theory (Dobrynin, 2004) for ratios involving p1, p2, and the total fraction of associated

stickers p. The scaling theory identifies different regimes of behaviour depending on the

quality of the solvent for the backbone monomers, the monomer concentration, and the

density of stickers on a chain. The use of the SDK potential allows a careful choice of

parameter values such that simulations can be used to explore each of the different scaling

regimes. The cluster computation algorithm of Sevick et al. (Sevick et al., 1988) enables

the calculation of the degrees of conversion, and the distribution of chain cluster sizes, along

with their spatial extent.

The scaling theory of Dobrynin (Dobrynin, 2004) identifies two broad categories of be-

haviour based on whether the backbone monomers are under θ or good solvent conditions.

The latter category is further divided into three regimes depending on the relative mag-

nitude of the spacer segment, `, the number of monomers in a thermal blob, gT , and the

number of monomers in a correlation blob, gc. In Regime I, ` < gT < gc, while in Regime II,

gT < ` < gc, and in Regime III, gT < gc < `.

Simulation results are shown to validate the predictions of Dobrynin’s mean-field the-

ory (Dobrynin, 2004) across a wide range of parameter values in all the scaling regimes,

expect for a slight deviation in the scaling of the intra-chain association fraction in Regime I,

and data is shown to collapse onto master plots when plotted in terms of suitable quanti-

ties. An important conclusion of this study is that the value of the des Cloizeaux expo-

nent (des Cloizeaux, 1980)(Duplantier, 1989)(Hsu et al., 2004) proposed by Dobrynin (Do-

brynin, 2004), θ2 = 1/3, is accurate since it enables a collapse of the simulation data for all

the scaling relations considered here.

The characterisation of gelation in these systems has also been examined. Three dif-

ferent signatures of gelation are identified: (i) the concentration cg1 at which an incipient
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system-spanning network occurs, (ii) the concentration threshold cg2 at which the proba-

bility distribution of chain sizes becomes bimodal, and (iii) the monomer concentration cg3

at which there is a maximum in the free-chain concentration. Each of these three different

sol-gel transition signatures is found to occur at a different concentration. The identification

of the concentration at the sol-gel transition enables a verification of the modified Flory-

Stockmayer expression (Flory, 1953)(Stockmayer, 1944)(Dobrynin, 2004), which relates the

degree of inter-chain conversion, p2, to the degree of intra-chain conversion, p1, and the

number of stickers on a chain, f .

The only aspect of the phase behaviour of associative polymer solutions examined here

is the gelation line, which separates the sol and gel phases. In this case as well, attention

is restricted to the situation where the solvent quality and sticker strength are constant,

and the sticky chain is in scaling Regime II. This simplification leads to an expression for

the dependence of the concentrations at gelation, cgi ; i = 1, 2, 3, on the number of stickers

on a chain. Simulation results confirm the prediction of scaling theory when the modified

Flory-Stockmayer expression is used for p2. This is an experimentally testable prediction of

scaling theory and simulations which can facilitate the validation of both the des Cloizeaux

exponent and the Flory-Stockmayer expression.

Finally, it is shown that phase separation occurs with increasing concentration for systems

in which the backbone monomers are under θ-solvent conditions. Curiously, the predictions

of scaling theory are found to break down in the same range of concentrations in which

phase separation is observed. On the other hand, for backbone monomer in good solvent

conditions, there is no phase separation for the concentrations examined here, and scaling

theory remains valid in both the sol and gel phases.

The success of the framework for the description of associative polymer solutions devel-

oped here in describing the predictions of static properties by scaling theory gives confidence

that it can also be used to describe the equilibrium dynamics and the rheological behaviour

of these solutions. In the following chapter we will investigate the dynamics and linear

viscoelasticity of associative polymer solutions based on the framework developed in this

chapter.
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Chapter 5

Dynamic signatures of gelation in

associative polymer solutions

5.1 Introduction

The unique rheological properties in solutions of associative polymers are contributed by the

formation of reversible gels and the dynamics of sticker association. In Chapter 4 we have

thoroughly investigated the static properties related to the scaling of intra-chain and inter-

chain associations and different static signatures of gelation based on percolation transition,

maxima in the free-chain concentration and onset of bimodality in the chain cluster size

distribution. However, the relationship of these static signatures with the viscolelasticity and

dynamic signatures of gelation is currently unknown. In this chapter we present different

methods to characterise the dynamic signatures of gelation and correlate them with the static

measures. We discuss the distinctions in the characteristics of gelation based on elasticity

of the network and compare the scaling of the zero-shear rate viscosity and relaxation time

in the post gel regime with the predictions of mean-field theory proposed by Semenov and

Rubinstein (Rubinstein and Semenov, 1998)(Rubinstein and Semenov, 2001).

Associative polymers consist of stickers that can form intra-chain and inter-chain associa-

tions by the formation of reversible bonds. The onset of gelation in these systems is generally

triggered by increase in monomer concentration, change in solution temperature, duration

of reaction or increase in the strength of association, which we collectively define here as
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the triggering variable. Gelation in polymeric solutions is typically characterised by carry-

ing out small amplitude oscillatory shear flow experiments/simulations and calculating the

viscoelastic response in terms of various properties such storage modulus (G′), loss modulus

(G′′) and loss tangent (tan δ, defined as the ratio of G′′ to G′) (Winter, 2016)(Bromberg,

1998)(Thomas et al., 2009)(Wilson and Baljon, 2017)(Brassinne et al., 2017)(Suman and

Joshi, 2020)(Ozaki et al., 2017). Generally, the storage and loss moduli as a function of the

frequency of oscillation, ω, for an unentangled homopolymer solution are well described by

a Maxwell model with a single relaxation time, where there exists a terminal flow regime in

the limit of low frequency. However, multi-sticker associative polymer solutions may exhibit

broad power law relaxation spectra (Mewis et al., 2001)(Holten-Andersen et al., 2014)(Wag-

ner and McKinley, 2017) with no readily discernible characteristic relaxation time scale, such

that G′ ∼ G′′ ∼ ωn for a wide range of frequency (Winter, 2016)(Suman and Joshi, 2020).

The onset of gelation for such systems is identified by plotting the loss tangent (tan δ) as a

function of triggering variable for a range of frequency, and then identifying the threshold

value of the triggering variable for which tan δ becomes independent of frequency (Winter,

2016)(Suman and Joshi, 2020). The scale-free fractal microstructure of the transient network

for multi-sticker systems is believed to lead to scale-free power law relaxation behaviour in

time. However, this has not been systematically investigated and actual reason for such

behaviour in multi-sticker polymer solutions is currently unknown. In associative polymer

solutions, formation of a percolating network does not always guarantee the existence of an

elastically active gel. Polymer chain length, monomer concentration, density of sticky groups

along the polymer backbone are the parameters that determine the possibility of formation

of an elastically active network (Brassinne et al., 2017)(Ozaki et al., 2017). It is interesting

to note that depending on the elasticity of the network formed after gelation, the dynamic

moduli (G′ and G′′) may show power law scaling with no characteristic relaxation or a typ-

ical curve with a discernible relaxation time along with the terminal flow regime (Brassinne

et al., 2017)(Ozaki et al., 2017)(Bromberg, 1998). For instance, G′ and G′′ follow power-

law scaling for elastically active networks, whereas, gels formed by association of relatively

shorter chains do not exhibit a strong elastic response and their dynamic moduli show a

terminal flow behaviour at low frequencies (Brassinne et al., 2017). Apart from the dynamic
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moduli there are other alternative methods for the characterization of gelation in associative

polymer solutions based on the scaling of zero-shear rate viscosity (η0p) and terminal relax-

ation time (τ) with the triggering variable such as concentration or temperature (Bromberg,

1998)(Suman and Joshi, 2020)(Rubinstein and Semenov, 1998). For instance, the divergence

of the zero-shear rate viscosity and terminal relaxtion time at the onset of sol-gel transition

are prominent dynamic signatures of gelation for strong elastically active gels (Suman and

Joshi, 2020). However, for weak, thermo-reversible, transient gels, instead of divergence,

both zero-shear rate viscosity and terminal relaxation time exhibit a sequence of power-law

scaling in the post gel regime (Rubinstein and Semenov, 1998)(Rubinstein and Semenov,

2001)(Bromberg, 1998).

In this chapter, using Brownian dynamics, we have simulated systems of associative

polymer solutions at finite concentration in the dilute and semi-dilute regimes at equilib-

rium and under shear flow to identify and characterise the dynamic signatures of gelation.

As mentioned in Chapter 4, hydrodynamic interaction (HI) has a profound influence on the

dynamics and viscoelasticity of polymer solutions. This implies that for associative polymer

solutions both the short time sticker dynamics and the relaxation dynamics of the network

as a whole are affected by hydrodynamic interaction. Thus, all the simulation results dis-

cussed in this chapter are carried out with HI. The scaling of dynamic properties such as

G′ & G′′, zero-shear rate viscosity and relaxation times are investigated here to characterise

gelation. Typically, the dynamic moduli (G′ & G′′) and zero-shear rate viscosity are evalu-

ated from non-equilibrium simulations or experiments involving simple and oscillatory shear

flows. While these non-equilibrium setups are the only choice in experiments, in a numerical

study the above mentioned dynamic properties can be easily calculated from equilibrium

simulations. Most of these properties are computed here from stress auto-correlation and

end-to-end vector auto-correlation functions which are obtained from equilibrium simula-

tions. Here we have just provided a hint of the methodology that has been followed, while a

further detail on the methods of evaluating dynamic properties from auto-correlation func-

tions is given in subsequent sections. This chapter is organised as follows. The key governing

equations for the simulations and computation of different dynamic properties are discussed

in Section 5.2. In this section we compare the methods to calculate dynamic properties such
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dynamic moduli and zero-shear rate viscosity from equilibrium and non-equilibrium simu-

lations. The key results on dynamic properties such as zero-shear rate viscosity, dynamic

moduli and relaxation time are presented in Section 5.3. In subsection 5.3.5, we discuss dif-

ferent measures of characteristic relaxation time based on stress auto-correlation, end-to-end

vector auto-correlation function and zero-shear rate viscosity and compared the scaling of

the these properties with the predictions of scaling theory. The time scale associated with

the sticker dynamics is also considered here in subsection 5.3.5. Finally, a summary of the

key conclusions is presented in Section 5.4.

5.2 Governing equations

5.2.1 Model for associative polymer solutions

A bead-spring chain model, as described in Chapter 2, is implemented to simulate solutions of

associative polymers using Brownian dynamics simulation algorithm. Multi-sticker polymer

chains are modelled with sticker functionality, ϕ = 1, similar to that discussed in Chapter 2

and Chapter 4. For all the simulation results reported in this chapter, we use a value of the

hydrodynamic interaction parameter h∗ = 0.2.

5.2.2 Dynamic properties

The dynamic properties such as relaxation modulus, zero-shear rate viscosity, dynamic mod-

uli (G′ & G′′), investigated in this chapter, can be defined in terms of the components of

stress-tensor (Bird et al., 1987b) for the polymer solutions. In the absence of external forces,

the stress tensor (σ∗) (non-dimensionalized by npkBT , where np is the number of polymer

chains per unit volume), for a multi-chain system, can be shown to be (Stoltz, 2006)

σ∗ =
σ

npkBT
=

1

Nc

[
N∑

µ=1

N∑
ν=1

〈rµν FSDK
µν 〉+

Nc∑Nb−1∑
ν=1

〈Qν Fc(Qν)〉

]
(5.1)

Here, Nc is the total number of chains and N = Nc×Nb is the total number of beads in the

system. In the above equation, the first summation represents all the excluded volume and
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associative interactions between backbone monomers and sticker monomers, where rµν =

rµ − rν is the vector between bead µ and ν and FSDK
µν is the force acting between the beads

due to SDK potential. The second term represents the contribution from the spring force,

Fc(Qν), due to the connector vector Qν = rν+1 − rν between two adjacent beads along the

backbone of a polymer chain.

Once the stress tensor is computed, we can easily estimate various dynamic properties and

material functions for the polymer solutions. Here, we focus on the calculation of dynamic

and linear viscoelastic properties in terms of relaxation modulus, shear viscosity and dynamic

moduli. While these properties are typically computed from non-equilibrium simulations or

experiments, there are sophisticated techniques for their calculation based on equilibrium

simulations (Bird et al., 1987b)(Lee and Kremer, 2009)(Mours and Winter, 2012)(Wittmer

et al., 2015b). We discuss some of these techniques in the subsequent sections.

Relaxation modulus

The relaxation modulus, G(t), is related to the stress auto-correlation function, C(t), by the

following equations,

Gij(t) = Geq + Cij(t) (5.2)

Cij(t) =
V

kBT
〈σij(0)σij(t)〉 (5.3)

where Gij(t) and Cij(t) are the ijth component of the relaxation modulus and stress auto-

correlation function, respectively, and V is the total volume. The stress-autocorrelation

function, C(t), can be easily computed from equilibrium simulations using Eq. (5.3). Geq

is the equilibrium modulus which takes a non-zero value for systems having an infinite

relaxation time (Wittmer et al., 2015b)(Wittmer et al., 2015a). For systems where Geq is

not zero, the general protocol is to estimate the equilibrium modulus by doing actual step

strain experiments or simulations and allowing the system to relax. However, in the limit

of Geq = 0, the relaxation modulus is equal to the stress auto-correlation function. In such

a case the relaxation modulus is exactly calculated from stress auto-correlation function.

Additionally, the stress auto-correlation function may also be used for the determination

of relaxation time scale, as explained in detail in Section 5.3.5. Since, at equilibrium the
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stress-tensor, σ, is isotropic, the relaxation modulus and stress auto-correlation function can

be expressed as

G(t) =
1

3
(Gxy(t) +Gxz(t) +Gyz(t)) (5.4)

C(t) =
1

3
(Cxy(t) + Cxz(t) + Cyz(t)) (5.5)

Finally, we define a non-dimensionalized relaxation modulus and stress auto-correlation func-

tion given by

G∗(t) =
G(t)

npkBT
(5.6)

C∗(t) =
C(t)

npkBT
(5.7)

Zero-shear rate viscosity

An important viscometric function to understand the dynamics and viscoelasticity of poly-

mer solutions is the polymeric component of shear viscosity, ηp, calculated from shear flow

experiments or simulations. For a planar shear flow, the velocity gradient tensor, κ = (∇v)T ,

presented in Eq. (2.1), is defined as,

κ =


0 γ̇ 0

0 0 0

0 0 0

 (5.8)

Here γ̇ is a constant shear rate. For such a system, the shear viscosity, ηp, is computed as

ηp = −σxy
γ̇

(5.9)

While the study of shear viscosity at moderately high shear rates are important in non-linear

rheology, for linear viscoelasticity the focus is on polymeric component of the zero-shear rate

viscosity, defined as η0p = limγ̇→0 ηp, which is typically estimated by measuring the shear

viscosity of the polymer solution subjected to multiple small values of shear rate, followed
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by extrapolation to the zero-shear rate limit. Alternatively, for Geq = 0, η0p can be calcu-

lated from equilibrium simulations, by an application of the Green-Kubo relation (Fixman,

1981)(Pan et al., 2014a)(Lee and Kremer, 2009) to the stress auto-correlation function

η0
∗

p =
η0p

npkBTλH
=

∫ ∞
0

C∗(t) dt (5.10)

In the above equation η0
∗
p is the zero-shear rate viscosity non-dimensionalized by npkBTλH ,

where np is the number of polymer chains per unit volume and λH = ζ/4H is the typical

time unit for Brownian dynamics simulations.

Dynamic moduli (G′ & G′′)

The elastic and viscous response of a viscoelastic fluid is generally characterised by the

storage (G′) and the loss (G′′) moduli, which are together referred to as the dynamic moduli.

These properties are typically calculated from oscillatory shear flow (OSF) experiments or

simulations. In numerical simulations an OSF is implemented by subjecting the simulation

box to an oscillatory shear strain (γ(t)), using Lees-Edwards boundary conditions (Lees and

Edwards, 1972)(Jain, 2013)(Jain et al., 2015)(Myung et al., 2015), such that

γ(t) = γ0 sin(ω t) (5.11)

γ̇(t) = γ0 ω cos(ω t) (5.12)

where γ0 is the strain amplitude and ω is the frequency of oscillation. The response to this

oscillatory strain input produces an oscillatory stress component σxy(t), from which G′ and

G′′ are extracted as follows

σxy(t) = σ0 sin(ω t+ δ)

= σ0 cos(δ) sin(ω t) + σ0 sin(δ) cos(ω t) (5.13)

G′(ω) = −σ0 cos(δ)

γ0
, G′′(ω) = −σ0 sin(δ)

γ0
(5.14)
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Here σ0 is the amplitude of the stress response, δ is the phase difference. It is important to

note that δ = 0 for a Newtonian liquid, whereas, δ = 90◦ for a purely elastic solid. Since G′

and G′′ determine the shear stress that is linearly dependent on the strain, these material

functions are also linear viscoelastic properties. In the limit of very small strain amplitude

(γ0 � 1), G′ and G′′ can be estimated by Fourier transformation of the stress autocorrelation

function, C(t), (Mours and Winter, 2012)(Wittmer et al., 2015b) as described below,

G′(ω)−Geq =

∞∫
0

d(ωt)C(t) sin(ωt) (5.15)

G′′(ω) =

∞∫
0

d(ωt)C(t) cos(ωt) (5.16)

Finally, the dynamic moduli may be scaled by npkBT to define the dimensionless storage

modulus (G′∗) and loss modulus (G′′∗).

For associative polymer solutions which undergo sol-gel transition with increase in monomer

concentration, the characterization of the dynamic signatures of gelation depends on the be-

haviour of these linear viscoelastic properties as a function of monomer concentration. In the

following section we present the results obtained from our simulations for different dynamic

and viscoelastic properties and compare them with the scaling predictions of the mean-field

theory proposed by Semenov and Rubinstein (Rubinstein and Semenov, 1998)(Rubinstein

and Semenov, 2001).

5.3 Results and discussions

In Section 4.7 of Chapter 4 a detailed discussion on the characterization of different static

signatures of gelation based on percolation transition (g1), onset of bimodality in the chain

cluster size distribution (g2) and maxima in the free chain concentration (g3) was presented.

The key findings from this study are that each of these different signatures occur at different

values of scaled concentration, c/c∗, and these concentrations are independent of the chain

length (Nb) for a given spacer length (`), backbone monomer interaction strength (εbb) and

114



Chapter 5. Dynamic signatures of gelation in associative polymer solutions

sticker strength (εst). In the present chapter, we find the dynamic signatures of gelation

in associative polymer solutions from the scaling of zero-shear rate viscosity and terminal

relaxation time, and correlate them with the static measures.

The simulations carried out to study the dynamic properties consist of multi-sticker

associative polymer solutions at finite concentrations with number of beads, Nb = 24, spacer

length, ` = 4 and f = 4 stickers per chain with an athermal solvent quality for the backbone,

εbb = 0, and a sticker strength of εst = 5.0. For this specific system the three static signatures

of gelation are observed at cg1/c
∗ ≈ 0.3, cg2/c

∗ ≈ 1.0 and cg3/c
∗ ≈ 0.5, where the subscripts

g1, g2 and g3 denote gelation signature at percolation transition, onset of bimodality and

free chain maxima, respectively. Most of the simulations reported here are at equilibrium

except for a few non-equilibrium shear flow simulations which are carried out to establish

validity of the Green-Kubo relation. A typical simulation consists of a pre-equilibration run

of about 3 to 4 Rouse relaxation times for a system of chains with only backbone monomers

and no stickers, followed by the introduction of stickers and an equilibration run of about 5

Rouse relaxation times. Finally, sampling is carried out over a production run of about 5 to

20 Rouse relaxation times. During the production run, dynamic properties are calculated as

a function of time from each independent trajectory. Ensemble averages and error of mean

estimates of different dynamic properties are then computed over a collection of 500 to 1000

such independent trajectories. All simulations with HI (with h∗ = 0.2) have been carried

out with a non-dimensional time-step ∆t = 0.005.

5.3.1 Scaling of the chain cluster size distribution

Before examining the relaxation time scales and viscoelastic properties of associative polymer

solutions at gelation transition, it is important to understand the structural changes that

the associating network undergoes during this process. It has been shown in Section 4.7,

that with increase in polymer concentration the chain cluster size increases, which results in

the bimodality of the chain cluster size distribution and formation of much denser system

spanning networks. Additionally, at the gel point the material structure becomes self-similar

with no characteristic length scale and the cluster size distribution shows a power law scaling,

P (m) ∼ m−τF , where P (m) is the probability of finding a cluster of size m and the exponent
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(a) (b)

(c)

Figure 5.1: Chain cluster size distribution in semi-log scale for systems of associative polymers
with spacer length ` = 4, εbb = 0 and εst = 5.0 at (a) c/c∗ = 0.3, Nb = 44, (b) c/c∗ = 0.5, Nb = 44
and (c) c/c∗ = 0.6, Nb = 34. The solid red symbols are simulation data and the exponential decay
of the cluster size distribution is shown by the dashed black lines.
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(a) (b)

(c) (d)

Figure 5.2: Chain cluster size distribution in log-log scale for systems of associative polymers with
spacer length ` = 4, εbb = 0 and εst = 5.0 at different values of c/c∗ = {0.3, 0.5, 0.8, 0.9} and
different chain lengths, Nb. The power-law behaviour of the cluster size distribution is shown by
the solid black lines in (c) and (d).
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τF is often called the Fisher exponent (Stauffer et al., 2007)(Ozaki et al., 2017). Here, we

have investigated the chain cluster size distribution, P (m), of associative polymer solutions

at different scaled concentrations, c/c∗, and different chain lengths, Nb, with spacer length,

` = 4, backbone interaction strength, εbb = 0 and sticker association strength, εst = 5.0.

At low concentrations, such as c/c∗ = 0.3, 0.5, 0.6, the probability of finding large cluster

decreases exponentially as displayed in Figs. 5.1, whereas, at about c/c∗ = 0.8 and above

the cluster size distributions, shown in Figs. 5.2 (c) and (d), indicate a power law scaling for

a significantly wide range of values of cluster size, m. It is also noted that P (m) becomes

independent of chain length with increase in Nb. The shouldering of the chain cluster size

distribution observed at higher value of c/c∗(= 0.9) is because of the onset of bimodality

in the distribution. From this analysis we interpret that the onset of gelation transition,

based on the power-law scaling of the cluster size distribution, happens at about c/c∗ ≈ 0.8,

which lies in between the cg3/c
∗ and cg2/c

∗. This is another static signature of gelation which

along other static signatures guide us to explore the range of concentration at which dynamic

signatures are to be observed.

5.3.2 Stress auto-correlation function

In order to calculate the relaxation modulus, zero-shear rate viscosity or dynamic moduli

from equilibrium simulations, it is first required to compute the non-dimensional stress-auto

correlation function, C∗(t). The stress auto-correlation function is evaluated for a range of

scaled monomer concentration, c/c∗, in the dilute and semi-dilute regimes with chain length

Nb = 24, spacer length, ` = 4, εbb = 0 and εst = 5.0, as shown in Fig. 5.3. The decay in the

stress auto-correlation function, obtained from simulations, is generally fitted with a sum

of exponentials (Pan et al., 2014a), as given below, and all the subsequent calculations are

carried out using the fit

C∗(t) =
n∑
i=1

ai exp(bit) (5.17)

Here, ai and bi are the fitting parameters and n is the number of exponentials used to fit

the auto-correlation function. All the stress auto-correlation functions evaluated here are

typically fitted with 6 to 7 exponentials. From this fit, we can estimate the longest relax-
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ation time by the relation, τmax = −max{1/bi}. Several other methods to estimate the

longest relaxation time and their scaling with monomer concentration are discussed further

in Section 5.3.5. In the following sections we present the linear viscoselastic properties, such

as zero-shear rate viscosity and dynamic moduli, obtained from the stress auto-correlation

function and their scaling with concentration to characterize the dynamic signatures of gela-

tion.

Figure 5.3: Non-dimensionalized stress auto-correlation function, C∗(t), for systems of associative
polymers with Nb = 24, ` = 4, f , εbb = 0 and εst = 5.0 at different values of scaled monomer
concentration, c/c∗, in the dilute and semi-dilute regimes. The solid black lines are fit to the
simulation data using a sum of exponentials. The inset shows the entire range of c/c∗ covered in
the study.

5.3.3 Zero-shear rate viscosity

Once the stress auto-correlation function, C∗(t), is evaluated, the relaxation modulus, G∗(t),

can be directly equated to C∗(t) subject to Geq = 0 (see Eq. (5.2)), which, as discussed

shortly, is shown to be the case for the systems of polymer solutions studied here. Under

such a condition, the zero-shear rate viscosity, η0
∗
p , can be estimated by using the Green-

Kubo relation defined in Eq. (5.10). However, a more direct method of estimating η0
∗
p is
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by performing shear flow simulations under very low shear rates and then extrapolating

the value of the shear viscosity to the limit of zero-shear rate. Fig. 5.4 presents the non-

dimensional shear viscosity, η∗p, as a function of dimensionless shear rate, γ̇ λH (in a range of

very small values of shear rate), at different c/c∗, where the extrapolated values of η∗p in the

limit of γ̇ λH → 0 are in good agreement with the zero-shear rate viscosity computed from

Eq. (5.10), which are represented by the filled symbols. By considering these few represen-

tative concentrations for the systems of associative polymer solutions, we have illustrated

that both the methods produce the same zero-shear rate viscosity, which implies that the

equilibrium modulus, Geq, is essentially 0.

Figure 5.4: Polymeric component of the non-dimensionalized shear viscosity, η∗p =
ηp

npkBTλH
, as a

function of non-dimensional shear rate (γ̇ λH) for different values of monomer concentration, c/c∗.
The open symbols are the values of η∗p calculated from shear flow simulations and filled symbols

are the values of zero-shear rate viscosity, η0
∗
p , evaluated from Eq. (5.10).

Using the Green-Kubo relation to estimate the zero-shear rate viscosity, η0
∗
p , we now

investigate the scaling of η0
∗
p with concentration, c/c∗. In Fig. 5.5, the ratio of zero-shear

rate viscosity at finite concentration, η0
∗
p , to its value in the dilute limit, η0

∗
p0

, is plotted against

120



Chapter 5. Dynamic signatures of gelation in associative polymer solutions

Figure 5.5: Scaling of the ratio of zero-shear rate viscosity at finite concentration, η0
∗
p , to its value

in the dilute limit, η0
∗
p0 , with the scaled concentration, c/c∗, for solutions of associative polymers

with Nb = 24, ` = 4, f = 4, εbb = 0 and εst = 5.0. The symbols from simulations and the dashed
lines with slope 0.6 is obtained from least square fit.

the scaled monomer concentration, c/c∗, for associative polymer solutions with chain length,

Nb = 24, spacer length ` = 4, number of stickers per chain f = 4, εbb = 0 and εst = 5.0.

The scaling of the normalised zero-shear rate viscosity, η0
∗
p /η

0∗
p0

, with scaled concentration

indicates a cross-over at c/c∗ ≈ 0.5, beyond which the scaling exponent takes an asymptotic

value of 0.6. Interestingly, the maxima in the free chain concentration for this system, which

occurs at c/c∗ = 0.5, coincides with the cross-over concentration of the viscosity scaling.

In the mean-field theory developed by Rubinstein and Semenov (Rubinstein and Semenov,

1998) for associative polymer solutions, the zero-shear rate viscosity (η0p) in the post gel

regime, close to the gel-point, is shown to scale with the relative distance, ∆, from the

gelation concentration (cg), where ∆ = (c− cg)/cg, as

η0p ∼ ∆1/(3ν−1) (5.18)
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where, ν = 0.6 is the Flory exponent, which implies that the exponent 1/(3ν − 1) = 1.25.

Defining ∆ = (c − cg)/cg and considering cg/c
∗ = 0.5, we find η0p to scale with a slope of

1.25 in the post-gel regime, as shown in Fig. 5.6. Note that the zero-shear rate viscosity

plotted vs ∆ in Fig. 5.6 is not scaled with the number density of polymer chain, np (which

is related to monomer concentration c), in order to bring out the concentration dependence

explicitly. This is one of the dynamic signatures of gelation which is also in agreement with

the prediction by the mean-field theory (Rubinstein and Semenov, 1998) and as observed by

Bromberg (Bromberg, 1998) in experiments with thermo-reversible hydrogels.

Figure 5.6: Scaling of the zero-shear rate viscosity with the relative distance from the gelation
concentration (cg) in the post gel regime. Here the gelation concentration is at cg/c

∗ = 0.5. The
symbols are the simulation data and the dashed line is drawn with the slope predicted by the
mean-field theory.
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(a) (b)

(c) (d)

Figure 5.7: Non-dimensional storage (G′∗) and loss (G′′∗) moduli of associative polymer solutions as
a function of dimensionless frequency, ω λH , for different values of c/c∗ with chain length Nb = 24,
spacer length ` = 4, number stickers per chain f = 4, backbone monomer interaction strength
εbb = 0 and sticker strength εst = 5.0. The filled and open circles in the plots are G′ and G′′,
respectively. The inverse of the frequency corresponding to the point of intersection of G′ and
G′′ curves represents the characteristic relaxation time τ1/ω = 1/(ω1 λH). G0 indicates the elastic
modulus. The slopes of G′∗ and G′′∗ in the terminal flow regime are 2 and 1, respectively, as
indicated in the figures.
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Figure 5.8: Variation of the loss tangent, tan δ, with the dimensionless frequency, ω λH , at different
values of c/c∗ for associative polymer solutions with Nb = 24, ` = 4, f = 4, εbb = 0 and εst = 5.0.

5.3.4 Storage (G′) and loss (G′′) moduli

Gelation in associative polymer solutions is typically characterized by the frequency depen-

dence of two linear viscoelastic properties, storage, G′(ω), and loss, G′′(ω), moduli (also

known as dynamic moduli), measured from small amplitude oscillatory shear flow (SAOS).

As mentioned in Section 5.2.2, the dynamic moduli can also be calculated from equilibrium

data by Fourier transformation of the stress auto-correlation function, given by Eq. (5.15)

and Eq. (5.16). This has been illustrated in Appendix D for Rouse chains in a dilute solution,

where the dynamic moduli computed from the stress auto-correlation is compared with that

from SAOS and the analytical solution. For the associative polymer solutions, considered

in the present study, we compute G′ and G′′ from the stress auto-correlation function for

a range of concentration, c/c∗, and investigate their frequency dependencies in the pre and

post-gel regimes. Figs. 5.7 display the non-dimensional storage (G′∗) and loss (G′′∗) moduli

as a function of frequency for different concentrations, c/c∗, with chain length Nb = 24,
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Figure 5.9: Effect of chain lengths on storage (G′) and loss (G′′) moduli of ligand-decorated ultra-
high molecular weight copolymers. This figure is reproduced from the article published by Brassine
et al., Journal of Rheology, 61(6), 1123–1134 (2017).

spacer length ` = 4, backbone monomer interaction strength εbb = 0 and sticker strength

εst = 5.0. The inverse of the frequency corresponding to the point of intersection of G′∗ and

G′′∗ is defined as a characteristic relaxation time of the polymer solutions, τ1/ω = 1/(ω1 λH),

where ω1 is the intersection frequency. For each concentration, c/c∗, the storage modulus,

G′∗, in the limit of high frequency, saturates to a value G0, which is identified as the elastic

modulus. In addition, the variation of loss tangent, defined as tan δ = G′′/G′, with fre-

quency, ω λH , is presented for different concentrations in Fig. 5.8. For all the concentrations,

shown in Figs. 5.7, there exists a unique point of interaction between G′∗ and G′′∗, along

with a terminal flow regime in the limit of low frequencies, where G′ ∼ ω2 and G′′ ∼ ω (Bird

et al., 1987b)(Brassinne et al., 2017). Considering cg/c
∗ = 0.5 as the gel-point, these ob-

servations imply the existence of a finite terminal relaxation time for systems of associative

polymer solutions in both the pre-gel and post-gel regimes. These results diverge from the

typical power-law behaviour of G′(ω) and G′′(ω), with no discernible relaxation time scale,

observed for physically or chemically associated polymer solutions with elastically active

networks. Besides, the loss tangent, tan δ, becomes independent of frequency at the gela-

tion concentration for a typical gel-forming polymer solution, which is not observed for the

present systems, as tan δ decreases with frequency at all the values of c/c∗, as shown in

Fig. 5.8. However, the nature of the dynamic moduli observed for the present systems is
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Figure 5.10: Scaling of the ratio of characteristic relaxation time, τ1/ω, to its value in the dilute
limit, τ01/ω, with the scaled concentration, c/c∗, for solutions of associative polymers with Nb = 24,
` = 4, f = 4, εbb = 0 and εst = 5.0. The symbols from simulations and the dashed lines with slope
0.6 is the best fit to the data.

qualitatively similar to that observed in experiments on supramolecular hydrogels with short

chain lengths (Brassinne et al., 2017), displayed by red symbols in Figure 5.9. Associative

polymer solutions with short chains have more dangling ends resulting in formation of gels

that are elastically weak. Additionally, short associative polymer chains can diffuse faster

in space following a bond dissociation event, causing relaxation of the network as a whole.

Thus the results presented in Figs. 5.7 for relatively short chain length, Nb = 24, are likely

to show a finite relaxation time scale and a terminal flow regime. In the subsequent section

we show that the configurational relaxation time scale of the network formed by these short

chains are comparable to the sticker-sticker bond lifetime, as a consequence of which the

system always has a finite relaxation time.

Notably, the characteristic relaxation time, τ1/ω, normalised with the relaxation time τ 01/ω

in the dilute limit, plotted as a function of scaled monomer concentration, c/c∗, shown in
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Fig. 5.10, exhibits a change in the scaling exponent at a value of c/c∗ ≈ 0.5, which is also

the concentration (cg3/c
∗) at which maxima in the free chain concentration and a crossover

in the zero-shear rate viscosity scaling is observed. Surprisingly, the asymptotic value of

the exponent following the crossover is 0.6, which is the same as that for the crossover in

the scaling of zero-shear rate viscosity. Additionally, in Fig. 5.11 (a) we show a crossover

in the scaling of the elastic modulus, G0/kBT , with monomer concentration, at c/c∗ ≈ 0.5.

For the elastic modulus the scaling exponent is found to change from 1 to 1.2, following the

crossover. According to the prediction of mean-field theory for associative polymer solutions

proposed by Rubinstein and Semenov (Rubinstein and Semenov, 1998), the elastic modulus

(G0) in the post-gel regime, close to the gel-point, scales with the relative distance from

the gelation concentration, cg, following the relation G0 ∼ ∆3µ, where ∆ = (c − cg)/cg and

exponent µ = 0.85 (i.e. 3µ = 2.55). However, our simulations (see Fig. 5.11 (b)) show a

much weaker dependence of G0 on ∆, where the asymptotic value of the exponent in the

post-gel regime, near the gel-point cg/c
∗ = 0.5, is 0.64. This difference in the scaling of G0

between the simulations and theory may be a consequence of formation of weak, elastically

inactive gels, where the increase in concentration in the post gel regime does not cause a

sharp increase in the elastic modulus.

5.3.5 Calculation of relaxation time

Relaxation in associative polymer solutions occurs over different time scales. Starting from

the bond lifetime of sticker-sticker association, relaxation of individual chains within a cluster

to the relaxation of a network as a whole, there exists a spectrum of relaxation processes.

In this section we compute the longest (or terminal) relaxation time of associative polymer

solutions from different dynamic measurements, such as stress auto-correlation function,

zero-shear rate viscosity, dynamic moduli and end-to-end vector auto-correlation function,

and investigate their scaling with concentration in the pre and post-gel regimes. We also

calculate the mean bond lifetime of the associated stickers and compare the time scale of

association with that of the characteristic large scale relaxation of the polymer solutions.

In simulations, the terminal relaxation time of polymer solutions is typically evaluated

by fitting the tail of the decay of stress auto-correlation or end-to-end vector auto-correlation
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(a) (b)

Figure 5.11: (a) Scaled elastic modulus, G0/kBT , versus concentration, c/c∗, for the solutions of
associative polymers with Nb = 24, ` = 4, f = 4, εbb = 0, εst = 5.0. (b) Elastic modulus, G0/kBT ,
as a function of the relative distance from the gelation concentration ∆ = (c − cg)/cg, near the
gel-point in the post gel regime, where the gelation concentration is considered to be cg/c

∗ = 0.5.
Symbols are the simulation data and the solid and broken lines indicate the corresponding scaling
exponents.

functions (Huang et al., 2010)(Pan et al., 2014a)(Nafar Sefiddashti et al., 2015). As men-

tioned in Section 5.3.2, the longest relaxation time can be extracted from the fit to the stress

auto-correlation function by identifying the largest time constant, τmax = −max{1/bi}.

Alternatively, a longest relaxation time scale can also be estimated by fitting a single ex-

ponential to the decay of end-to-end unit vector auto-correlation function of the polymer

chains, defined as follows

u(t) =
1

Nc

Nc∑
i=1

〈R̂i
e(0) · R̂i

e(t)〉 (5.19)

where, R̂i
e is the end-to-end unit vector of the ith chain and Nc is the number of chains in

the system. Fig. 5.12 (a) presents the end-to-end unit vector auto-correlation function of

associative polymer solutions at different concentrations, where last the 30 to 40 percent

of the decay is fitted with an exponential of the form, û(t) = A exp(−t/τ), where τ gives

the estimate for the longest relaxation time. It becomes clear from Fig. 5.12 (a) that with
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(a) (b)

Figure 5.12: End-to-end unit vector auto-correlation function at different monomer concentrations,
c/c∗, for (a) associative polymer solutions with Nb = 24, ` = 4, f = 4, εbb = 0 and εst = 5.0 and
(b) homopolymer solutions in athermal solvent (εbb = 0) with chain length Nb = 24. Symbols
represents the simulation data and dashed lines are the exponential fit at different concentrations.

increase in concentration the rate of decay of the auto-correlation function for associative

polymers becomes progressively slower, whereas, in case of homopolymer solutions, shown

in Fig. 5.12 (b), the decay of the end-to-end unit vector auto-correlation function has a very

weak dependence on concentration, c/c∗.

Another alternative to estimate a large scale relaxation time (λη) is based on the poly-

meric contribution of the zero-shear rate viscosity (η0p), which is given by the following

expression (Öttinger, 1996)

λη =
M η0p

cNAkBT
(5.20)

where M is the molecular weight of the polymers, c is the monomer concentration. It

noteworthy that normalising λη at a finite concentration with its value in the dilute limit,

λ0η, gives the ratio λη/λ
0
η, which is equivalent to the ratio η0

∗
p /η

0∗
p0

, used for the scaling of

the zero-shear rate viscosity. Thus, the scaling of λη/λ
0
η and η0

∗
p /η

0∗
p0

with concentration are

identical. A characteristic large scale relaxation time is also obtained from the frequency

corresponding to the point of intersection of the storage (G′) and loss (G′′) moduli, as

previously discussed in Section 5.3.4.

The scaling of the large scale terminal relaxation time (τ) with concentration is often used
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Figure 5.13: Ratio of the relaxation time, τ , at finite concentration to its value in the dilute limit,
τ0, as a function of scaled concentration, c/c∗, for solutions of homopolymers (HP) and associative
(or sticky) polymers (SP). The associative polymers considered here are with Nb = 24, ` = 4,
f = 4, εbb = 0 and εst = 5.0. The homopolymer solutions, simulated using Brownian dynamics, are
in athermal solvent with chain length Nb = 24. The yellow diamonds are data from the work by
Huang et al. (Huang et al., 2010). The solid and dashed lines indicate the scaling exponents for
homopolymer and associative polymer solutions, respectively.

to characterize the dynamic signatures of gelation in associative polymer solutions (Suman

and Joshi, 2020)(Rubinstein and Semenov, 1998). For strong, elastically active networks

the terminal relaxation time diverges at the gelation transition, whereas, the scaling of the

relaxation time for elastically weak gels formed by associative polymer solutions consisting

of short chains is explored here. As discussed above, the large scale relaxation time for

associative polymers is estimated from four different dynamic properties based on end-to-end

unit vector auto-correlation, stress auto-correlation, intersection of G′ and G′′ and zero-shear

rate viscosity. In Fig. 5.13, the ratios of the relaxation time (τ) at a finite concentration

to its value in the dilute limit (τ0), calculated from each of the four methods, are plotted

as a function of scaled concentration, c/c∗. The scaling of the ratio τ/τ0 with c/c∗ for

130



Chapter 5. Dynamic signatures of gelation in associative polymer solutions

associative polymer solutions is compared with that of homopolymer solutions, where the

terminal relaxation time for homopolymers are estimated from end-to-end unit vector auto-

correlation function. Note that for homopolymers we have performed only few simulations in

the dilute regime, and data has been acquired from the work by Huang et al. (Huang et al.,

2010) (yellow diamonds in Fig. 5.13), for the purpose of comparing with associative polymers.

By appropriately normalising the relaxation times, calculated from different methods, an

universal curve is generated for the ratio τ/τ0. Fig. 5.13 also indicates a cross-over in the

scaling of τ/τ0 at around c/c∗ ≈ 0.5, following which the exponent becomes approximately

equal to 0.6. Unsurprisingly, the cross-over concentration and the value of the exponent

following the cross-over are identical to that observed for the scaling of the zero-shear rate

viscosity (see Fig. 5.5) and τ1/ω/τ
0
1/ω (see Fig. 5.10), since all these properties are related to

the relaxation time. As compared to associative polymer solutions, the normalised relaxation

time for the homopolymers goes through a broad cross-over with a scaling exponent of

(2− 3ν)/(3ν − 1) = 0.25, where the Flory exponent ν = 0.6, which is a well known scaling

law for relaxation time in the semi-dilute unentangled regime (de Gennes, 1979)(Huang et al.,

2010). At higher values of c/c∗, the deviation of the simulation data for the homopolymers

from 0.25 slope is probably due to the cross-over from the semi-dilute unentangled to the

entangled regime. It is interesting to note that the onset of divergence between the scaling of

homopolymer and associative polymer solutions begins at a concentration value of around,

c/c∗ = 0.5, which corresponds to the gelation concentration defined based on the maxima in

free chain concentration.

Based on a mean-field theory, Rubinstein and Semenov (Rubinstein and Semenov, 1998)(Ru-

binstein and Semenov, 2001) have proposed the sticky Rouse model, which predicts the scal-

ing of the relaxation time, τrelax, in unentangled solutions of associative polymers well above

the gel point. According to the prediction

τrelax ≈ τbond (f p2)
2 (5.21)

where, τbond is the bond lifetime of associated stickers, f is the number of stickers per chain

and p2 is the fraction of inter-chain associated stickers. From its definition, the product
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Figure 5.14: Dimensionless mean bond lifetime, t∗bond as a function of concentration, c/c∗, for
associative polymer solutions with Nb = 24, ` = 4, f = 4, εbb = 0 and εst = 5.0. The symbols are
from simulations and the dashed line is best fit to the data.

f p2 is essentially the total fraction of inter-chain associated stickers in a chain. In order to

verify this prediction for our model, we first calculate the average bond lifetime of associated

stickers by considering all possible associating pairs for the systems of associative polymer

solutions at different concentrations. According to the mean-field theory (Rubinstein and

Semenov, 1998)(Rubinstein and Semenov, 2001), τbond is effectively a function of only the

sticker strength, εst, however, from the Brownian dynamics simulations we find that at a

constant value of sticker strength, εst = 5.0, the bond lifetime also has a weak concentration

dependence, as displayed in Fig. 5.14. It is important to note that the values of bond

lifetime shown in Fig. 5.14 are of the same order as that of the large scale relaxation time

computed from the point of intersection of storage and loss moduli (shown in Figs. 5.7). It

is therefore reasonable to argue that, for the associative polymer solutions studied here, the

relaxation time due to bond dissociation is comparable to the large scale relaxation time,
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Figure 5.15: The ratio τi/(τ
0
i tbond) as function of the fraction of inter-chain associated stickers,

f p2, at different values of monomer concentration in the pre and post-gel regimes. Here, τi’s are
the large scale relaxation time estimated from various methods (index i represents the different
methods) as indicated in the figure and τ0i ’s are the corresponding values of relaxation time in the
dilute limit. Each symbol corresponds to a specific method of estimating τ and the dashed line is
prediction of the mean-field theory.

which ultimately leads to a finite relaxation time scale for the polymer solutions. Using

the scaling relation for tbond with concentration, c/c∗, the ratio τi/(τ
0
i tbond) is plotted as a

function of f p2 at different values of monomer concentration in the pre and post-gel regimes,

as shown in Fig. 5.15. Here, τi’s are the large scale relaxation time estimated from various

methods as discussed earlier in the section and τ 0i ’s are the corresponding values of relaxation

time in the dilute limit. From Fig. 5.15, it is clear that the ratio τi/(τ
0
i tbond) is independent

of the methods used to evaluate the relaxation time. Moreover, the scaling of the ratio

τi/(τ
0
i tbond) with f p2 goes through a cross-over and follows an asymptotic exponent of 2 for

a range of concentration well above the gel-point (cg/c
∗ = 0.5), which is in agreement with

the prediction of the sticky Rouse model, given in Eq. (5.21).
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5.3.6 Chain-cluster lifetime

As has been discussed in Section 4.7, an increase in monomer concentration results in the

formation of large clusters of chains. However, these clusters undergo continuous formation

and disintegration due to the reversibility of the physical association between the stickers.

The lifetime of a cluster is typically defined as the timespan within which the cluster breaks

into equal halves (Rubinstein and Semenov, 1998). At a constant association strength, the

lifetime of a particular cluster is essentially dependent on its size (i.e. number of constituent

chains in the cluster) (Rubinstein and Semenov, 1998)(Ozaki et al., 2017). For instance, a

big cluster consisting of many chains, has more breakable linkages, resulting in its shorter

lifetime as compared to smaller clusters with fewer chains. Here, we investigate chain-cluster

lifetime, tlifec , as a function of cluster size, m, at different monomer concentrations, c/c∗, for

associative polymer solutions with Nb = 24, ` = 4, f = 4, εbb = 0 and εst = 5.0. The cluster

lifetime is estimated by calculating the average time required for a cluster with m chains to

lose half of its constituent chains from the time of formation of the cluster.

As shown in Fig. 5.16, with an increase in cluster size, m, the average lifetime of the

cluster decreases, which is in qualitative agreement with the prediction of mean-field the-

ory (Rubinstein and Semenov, 1998). It is also interesting to note that for relatively large

clusters, with m ≥ 10, the average lifetime increases with an increase in concentration, c/c∗.

It should be recalled that the probability of formation of large cluster increases as concentra-

tion is increased, which is illustrated by the onset of bimodality in the cluster size distribution

in Section 4.7. Additionally, with the increase in concentration there is an increase in the

density of the network, due to the presence of more chains per unit volume. These factors

cause the larger clusters to persist for longer, and the cluster lifetime is seen to increase with

an increase in c/c∗, as observed in Fig. 5.16.

5.4 Conclusions

Dynamic signatures of gelation in associative polymer solutions have been investigated using

Brownian dynamics simulations. Dynamic and linear viscoelastic properties like zero-shear

rate viscosity, storage (G′) and loss (G′′) moduli, relaxation modulus, large scale relaxation
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Figure 5.16: Chain cluster lifetime, tlifec , as a function of cluster size, m, at different values of
concentration, c/c∗, for associative polymer solutions with Nb = 24, ` = 4, f = 4, εbb = 0 and
εst = 5.0.

time and bond life lifetime are used to characterise the viscoelasticity of the associative

polymer solutions in the pre and post-gel regimes. In this chapter we have shown that the

concentration corresponding to the gelation transition, indicated by the dynamic measure-

ments coincides with the maxima in free chain concentration, which is one of the static

measures of gelation. Results obtained for the scaling of the zero-shear rate viscosity and

terminal relaxation time are compared with the scaling prediction of the mean-field theory

for associative polymers.

Viscoelastic properties, such as relaxation modulus, zero-shear rate viscosity and dy-

namic moduli have largely been computed from equilibrium simulations. The zero-shear

rate viscosity obtained from shear flow simulations is found to agree with that obtained

from equilibrium simulations using Green-Kubo relation, thus establishing the equivalence

between the two methods. We have also shown that for the short chains used here, the

equilibrium modulus (Geq) is essentially zero, which makes it possible to estimate G′ and G′′
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from Fourier transformation of stress auto-correlation function.

The cross-over in the scaling of zero-shear rate viscosity with concentration, c/c∗, is found

to coincide with the value of c/c∗ corresponding to the maxima in free chain concentration.

From our simulations, the scaling of zero-shear rate viscosity with the relative distance from

the gelation concentration, in the post-gel regime, is found to be in agreement with the

prediction of the mean-field theory by Rubinstein and Semenov (Rubinstein and Semenov,

1998).

Dynamic moduli, G′ & G′′, of associative polymer solutions are studied as a function

of frequency. The nature of the curves for G′ & G′′ diverges from the typical power-law

behaviour of gel forming polymer solutions. The dynamic moduli for the systems investigated

here indicate formation of elastically weak gels which possess a finite relaxation time and a

terminal flow regime. These features have also been observed experimentally in associative

polymer solutions with short chains.

Different dynamic properties have been used to extract a large scale relaxation time for the

associative polymer solutions. The normalized relaxation time as a function of concentration

follows an universal curve, independent of the methods used to estimate the relaxation time.

The scaling of the relaxation time with c/c∗ also shows a cross-over at the concentration

corresponding to the maxima in freechain concentration. A key finding of this study is

that the relaxation time as a function of the fraction of inter-chain associated stickers per

chain follows the scaling prediction by the sticky Rouse model (Rubinstein and Semenov,

1998)(Rubinstein and Semenov, 2001), in the post gel regime.

Finally, we have compared different relaxation time scales corresponding to the bond

lifetime and large scale relaxation time of the polymer solutions. We show both these time

scales are comparable, which results into a finite large scale relaxation time for the systems.

The chain cluster lifetime is also investigated for these systems and their variation with

cluster size is in qualitative agreement with the theory.

It is expected that the use of longer chains would result in formation of elastically active

networks, and qualitatively different viscoelastic behaviour. We anticipate that the results

presented in this chapter on the dynamics of associative polymer solutions would pave the

way for a greater understanding of the rheology and viscoelasticity of thermo-reversible,
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physically cross-linked polymer solutions.

In the following chapter we will discuss the static and dynamic properties polymeric

rings, which are topologically different from the linear associative polymers. The focus of

this chapter will be on the universal behaviour of dilute ring polymer solutions.

137



Chapter 6

Universality in polymeric rings at

equilibrium

6.1 Introduction

The topological structure of a polymer chain plays a major role in determining the static and

dynamic properties of a polymer solution. In case of linear chains, studied in the previous

chapters, the relaxation behaviours of the terminal ends of a polymer chain are found to affect

the dynamics of the polymer solutions. However, ring polymers are a special class of polymers

which do not have any ends. This has resulted the ring polymer solutions to show unique

dynamic and viscoelastic properties which are not observed in linear polymers. One such

instance is the transition between tumbling and tank-treading motion of a polymeric ring

under shear flow (Chen et al., 2013)(Wang et al., 2019). Such a transition leads to interesting

rheological behaviour the are not observed in linear homopolymer solutions. However, in

order to understand the viscoelasticity of ring polymer solutions it is first important to

understand their equilibrium behaviour. In this chapter we present a comparative study

on the mean size and stretch of linear homopolymers and ring polymers at equilibrium and

established the universality of the static and dynamic properties of rings as a function of

solvent quality in the single chain limit. The sections included in this chapter are as follows.

In Section 6.2 we discuss the modelling and simulation methodology for ring polymers.

Evaluation of universal ratios involving the static properties such radius of gyration (Rg) and
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mean-stretch along x-axis (〈X〉) is described in Section 6.3. In Section 6.4 we present the

methods for computing diffusivity (D) and hydrodynamic radius (RH). Different universal

ratios involving hydrodynamic radius is also discussed in this section. Finally, the key

conclusions are summarised in the Section 6.5.

6.2 Modelling and simulations

The polymeric ring is modelled as a sequence of bead-spring chain similar to linear poly-

mers with the exception that here the chain ends are connected with a spring. Brownian

dynamics (BD) simulation algorithm has been implement with excluded volume (EV) and

hydrodynamic interactions (HI). The bead positions in the BD simulations are updated by

the Itô stochastic differential equation, defined by Eq. 2.1.

We use the regularized Rotne-Prager-Yamakawa (RPY) tensor to compute hydrodynamic

interactions (HI). The bonded interaction between the adjacent beads is modelled by using

a FENE spring force law with b = 50.0. Contrary to the SDK potential used in our previous

study on associative polymer solutions, the excluded volume (EV) interaction is modelled

here by using a narrow Gaussian potential given by,

E(rνµ) =

(
z∗

d∗3

)
kBT exp {−1

2

r2νµ

d∗2
} (6.1)

Here, rνµ = (rν − rµ), d∗ is a non-dimensional parameter that measures the range of in-

teractions. The simulations are carried out over a range of solvent qualities by varying the

parameter, z∗, which is the non-dimensional strength of excluded volume interactions. The

solvent quality is essentially a function of the temperature and chain length which is defined

as z = z∗
√
Nb in the context of narrow Gaussian potential. In the limit of z = 0, the solvent

quality represents a θ-condition, whereas z →∞ produces an athermal solvent quality. An

implicit predictor-corrector algorithm, similar to that suggested by Öttinger (Öttinger, 1996)

and implemented in their study by Prabhakar et al. (Prabhakar and Prakash, 2004), is used

here to solve the Itô stochastic differential equation.

A typical simulation for a single chain ring polymer consists of about 5 to 10 Rouse relax-
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ation time in the equilibration step followed by 5 Rouse relaxation time for the production

run. While computing dynamic properties such as long-time diffusivity, the production run

may consists of several 1000 non-dimensional time units. All the simulations are carried out

with a non-dimensional time step of ∆t = 0.001 and the output data are collected at an in-

terval of 0.5 non-dimensional time units. The static equilibrium properties are computed as

a block ensemble average over several trajectories. First, time average for different properties

are calculated for each independent trajectory, followed by calculation of ensemble average

over such independent time averages. However, the dynamic properties are simply calcu-

lated based of ensemble average over several independent trajectories. Typically, 1000 to

2000 independent trajectories are used to calculate different static and dynamic properties.

6.3 Universal ratios for static properties

Universal scaling of equilibrium static properties such as the mean squared radius of gyration

and mean stretch of a single chain under different solvent qualities are well know for linear

polymers (Kumar and Prakash, 2003)(Zhu et al., 2016). However, for ring polymers the

universality of such static properties is not well established. It is fundamentally important

to investigate the behaviour of these static properties in order to develop better models to

simulate ring polymer solutions which could then be used to explain various experimental

observations.

Fig. 6.1 (a) shows the scaling of radius of gyration as a function of chain length (Nb)

in the limit of θ solvent (z = 0) for both linear and ring chains. It is observed that both

linear and ring polymers follow random walk statistics in the θ-solvent limit. Furthermore,

it may be seen from Fig. 6.1 (b) that the mean-squared radius of gyration of a single-ring is

half that of a linear chain under theta-solvent conditions, in agreement with the theoretical

prediction Kramers (1946)Zimm and Stockmayer (1949)Yamakawa (1971).

To investigate the effect of solvent quality on the mean stretch, 〈X〉, and radius of gyra-

tion, Rg, we have systematically increased the solvent quality parameter, z, and calculated

the ratio 〈X〉/2Rg for rings and linear chains along with the ratio of relative stretch, XR/XL,

as a function of z (XR and XL are the respective mean stretch of a ring and linear chain
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(a) (b)

Figure 6.1: (a) Mean square radius of gyration, R2
g, as function of chain length, Nb, for ring and

linear polymers. (b) The variation of the ratio of R2
g for ring and linear chains with chain length.

along x-axis). Since the solvent quality, z, is dependent on chain length (Nb), the value of

the parameter z∗ for different chain lengths is adjusted such that z is kept constant for a

particular solvent quality in the crossover regime. The quantity 〈X〉/2Rg and XR/XL are

evaluated in the limit of infinite chain length by progressively increasing Nb and extrapolat-

ing the values of these properties at Nb →∞ as demonstrated in Fig. 6.2 for systems under

θ-solvent condition (z = 0).

At this point it should be noted that since z = z∗
√
Nb, the asymptotic limit of z → ∞

can be reached by carrying out simulations at a fixed value of z∗ for various chain lengths

and extrapolating the measured property to Nb →∞. An example of this method is demon-

strated in Fig. 6.3 for the ratio 〈X〉/2Rg for rings. In Fig. 6.4 (a), we show that for both ring

and linear chains the ratio 〈X〉/2Rg is found to decrease with increase in solvent quality in

the crossover regime and asymptotically tends to a constant value as z →∞. It can also be

noted that 〈X〉/2Rg for ring is larger than linear chain at any value of z. Previously, it has

been predicted by Sunthar and Prakash Sunthar and Prakash (2005) that under θ-solvent
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(a) (b)

Figure 6.2: (a) The ratio 〈X〉/2Rg as a function of 1/
√
Nb for linear and ring chains in the limit

of θ-solvent quality. (b) The ratio of the mean stretch of a ring and linear chain, XR/XL, as a
function of 1/

√
Nb at the θ-solvent condition. The extrapolated values in the limit of Nb → ∞ is

shown in the figure. The symbols are simulation data and the broken lines are linear fits to the
data.

condition at equilibrium 〈X〉/2Rg ≈ 1.132 for linear polymers in the long chain limit. Zhu

et al. Zhu et al. (2016) performed simulations based on Kremer-Grest bead-spring model for

different topological polymers and found the values of the ratio 〈X〉/2Rg equal to 1.13 and

1.255 for linear chains and rings, respectively. Both these values for the ratio 〈X〉/2Rg are in

close agreement with the present simulation results, which are 1.145±0.003 and 1.249±0.005

for linear and ring polymers, respectively. We find that the values of this ratio for linear and

ring chains in the asymptotic limit of z →∞ are 1.06± 0.01 and 1.126± 0.003, respectively,

which are also in good agreement with the prediction of Zhu et al. Zhu et al. (2016). The

ratio XR/XL, on the other hand is independent of solvent quality, z, and assumes a con-

stant value of approximately 0.8, as displayed in Fig. 6.4 (b). This value is identical to that

obtained from the simulations by Zhu et al. Zhu et al. (2016) within numerical accuracy.

Interestingly, at a given solvent quality a ring chain is less stretched compared to a linear

chain having the same number of monomers or molecular weight.
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Figure 6.3: Ratio 〈X〉/2Rg for rings as a function of Nb at a fixed value of z∗. The extrapolated
value in the limit of z →∞ is indicated in the figure.

6.4 Universal ratios involving hyrodynamic radius

In this section we discuss the methodology to compute the hyrodynamic radius, RH (a

dynamic property), of rings and calculate different universal ratios involving RH . This

along the mean-stretch (discussed in the Section. 6.3) are two important properties for a

polymer solutions as they are more conveniently measured than Rg in experiments. This has

motivated us to compute the ratio of mean span to RH as a function of solvent quality for

rings and compare them with that of linear chains. For completeness we have also studied

the ratio RH to Rg as a function of solvent quality.

The hydrodynamic radius is inversely proportional to the diffusivity (D∗) of a polymer

chain and can be related by the following equation

D∗ =
kBT

6πη

1

R∗H

where kB denotes the Boltzmann constant and η is the solvent viscosity. Note that all the

dimensional variables are denoted with an asterisk as a superscript. The diffusivity, D∗, is

computationally determined from the mean-squared displacement of the center of mass of a
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(a) (b)

Figure 6.4: (a) The ratio 〈X〉/2Rg as a function of z for linear and ring chains in the long chain
limit. The solid and the dashed lines represents the value of 〈X〉/2Rg in limit of z →∞ for linear
and ring polymers, respectively. (b) The ratio of the mean stretch of a ring and linear chain,
XR/XL, as a function of z in the long chain limit.

polymer chain, given by

〈∆r∗cm
2〉 = 6D∗t∗ (6.2)

where ∆r∗cm is the displacement of the center of mass and t∗ denotes time. However, calcula-

tion of D∗ from mean-squared displacement needs simulation of long trajectories and is more

error prone. An alternative method involves using Fixman’s formula and Kirkwood expres-

sion to estimate the long-time diffusivity. Fixman’s formula is given as D∗ = D∗K−D∗1, where

D∗K is the short time diffusivity calculated from Kirkwood expression and D∗1 represents the

intermolecular dynamic correlation. The expression for D∗K is written as follows

D∗K =
D∗0
Nb

+
kBT

6πη

1

R∗1
(6.3)

Here, D∗0 = kBT/ζ is the diffusivity of a single bead where ζ = 6πηa is the friction coefficient
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of a bead of radius a. R∗1 is the static inverse radius defined as

1

R∗1
=

1

N2
b

Nb∑
µ,ν=1
µ6=ν

〈 1

r∗µν
〉 (6.4)

By appropriate non-dimensionalisation the dimensionless dynamic correlation function, D1,

is defined in terms of Ai =
1

4

∑
µ

DµνijFνj as

D1 =
1

3N2
b

∞∫
0

dt 〈Ai(0)Ai(t)〉 (6.5)

here Dµνij is the ijth component of the diffusion tensor for bead pair µ ν and Fνj defines the

force acting on bead ν in j direction. In BD simulations the hydrodynamic interactions (HI)

among different chain segments in a polymer solution, required to evaluate the dynamic corre-

lation, is incorporated by using a hydrodynamic interaction parameter h∗ = a/(
√
πkBT/H),

where a/(
√
kBT/H) is the non-dimensional bead radius. By using lH =

√
kBT/H and

λH = ζ/4H for non-dimensionalisation of the length and time scales we can derive the

following dimensionless equation correlating the diffusivity and hydrodynamic radius.

D =
h∗
√
π

4RH

(6.6)

In the above expression D is non-dimensionalised with respect to `2H/λH . Previously it has

been shown that the diffusivity computed for linear chains from the mean-squared displace-

ment and Fixman’s formula are consistent with each other Liu and Dünweg (2003). Fig. 6.5

confirms that the diffusivity for rings calculated by both the methods are also consistent in

both θ and good solvent limits. It also shows that, similar to linear polymers, the diffusivity

of rings scales with chain length, Nb, as N−0.5b in θ solvent and N−0.6b in a good solvent.

This result is also in agreement with the diffusivity scaling observed in the experiments on

circular DNA (Robertson et al., 2006).

With this necessary background to compute RH from diffusivity, the variation of the

universal ratio, URD = Rg/RH , as a function of the solvent quality z is examined next. It is
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Figure 6.5: Scaling of diffusivity, D, with chain length, Nb, at z = 0 (θ solvent), h∗ = 0.2 and
z = 5 (good solvent), h∗ = 0.24 for rings. Here D is computed by the two methods discussed in
the text. The dashed and solid lines indicate the scaling exponent for the two solvent qualities.

well established (Krog̈er et al., 2000)(Sunthar and Prakash, 2006) that for a specific value of

the solvent quality parameter, z, the ratio URD is independent of the strength of HI (h∗) in

the non-draining limit, h→∞, where h = h∗
√
N . While Sunthar and Prakash Sunthar and

Prakash (2006) have shown that universality holds true for linear chains, here we establish

validity of this argument for rings. Normally, in simulations with the FENE spring force

law, h∗f (function of FENE b parameter) is kept constant instead of h∗ in order to keep

the contour length (corresponding to a specific number of Kuhn segments) unchanged with

increase in number of beads (Nb) Sunthar and Prakash (2005). However, since the present

study considers infinite number of Kuhn segments (corresponding to infinite chain length),

it is fair to keep h∗ constant for simulations at different values of Nb. In Fig. 6.6 we present

URD as a function of chain length for two different values of h∗ at z = 0. In the extrapolated

limit of Nb → ∞, curves for both values of h∗ converge to a common value, 1.225 ± 0.006.

This determines the universal value of the ratio for rings, independent of the parameter h∗,

at z = 0. For linear polymers the value of this ratio is found to be 1.40 ± 0.01, similar to

previous predictions by Sunthar and Prakash Sunthar and Prakash (2005) and Kröger et
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al. Krog̈er et al. (2000). Uehara et al. Uehara and Deguchi (2016) estimated the value of

the ratio URD to be 1.253± 0.013 for rings, which is significantly higher than our prediction.

However, it should be noted that they have computed RH from the Kirkwood expression

without Fixman’s correction, and such a treatment is valid only for the estimation of the

short time diffusivity.

Figure 6.6: The ratio URD as a function of 1/
√
Nb for rings in the limit of θ-solvent quality, z = 0.

The extrapolated value in the limit of Nb →∞ is shown in the figure. The symbols are simulation
data and the broken lines are linear fit to the data.

The difference in the values of the ratio URD for different h∗ in the short chain limit is

attributed to the leading order correction in the estimate of URD, which scales with chain

length as follows Krog̈er et al. (2000)

URD(h∗, Nb) = Ũ∞RD +
cRD√
Nb

(
1

h∗RD

− 1

h∗

)
+O(1/Nb) (6.7)

where Ũ∞RD is the value of the ratio in the limit of infinite chain length, cRD and h∗RD are

constants. From Eq. (6.7) it is clear that one could find a fixed point by solving the above

equation for cRD and h∗RD at which the leading order correction term drops and the ratio

quickly converges to its universal value. For rings we found the fixed point at h∗ ≈ 0.24.
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Following the above method the ratio URD is computed for a range of values of z with

h∗ = 0.24 (at fixed point). In Fig.6.7 we show the variation of URD as a function of z for

rings and linear chains. It is worth noting that the universal ratio, URD, for linear chains is

computed from the formula URD = αgU
θ
RDα

−1
H , where αg and αH are the swelling ratios of

gyration radius and hydrodynamic radius, respectively. These swelling ratios are given by

the following functional form,

f(z) = (1 + az + bz2 + cz3)m/2 (6.8)

where f(z) represents the specific swelling ratio (αg or αH) and a, b, c and m are fitting

parameters the values of which are given in Table 6.1.

const αg αH
a 9.5286 9.528
b 19.48 19.48
c 14.92 14.92
m 0.133913 0.0995

Table 6.1: Coefficients and constants for the expression of the swelling ratio given in Eq. (6.8).

From Fig. 6.7 it is apparent that for rings URD asymptotically converges to a value equal

to 1.345 in the limit of z →∞. Besides, the ratio URD grows more rapidly with z in case of

linear chains as compared to rings.

Another quantity of interest is the ratio of mean stretch, 〈X〉, to hydrodynamic radius,

RH . Following a similar method of extrapolation to infinite chain length, the universal values

of the ratio 〈X〉/RH are computed for a range of solvent quality parameter, z. As seen from

Fig. 6.8, 〈X〉/RH for linear chains has an increasing trend with z, whereas for rings the ratio

is practically independent of solvent quality. This is an important finding which suggests

that for rings the swelling in mean stretch and hydrodynamic radius is identical. This fact

is further demonstrated in the swelling curve discussed later. Contrary to linear polymers,

the absence of any terminal ends in ring architecture makes 〈X〉 and RH to swell by equal

proportion. However, this also implies that in experiments it is not possible to determine

solvent quality of a solution of rings from the ratio 〈X〉/RH .
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Figure 6.7: The ratio URD as a function of z for rings and linear chains in the long chain limit.
The dashed lines represents the value of the ratio in the limit of z →∞ for ring polymers.

(a) (b)

Figure 6.8: The ratio 〈X〉/RH as a function of z for (a) rings and (b) linear chains in the long
chain limit. The solid line (bounded by dashed lines) represents the value of the ratio in limit of
z →∞ for ring polymers.
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An alternative method to determine the solvent quality for a given system of polymer

solution is from the swelling curve for the gyration radius (αg = Rg/R
θ
g) or hydrodynamic

radius (αH = RH/R
θ
H). Fig. 6.9 displays the swelling ratio αg, αH and αX (for mean stretch)

as a function of z for rings and linear chains. The solid and dashed lines represent the curves

obtained by fitting the functional form described in Eq. (6.8) for different swelling ratios.

The values of the fitting parameters are given in Table 6.2. For linear polymers there is

a clear distinction among the three swelling ratios whereas for rings the swelling of mean

stretch, αX , and hydrodynamic radius, αH , are identical because of the reason discussed

earlier. However, Rg and RH swell differently for rings. It should be noted that in order to

determine the swelling ratio, one has to estimate the value of Rθ
H or Rθ

g at the θ condition.

This could be easily determined by investigating the ratio of gyration radius or hydrodynamic

radius of rings (R) to that of linear chains (L). At the θ condition both these ratios assume

an unique value, which are RR
g /R

L
g = 1/

√
2 for the gyration radius and RR

H/R
L
H = 0.81 for

the hydrodynamic radius. Here the ratio RR
H/R

L
H at the θ-solvent condition is determined

by using the formula (RR
H/R

L
H)θ = U−1RDR

(RR
g /R

L
g )θURDL . Using these universal values and

information from the swelling curve it is straight forward to determine the solvent quality

for a given polymeric solution of rings or linear chains.

Linear Rings
const αg αH αX αg αH αX
a 9.5286 9.528 10.1358 10.7936 7.5364 7.5364
b 19.48 19.48 11.3791 20.3279 17.45 17.45
c 14.92 14.92 15.0749 2.8128 2.6393 2.6393
m 0.133913 0.0995 0.1159 0.166 0.1464 0.1464

Table 6.2: Coefficients and constants for the expression of the swelling ratio given in Eq. (6.8) for
Linear chains and rings.

In addition to the individual swelling behaviour for rings and linear chains, we have

also investigated the dependence of the ring to linear ratio for Rg and RH as a function of

solvent quality, z. The ratio of mean stretch as a function of z for ring to linear chain has

already been addressed. Fig. 6.10 shows that the ratio for the gyration radius becomes fairly

independent of solvent quality for z > 0, whereas, the ratio for the hydrodynamic radius

displays a significant dependence on the solvent quality. This also suggests that the swelling
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Figure 6.9: Swelling ratio αg, αH and αX plotted as a function of solvent quality, z, for linear
(LP) and ring (RP) polymers.

ratio of the dynamic radius scales differently for rings and linear polymers.

6.5 Conclusions

Using Brownian dynamics simulations we have computed different static and dynamic prop-

erties of dilute ring polymer solutions at equilibrium. The universal values of the ratios

involving radius of gyration and mean-stretch are calculated as a function of solvent quality,

z, in the limit of infinite chain length and compared with that of linear chains.

Two different methods based on mean-squared displacement and Fixman’s formula are

used to evaluate the diffusivity and hydrodynamic radius of ring polymers. Interestingly, the

results obtained from both the methods are in very good agreement with each other. This

suggests the applicability of Fixman’s formula to compute the long time diffusion coefficient

for polymeric rings. We have also pointed out the importance of Fixman’s correction in the

evaluation of long-time diffusivity which has not been addressed before for ring polymers.

Universal ratios URD and X/RH involving hydrodynamic radius, RH , are evaluated as a

function of solvent quality, z and compared with the respective values for linear polymers. In
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Figure 6.10: Ratio of gyration radius and hydrodynamic radius for ring to linear chain plotted as
a function of solvent quality, z.

this regard we have found a fixed point value for the hydrodynamic interaction parameter,

h∗, which leads to quick convergence of the ratio URD to its universal limit.

In this work we have suggested an alternative method to determine the solvent quality

of ring polymer solutions from the universal curve for the swelling ratios. The values of the

universal ratios and the swelling curve can be used to accurately estimate the solvent quality

for an experimental system of ring polymers which can then be used to model ring polymer

chains in simulations.

This is a preliminary work to understand the static and dynamic behaviour of a dilute

solution of ring polymers. Although, the results discussed here are from equilibrium simula-

tions, they are, however, the basis to investigate the interesting rheological and viscoelastic

properties of ring polymer solutions, such as tumbling and tank-treading dynamics in a shear

flow.
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Summary and future work

Static and dynamic properties of associative polymer solutions in the dilute and semi-dilute

regimes have been investigated in this thesis using Brownian dynamics (BD) simulations.

A modified Soddemann-Dünweg-Kremer (SDK) potential (Soddemann et al., 2001)(Santra

et al., 2019) is implemented to model the association between the stickers in associative

polymers. This is one of the first comprehensive studies, where the microscopic topology is

systematically correlated with the macroscopic viscoelasticity of associative polymer solu-

tions. The entire study is based on the framework of a mean-field theory proposed by Ru-

binstein and Semenov (Semenov and Rubinstein, 1998)(Rubinstein and Semenov, 1998)(Ru-

binstein and Semenov, 2001) and later developed further by Dobrynin (Dobrynin, 2004).

The results obtained from the simulations are compared with the scaling predictions of

the mean-field theory (Dobrynin, 2004)(Semenov and Rubinstein, 1998)(Rubinstein and Se-

menov, 1998)(Rubinstein and Semenov, 2001), and are found to largely agree with the theo-

retical predictions. One of the key features of associative polymer solutions is the formation

of reversible physical gels at fairly low concentrations. In this thesis the static and dynamic

signatures of gelation are characterized using different definitions of sol-gel transition. Hy-

drodynamic interaction (HI) is implemented using an optimised Ewald-summation algorithm

which scales with the number of particles as N1.5 (Jain et al., 2012). However, with this

method the speed of the simulations gets considerably slower with an increase in system

size. We are therefore limited by the computational technique to the study of associative

polymers of short chain lengths. The dynamics of longer chains may be explored by using
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fast BD algorithms such as the one developed by Fiore et al. (Fiore et al., 2017). Moreover,

the study carried out in this thesis has helped to understand many of the underlying physical

phenomena which leads to the unique viscoelastic responses of associative polymer solutions.

This will also allow us to look at the dynamics of associative polymer solutions with long

chains, and see the effect of chain length on the rheology and gelation signatures.

This thesis also discusses a problem related to the understanding of the static and dy-

namic properties of dilute ring polymer solutions, where the universal behaviour of different

equilibrium static and dynamic properties of polymeric rings is studied as a function of sol-

vent quality. The work carried out in this project forms the foundation to investigate the

more interesting linear and non-linear viscoelasticity of single polymeric rings in solution. It

is required to develop an accurate model for polymer solutions in order to compare the sim-

ulation predictions with actual experimental systems. We hope that the method proposed

here for the estimation of the solvent quality and size of polymeric rings will help in better

modelling of ring polymer solutions.
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Appendix A

The cut-off radius for the SDK

potential

As it is mentioned in Chapter 2 and 3, in the original study by Soddemann et al. (Soddemann

et al., 2001) the cut-off radius of the SDK potential, rc, was chosen to be 1.5σ in order to

include only the first neighboring shell of interactions, determined from the first minimum

of the pair correlation function. In this section, we first show that in the context of the

Brownian dynamics simulations carried out in this work, the choice of rc = 1.5σ leads to

the prediction of unphysical asymptotic scaling behaviour in the poor solvent limit. We

then discuss how an appropriate value of the cut-off radius can be estimated. The material

discussed in this section is taken from the supplementary information of the study carried

out by Santra et al. (Santra et al., 2019) on swelling of sticky polymers. For the sake of

completeness and clarity, we repeat some of the equations that have already been displayed

in the main text.

The potential proposed by Soddemann-Dünweg-Kremer (SDK) (Soddemann et al., 2001)
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has the form,

USDK =



4

[(σ
r

)12
−
(σ
r

)6
+

1

4

]
− ε; r ≤ 21/6σ

1

2
ε

[
cos (α

( r
σ

)2
+ β)− 1

]
; 21/6σ ≤ r ≤ rc

0; r ≥ rc

(A.1)

Figure A.1: (Color online) Comparison between the SDK potential (USDK) and the conventional
LJ (ULJ) and WCA (UWCA) potentials as a function of the radial distance, r, for well depths
ε = εLJ = 2.0, σ = 1, and rc = 1.5 (see text for corresponding values of α and β).

A comparison is drawn in Fig. A.1 between the SDK potential and the conventional

Lennard-Jones (LJ) and Weeks-Chandler-Andersen (WCA) potentials, the expressions of

which are given in Eq. (A.2) and Eq. (A.3), respectively.

ULJ = 4εLJ

[(σ
r

)12
−
(σ
r

)6]
(A.2)
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UWCA =


4εLJ

[(σ
r

)12
−
(σ
r

)6
+

1

4

]
; r ≤ 21/6σ

0; r > 21/6σ

(A.3)

Figure A.2: (Color online) The ratio R2
g/(Nb − 1) as a function of the well depth of the SDK

potential, εbb, used to estimate the θ-point for the cutoff radius rc = 1.5σ. The symbols represent
simulation data and the dotted lines are drawn to guide the eye. The θ-point is estimated as the
intersection of all the curves and leads to εbb = 0.72.

In the above equations, σ is the non-dimensional distance at which the LJ potential

becomes zero, and its value is taken to be 1 in the present study. The quantities ε and

εLJ are the attractive well depths of the SDK and LJ potentials, respectively. As shown in

Fig. A.1, unlike the LJ potential, which has a long attractive tail, the short ranged attractive

tail of the SDK potential smoothly approaches zero at a finite distance rc. The choice ε = 0

in the SDK potential is equivalent to εLJ = 1.0 in the purely repulsive WCA potential.

The constants α and β (as discussed in Chapter 2) are determined by applying the two

boundary conditions, namely, USDK = 0 at r = rc, and USDK = −ε at r = 21/6σ. Based

on these two boundary conditions, α and β are calculated by solving the following set of
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equations,

21/3α + β = π (A.4)(rc
σ

)2
α + β = 2π (A.5)

(a) (b)

Figure A.3: (Color online) (a) The mean-squared radius of gyration as a function of the number
of beads in a chain. The blue-coloured symbols are for different values of well-depth, εbb, in the
absence of hydrodynamic interactions. • εbb = 0, N εbb = 0.2, ∗ εbb = 0.4, I εbb = 0.6, J εbb = 0.72,
+ εbb = 0.8, � εbb = 0.92 and � εbb = 1. The same symbols are used with a red colour for
simulations with hydrodynamic interactions. The straight lines are of slope 2ν at different values
of εbb. (b) Effective exponent 2ν versus the well-depth, εbb, for cutoff radius rc = 1.5σ.

In Section 3.3 of the main text it is shown how the value of εbb at the θ-point can be

estimated by plotting the ratio R2
g/(Nb−1) versus εbb for different chain lengths, Nb, and find-

ing the point of intersection at which curves for different values of Nb intersect (Steinhauser,

2005)(Huissmann et al., 2009). With the cut-off radius set to rc = 1.5σ, the θ-point for a

homopolymer chain with beads connected by FENE springs having a maximum stretchable

length of Q0
2 = 50.0, is found to be εbb = 0.72 as shown in Fig. A.2. This is in contrast to

the value of εbb = 0.45 obtained for rc = 1.82σ, as was demonstrated in Section 3.3. The
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reasons for the unsuitability of using rc = 1.5σ are discussed below.

With increasing values of εbb beyond εbb = 0.72, the chain begins to collapse due to

decreasing solvent quality. In the limit of a poor solvent, linear polymer chains obey the

scaling law Rg ∼ (Nb − 1)1/3, indicating that the chains are space filling. Fig. A.3 (a)

studies the chain length dependence of R2
g for various well depths εbb. For εbb = 0 (the

athermal limit) and εbb = 0.72 (the θ-point), the expected power law exponents of 1.2 and 1.0,

respectively, are observed. For intermediate values in the crossover regime, 0 < εbb < 0.72,

one expects, strictly speaking, a curve beginning with slope 1 at small values of Nb, and

gradually increasing to 1.2 for asymptotically long chains. However, for the fairly short

chains studied here, this curvature is very hard to observe; instead the data can be well

described in terms of an effective exponent, whose variation with εbb is shown in Fig. A.3 (b).

An analogous crossover from a slope of 1.0 to (2/3) is expected as the well depth is increased

beyond the θ value of 0.72, with the effective exponent remaining at (2/3) for sufficiently

large εbb. However, as can be seen from Figs. A.3 (a) and (b), the “asymptotic” slope at

εbb = 1 seems to be only 0.35, which is obviously unphysical, if interpreted as an asymptotic

scaling law. We can only speculate here about the reasons for this behaviour — since we

were able to “cure” the problem without a detailed investigation, we did not attempt to

analyse it in depth. However, a few observations may be made.

Firstly, Fig. A.3 (a) shows clearly that the data at εbb = 1 are hampered by equilibration

problems. This becomes obvious via the comparison of data accumulated with and without

hydrodynamic interactions, which, as static averages, must be identical if strict thermal

equilibrium and sufficient sampling is achieved. Secondly, it has already been pointed out

in Soddemann et al. (Soddemann et al., 2001) that the SDK potential with rc = 1.5σ

has a propensity to induce crystallisation, i.e., highly ordered structures. It is then quite

conceivable that the growth of a highly collapsed globule with chain length occurs essentially

in a layer-by-layer fashion, which would then give rise to a fairly abrupt increase of R2
g as

soon as a new layer begins to be populated. The small slope of 0.35 that we observe in

Fig. A.3 (a) may then perhaps be part of a quasi-plateau that corresponds to oscillations

that are added on top of the leading N2/3 behaviour.

Prompted by our experience with using a simple Lennard-Jones potential in analogous
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Figure A.4: (Color online) The second virial coefficient B2 of the SDK potential, compared with
the corresponding value for the LJ potential, as a function of the cutoff radius, rc, for well-depths
εbb = εLJ = 1.0, and σ = 1.

studies of collapsing polymer chains (Pham et al., 2010), which did not exhibit this problem,

we attempted to solve it by modifying the SDK potential such that it would mimic more

closely the attributes of the Lennard-Jones potential. In practice, we adjusted the range of

the SDK potential rc by requiring that, for εLJ = εbb = 1 and σ = 1, both potentials give

rise to the same value of the second virial coefficient given by the integral (Rubinstein and

Colby, 2003)

B2 =

∫ ∞
0

2πr2(1− exp[−U(r)/kBT ]) dr. (A.6)

Matching this value with the corresponding LJ value results in rc = 1.82σ (see Fig. A.4),

for which α = 1.5306333121 and β = 1.213115524. In view of the remarks made earlier, it is

well conceivable that such a smoother potential will exhibit less pronounced oscillations or

perhaps none at all.

As seen in Fig. A.5 (a), the effective exponent shows a gradual decrease from 1.2 at εbb = 0

to 0.67 at εbb = 0.55, and it remains constant at 0.67 well beyond εbb = 0.55, as shown in

Fig. A.5 (b). The values of the mean-squared radius of gyration, R2
g, are reproduced with
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(a) (b)

Figure A.5: (Color online) (a) The mean-squared radius gyration versus number of beads in a
chain. The blue-coloured symbols are for different values of well-depth, εbb, in the absence of
hydrodynamic interactions. • εbb = 0, N εbb = 0.2, ∗ εbb = 0.4, I εbb = 0.45, J εbb = 0.55, +
εbb = 0.6, � εbb = 0.7 and � εbb = 0.8, ♦ εbb = 1, 4 εbb = 2 and � εbb = 3. The same symbols
are used with a red colour for simulations with hydrodynamic interactions. The straight lines are
of slope 2ν at different values of εbb. (b) Exponent 2ν versus the well-depth, εbb, at cutoff radius
rc = 1.82σ.

HI for εbb = 0, 0.45 and 1.0, for different chain lengths and found to be consistent with the

results without HI (as seen in Fig. A.5 (a)). All the results reported in the current work

with the SDK potential are consequently for rc = 1.82σ.
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Equivalence of sticking rules

The rules implemented in the current algorithm for deciding when a pair of stickers associate

with each other have been described in Section 2.5. In particular, in cases where three or

more stickers are within the cut-off radius, the sticking pairs are selected based on the order

of labelling of the stickers. This rule is denoted here as scheme 1. An alternative scheme

could be to pick the sticking pairs at random when three or more stickers are within the

interaction range (denoted here as scheme 2). We anticipate that since a large ensemble of

chains are distributed randomly in a simulation box, bead labels of neighbouring beads are

essentially random, and since the probability of three or higher body interactions for stickers

is very low, the two schemes should effectively produce the same results. This is illustrated

in Figs. B.1 where the radius of gyration, and the intra-chain and inter-chain association

fractions are plotted against time after reaching the stationary state. It can be seen that for

each of the static properties, the results of both the schemes agree within error-bars, with

the values fluctuating about the equilibrium averages.
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(a) (b)

(c)

Figure B.1: Comparison of the equilibrium values of (a) radius of gyration, R2
g, (b) intra-chain

association fraction, p1, and (c) inter-chain association fraction, p2, predicted by the two different
sticking rules, scheme 1 and scheme 2. Simulations are carried out with chain length Nb = 34,
spacer length ` = 4, sticker strength εst = 5, and concentration c/c∗ = 0.2, for the backbone
monomers under athermal solvent conditions, i.e., εbb = 0. The symbols are from simulations and
the solid lines are equilibrium averaged values of the static properties.
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Scaling relations in associative

polymer solutions from lattice-based

mean-field theory

The scaling relations for associative polymer solutions, derived by Dobrynin (Dobrynin,

2004), based on a lattice-based mean-field theory involves minimisation of the free energy of

the system, obtained from the partition function, Z, as discussed below. In an associative

polymer solution the partition function can be decomposed into three components, namely,

Zmix, Zbond and Zint as follows,

Z = ZmixZbondZint (C.1)

Here, Zmix is the term involving different arrangements of the solvent molecules, Ns, and

polymers, Np, in n lattice sites. Zbond is the contribution from the sticker-sticker binding

interaction and Zint describes the interactions between the solvent molecules and polymers.

Although, in BD simulations lattice geometry is not applicable but it still gives a useful

framework to analyse the results obtained from the simulations. Zmix and Zint together

constitute the polymeric contribution to the free energy, Fpol, without the sticker associations.

In a system with φ as the probability of occupancy of lattice sites (equivalent to the monomer

concentration, c) and τs as the effective solution temperature, Fpol is given by the following

164



Appendix C. Scaling relations in associative polymer solutions from lattice-based
mean-field theory

expression (Dobrynin, 2004),

Fpol

nkBT
≈ φ

Nb

ln
φ

eNb

+ C2τ
3/4
s φ9/4 (C.2)

here, Nb is the degree of polymerisation, kB is the Boltzmann constant and T is the temper-

ature. The above equation is valid in the good solvent condition where τs > N
−1/2
b . With

the inclusion of stickers, there will be additional contributions to the free energy from the

intra-chain and inter-chain associations of the stickers. In the following sections we briefly

discuss the probability of intra-chain and inter-chain associations under various conditions,

as derived by Dobrynin (Dobrynin, 2004), which is used to calculate their contributions to

the free energy.

C.1 Intra-chain association scaling

Before discussing the intra-chain scaling in different regimes for associative polymer solutions

it is required to consider the following two arguments for finding the probability for a given

monomer to encounter any other monomer on the same chain.

Argument 1:

The overlap volume fraction for Nb monomers in a volume R3 pervaded by a chain is given

by (Rubinstein and Colby, 2003)

φ∗ =
Nb b

3

R3
=

Nb b
3

b3N3ν
b

= N1−3ν
b (C.3)

where b is the monomer size and ν is the Flory exponent. In this case the probability of one

monomer encountering another monomer (any of the Nb) is simply φ∗. The total number of

monomer-monomer contacts is then given as,

Nb φ
∗ ∼ Nb ×N1−3ν

b ∼ N2−3ν
b (C.4)

In a θ-solvent the total number of contacts reduces to N
1/2
b .

Argument 2:

165



Appendix C. Scaling relations in associative polymer solutions from lattice-based
mean-field theory

The second argument is based on the probability of loop formation between two ends of a

chain segment. The end-to-end vector of a Gaussian chain has a probability distribution,

P (Nb, r) =

(
3

2πNb b2

)3/2

exp

(
− 3r2

2Nb b2

)
(C.5)

so the probability of the two ends forming a loop is found by setting r = 0, so that

Ploop =

(
3

2πNb b2

)3/2

∼ N
−3/2
b (C.6)

For a segment of chain with ` monomer (` is the spacer length), P (`) ∼ `−3/2. These two

arguments have been used in different contexts in the scaling theory to derive the expressions

for the intra-chain and inter-chain association fractions (Dobrynin, 2004).

Regime I: ` < gT < gc

In this regime there are many associating groups in a thermal blob and within the thermal

blob the chain still obeys Gaussian statistics. So the probability of intra-chain association

scaling in this case is given by P (`) ∼ `−3/2 as discussed above.

Regime II: gT < ` < gc

In this case there are many thermal blobs between two associating groups. Here, the calcu-

lation of the probability that two associating groups come in contact involves several steps.

Firstly, in good solvent, des Cloizeaux has derived a formula for the probability of contact,

Pgood, between two segments of a chain separated by m monomers which is given as (des

Cloizeaux, 1980)(Dobrynin, 2004)

Pgood ∼
(

δ

r(m)

)3+θ2

(C.7)

where, δ is the actual spatial distance between the monomers, and r(m) is the mean square

end-to-end distance between two segments separated by m monomers. The value of the

exponent θ2 is obtained by des Cloizeaux using perturbation expansion.
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Since thermal blobs within a correlation blob are undergoing self-avoiding walk (SAW)

statistics, then for a fixed temperature,

r(`) = ξT

(
`

gT

)ν
∼ `ν (C.8)

For two thermal blobs, containing the associating groups, to come in contact, δ = ξT and

r(m) = r(`). So the probability of contact between two such thermal blobs is

PT ∼
(gT
`

)(3+θ2)ν
(C.9)

Now the probability that two associating groups in these overlapping thermal blobs come in

contact can be calculated by assuming that there are approximately gT monomers between

them, so the probability is g
−3/2
T (from Eq. C.6). Therefore the total probability of intra-chain

pairing in Regime II is given by

P (`) =
(gT
`

)ν(3+θ2)
g
−3/2
T (C.10)

Regime III: gT < gc < `

In Regime III there are many correlation blobs between two associating groups. In this

case the association between two groups involves a three step process which is discussed as

follows. (i) Two correlation blobs containing the associating groups have to come in contact,

(ii) the two thermal blobs within the correlation blobs containing the associating groups

have to come together, (iii) the two associating groups inside the overlapping thermal blobs

have to find each other. Total probability is a combination of the probabilities for each of

these steps.

In the first step, since correlation blobs execute random walk (RW) statistics, and there

are (`/gc) correlation blobs between stickers, the probability of two correlation blobs forming

a loop is proportional to (`/gc)
−3/2 from argument 2. Once two correlation blobs are in

contact the two thermal blobs, containing the stickers, within the correlation blobs have to

come together. As the thermal blobs execute SAW statistics and there are (gc/gT ) thermal

blobs in a correlation blob, the probability that two thermal blobs inside a correlation blob
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will form a loop is proportional to (gT/gc)
ν(3+θ2). Finally, the two associating groups inside

a thermal blob can form a loop with probability g
−3/2
T . Combining all these, the total

probability of intra-chain pairing in Regime III is

P (`) =
(gc
`

)3/2(gT
gc

)ν(3+θ2)
g
−3/2
T (C.11)

C.2 Inter-chain association scaling

Similar to the intra-chain associations, the probability of inter-chain associations can also

be found using simple arguments. Assuming a system of space filling correlation blobs in

a lattice geometry with coordination number z, there are z correlation blobs surrounding

any one correlation blob. Two of these contain the segment of the same chain, so there are

(z − 2) correlation blobs from other chains. In order to form an inter-chain association with

the stickers within the concerned correlation blob, the second associating group must belong

any of the surrounding (z−2) correlation blobs. Similar to the intra-chain associations there

are several regimes for the inter-chain association scaling as discussed below.

Regime I: ` < gT < gc

In this case there is more than one sticker in a thermal blob and for any two associating

groups to stick, two thermal blobs have to come close to each other. Since the thermal

blobs follow SAW statistics, this happens with a probability proportional to (gT/gc)
ν(3+θ2),

as there are (gc/gT ) thermal blobs in a correlation blob. Now, for an inter-chain association

the second associating group should come from a thermal blob within the surrounding (z−2)

correlation blobs. Since there are (z−2)(gc/gT ) such thermal blobs, the probability should be

multiplied by this factor. Within a thermal blob there are (gT/`) stickers and the probability

of contact between any two of those stickers is proportional to the volume fraction of the

stickers inside a thermal blob, which is given as

(gT/`)

ξ3T
=

(gT/`)

b3g
3/2
T

∼ `−1g
−1/2
T (C.12)
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The total probability of inter-chain pairing in this regime is then obtained by combining all

these factors,

Pinter =

(
gT
gc

)ν(3+θ2)( gc
gT

)
(z − 2)

1

`g
1/2
T

(C.13)

= (z − 2)
(gc
`

)(gT
gc

)ν(3+θ2)
g
−3/2
T

Regime II: gT < ` < gc

Here there are many thermal blobs between associating groups, and many associating groups

within a correlation blob. Since each correlation blob has (gc/`) stickers, so there are al-

together (z − 2)(gc/`) associating groups surrounding any particular correlation blob. The

probability of contact between two thermal blob is again (gT/gc)
ν(3+θ2) as in the case above.

Now since there is one associating group in a thermal blob, the probability of stickers to

come together within a thermal blob is g
−3/2
T , according to argument 2. Putting all these

together, the total probability of inter-chain association in this regime is obtained as,

Pinter = (z − 2)
(gc
`

)(gT
gc

)ν(3+θ2)
g
−3/2
T (C.14)

Regime III: gT < gc < `

In this case there are many correlation blobs between two stickers. For two stickers to come

in close contact in this regime, the following steps have to be followed. (i) Two correlation

blobs (containing a sticker each) have to come in contact. (ii) Within the correlation blob

two thermal blobs containing the stickers have to come together. (iii) Two associating groups

inside the overlapping thermal blobs have to find each other.

It should be noted that in this regime a correlation blob can have at most one sticker.

So the total volume fraction of the correlation blobs containing stickers is

Nb

`
Nc ξ

3
c

Nb

gc
Nc ξ

3
c

=
gc
`
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where Nb/` is the number of stickers per chain (or number of correlation blobs per chain

which contain a sticker), Nc is the number of chains, Nb/gc is the number of correlation

blobs per chain and ξc is the size of a correlation blob. The probability of contact between

two correlation blobs, containing a sticker each, is simply given by (z − 2) (gc/`). Now,

the probability of contact between two thermal blobs in a correlation blob is (gT/gc)
ν(3+θ2),

considering that thermal blobs follow self avoiding walk (SAW) statistics within a correlation

blob. Finally, the probability that two stickers within a thermal blob comes together is given

by g
−3/2
T . Combining all these, the total probability of inter-chain association is

Pinter ≈ (z − 2)
gc
`

(
gT
gc

)ν(3+θ2)
g
− 3

2
T

This expression for Pinter in Regime III is exactly the same as that derived for the other two

regimes.

C.3 Free energy of associative polymers in dilute so-

lutions

The probability of intra-chain and inter-chain associations can be used to find the partition

function, Zbond, for the sticker-sticker binding interaction. By combining the free energy

calculated from the partition function, Zbond, with the free energy for polymeric contribution,

Fpol, Dobrynin found the total free energy of the system in a good solvent, which is given

by (Dobrynin, 2004)

Ftot

nkBT
≈ φ

N
ln

φ

eN
+ C2τ

3/4φ9/4 +
φ

`
(
p

2
+ ln (1− p)) (C.15)

here, p = p1 + p2, where p1 and p2 are degrees of intra-chain and inter-chain conversions of

the stickers. By minimising the total free energy of the system, Ftot, with respect to p1 and

p2 one can obtain the scaling relations for the intra-chain and inter-chain associations shown

in Table 4.1
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Appendix D

Storage (G′) and loss (G′′) moduli for

a dilute solution of Rouse chains

In Chapter 5, we have discussed two different methods of computing the storage and loss

moduli based on oscillatory shear flow (OSF) and equilibrium simulations. In the study

carried out in Chapter 5, we use Fourier transformation of the stress auto-correlation func-

tion, calculated from equilibrium simulations, to evaluate G′ and G′′ for associative polymer

solutions. Alternatively, G′ and G′′ can be directly estimated from the output response of

small amplitude oscillatory shear flow (SAOS) experiments or simulations. Here, we calcu-

late dynamic moduli using these two methods and compare the results with the analytical

solution for Rouse chains. For Rouse model of polymer solutions, consisting of bead-spring

chains with (Nb−1) Hookean springs per chain, the analytical expression for the constitutive

equation is well known. For such a model there is a spectrum of relaxation times, λj, given

by (Bird et al., 1987a)

λj =
ζ/2H

4 sin2(jπ/2Nb)
(D.1)

where ζ is the friction coefficient and H is spring constant. For a dilute solution of Rouse

chains subjected to small amplitude oscillatory shear flow, the polymeric contribution of the

complex modulus can be decomposed into the following real and imaginary parts,

G′ = npkBT

Nb−1∑
j=1

λ2j ω
2

1 + (λj ω)2
(D.2)
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G′′ = npkBT

Nb−1∑
j=1

λj ω

1 + (λj ω)2
(D.3)

Here, ω is the frequency of oscillation and np is the number density of chains. Fig. D.1

shows very good agreement among different methods used to compute G′ and G′′ for a dilute

solution of Rouse chains. Both equilibrium and SAOS (with amplitude, γ0 = 0.2) simulations

produce the same results which is also in agreement with the analytical expressions. This

study establishes the validity of the method used in Chapter 5 to calculate G′ and G′′ from

stress-auto correlation function.

Figure D.1: Non-dimensionalized dynamic moduli (G′∗ & G′′∗) as a function of dimensionless
frequency, ω λH , for a dilute solution of Rouse chains with chain length, Nb = 24. The filled (for
G′) and open (for G′′) symbols are from BD simulations at equilibrium and under oscillatory shear
flow (OSF), where γ0 is the amplitude of oscillation. The solid and broken lines are analytical
solutions for G′ and G′′, respectively, for Rouse chains in a dilute solution.
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Appendix E

Scaling of computational cost with

chain size

The majority of the results reported in this work have been carried out on the supercom-

puter Gadi, which is Australia’s peak research supercomputer based at the National Com-

putational Infrastructure in Canberra. Gadi, ranked 24 on the TOP500 list, is a 3,200

node supercomputer (with 155,000 CPU cores and 567 Terabytes of memory) comprising

the latest generation Intel Cascade Lake and Nvidia V100 processors, with over 9 petaflops

of peak performance. The technical specifications of the processors are: Primergy CX2570

M5, Thinksystem SD650, Xeon Platinum 8274/8268, Nvidia Tesla V100 SXM2, Mellanox

HDR Infiniband cluster manufactured by FUJITSU. The computational cost estimates for

simulating chains of various lengths Nb, spacer lengths `, and concentrations c/c∗ on this

machine have been given in Table E.1.
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Nb Spacer length c/c∗ CPU time for 10 Rouse times
(`) (DD:HH:MM)

Regime II
34 6 2.0 00 : 03 : 07
154 30 2.0 12 : 00 : 00
254 50 2.0 54 : 07 : 00

Regime III

64 12 6.5 01 : 19 : 00
79 15 6.5 03 : 09 : 00
154 30 6.5 25 : 00 : 00
254 50 6.5 112 : 00 : 00

Table E.1: Estimates of CPU wall time required on the supercomputer Gadi to simulate a single
data point on systems with different chain lengths and concentrations in Regimes II and III.
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Appendix F

Tabulated values of simulation results

for Rg, p1 and p2 as a function of the

parameters {Nb, `, f, εbb, εst, c/c∗}

The data presented in Chapter 4 for the dependence of Rg, p1 and p2 on the various param-

eters {Nb, `, f, εbb, εst, c, c/c
∗}, in the form of figures, is given here in tabular form, so that

they are readily available for comparison with any model predictions that may be made in

the future.
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Appendix F. Tabulated values of simulation results for Rg, p1 and p2 as a function of the
parameters {Nb, `, f, εbb, εst, c/c

∗}
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Appendix F. Tabulated values of simulation results for Rg, p1 and p2 as a function of the
parameters {Nb, `, f, εbb, εst, c/c

∗}
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Appendix F. Tabulated values of simulation results for Rg, p1 and p2 as a function of the
parameters {Nb, `, f, εbb, εst, c/c
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Appendix F. Tabulated values of simulation results for Rg, p1 and p2 as a function of the
parameters {Nb, `, f, εbb, εst, c/c
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Appendix F. Tabulated values of simulation results for Rg, p1 and p2 as a function of the
parameters {Nb, `, f, εbb, εst, c/c

∗}

T
ab

le
F

.1
–

C
on

ti
n

u
ed

fr
om

pr
ev

io
u

s
pa

ge

(N
b
,
`,
f

)
ε b
b

ε s
t

c/
c∗

c
R
g

p 1
p 2

0.
0

5.
0

1.
7

0.
08

4
5.

14
±

0.
02

0.
21

7
±

0.
00

2
0.

45
9
±

0.
00

2

(3
9,

4,
7)

0.
0

0.
0

0.
0

0.
0

5.
98
±

0.
04

–
–

R
eg

im
e

II

0.
0

5.
0

0.
2

0.
00

9
5.

16
±

0.
02

0.
49

2
±

0.
00

2
0.

08
0
±

0.
00

3

0.
0

5.
0

0.
3

0.
01

4
5.

24
±

0.
02

0.
47

4
±

0.
00

2
0.

10
4
±

0.
00

2

0.
0

5.
0

0.
4

0.
01

7
5.

26
±

0.
02

0.
44

8
±

0.
00

2
0.

13
7
±

0.
00

2

0.
0

5.
0

0.
5

0.
02

2
5.

30
±

0.
02

0.
42

6
±

0.
00

2
0.

16
5
±

0.
00

2

0.
0

5.
0

0.
7

0.
03

1
5.

38
±

0.
02

0.
38

4
±

0.
00

2
0.

22
2
±

0.
00

2

0.
0

5.
0

0.
9

0.
03

9
5.

45
±

0.
02

0.
35

1
±

0.
00

2
0.

26
7
±

0.
00

2

0.
0

5.
0

1.
0

0.
04

4
5.

46
±

0.
02

0.
33

4
±

0.
00

2
0.

29
0
±

0.
00

2

0.
0

5.
0

1.
1

0.
04

8
5.

48
±

0.
02

0.
32

0
±

0.
00

2
0.

31
2
±

0.
00

2

0.
0

5.
0

1.
2

0.
05

3
5.

52
±

0.
02

0.
30

3
±

0.
00

2
0.

33
6
±

0.
00

2

(4
4,

4,
8)

0.
0

0.
0

0.
0

0.
0

6.
45
±

0.
03

–
–

R
eg

im
e

II

0.
0

5.
0

0.
2

0.
00

8
5.

49
±

0.
03

0.
51

3
±

0.
00

2
0.

05
8
±

0.
00

3

0.
0

5.
0

0.
3

0.
01

2
5.

53
±

0.
02

0.
48

3
±

0.
00

2
0.

09
7
±

0.
00

3

0.
0

5.
0

0.
5

0.
02

0
5.

61
±

0.
02

0.
44

7
±

0.
00

2
0.

14
6
±

0.
00

2

0.
0

5.
0

0.
7

0.
02

8
5.

72
±

0.
02

0.
40

8
±

0.
00

2
0.

19
6
±

0.
00

2

0.
0

5.
0

0.
9

0.
03

5
5.

78
±

0.
02

0.
37

5
±

0.
00

2
0.

24
2
±

0.
00

2

0.
0

5.
0

1.
0

0.
03

9
5.

86
±

0.
02

0.
35

8
±

0.
00

2
0.

26
4
±

0.
00

2

0.
0

5.
0

1.
2

0.
04

7
5.

90
±

0.
02

0.
33

0
±

0.
00

2
0.

30
3
±

0.
00

2

C
on

ti
n

u
ed

on
n

ex
t

pa
ge

181



Appendix F. Tabulated values of simulation results for Rg, p1 and p2 as a function of the
parameters {Nb, `, f, εbb, εst, c/c
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Appendix F. Tabulated values of simulation results for Rg, p1 and p2 as a function of the
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Appendix F. Tabulated values of simulation results for Rg, p1 and p2 as a function of the
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