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Abstract

A polymer solution has three concentration regimes: (i) dilute (ii) semidi-

lute and (iii) concentrated. There are a number of contexts involving polymer

solutions, such as in the spinning of nanofibers or in ink jet printing, where in

order to achieve the most optimal outcome the concentration of polymers must

be in the semidilute regime. In many biological contexts as well, such as the

diffusion of protein and other biomolecules, the essential physics occur in the

semidilute regime. Therefore, it is extremely important to understand the be-

havior of semidilute polymer solutions from the fundamental and also from the

technological point of view. A significant amount of research has been carried

out in the dilute and concentrated regimes in the past by means of experiments,

theories and computer simulations. These two regimes have been explored suc-

cessfully because the behavior of polymer solutions in the dilute and concentrated

regimes can be understood by studying the behavior of single molecules. In the

dilute case the motivation for this is obvious, while in the concentrated case, by

treating all the molecules that surround a particular molecule as obstacles that

constrain its motion, the entire problem is reduced to understanding the motion

of a polymer in a tube. This approximation, however, is not valid in the semidi-

lute regime, which lies between the dilute and concentrated regimes, because of

all the many-body interactions, that arise in this regime.

The main focus of this thesis is to develop an optimized Brownian dynam-

ics (BD) simulation algorithm for semidilute polymer solutions at and far from

equilibrium, that is capable of accounting for the many-body interactions. The

goal is to use this algorithm to predict various physical properties for a range

iii



of concentrations and temperatures and to interpret the results in terms of the

blob scaling theory.

The development of a BD simulation algorithm for multi-chain systems re-

quires the consideration of a large system of polymer chains coupled to one

another through excluded volume interactions (which are short-range in space)

and hydrodynamic interactions (which are long-range in space). In the presence

of periodic boundary conditions, long-ranged hydrodynamic interactions are fre-

quently summed with the Ewald summation technique (Beenakker, 1986; Stoltz

et al., 2006). By performing detailed simulations that shed light on the influence

of several tuning parameters involved both in the Ewald summation method, and

in the efficient treatment of Brownian forces, we describe the development of a

BD algorithm in this thesis, in which the computational cost scales as O(N1.8),

where N is the number of monomers in the simulation box. It is also shown

that Beenakker’s original implementation of the Ewald sum, which is only valid

for systems without bead overlap, can be modified so that θ solutions can be

simulated by switching off excluded volume interactions. Comparison of the

predictions by the BD algorithm of the gyration radius, the end-to-end vector,

and the self-diffusion coefficient with the hybrid lattice Boltzmann-Molecular

dynamics (LB-MD) method (Ahlrichs and Dünweg, 1999) shows excellent agree-

ment between the two methods. This study has been published in the paper Jain

et al. (2012).

The behavior of semidilute polymer solutions at equilibrium varies signifi-

cantly with concentration and solvent quality. These effects are reflected in the

concentration driven crossover from the dilute to the concentrated regime, and

in the solvent quality driven crossover from theta solvents to good solvents in the

phase diagram of polymer solutions. This double crossover region for concentra-

tion above the overlap concentration, is explored by Brownian dynamics simula-
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tions to map out the universal crossover scaling functions for the gyration radius

and the single-chain diffusion constant. Scaling considerations (Rubinstein and

Colby, 2003), our simulation results, and recently reported experimental data

(Pan, Nguyen, Sunthar, Sridhar & Prakash, Pan et al.) on the polymer contri-

bution to the zero-shear rate viscosity obtained from rheological measurements

on DNA systems support the assumption that there are simple relations between

these functions, such that they can be inferred from one another. This study has

been published in the paper Jain et al. (2012).

Unlike the simulation of equilibrium systems where periodic boundary con-

ditions (PBCs) are used in an orthogonal cell to get rid of wall effects, for the

simulation of far from equilibrium systems, appropriate PBCs need to be used

such that they are compatible with any particular imposed flow. One should

also be able to carry out the simulation for an arbitrary amount of time. Com-

monly, the Lees Edwards PBC (Lees and Edwards, 1972) is used for planar shear

flow and the Kraynik-Reinelt PBC (Kraynik and Reinelt, 1992) is used for planar

elongational flow. These PBCs have been used and tested in molecular dynamics

simulations (Bhupathiraju et al., 1996; Todd and Daivis, 1998) and multi-chain

BD simulations (Stoltz et al., 2006). In this thesis PBCs that can handle a planar

mixed flow (which is a linear combination of planar elongational flow and planar

shear flow) (Hunt et al., 2010) is implemented in a multi-chain BD simulation

algorithm for semidilute polymer solutions. Preliminary results on the validation

of the planar mixed flow algorithm are presented.
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Chapter 1

Introduction

1.1 Semidilute Polymer Solutions

Polymer molecules are building blocks for manufacturing paints, fibers, films,

glues and many other products. Polymer molecules, when immersed in suitable

solvents, form polymer solutions. Theoretical investigations of polymeric solu-

tions have been extensively carried out for many years because of their interest-

ing physical and chemical properties, and for their technological applications. At

present, we have an excellent understanding of the dynamics of infinitely dilute

polymer solutions, and of concentrated polymer solutions and melts. However,

there is very little known about the vast regime of concentrations that lie in

between; a regime that has, because of its unique behavior, a special name all of

its own, the so-called semidilute concentration regime. Semidilute solutions are

of significant interest in many practical applications and display highly interest-

ing behavior. For example, the flow resistance is quite strong when a semidilute

solution is subjected to an elongational flow. This has potential ramifications

in many applications in which there is a strong elongational component to the

deformation of the solution, including fiber spinning and coating flows. Studies
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of nanoscale motion such as the diffusion of globular proteins through media

crowded with macromolecules has become an important area of research in cell

biology since in a typical cell proteins function in the crowded cytoplasmic en-

vironment where thirty percent of the space is occupied by polymers of varying

size and nature (Kozer et al., 2007; Mangenota et al., 2003). Obtaining a quan-

titative understanding of semidilute polymer solution dynamics is consequently

not only of fundamental importance, but is also vitally important for a number

of practical applications.

Today, a significant amount of literature can be found on the studies of dilute

and concentrated polymer solutions because in either case, their behavior can

be understood by understanding the behavior of single molecules. In the dilute

case this is obvious since polymer molecules are far apart from each other. In the

concentrated case, the prohibition of lateral motion of any particular molecule

due to the presence of surrounding molecules can be represented as a tube sur-

rounding the chain (Doi and Edwards, 1986). In the vast regime of semidilute

polymer concentrations, the simplifications (of having to deal only with a single

chain) made for dilute and concentrated regime are not afforded because of the

inherently many-body interactions in the problem. It is important to appreciate

that the onset of the semidilute regime occurs at surprisingly low concentrations

because even though the monomer concentration is very low, their being strung

together into polymers that are extended objects in space gives rise to the early

emergence of interactions (Rubinstein and Colby, 2003).

In essence there are only two interactions that are significant. The first is

the excluded volume interaction, which simply states that two monomers cannot

occupy the same place at the same time. While this interaction is short-ranged in

space, it is long-ranged along the backbones of the polymer chains since any two

monomers on any two chains can interact with each other. The other significant
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interaction is hydrodynamic interaction, which is a solvent-mediated interaction

that is long-ranged in space. When one part of a polymer moves, it disturbs the

solvent close to it, and this disturbance is propagated to all the other chains in the

system, leading to a coupling of all their motions. Any theoretical effort towards

understanding the behavior of semidilute solutions must be able to account for

and satisfactorily treat these two interactions.

Excluded volume and hydrodynamic interactions exist in dilute solutions as

well, therefore it is well known how to incorporate them into molecular theories

(Prabhakar and Prakash, 2004). In this case, however, it is sufficient to account

for only intra-chain interactions because only a single polymer chain is considered.

It is an amazing fact of polymer solution behavior that both excluded volume

and hydrodynamic interactions disappear in concentrated solutions and melts

(Rubinstein and Colby, 2003). As a consequence, one may think of semidilute

solutions as the regime in which excluded volume and hydrodynamic interactions

are gradually screened with increasing concentration.

Current understanding of semidilute solution behavior is mainly due to the

theoretical scaling laws (de Gennes, 1976a,b, 1979; Muthukumar and Edwards,

1982a,b, 1983; Muthukumar, 1984; Richter et al., 1984; Edwards and Muthuku-

mar, 1984; Doi and Edwards, 1986; Shiwa et al., 1988; Fredrickson and Helfand,

1990; R. H. Colby et al., 1994; Rubinstein and Colby, 2003) developed around

the concepts of (i) blobs models (Daoud et al., 1975) and (ii) screening of different

interactions. The blob model is based on identifying physically relevant length

scales, and formulating different scaling laws for different observables using these

length scales. Basically, a semidilute solution is characterized by one such length

scale ξc, representing the size of a concentration blob. Within a concentration

blob, segments on a polymer chain are ignorant of the presence of other chains

and behave as though they are in a dilute solution. As a result, both excluded
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volume and hydrodynamic interactions are present. On length scales larger than

ξc, both these interactions are screened and the chains behave as though they

are in a concentrated solution or melt. This simple demarcation of a semidilute

solution through the concept of a concentration blob into two known regimes of

dilute and concentrated solution behavior enables the development, particularly

at equilibrium and close to equilibrium, of a number of scaling predictions in

terms of the key independent variables.

The key variables that determine the behavior of a polymer solution at equi-

librium are the molecular weight of the polymer molecule Mw, the monomer

concentration c (which is defined as number of monomers per unit volume), and

the temperature T . Therefore, one must study and understand various physical

properties as functions of these key variables.

2 Rg 

Figure 1.1: Volume of a sphere of radius Rg can be used as an approximation for
the volume of a polymer chain

The volume of a linear polymer chain can be approximated as the volume of

a sphere of radius Rg as illustrated in Fig. 1.1, where Rg is the gyration radius
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1.1. Semidilute Polymer Solutions

of a polymer molecule. At low polymer concentrations, as shown in Fig. 1.2

(a), these spheres of radius Rg are far apart and do not interact with each other.

Upon increasing the polymer concentration, polymer chains become congested

and interact with each other. At a certain polymer concentration, the monomer

concentration c becomes equal to the so called overlap concentration c?. At

the overlap concentration, individual polymer chains just begin to touch each

other, and the whole volume of the system is filled with spheres of radius Rg, as

depicted in Fig. 1.2 (b). In this scenario, the monomer concentration inside a

sphere is equal to the monomer concentration of the whole system. The onset of

(a) c << c* (b) c ≅ c* 

Figure 1.2: State of polymer chains in solutions with different polymer concen-
trations

the semidilute solution regime is believed to occur at the overlap concentration

c?. Clearly, the larger the molecular weight, the larger the chain size, and the

smaller the value of c?. In fact, it turns out it is possible to eliminate the explicit

dependence on Mw altogether, and describe the behavior completely in terms of

the scaled variable c/c? (Rubinstein and Colby, 2003).

The dependence on temperature is subtler. At high enough temperatures,
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1.1. Semidilute Polymer Solutions

Property Theta solvent Good solvent

Gyration radius
Rg

R0
g

∼
( c
c?

)0 Rg

R0
g

∼
( c
c?

)−0.125

Zero-shear rate viscosity
ηp
ηs
∼
( c
c?

)2 ηp
ηs
∼
( c
c?

)1.25

Diffusion coefficient
D

D0

∼
( c
c?

)−1 D

D0

∼
( c
c?

)−0.5

Table 1.1: Scaling predictions for semidilute solutions in theta and good solvents.

the enthalpic interactions between monomers and solvent molecules are favor-

able, so a polymer coil swells to occupy as large a size as is permitted within the

constraints of monomer connectivity. This good solvent regime vanishes as the

temperature is lowered and polymer-solvent interactions become less favorable.

At a unique temperature called the theta temperature, the desire for the polymer

coil to swell due to entropic considerations is just balanced by the unfavorable

enthalpic interactions with the solvent, giving rise to a unique scaling regime

called the theta regime. Using the concept of a concentration blob, scaling pre-

dictions in theta and good solvents can be developed. For instance, the gyration

radius, the zero-shear rate viscosity and the self-diffusion coefficient in semidilute

solutions are predicted to scale with c/c? as shown in Table 1.1. In this Table, R0
g

is the gyration radius at infinite dilution, ηp and ηs are the polymer and solvent

contributions to viscosity, and D and D0 are self-diffusion coefficients, with D0

representing the value in a dilute solution at theta condition. These scaling

laws, that govern the static and near-equilibrium dynamic properties, have been

subjected to a wealth of carefully executed experiments (Rubinstein and Colby,

2003; Wiltzius et al., 1984; Ewen and Richter, 1997) and computer simulations
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(W. Paul et al., 1991; Müller et al., 2000; Huang et al., 2010; Ahlrichs et al.,

2001).

Unfortunately, these scaling laws are only valid in the limits of the theta

and good solvent regimes, with no predictions available in the large crossover

regime between theta and good solvents (Grosberg and Khokhlov, 1994; Schäfer,

1999). Therefore, it is clearly also important to study the crossover driven by

temperature in semidilute solutions in more detail. Indeed there have been only

few investigations (based on scaling theory) that have tried to study the double

crossover driven by both concentration and temperature, in particular when dy-

namic properties are concerned (Daivis and Pinder, 1990). These have not been

examined by any computer simulations either because of the complexity of the

problem.

The aim of this thesis is to explore the universal crossover scaling functions

in the semidilute regime by studying both the concentration driven crossover

and the temperature driven crossover simultaneously, with the help of computer

simulations. In particular, we wish to discover the specific form of these scal-

ing functions, and address the question: do these scaling functions bear any

resemblance to the purely concentration driven crossover scaling functions? We

address this question by developing a mesoscopic Brownian dynamics simulation

algorithm, and examining universal behavior in the long-chain limit.

1.2 Mesoscopic Simulations

In recent years, significant progress in the development of mesoscopic simula-

tion techniques, which allow the exploitation of underlying theories without the

need for approximations, (Ahlrichs et al., 2001; Stoltz et al., 2006; Huang et al.,

2010) has made it possible for the first time to obtain detailed predictions of
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1.2. Mesoscopic Simulations

equilibrium and nonequilibrium properties that can be compared with experi-

mental observations. The successful implementation of mesoscopic simulations

has been made possible through the use of algorithms that enable an accurate

depiction of the semidilute regime. Essentially, this requires the ability to de-

scribe long polymers that overlap with each other, while maintaining a low seg-

ment density. Further, the segments must be capable of interacting with each

other through solvent mediated hydrodynamic interactions (Kirkwood and Rise-

man, 1948; Freed and Edwards, 1974; de Gennes, 1976b; Bixon, 1976; Ahlrichs

et al., 2001). Three different mesoscopic simulation methods, all of which use

coarse-grained bead-spring chain models for polymer molecules, have been de-

veloped recently that achieve these objectives. Two of these techniques, namely,

the hybrid Lattice Boltzmann/Molecular Dynamics (LB/MD) method (Ahlrichs

and Dünweg, 1999; Dünweg and Ladd, 2009) and the hybrid Multi-particle Colli-

sion Dynamics/Molecular Dynamics (MPCD) method treat the solvent explicitly

(Malevanets and Kapral, 1999; Kapral, 2008; Gompper et al., 2009). As a con-

sequence, hydrodynamic interactions between polymer segments arise naturally

through the exchange of momentum between the beads on a chain and solvent

molecules. In the third approach (Stoltz et al., 2006), which is based on Brown-

ian dynamics (BD) simulations (Ottinger, 1996), the solvent degrees of freedom

are removed completely, but their effect is taken into account through long-range

dynamic correlations in the stochastic displacements of the beads.

The very nature of semidilute polymer solutions, particularly the need to

use periodic boundary conditions to describe homogeneous polymer solutions in

unbounded domains, necessitates the simulation of a large number of particles.

As a result, the computational efficiency of a simulation technique becomes an

important consideration. One of the aim of this thesis is to implement an opti-

mized BD algorithm for semidilute polymer solutions by efficiently treating the

8
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long-ranged hydrodynamic interactions. Moreover, the BD algorithm developed

by Stoltz et al. (2006) is not applicable when there is particle-particle overlap,

and hence is restricted to the simulation of semidilute solutions in good solvent

conditions. The aim here is to develop a BD algorithm capable of simulating

semidilute solutions at the θ temperature, which is essential in order to study

the temperature driven crossover regime, and also in addressing the question

regarding the form of the crossover scaling functions in the double crossover

regime.

1.3 Far-From-Equilibrium Simulations

While it is important to study the behavior of semidilute polymer solutions at

equilibrium, it is equally important to understand far from equilibrium behav-

ior, because for many practical applications, polymer solutions are processed

under different flow conditions. The great advantage of BD simulations is that

the same algorithm can be used for simulating both equilibrium systems, and

systems subject to flow. In the case of dilute solutions, this is typically ac-

complished by incorporating a term in the stochastic differential equation that

accounts for flow. However, this is highly nontrivial for polymer solutions at finite

concentrations, in particular for infinite systems treated with periodic boundary

conditions. Unlike the simulation of equilibrium system where periodic boundary

conditions (PBCs) are used in an orthogonal cell to get rid of wall effects, for

simulating far from equilibrium systems, appropriate PBCs need to be used such

that the following two requirements are met: (i) The PBCs should be compatible

with any particular flow and (ii) the simulation should be capable of running for

an arbitrary amount of time. PBCs for planar shear flow and planar elonga-

tional flow were developed by Lees and Edwards (1972) and Kraynik and Reinelt
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(1992), respectively, such that the two requirements mentioned above were ful-

filled. Lees-Edwards and Kraynik-Reinelt PBCs have been used by Bhupathiraju

et al. (1996); Todd and Daivis (1998) in their nonequilibrium molecular dynam-

ics (NEMD) simulation algorithm. Other than NEMD simulations, these PBCs

have also been implemented in a BD algorithm by Stoltz et al. (2006) to simu-

late semidilute polymer solutions undergoing planar shear or planar elongational

flows.

In real flow situations, however, rather than only shear or elongational flow, a

combination of these flows is often observed. Woo and Shaqfeh (2003); Dua and

Cherayil (2003) and Hoffman and Shaqfeh (2007) have simulated dilute polymer

solutions in planar mixed flow using a BD algorithm in which PBCs were not

required. In a recent paper, Hunt et al. (2010) have derived suitable PBCs for

planar mixed flow (which is a linear combination of planar elongational flow

and planar shear flow) and implemented them in their nonequilibrium molecular

dynamics (NEMD) simulation algorithm. To our knowledge, mixed flows of

semidilute polymer solutions have not been studied so far. We aim to implement,

for the first time, PBCs for planar mixed flow (Hunt et al., 2010) in a multi-

chain Brownian dynamics simulation algorithm, which will enable us to simulate

semidilute polymer solutions undergoing different kinds of flows.

1.4 Objectives

The broad objectives of this thesis can be listed as the following set of tasks:

1. Derivation of universal crossover scaling functions based on the blob model.

2. Development of a Brownian dynamics simulation algorithm for semidilute

polymer solutions at equilibrium.

10
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3. Verification of the crossover scaling functions predicted by scaling theory

using Brownian dynamics simulations.

4. Implementation of mixed flow in a Brownian dynamics simulation algo-

rithm.

The structure of the thesis is as follows: In order to set the stage for deriving

universal crossover scaling laws for semidilute solutions, various concepts such

as the blob model, excluded volume and hydrodynamic interactions etc . . . are

introduced in Chapter 2. In Chapter 3, these concepts are used to derive scaling

functions for semidilute solutions in the double crossover regime. The governing

equations for the BD simulation algorithm are described in Chapter 4, while

Chapter 5 focuses on the implementation of different terms in the BD simulation

algorithm at equilibrium. Optimization studies that have been carried out to ob-

tain a fast BD simulation algorithm are also discussed in Chapter 5. The various

predictions of scaling theory in the double crossover regime are verified with the

help of BD simulations in Chapter 6. Chapter 7 describes the implementation of

mixed flows in a BD simulation algorithm, and the preliminary results we have

obtained for the viscosity of a semidilute solution under mixed flow conditions

are discussed. Finally, conclusions of the thesis are presented in Chapter 8.
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Chapter 2

Scaling Theory for Dilute

Polymer Solutions Near

Equilibrium

The behavior of dilute polymer solutions near equilibrium has been extensively

studied by experiments, theory and computer simulations, and there are many

monographs that provide an excellent summary of our current understanding

of these systems (Bird et al., 1987; de Gennes, 1979; Doi and Edwards, 1986;

Rubinstein and Colby, 2003). In this chapter, we briefly discuss the scaling theory

used to derive scaling laws for various properties in dilute polymer solutions at

equilibrium. Though we are interested in semidilute solutions, a discussion of

scaling concepts in the context of dilute solutions is required to set up the basic

framework for developing scaling laws in the semidilute regime, presented in

Chapter 3.

Scaling laws for dilute solutions account for two important pieces of physics

that occur on the microscopic scale, namely, excluded volume (EV) interactions

and hydrodynamic interactions (HI) (Bird et al., 1987; de Gennes, 1979; Doi and
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Edwards, 1986; Larson, 1988; Prakash and Öttinger, 1999; Prakash, 1999, 2009).

Excluded volume interactions are first briefly discussed in Section 2.1, followed

by a discussion of hydrodynamics interactions in Section 2.2. Finally, scaling

laws for various properties are derived for dilute polymer solutions in Section

2.3.

2.1 Excluded Volume Interactions

Excluded volume interactions play an important role in determining the static

behavior of polymer solutions (de Gennes, 1979; Doi and Edwards, 1986; Ru-

binstein and Colby, 2003). The physics of excluded volume interactions can be

understood as follows. When any two monomers of a polymer molecule come

close to each other, a strong mutual repulsion is felt by them. This repulsion

arises because a monomer cannot occupy space that is already occupied by an-

other monomer of the same polymer molecule at the same time. As seen in Fig.

Ø  Short-range interaction 
along the backbone 

Ø  Short-range interaction  
in space 

Ø  Long-range interaction 
along the backbone 

Ø  Short-range interaction  
in space 

Figure 2.1: Illustration of excluded volume interactions in a polymer molecule
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2.1. Excluded Volume Interactions

2.1, the two black monomers cannot overlap each other because of the repulsive

interaction between them.

In general, the effective interaction between a pair of monomers can be ei-

ther repulsive or attractive, depending on the difference between the strengths

of monomer-monomer and monomer-solvent interactions. When the monomer-

monomer energy is lower than the monomer-solvent energy, monomers like to be

near each other, and this means that the effective interaction between monomers

is attractive. Note that by energy we mean the energy u(r) required to bring

two particles (that can be either monomer or solvent particles) from∞ to within

distance r of each other (Rubinstein and Colby, 2003). On the other hand, when

the energy between monomer and solvent is lower than that between monomer

and monomer, monomers like to be surrounded by solvent molecules, leading to

the effective interaction between monomers being repulsive. This effective inter-

action, which includes the repulsive and attractive parts of monomer-monomer

interaction, is known as excluded volume interaction (Flory, 1953). Excluded

volume interactions are either short-range or long-range along the backbone of a

polymer molecule but they are always short-range in space.

Clearly the structure of a polymer molecule depends on the relative strength

of monomer-monomer and monomer-solvent interactions. For example, the av-

erage size of a polymer molecule tends to increase due to the monomer-monomer

repulsion, but at the same time, this swelling of a molecule is opposed by solvent-

mediated attractions. The thermodynamic state of the solvent plays an impor-

tant role in monomer-solvent interactions, and the temperature is a control-

ling parameter in such interactions (Flory, 1953; Schäfer, 1999). For instance,

monomer-solvent interactions are energetically unfavorable at low temperatures,

and the polymer solution is said to be under poor solvent conditions. This leads to

strong enough monomer-monomer attractions that dominate monomer-monomer
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2.1. Excluded Volume Interactions

repulsions, and the polymer molecule collapses to a globule like structure. Upon

increasing the temperature, the strength of monomer-monomer attractions re-

duces, and therefore, the average size of a polymer molecule increases. The term

good solvent is used to describe a condition where the temperature is high enough

for the repulsive interactions to dominate over attractive interactions. There

exists an intermediate temperature between poor solvent and good solvent con-

ditions, the so called theta temperature, at which the attractive and repulsive

parts of monomer-monomer interactions balance each other. Therefore, at the

theta temperature, the size of a polymer molecule is the same as that of an ideal

polymer molecule (Doi and Edwards, 1986). Depending on the monomer-solvent

interactions, or temperature, three different cases can be visualized as shown in

Fig. 2.2. It is well known that in the theta limit, where polymer configurations

Department of Chemical Engineering
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Figure 2.2: Monomer-solvent interactions affect the structure of a polymer
molecule

obey random walk (RW) statistics, the size of a polymer molecule scales as M
1/2
w .

This power law is also referred to as the Gaussian scaling law for polymer size.

The exponent in this power law is universal and hence is (1/2) for all theta sol-

vents. However, the prefactor depends on the chemistry of the polymer-solvent

system.

16



2.1. Excluded Volume Interactions

In the good solvent limit, on the other hand, the polymer is considered to

follow self avoiding walk (SAW) statistics. In this case, a similar power law gov-

erns the polymer size, but with a nontrivial exponent ν ∼= 3/5, famously known

as the Flory exponent [the precise value is 0.587597 (7) (Clisby, 2010)]. This

exponent is again universal in the good solvent limit and hence is independent

of temperature or chemistry. The size of a polymer molecule in a good solvent,

therefore, scales as Mν
w. This power law is referred to as the Kuhnian scaling law

for polymer size. Similar to the theta case, the prefactor in this power law con-

tains all the information regarding chemistry or temperature. This power law is

valid only in the excluded volume limit, when the molecular weight is sufficiently

large, with the effective interaction being repulsive or with the temperature T

being not too close to the theta temperature. The repulsive interaction decreases

as T approaches the theta temperature. In order for the excluded volume power

law to be valid at a lower temperature, the polymer must have an even larger

molecular weight. In other words, the polymer solution departs from the ex-

cluded volume limit if either T is reduced towards the theta temperature at a fix

Mw or Mw is decreased by keeping T fixed.

In the temperature crossover regime, between θ and good solvents, where

simple power laws are not valid, T and Mw are generally combined to form a

single scaling variable τu, and a type of scaling still persists (Schäfer, 1999). The

scaling variable τu has the form

τu =

(
1− Θ

T

)
M1/2

w (2.1)

where, Θ is the theta temperature.

An example of the advantage of using the scaling variable τu can be seen in

the work of Miyaki and Fujita (1981), who performed experiments to measure
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2.1. Excluded Volume Interactions

the swelling of polystyrene in Benzene at 25 and 300 C, in methyl ethyl ketone

(MEK) at 350 C, and in Cyclohexane at the temperatures indicated in Fig. 2.3

(a). The variable in the y-axis is the swelling of a polymer molecule αg(T,Mw)

defined as the ratio of the polymer size at temperature T to that in a theta

solvent.

When α2
g is plotted as a function of M? in a log− log plot, where M? = cMτ

2
u

and cM is a chemistry dependent parameter, it can be seen in Fig. 2.3 (b) that

universal behavior can be obtained for all values of Mw and temperature T > Θ,

by merely using proper values of cM (Miyaki and Fujita, 1981).

Universal behavior in the temperature crossover regime has also been ob-

served using theoretical models. For instance, renormalization group (RG) meth-

ods have been applied to successfully predict the entire range of behavior ex-

hibited by static solution properties (Freed, 1987; Schäfer, 1999; Cloizeaux and

Jannink, 2010). In these theoretical models, polymer molecules are represented

by a coarse-grained model, such as a bead-spring chain (Bird et al., 1987), con-

sisting of Nb beads connected together by Nb− 1 Hookean springs (with a spring

constant H). Each bead consists of several monomers, and hence Nb is directly

proportional to the molecular weight of a polymer molecule.

The presence of excluded volume interactions is usually taken into account in

theoretical models by assuming the existence of a Dirac delta function repulsive

potential, which acts pairwise between the beads of the chain

E (rνµ) = v(T ) kBT δ(rνµ) (2.2)

where, rνµ is a vector connecting beads ν and µ, v(T ) = 1 − Θ/T is the tem-

perature dependent excluded volume parameter (Doi and Edwards, 1986) and

kB is Boltzmann’s constant. By defining a length scale lH =
√
kBT/H, and
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Figure 1. log-log plots of a: vs. M, for polystyrene in benzene 
at 25 and 30 "C, in methyl ethyl ketone (MEK) at 35 "C, and in 
cyclohexane at the temperatures indicated. Half-filled circles, 
from ref 4 and 5. Other symbols, from ref 3 and 6. 

generally in favor of this prediction. However, we must 
note that the existence of a universal relation between a, 
and a,, is only a necessary condition for eq 1 and 4 to hold. 
Nonetheless, one might take it as a sufficient condition for 
the two-parameter theory of [TI,  considering eq 1 to be 
self-evident theoretically. It is imperative for completeneas 
to verify, in addition to the above-mentioned necessary 
condition, that either a, or a, is a universal function of z. 

Now, to a good approximation, the characteristic ratio 
( P ) , / M  of a polymer may be treated as a constant except 
in the region of low M. Further, the binary cluster integral 
/3 is a function of polymer and solvent condition but not 
of M. Therefore, to a good approximation, we may write 
eq 3 as 

z = K M I 2  (6) 
with K a constant for polymer and solvent condition fixed. 
The subsequent discussion is limited to the case in which 
eq 6 is valid. 

Criterion A. With eq 6 it follows that if eq 1 holds, 
plots of log a, vs. log M for different combinations of 
polymer and solvent condition can be superimposed on a 
single curve by appropriate displacement along the hori- 
zontal axis. 

For a given polymer we choose a relevant solvent con- 
dition R as the reference state and denote the value of K 
for R by KW Then, KRf, the K value of the same polymer 
for another solvent condition R', can be expressed by 

(7) 
if criterion A is obeyed. Here, log U M  is the horizontal 
distance needed to have the log a, vs. log M curve for R' 
match that for R. We call U M  the shift fador for R' relative 
to R. Since K is proportional to fi  for a given polymer, eq 
7 is equivalent to 

OR' = fiRBR(aM)-'I2 (8) 

Hence, when eq 1 holds, /3 can be evaluated from experi- 
mental determination of the shift factor if one has a means 
to estimate BR. 

Criterion B. With eq 6 it follows that if eq 4 holds, 
plots of log a? vs. log M for different combinations of 
polymer and solvent condition can be brought on a single 
curve when displaced horizontally, and the horizontal 
distance between the plots of a given polymer for solvent 
conditions R' and R should be equal to that between the 
corresponding log a, vs. log M plots. 

0.61 

0.4 

o.2 t 
3 4 5 6 7 8 

log M* 
Figure 2. log-log plots of CY: vs. M* (:M,/aM) derived from 
Figure 1. Symbols are the same as in Figure 1. 

0.6 
P I 8  1 / I  Cyclohexane 

log Mw 

Figure 3. log-log plots of a: vs. M ,  for polyisobutylene in 
cyclohexane at 25 "C, in n-heptane at 25 "C, and in isoamyl 
isovalerate (IAIV) at the temperatures indicated. 

The latter condition is required by the fact that a, and 
a, are functions of the same variable z. 

Radius Expansion Factor 
Check of Criterion A. Figure 1 shows double-loga- 

rithmic plots of a,2 vs. M ,  (weight-average molecular 
weight) for narrow-distribution polystyrene samples in 
benzene at  25 and 30 "C, in methyl ethyl ketone (MEK) 
at  35 "C, and in cyclohexane at  a series of temperatures 
above the 8 point (307.7 K). 

Figure 2 illustrates how accurately the sets of data points 
for different solvent conditions in Figure 1 can be brought 
to a single line by horizontal shifting. Here, M* is a re- 
duced molecular weight defined by Mw/uM, with aM the 
shift factor relative to 25 O C  benzene as the reference state 
R. We conclude that the polystyrene data in Figure 1 
satisfy criterion A. 

Figure 3 displays double-logarithmic plots of CY: vs. M, 
for polyisobutylene in cyclohexane at 25 "C, in n-heptane 
at  25 OC, and in isoamyl isovalerate (IAIV) at  different 
temperatures above the 8 point (295.3 K). These data 
were taken from part 4 of this ~e r i e s .~  It is seen that there 
is little or no range of a,2 in which values of this quantity 
in different solvents overlap. This condition makes it 
difficult to check data unambiguously for the superim- 
posability required by criterion A. However, if the system 
obeys criterion A, the lines drawn in Figure 3 should be 
made coincident with the composite curve for polystyrene 
in Figure 2 by horizontal displacement. Figure 4 demon- 
strates that this prediction holds. Thus, we can conclude 
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g
α

2 g

log M�

(b)

Figure 2.3: Experimental data on polymer swelling reproduced from Miyaki and
Fujita (1981): (a) for various temperatures and molecular weights and (b) collapse of
all the data by plotting logα2

g as a function of logM?, where M? is a reduced molecular
weight defined by Miyaki and Fujita (1981). Note that the parameterM? can be related
to τu through M? = cMτ

2
u , where cM is a chemistry dependent parameter, which is

used to make a shift in the horizontal axis in order to collapse all the data points onto
a master curve. Reprinted (adapted) with permission from Miyaki and Fujita (1981).
Copyright (1981) American Chemical Society.
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a dimensionless strength of the excluded volume interaction z? = v(2πl2H)−3/2,

the temperature and the chain length variables can be combined into a single

dimensionless parameter z = z?
√
Nb (Yamakawa, 1971) such that z ∝ τu (see

Eq. (2.1)).

RG theories predict the existence of power laws in the limit z → 0 (corre-

sponding to a theta solvent) and in the good solvent limit z → ∞, completely

consistently with experimental observations. Significantly, the existence of scal-

ing functions that depend only on the parameter z, is also predicted by RG

theory. These predictions accurately describe the temperature or solvent quality

driven crossover behavior of all static properties between these two asymptotic

limits, i.e., in the domain 0 < z <∞ (Schäfer, 1999).

Though RG theories have been successful in many aspects, they are approx-

imate since they are based on perturbation theory. An exact solution for the

excluded volume problem becomes possible by using Monte Carlo simulations

(Li et al., 1995; Graessley et al., 1999), based on excluded volume potentials

with a finite range of excluded volume interactions, such as the Lennard-Jones

potential. However, with such potentials, the parameter z (which is the true

measure of solvent quality) does not appear naturally in the equations, making

it difficult to study the crossover behavior of static properties.

Kumar and Prakash (2003) have developed a scheme whereby it is possible to

obtain the dependence of static properties on the crossover variable z in BD sim-

ulations. There are two key aspects to their procedure. The first aspect of their

approach is the use of a narrow Gaussian potential (Ottinger, 1996) to represent

excluded volume interactions,

E (rνµ) = z? kBT

(
1

d?3

)
exp

{
− 1

2 b2

r2
νµ

d?2

}
(2.3)
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2.2. Hydrodynamic Interactions

where, d? is a dimensionless parameter that measures the range of the excluded

volume interaction, and b is the monomer size. In the limit d? → 0, the narrow

Gaussian potential reduces to δ-function potential, and is consequently a means

of regularizing the δ potential.

The second aspect is their procedure for finding the model’s predictions in

the limit of infinite chain length. In their simulations, data for larger and larger

values of Nb are accumulated, and the infinite chain length limit is then found

by extrapolating the finite chain data to Nb →∞.

Kumar and Prakash (2003) have shown that in this limit, d? is an irrelevant

variable, and that the only relevant variable is the scaling variable z. The results

of their BD simulations for α2
g at various values of z are displayed as the solid red

line in Fig. 2.4. The experimental data of Miyaki and Fujita (1981), is plotted

along with the simulation results in Fig. 2.4. By considering z = kzτu, where kz

is a chemistry dependent parameter, all the experimental data can be collapsed

onto the simulation curve by making a simple horizontal shift to the experimental

data. Details of the shifting procedure are given in Kumar and Prakash (2003).

The extended discussion of excluded volume interactions in this section has

served two purposes. Firstly, it helps introduce the solvent quality variable z,

which is used in the scaling theories for dilute and semidilute solutions. Sec-

ondly, it helps to introduce the narrow Gaussian potential and the extrapolation

procedure that we have used subsequently in our simulations.

2.2 Hydrodynamic Interactions

In a polymer chain, each segment experiences a drag force because of friction with

solvent molecules caused by their relative motion. When any one segment of a

polymer chain moves, the velocity field of the solvent near all the other segments
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2.2. Hydrodynamic Interactions

Figure 2.4: Experimental data for swelling obtained by Miyaki and Fujita (1981)
collapse onto the BD simulation results obtained by Kumar and Prakash (2003).
Reprinted (adapted) with permission from Miyaki and Fujita (1981) and Kumar
and Prakash (2003). Copyright (1981), (2003) American Chemical Society.

are disturbed due to fast diffusive momentum transport by solvent molecules.

This disturbance in the velocity field modifies the drag force on other segments,

which eventually affects the motion of those segments. This interaction is known

as hydrodynamic interaction, and is shown schematically in Fig. 2.5. The phe-

nomenon of hydrodynamic interactions is a long-range effect, which means that a

strong coupling of motions of segments are unavoidable even for those segments

that are far apart along the backbone of the chain, and far apart in space as well.

An example of a dynamic property is the diffusivity of a polymer molecule, D,

which is proportional to the mean squared displacement of the chain with time.

Accurate prediction of diffusivity, through theoretical approach, is obtained only

when HI is included (Zimm, 1956).
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2.2. Hydrodynamic Interactions

Momentum propagation 

Figure 2.5: Illustration of long-range hydrodynamic interactions for a polymer
molecule immersed in a pool of solvent

The simplest theoretical model for dilute polymer solutions, the so-called

Rouse model, does not account for HI, and as a result fails to accurately predict

dynamic properties. However, since HI is absent in a melt or in concentrated

solutions, the Rouse model turns out to be useful to model low molecular weight

melts where topological constraints are not yet important. As we shall see sub-

sequently in Chapter 3, it is also useful for the description of semidilute solutions

where HI is screened.

It is instructive in this context to consider the prediction of diffusivity (which

is a dynamic property) by the Rouse model. By the Nernst-Einstein equation

(Bird et al., 1987)

D ∼ kBT

Z
(2.4)

where, Z is the total friction experienced by a polymer chain. The total friction

Z is the sum of the friction experienced by parts of the polymer chain exposed to

the flow field. Since, in Rouse theory all the monomers are exposed to the flow

field, the total friction is the sum of the friction experienced by all the monomers,
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2.2. Hydrodynamic Interactions

and as a result Z scales as the molecular weight Mw of the chain. This also implies

that the diffusivity in Rouse theory scales as M−1
w . This prediction is contrary

to experimental observations, which suggest that D scales as M−ν
w .

The introduction by Zimm (1956) of HI in an equilibrium averaged form into

a molecular model for polymer solutions led for the first time to an accurate

description of dynamic properties close to equilibrium. The Zimm theory does

not capture the dynamics of polymer solutions away from equilibrium since it

does not account for fluctuations in HI (Öttinger, 1989; Prakash, 1999). As will

be discussed in Chapter 4, fluctuations in HI can be taken into account in BD

simulations without making any averaging approximations. For the purpose of

scaling theory, however, the Zimm theory is perfectly adequate.

The key result of the Zimm theory is that in dilute solutions, the total friction

of the polymer chain is that experienced by the polymer coil as a whole, and not

that of all the monomers together. In some sense, the monomers inside the

polymer molecule are shielded from the flow (de Gennes, 1979; Rubinstein and

Colby, 2003). As a result Z is proportional to the size of the polymer molecule

Rg, and the diffusivity then takes the form

D ∼ kBT

ηsRg

(2.5)

Since Rg ∼ Mν
w, the diffusivity in Zimm theory scales as M−ν

w , in excellent

agreement with experimental observations.

As we shall see in the scaling theory for semidilute solutions developed in

Chapter 3, we use Rouse scaling when HI is screened and Zimm scaling when it

is present. In the next section however, we use the concepts of solvent quality

and Zimm scaling to derive some scaling laws for dilute polymer solutions.
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2.3. Scaling Theory

2.3 Scaling Theory

The scaling theory for dilute polymer solutions is based on the concept of thermal

blobs (de Gennes, 1979; Rubinstein and Colby, 2003; Grosberg and Khokhlov,

1994). The thermal blob is associated with a balance between thermal energy

and energetic contributions due to excluded volume interactions . The size of the

thermal blob ξT characterizes the length scale at which the energy due to excluded

volume interactions amongst all the monomers lying within a blob becomes equal

to the thermal energy kBT . This implies that the conformations of the chain

inside a thermal blob are unperturbed by excluded volume effects. As a result,

the polymer chain obeys random walk (RW) statistics within a thermal blob. On

the other hand, for length scales greater than ξT , excluded volume interactions

become important and as a result, thermal blobs obey self avoiding walk (SAW)

statistics, as shown schematically in Fig. 2.6.

Thermal blob 

ξT (RW )

Rg(SAW )

Figure 2.6: Thermal blobs in dilute solution

The size of the thermal blob ξT can be estimated as follows. Two monomers

are assumed to interact with an energy ε

(
1− Θ

T

)
, where ε (> 0) is the repulsive

energy of enthalpic origin. We assume that there are n monomers within a

thermal blob. Since the number of contacts in a RW are of order n1/2 in three
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2.3. Scaling Theory

spatial dimensions, it is straightforward to see that the excluded volume energy

due to all the interactions within a thermal blob is of order n1/2 ε

(
1− Θ

T

)
. From

the definition of a thermal blob, this energy must be of the same order as kBT .

Therefore, the condition to find n is

ε

(
1− Θ

T

)
n1/2 = kBT (2.6)

The excluded volume interaction energy for a pair of monomers, ε

(
1− Θ

T

)
,

nondimensionalized by kBT , can be equated to the dimensionless parameter

z?, which is the parameter in the narrow Gaussian potential which represents

the non-dimensional strength of pair-wise excluded volume interactions (see Eq.

(2.3)). As a result,

z? =
ε

kBT

(
1− Θ

T

)
(2.7)

From Eqs. (2.6) and (2.7), it follows that,

n = (z?)−2 (2.8)

The corresponding blob size is consequently (since RW statistics are obeyed

within a blob)

ξT = bn1/2 = b (z?)−1 (2.9)

Using the definition of the solvent quality parameter, as mentioned in Section

2.1,

z = z?N
1/2
b (2.10)

the nondimensional blob size in terms of the scaled variable z is,

ξT

bN
1/2
b

=
ξT
Rθ
g

= z−1 (2.11)
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2.3. Scaling Theory

where, Rθ
g = bN

1/2
b is the gyration radius at theta condition. The solvent quality

can be seen to represent the ratio of the size of the chain in a θ solvent to the

size of the thermal blob. Clearly, decreasing z increases ξT , and in the θ limit

The theta solution limit The good solvent limit 

z → 0 ⇒ ξT → Rg z → ∞ ⇒ ξT → b

Rg ∼ bN
1/2
b

Rg ∼ bNν
b

Figure 2.7: Changing z changes the size of a thermal blob ξT

the size of the thermal blob becomes larger than the size of a polymer chain. On

the other hand, increasing z decreases ξT , and in the very good solvent limit ξT

becomes equal to the size of a monomer b. This can be visualized as shown in

Fig. 2.7.

The scaling relation for the gyration radius Rg can be derived in terms of

the scaled variable z as follows. Since the chain obeys SAW statistics on length

scales larger than ξT ,

Rg = ξT

(
Nb

n

)ν
(2.12)

where, (Nb/n) is the number of thermal blobs. Using Eqs. (2.8) and (2.9), leads

to

Rg = bN ν
b (z?)2ν−1 (2.13)

The scaling relation in terms of scaled variables can be obtained by making use

of Eq. (2.10), and the definition of Rθ
g

Rg

Rθ
g

= z2ν−1 (2.14)
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2.3. Scaling Theory

As discussed earlier, Zimm dynamics are relevant on all length scales in the dilute

regime. Using Zimm’s scaling law for diffusivity from Eq. (2.5) and Rg from Eq.

(2.13), we can write

D =
kBT

ηs bN ν
b (z?)2ν−1

(2.15)

Defining Dθ =
kBT

ηsRθ
g

, it follows from Eq. (2.10) that the ratio of diffusivities is

given in terms of scaled variables by

D

Dθ
= z−(2ν−1) (2.16)

Once the expressions for Rg and D are known, the scaling laws for ηp, the polymer

contribution to viscosity, can be derived from the relation

ηp = kBT (c/Nb)τ1 (2.17)

where τ1 is the longest relaxation time of the polymer molecule which can be

expressed as τ1 ∼ R2
g/D. Using Eqs. (2.13), (2.15) and (2.17), it follows that the

scaling law for ηp is

ηp = ηscb
3N3ν−1

b z?3(2ν−1) (2.18)

Defining ηθp =
c

Nb

ηs b
3N

3/2
b and using Eq. (2.10), the scaling law for the ratio of

viscosities in terms of scaled variables is

ηp
ηθp

= z3(2ν−1) (2.19)

Using the scaling arguments discussed in this section, and the concepts of

excluded volume and hydrodynamics interactions, we develop the scaling theory

for finite concentration systems in the next chapter.
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Chapter 3

Scaling Theory for Semidilute

Polymer Solutions Near

Equilibrium

Predicting the behavior of polymer solutions becomes more complicated when

the polymer concentration becomes finite. When the polymer concentration in-

creases to such an extent that the monomer concentration c becomes equal to the

overlap concentration c? (where the total volume is equal to the volume occupied

by polymer chains), the polymer solution becomes semidilute. Although c may

be low, a strong overlap of polymer chains may occur in semidilute solutions be-

cause of the extended size of polymer chains. This chapter attempts to develop

a scaling theory for semidilute polymer solutions that is applicable to both the

static and dynamic crossovers (based on the framework developed in Chapter 2

in the context of dilute polymer solutions).

Depending on the strength of the excluded volume interaction z? and the

monomer concentration c, different regimes on the phase diagram of a polymer

solution (Rubinstein and Colby, 2003) can be drawn as shown in Fig. 3.1. Dilute
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Figure 3.1: Phase diagram of a polymer solution in the plane monomer concen-
tration c and excluded volume strength z?, as predicted by the standard blob
picture. The θ regime occurs for small z? � N

−1/2
b , while z? � N

−1/2
b in the

good solvent regime. The overlap concentration is given by c?. For concentrations
above c??, excluded volume interactions are completely screened.

polymer solutions are indicated by regimes A and B for theta and good solvent

regimes, respectively, and the semidilute regime is indicated by regime C. Un-

like dilute solutions where excluded volume and hydrodynamics interactions were

treated as only intra-chain interactions, in semidilute solutions these interactions

are intra-chain as well as inter-chain, which leads to a many-body problem. The

challenge of solving the many-body problem becomes even more difficult due to

the complicated interplay between excluded volume and hydrodynamic interac-

tions. Using the concepts of scaling blobs, Daoud et al. (1975) developed scaling
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theories to describe the static and dynamic behavior of semidilute polymer solu-

tions at equilibrium. Scaling theory is based on the idea of a separation of length

scales. Apart from the thermal blob (as discussed in Chapter 2), another blob

(or another length scale) called the concentration blob or correlation blob is in-

troduced to felicitate the development of a scaling theory for semidilute polymer

solutions (de Gennes, 1979).

In both static and dynamic scaling theories, the concentration blob size ξc

corresponds to the length scale at which interactions between polymer chains

become significant. On length scales smaller than ξc the interaction is not im-

portant, and the segment inside a concentration blob essentially follows isolated

chain (dilute solution) behavior. Parts of a chain inside the concentration blob

are not aware that the solution is semidilute because these interact mainly with

solvent molecules and with other monomers from the same segment of the chain.

Since the conformations of a polymer chain in a dilute solution in a good solvent

follow self-avoiding walk (SAW) statistics, the conformations of parts of a chain

that lie within a concentration blob obey SAW statistics of thermal blobs as illus-

trated in Fig. 3.2. On length scales larger than the concentration blob size, the

behavior of a semidilute polymer solution is controlled by interactions between

chains. Moreover, since the concentration of polymers in a semidilute solution is

such that the concentration blob volumes are space filling, on length scales larger

than ξc the semidilute solution behaves as a melt of chains whose segments are

concentration blobs. Thus, polymer conformations on these scales are random

walks (RW) of concentration blobs. This static scaling ansatz is shown schemat-

ically in Fig. 3.2. The transition from self-avoiding walk statistics to random

walk statistics on the length scale of the concentration blob occurs due to the

screening of excluded volume interactions by the overlapping chains. On length

scales smaller than ξc excluded volume interactions are strong enough to swell
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ξc

ξT

Thermal blobs 
RW 

Figure 3.2: Blob picture in a semidilute polymer solution

the chain but are not yet screened by the surrounding chains, while on length

scales larger than ξc, as in the case of melts, excluded volume interactions are

screened.

The blob scaling picture has also been adopted to describe the equilibrium

dynamic behavior of semidilute polymer solutions. As discussed in Chapter 2,

polymer dynamics in dilute solutions incorporating hydrodynamic interactions,

can be described by Zimm dynamics. In concentrated solutions, hydrodynamic

interactions are screened (Freed and Edwards, 1974; Shiwa et al., 1988; Richter

et al., 1984; Edwards and Muthukumar, 1984; Fredrickson and Helfand, 1990; R.

H. Colby et al., 1994) similar to the screening of excluded volume interactions. As

a consequence, for short chains that are not entangled, the Rouse model, which

neglects hydrodynamic interactions, has been found to provide an accurate de-

scription of polymer dynamics in the concentrated regime (Doi and Edwards,

1986). In the special case of semidilute solutions, there exists a length scale

ξH (which is often called the hydrodynamic screening length), which separates
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Figure 3.3: Schematic representation of hydrodynamic screening by surrounding
chains.

these two types of dynamics. On length scales shorter than ξH , hydrodynamic

interactions dominate, and the Zimm model describes polymer dynamics. On

length scales larger than ξH , HI is screened, essentially as a result of chain-chain

collisions which tend to randomize the momentum propagation in the system (as

shown schematically in Fig. 3.3) (Ahlrichs et al., 2001), and the Rouse model

describes polymer dynamics. In the dynamic scaling scenario, as a consequence,

the blob size ξH represents the length scale at which a crossover occurs from

Zimm to Rouse dynamics.

In an important paper, de Gennes (1976b) verified the Freed-Edwards theory

(Freed and Edwards, 1974) for the screening of hydrodynamic interactions and

set up the connection between static length scale ξc and the dynamic length scale

or hydrodynamic interaction screening length ξH . de Gennes (1976b) proposed

convincing scaling arguments to suggest that the static and dynamic correlation

lengths should be identical, i.e., ξc = ξH . Experimental results from static and
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dynamic light scattering studies appear to support de Gennes contention that

hydrodynamic interactions and excluded volume interactions are indeed screened

on similar length scales (Wiltzius and Cannell, 1986; Zhang et al., 1999).

In another important study, Ahlrichs et al. (2001) have revealed an interesting

aspect about the screening of hydrodynamics interactions in semidilute solutions

at equilibrium. They found from their simulations (using a coupled Molecu-

lar Dynamics/Lattice Boltzmann mesoscopic simulation scheme (Ahlrichs and

Dünweg, 1999)) that hydrodynamic screening is not simply a matter of length

scales, but must necessarily be viewed as a dynamic time-dependent phenomenon.

In particular, they found that HI is not screened up to the crossover time τc on

all length scales, after which screening sets in, leading to Rouse-like motion. The

crossover time τc is the Zimm time of a concentration blob, i.e., roughly the time

needed for a blob to move its own size. After τc, the chain will, on average, feel the

constraints by the temporary matrix of other chains. From then on it is unable to

follow the flow, but rather lags behind, and momentum transport occurs mainly

along the chain backbones, due to connectivity forces. The computer simulation

results of Ahlrichs et al. (2001) are in complete accord with the neutron spin

echo measurements on labeled polymer chains by Richter et al. (1984), which

show that hydrodynamic screening is a dynamic effect which becomes relevant

only after the crossover time. However, it should be noted that their findings are

not relevant if we are interested in understanding only long-time dynamics.

The central message of the discussion above is that for c/c? > 1, and at

sufficiently low time scales, screening of both HI and EV interactions occur at

a certain length scale ξc (the size of a concentration blob), beyond which poly-

mer chains obey RW statistics. A semidilute solution (regime C in Fig. 3.1) is

consequently characterized by b � ξT � ξc � Rg, i.e., by only a finite window

of length scales between ξT and ξc where SAW statistics apply. Upon further
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increasing c, the system enters the concentrated regime c � c??, where this

window has shrunk to zero and chains obey RW statistics on all length scales.

The reason the window shrinks to zero is because, (i) ξT is independent of the

monomer concentration, as discussed in Chapter 2, and (ii) ξc decreases by in-

creasing concentration (as will be discussed shortly), and becomes equal to ξT at

c = c?? (Rubinstein and Colby, 2003). As a result, on length scales smaller than

ξc, thermal energy is stronger than the energy of excluded volume interactions,

and on length scales greater than ξc, excluded volume interactions are screened

by overlapping chains. Therefore, ideal chain like behavior is observed at all

length scales when the monomer concentration is equal to or greater than c??

(Rubinstein and Colby, 2003).

The lines drawn in Fig. 3.1 do not indicate sharp phase transitions but rather

smooth crossovers. Clearly, there is a concentration driven crossover from the

dilute regime (SAW statistics) to the concentrated regime (RW statistics) via

the semidilute regime for any given solvent quality. The effect of solvent quality

on the behavior of semidilute solutions can be studied in a similar manner as

was discussed for dilute solutions in Chapter 2. In order to understand the effect

of concentration and solvent quality together on the behavior of semidilute so-

lutions at equilibrium, the blob scaling picture can be applied to regime C, and

scaling relations for ξc, Rg and D can be derived (in terms of concentration and

solvent quality) as discussed below.

Thermal blobs within the concentration blob obey SAW statistics, hence the

size of a concentration blob ξc is given by

ξc = ξT m
ν (3.1)
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where, m is the number of thermal blobs within the concentration blob. The

size ξc is found by the knowledge that the solution is homogeneous on length

scales larger than ξc, and that the concentration blobs are space filling. The

total number of monomers within ξc is nm, therefore

nm = c ξ3
c (3.2)

Using Eqs. (2.8), (2.9), and (3.1), it is straight forward to show that

m =
(
z?c−1b−3

)1/(3ν−1)
(3.3)

As a result, using Eqs. (2.9) and (3.3) in Eq. (3.1)

ξc = b (z?)
−2ν−1

3ν−1 (cb3)
− ν

3ν−1 (3.4)

As seen in Chapter 2, for dilute solutions, the universal crossover scaling rela-

tionships for different properties can be expressed in terms of the scaled solvent

quality parameter z. It is convenient to study the concentration driven crossover

in terms of the ratio of monomer concentration c to the overlap concentration

c?. It turns out (as will be seen subsequently) that the scaled variables c/c?

and z completely absorb the dependence of Nb, and the phase diagram can be

expressed in terms of z and c/c? as shown in Fig. 3.4.

In order to represent the size of the concentration blob in terms of scaled vari-

ables, it is necessary to derive expression for the overlap concentration c?, which

separates regimes B and C in the phase diagram. The overlap concentration can

be found from the condition that at c = c?, the concentration blob contains just

all monomers of the chain, Nb. From Eqs. (2.9), (3.1) and (3.2), since nm = Nb
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at c = c?

Nb = c?b3z?−3m3ν (3.5)

Substituting for m from Eq. (3.3), and solving for c?, leads to

c? = b−3N
−(3ν−1)
b z?−3(2ν−1) (3.6)

When solved for z?, this leads to the equation of the line that separates regimes

B and C shown in Fig. 3.1. It is convenient to represent cb3 as (c/c?)(c?b3)

when converting from unscaled to scaled variables. One can then show from

Eqs. (2.10), (3.4) and (3.6) that the dimensionless size of the concentration blob
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in terms of scaled variables is

ξc

R0,θ
g

=
( c
c?

)−ν/(3ν−1)

z2ν−1 (3.7)

where, R0,θ
g = bN

1/2
b is the gyration radius in dilute solution at θ condition. We

can also derive an expression for ξc in the concentrated regime. Upon system-

atically increasing the monomer concentration c, the concentration blob shrinks

until at a threshold concentration c = c??, ξc = ξT , and there is no longer any

length scale where SAW statistics apply. The locus of points c?? separates regime

C from regimes D and E in the unscaled variables phase diagram. It is straight

forward to calculate c?? by equating Eqs. (2.9) and (3.4)

c?? = b−3 z? (3.8)

In terms of scaled variables, it is similarly straight forward to show by equating

Eqs. (2.11) and (3.7) that

c?? = c? z2(3ν−1) (3.9)

As a result,
c??

c?
= z2(3ν−1) (3.10)

It is clear that when represented in terms of z and c/c?, the loci of crossover

between the various regimes no longer depend on chain length Nb. In regimes D

and E, where only RW statistics apply, the concentration blob size is given by

ξc = bg1/2 (3.11)

where, g is the number of monomers in a concentration blob. Since the solution

is homogeneous on all length scales larger than ξc, and the concentration blobs
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are space filling,

c =
g

ξ3
c

=
g

(bg1/2)3
(3.12)

which implies

g = (cb3)−2 (3.13)

and as a result

ξc = b (cb3)−1 (3.14)

The expression for c? given by Eq. (3.6) is only valid away from the Θ regime,

i.e., for z? > N
−1/2
b . On the other hand, in the Θ regime, since at c = c?

the concentration blob contains all the monomers in the chain, which implies

ξc = bN
1/2
b , Eq. (3.14) leads to

c? = b−3N
−1/2
b (3.15)

This difference in the expressions for c? makes it necessary to distinguish between

regimes D (where EV effects are important) and E (where EV effects are negli-

gible) when representing the size of the concentration blob (and indeed all other

observables) in terms of scaled variables. Figure 3.4 shows the clear demarcation

between regime D and E. In regime D, Eqs. (2.10), (3.6) and (3.14) imply

ξc

R0,θ
g

=
( c
c?

)−1

z3(2ν−1) (3.16)

while in regime E, Eqs. (3.14) and (3.15) imply

ξc

R0,θ
g

=
( c
c?

)−1

(3.17)

Once the blob scaling laws for ξT are known in regimes B and C, and those for

ξc are known in regimes C to E, the scaling laws for all other observables in
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these regimes can be derived. Even though these laws have been derived and

discussed in detail previously (de Gennes, 1979; Grosberg and Khokhlov, 1994;

Rubinstein and Colby, 2003), here, as examples, we derive the scaling laws for

the static chain size Rg, and the single-chain diffusion coefficient D, in order to

represent them in terms of the notation used in this work. Also, as discussed in

Chapter 2, knowing the expressions for Rg and D, the scaling laws for ηp, the

polymer contribution to viscosity, can be derived using Eq. (2.17). The scaling

laws for regime A are not discussed since the conventional notation in this regime

is followed here, and regime B has been discussed in Chapter 2.

Regime C

Since RW statistics are obeyed on length scales larger than ξc

Rg = ξc

(
Nb

nm

)1/2

(3.18)

where, (Nb/nm) is the number of concentration blobs in a chain. Using Eqs.

(2.8), (3.3) and (3.4), leads to

Rg = bN
1/2
b

[
z?(cb3)−1

]1
2

2ν−1
3ν−1 (3.19)

The scaling relation in terms of scaled variables is obtained by using Eqs. (2.10)

and (3.6)

Rg

R0,θ
g

=
( c
c?

)−1
2

2ν−1
3ν−1

z2ν−1 (3.20)

Rouse dynamics are obeyed on length scales larger than ξc. Therefore, the total

friction of the chain is the sum of the friction experienced by all the concentration

blobs. This leads to the following expression for the diffusivity

D =
kBT

ηs ξc (Nb/nm)
(3.21)
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Using Eqs. (2.8), (3.3) and (3.4), leads to

D =
kBT

ηsbNb

(z?)
−2

2ν−1
3ν−1 (cb3)

− 1−ν
3ν−1 . (3.22)

The nondimensional diffusivity in terms of scaled variables follows from using

Eqs. (2.10) and (3.6) in Eq. (3.22)

D

Dθ
0

= (c/c?)
− 1−ν

3ν−1 z−(2ν−1) (3.23)

where, Dθ
0 = (kBT/ηsbN

1/2
b ) is the diffusivity in the dilute solution at θ condition.

The polymer contribution to the viscosity ηp

(
kBT

c

Nb

R2
g

D

)
can be written as

ηp = ηs(cb
3)

1
3ν−1Nb(z

?)
3

2ν−1
3ν−1 (3.24)

Using Eq. (3.6) and (3.24), the polymer contribution to the viscosity ηp can be

expressed in terms of scaled variables as,

ηp/ηs = (c/c?)
1

3ν−1 (3.25)

Regime D

In regime D, RW statistics are obeyed on all length scales, both within the

concentration blob, and by the concentration blobs themselves. As a result

Rg = ξc

(
Nb

g

)1/2

= bN
1/2
b (3.26)

where Eqs. (3.13) and (3.14) have been used for simplification. The nondimen-

sional chain size in this regime is trivially Rg/R
0,θ
g = 1.

41



Rouse dynamics are obeyed on length scales larger than ξc. Using Eq. (3.21)

(with g = nm), and Eqs. (3.13) and (3.14) leads to

D =
kBT

ηsbNb

(cb3)−1 (3.27)

The nondimensional diffusivity in terms of scaled variables follows from Eqs.

(2.10) and (3.6)
D

Dθ
0

=
( c
c?

)−1

z3(2ν−1) (3.28)

Regime E

In regime E, the scaling relations for Rg and D in terms of unscaled variables are

identical to those in regime D, since in both regimes, RW statistics are obeyed

on all length scales, and Rouse dynamics apply on length scales larger than ξc.

In terms of scaled variables, while the distinction between the two regimes is

irrelevant for the static chain size, the difference in the expression for c? due

to the presence and absence of EV effects, respectively, manifests itself as a

difference in the expression for the nondimensional diffusivity. Using Eqs. (2.10)

and (3.15), Eq. (3.27) reduces in terms of scaled variables to

D

Dθ
0

=
( c
c?

)−1

(3.29)

Table 3.1 summarizes all the unscaled equations derived in this chapter, in-

cluding those for the polymer contribution to viscosity. Table 3.2 summarizes

the equations in terms of scaled variables. As can be seen, in this representation

the dependence on the chain length Nb has been completely absorbed in the Nb

dependence of c? and z, and the only remaining variables are c/c? and z. It is
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therefore natural to generalize these results to the relations

Rg

R?
g

= φR

( c
c?
, z
)

(3.30)

D

D?
= φD

( c
c?
, z
)

(3.31)

and
ηp

η?p
= φη

( c
c?
, z
)

(3.32)

where, R?
g, D

?, η?p denote the values of Rg, D, ηp at c = c?, and φR, φD, and

φη are universal crossover scaling functions defined on the whole plane of Fig.

3.4, and which, up to numerical prefactors, are known deep in the asymptotic

regimes (these are just the results listed in Table 3.2), but whose behavior needs

to be calculated or measured near the crossover lines.

Finally, an interesting observation can be made when looking at the last two

lines of Table 3.2, i.e.,

(c/c?)1/4 (Rg/R
?
g

)
(D/D?)1/4 =





( c
c?

)1/4

in regimes A and B

1 in regimes C, D and E

(3.33)

and

(c/c?)1/3 (Rg/R
?
g

) (
ηp/η

?
p

)−1/6
=





( c
c?

)1/6

in regimes A and B

1 in regimes C, D and E

(3.34)

In all regimes above the overlap concentration, we find that the functions Rg/R
?
g,

D/D?, and ηp/η
?
p are not independent, but can be calculated as soon as one of

them is known. It is then natural to assume that the same property also holds
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in the crossover regimes, i.e. that the relations

(c/c?)1/4φRφ
1/4
D =

( c
c?

)1/4

(3.35)

and

(c/c?)1/3φRφ
−1/6
η =

( c
c?

)1/6

(3.36)

are valid in regimes A and B, while the relations

(c/c?)1/4φRφ
1/4
D = const. (3.37)

and

(c/c?)1/3φRφ
−1/6
η = const. (3.38)

are valid in regimes C, D and E.

By carrying out a scaling analysis of the semidilute regime has led to the

following predictions:

1. There exist universal scaling functions φR, φD and φη that depend only on

(c/c?) and z.

2. These functions obey power laws whose specific forms are known away

from the crossover regions, but scaling theory is unable to provide further

information in the crossover regimes.

3. Combinations of the scaling functions assume particularly simple forms

that span several regimes in the phase diagram, suggesting that they are

valid even in the crossover regimes.

4. Equations (3.35) - (3.38) suggest that there is only a single crossover scaling

function and the others can be inferred from them.
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These predictions of scaling theory can be verified by carrying out BD sim-

ulations. Further, the specific forms of φR, φD and φη in the crossover regimes

can also be ascertained . This is a substantial part of the goals of this thesis. In

Chapters 4 and 5 we develop the BD algorithm and in Chapter 6 we verify the

prediction of scaling theory.
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Chapter 4

Governing Equations for the

Bead-Spring Chain Model

In this chapter, the polymer model and the basic governing equations of the Brow-

nian dynamics simulation algorithm are discussed in the context of a multi-chain

system. As mentioned earlier in Chapter 2, excluded volume and hydrodynamic

interactions are two important microscopic phenomena that must be incorpo-

rated in order to obtain a realistic model for semidilute solution behavior. We

briefly discuss the treatment of these two interactions in the context of BD simu-

lations in this chapter. Finally, formulae to calculate the mean values of various

equilibrium and rheological properties are presented.

4.1 The Polymer Model

A linear bead-spring chain model (Bird et al., 1987) is used to represent polymers

at the mesoscopic level, with each polymer chain coarse-grained into a sequence

of Nb beads, which act as centers of hydrodynamic resistance, connected by

Nb−1 massless springs that represent the entropic force between adjacent beads.
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4.2. The Brownian Dynamics Integrator

A semidilute polymer solution is modeled as an ensemble of such bead-spring

chains, immersed in an incompressible Newtonian solvent. A total of Nc chains

are initially enclosed in a cubic and periodic cell of edge length L, giving a total

of N = Nb × Nc beads per cell at a bulk monomer concentration of c = N/V ,

where V = L3 is the volume of the simulation cell. Figure 4.1 schematically

shows a simple example of the simulation system in 2-D.

Periodic Images Original Simulation box  

L

Bead-Spring 
Chains 

Figure 4.1: A schematic illustration of the simulation system in 2-D, showing
an example of a system with box size L, number of chains Nc = 3 and number
of beads in a chain Nb = 5. The grey box indicates the original simulation box
while the white boxes are the periodic images.

4.2 The Brownian Dynamics Integrator

Using the length scale lH =
√
kBT/H and time scale λH = ζ/4H, where kB

is the Boltzmann’s constant, T is the temperature, H is the spring constant
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4.2. The Brownian Dynamics Integrator

and ζ is the hydrodynamic friction coefficient associated with a bead, the Euler

integration algorithm for the nondimensional Ito stochastic differential equation

governing the position vector rν(t) of bead ν at time t, is (Stoltz et al., 2006)

rν(t+ ∆t) = rν(t) + [κ · rν(t)] +
∆t

4

N∑

µ=1

[Dνµ(t) · Fµ(t)] (4.1)

+
1√
2

N∑

µ=1

[Bνµ(t) ·∆Wµ(t)]

Here, the 3×3 tensor κ is equal to (∇v)T , with v being the unperturbed solvent

velocity. The dimensionless diffusion tensor Dνµ is a 3×3 matrix for a fixed pair of

beads µ and ν. It is related to the hydrodynamic interaction tensor, as discussed

further subsequently. Fµ incorporates all the non-hydrodynamic forces on bead

µ due to all the other beads. The non-hydrodynamic forces in the model are

comprised of the spring forces Fspr
µ and excluded volume interaction forces Fexv

µ ,

i.e., Fµ = Fspr
µ +Fexv

µ . The components of the Gaussian noise ∆Wµ are obtained

from a real-valued Gaussian distribution with zero mean and variance ∆t. The

quantity Bνµ is a nondimensional tensor whose presence leads to multiplicative

noise (Ottinger, 1996). Its evaluation requires the decomposition of the diffusion

tensor. Defining the matrices D and B as block matrices consisting of N × N
blocks each having dimensions of 3× 3, with the (ν, µ)-th block of D containing

the components of the diffusion tensor Dνµ, and the corresponding block of B

being equal to Bνµ, the decomposition rule for obtaining B can be expressed as

B ·Bt = D (4.2)

In Eq. (4.1), there are three terms that are challenging to implement efficiently:

(i) the flow term [κ · rν(t)], (ii) the drift term
∑N

µ=1 [Dνµ(t) · Fµ(t)], and (iii) the
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4.3. Bonded Interactions

diffusion term
∑N

µ=1 [Bνµ(t) ·∆Wµ(t)]. The implementation and optimization

of the later two terms are presented in Chapter 5, where as the implementation

of the flow term is discussed in Chapter 7. Note that since Chapters 5 and 6

consider only equilibrium systems, the flow term can be ignored for the purpose

of the problems discussed in these two chapters.

The specification of the force term in Eq. (4.1) requires the consideration

of bonded and non-bonded interactions between beads. These interactions are

discussed below.

4.3 Bonded Interactions

Interactions that arise due to the presence of spring forces are labelled here as

bonded interactions. In order to model spring forces, a linear Hookean spring

potential is used in this thesis for nearly all our studies, except for two cases.

The first case involves validation studies where our results are compared with

the Lattice Boltzmann method. In this particular study, a finitely extensible

nonlinear elastic (FENE) potential has been used to model spring forces. The

second case involves the simulation of polymer solutions undergoing either planar

elongational flow or planar mixed flow, and FENE springs are used in this case

as well. The entropic spring force on bead µ due to adjacent beads can be

expressed as Fspr
µ = Fc(Qµ) − Fc(Qµ−1) where Fc(Qµ−1) is the force between

the beads µ − 1 and µ, acting in the direction of the connector vector between

the two beads Qµ−1 = rµ − rµ−1. The dimensionless Hookean spring force is

given by Fc(Qµ) = Qµ, while for FENE springs, Fc(Qµ) =
Qµ

1− |Qµ|2/bp
, where

bp = Hq2
0/kBT is the dimensionless finite extensibility parameter, and q0 is the

dimensional maximum stretch of a spring.
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4.4. Non-bonded Interactions

4.4 Non-bonded Interactions

In the present instance, where we are considering the dynamics of neutral poly-

mer solutions, the two non-bonded interactions are hydrodynamic and excluded

volume interactions, respectively. Hydrodynamic interactions are accounted for

through the diffusion tensor (Prabhakar and Prakash, 2004) and as mentioned

earlier, excluded volume interactions are modeled using a narrow Gaussian po-

tential (Prakash and Öttinger, 1999).

The nondimensional diffusion tensor Dνµ in Eq. (4.1) is related to the nondi-

mensional hydrodynamic interaction tensor Ω through

Dµν = δµν δ + (1− δµν)Ω(rµν) (4.3)

where δ and δµν represent a unit tensor and a Kronecker delta, respectively, while

Ω represents the effect of the motion of a bead µ on another bead ν through the

disturbances carried by the surrounding fluid. In above equation, the distance

vector rµν connecting the beads µ and ν is an abbreviation for rν − rµ. The

hydrodynamic interaction tensor Ω is assumed to be given by the Rotne-Prager-

Yamakawa (RPY) regularization of the Oseen function

Ω(r) = Ω1 δ +Ω2
rr

r2
(4.4)

where for r ≥ 2a, the branch A of the RPY functions Ω1 and Ω2 is given by,

respectively,

Ω1 =
3a

4r

(
1 +

2a2

3r2

)
and Ω2 =

3a

4r

(
1− 2a2

r2

)
(4.5)

while for 0 < r ≤ 2a, the branch B of the RPY functions Ω1 and Ω2 is given by,
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4.4. Non-bonded Interactions

respectively,

Ω1 = 1− 9

32

r

a
and Ω2 =

3

32

r

a
(4.6)

We introduce the notation of the two branchesA and B for facilitating subsequent

discussion in Section 5.2.2. The quantity a has been introduced here as the

nondimensional radius of the bead as an additional independent parameter. It is

related to the conventionally defined (Thurston and Peterlin, 1967; Bird et al.,

1987) hydrodynamic interaction parameter h∗ by a =
√
πh∗. As is well known

(Beenakker, 1986), the sum
∑

µ Dνµ ·Fµ in Eq. (4.1) converges slowly since Dµν

is long-ranged in nature, scaling as 1/r. The problem of slow convergence can

be resolved through the use of the Ewald sum, as discussed in greater detail in

Section 5.2. It is worth noting here that it is sufficient to evaluate
∑

µ Dνµ ·
Fµ in order to determine the time evolution of rν(t). It is not necessary to

know Dνµ explicitly. Further, as will be seen later in Section 5.5, the evaluation

of
∑

µ Bνµ ·∆Wµ using a Chebyshev polynomial approximation for Bνµ, also

requires a repeated evaluation of the Ewald sum.

As in the case of dilute solutions, we treat EV interactions in semidilute

polymer solutions as well with a narrow Gaussian potential which in terms of

non-dimensional variables is given by

E (rνµ) = z?
(

1

d?3

)
exp

{
−1

2

r2
νµ

d?2

}
(4.7)

As discussed in Section 2.1, the dimensionless parameter z? is the strength of

excluded volume interactions and d? is a dimensionless parameter that measures

the range of the excluded volume interaction. z? is related to the solvent quality

parameter through z? = z/
√
Nb (see Section 2.1), and d? is related to z? through

d? = Kz?1/5, where K is an arbitrary parameter which becomes irrelevant in

the long chain limit (Kumar and Prakash, 2003). In the absence of excluded
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4.5. Macroscopic Properties

volume interactions (when the strength of the potential z? is zero), polymer

chains behave like ideal chains. As z? increases, the solvent quality increases and

hence polymer chains tend to swell.

4.5 Macroscopic Properties

Static and dynamic properties of semidilute polymer solutions at equilibrium can

be calculated once the trajectories of the time evolution of all the beads on all

the chains are obtained using Eq. (4.1). For rheological properties, not only are

bead configurations, but also the forces on them are required. As the simulation

progresses in time, bead configurations and forces are stored simultaneously on

the fly. The following sections briefly describe the expressions used to calculate

the various physical properties considered in this thesis.

4.5.1 Equilibrium properties

Equilibrium physical properties that are independent of time are called static

properties. There are three important static properties for polymer molecules:

(i) the end-to-end distance, (ii) the gyration radius and (iii) the static structure

factor. The mean dimension or the size of a polymer chain is assessed through the

end-to-end distance and the gyration radius (Doi and Edwards, 1986; Rubinstein

and Colby, 2003). The end-to-end distance is defined as the mean square distance

between the first and the last beads on a chain,

〈
R2
e

〉
=
〈
(rNb − r0)2

〉
(4.8)

where, 〈· · ·〉 represents an ensemble average, and rNb and r0 are position vectors

of the first and the last bead, respectively. The mean square gyration radius,
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which is the mean square distance between the beads and the center of mass rcm

of the chain, written as rcm =
1

Nb + 1

∑Nb
µ=0 rµ, is defined by

〈
R2
g

〉
=

1

Nb + 1

Nb∑

µ=0

〈
(rµ − rcm)2

〉
(4.9)

The static structure factor or form factor is a convenient quantity that describes

the structure of the chains at all length scales (Binder, 1995). It is important to

calculate structure factors not only to quantify the structure of a polymer but

also to check with experimental results because polymer structures are mainly

determined by experimental means. The static structure factor of a polymer

chain is given by (Doi and Edwards, 1986)

S(k) =
1

Nb

∑

µν

〈exp (ik · rµν)〉 =
1

Nb

∑

µν

〈
sin (krµν)

krµν

〉
(4.10)

where k is the scattering vector and k is the magnitude of k, and rµν is the

magnitude of rµν .

Equations (4.8) to (4.10) refer to the static properties of a single chain at

infinite dilution. For a multi-chain system, these static properties are calculated

for each individual chain and averaged across all the chains in the system.

The output of a Brownian dynamics simulation is basically the time evolution

of the configuration of all the chains in the system. The mean values and the

standard error are obtained in the post-processing stage. First, at a given time,

the values of the static properties of each chain are calculated, and then these

values are averaged across all the chains to obtain a typical average property

which we denote as Schains. Schains is then calculated at all the times and the time

series Schains(t) is obtained. In order to estimate the mean values and the stan-

dard error, the block averaging method is typically used. In this method, blocks
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of different sizes are chosen from the whole time series and the error analysis is

performed with the help of these blocks (see details in Appendix A). However, we

found in our work, that the block averaging method does not lead to satisfactory

results (see the discussion in Appendix A) because of the limitation of running

long time simulations. Therefore, we use an alternative approach, which is a

special case of block averaging, in which only one block is chosen and the size of

the block is equal to the size of a trajectory. In particular, many trajectories are

run simultaneously and the time average of each trajectory is calculated. Next,

an ensemble average of all these mean values is calculated, along with the stan-

dard error of the ensemble average obtained in this process. In this approach the

length of simulation can be small (of the order of 10− 70 relaxation times) but

the number of trajectories need to be large in order to obtain highly accurate

results.

Properties, such as diffusivity, that depend on time are called dynamic prop-

erties. The short-time diffusivity, Ds, of an individual polymer chain can be

calculated via a center-of-mass definition or by the Kirkwood formula (DK),

which are given respectively as

Ds = lim
∆t→0

1

6

〈 |rcm(t+ ∆t)− rcm(t)|2
∆t

〉
(4.11)

and

DK =
1

3N2
b

Nb∑

ν=1

Nb∑

µ=1

(tr〈Dνµ〉) (4.12)

The long-time diffusivity is calculated by tracking the mean-square displacement

of the center-of-mass of each chain,

D = lim
t→∞

〈 |rcm(t)− rcm(0)|2
6t

〉
(4.13)
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In this thesis, only the long-time diffusivity is calculated. For a system of Nc

chains, typically D is calculated for each individual chain and averaged across

all the chains in the system, i.e.,

D(t) = lim
t→∞

1

Nc

Nc∑

i=1

〈 |ricm(t)− ricm(0)|2
6t

〉
(4.14)

Detailes of the approach used to calculate the mean diffusivity and the standard

error are presented in Appendix A. In this approach, the idea is to first calculate

the mean-squared-distance (MSD = 〈|rcm(t)− rcm(0)|2〉) as a function of time.

Next, the slope of the MSD vs. time curve is used to find the diffusivity (note

that D = slope/6). It is important to smooth out short-term fluctuations and

highlight longer-term trends in the time series data of the MSD. Appendix A

discusses an efficient method of doing this with the help of the sliding-average

method.

4.5.2 Rheological properties

The behavior of semidilute polymer solutions, when subjected to an imposed

flow such as shear, elongational or mixed flow, is described in terms of various

material functions. In this work, we have focused our attention on the prediction

of viscosities in these flows. Expressions for viscosities in these various flow

system are presented in this section.

For a planar shear flow (PSF), ∇v is given by

(∇v)PSF =




0 0 0

γ̇ 0 0

0 0 0
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while in planar elongational flow (PEF) it is given by

(∇v)PEF =




ε̇ 0 0

0 −ε̇ 0

0 0 0




where γ̇ and ε̇ are the dimensionless shear rate and elongational rate, respectively.

A planar mixed flow (PMF) is a linear combination of planar shear flow and

planar elongational flow, and Hunt et al. (2010) propose a velocity gradient

tensor for PMF of the following form

(∇v)PMF =




ε̇ 0 0

γ̇ −ε̇ 0

0 0 0


 (4.15)

This form is referred to as the canonical form, in which the expanding direc-

tion is along the x axis and the contracting direction is along the y axis, with

elongational field strength ε̇, while the shear gradient is along the y direction,

with shear field strength γ̇. Therefore, the expansion axis is always parallel to

the x-axis, but the contraction axis is along the direction of one of the eigen-

vectors of the velocity gradient tensor. Hunt et al. (2010) have shown that the

noncanonical form of the velocity gradient tensor (in which the elongation and

contraction axes are always orthogonal) is equivalent to the canonical form in

a rotated frame of reference. For simplicity, we use the canonical form of the

velocity gradient tensor in this work.

Using κ = (∇v)TPMF in Eq. (4.1), the beads configurations and forces on

them can be computed, and hence the stress tensor can be calculated. In the

absence of external forces, the nondimensional stress tensor for a single chain is
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given by Kramer’s expression (Bird et al., 1987),

σ =

Nb∑

ν=1

〈rνFν〉 (4.16)

For a multi-chain system, the stress tensor can be shown to be (Stoltz, 2006)

σ =
1

Nc

N∑

ν=1

〈rνFν〉 (4.17)

Note that σ is a dimensionless stress tensor, which is obtained by nondimension-

alizing the stress tensor by npkBT , where np is number of polymer chains per

unit volume i.e. np = Nc/V .

Once the stress tensor is calculated, the polymer contribution to the viscosity

can be estimated. Hounkonnou et al. (1992) proposed the following expression

for a generalized viscosity ηH for any arbitrary flow gradient tensor (∇v)

ηH =
Γ̇ : σ

Γ̇ : Γ̇
(4.18)

where Γ̇ is the rate of strain tensor, defined by Γ̇ = (∇v) + (∇v)T . Using

Eq. (4.18) and considering (∇v) = (∇v)PMF, Hunt et al. (2010) derived an

expression for the planar mixed flow viscosity ηPMF,

ηPMF = −2ε̇(σxx − σyy) + 2γ̇σxy
8ε̇2 + 2γ̇2

(4.19)

In the limit of pure planar shear flow (i.e., ε̇ = 0), Eq. (4.19) leads to

ηPSF = −σxy
γ̇

(4.20)

60



4.5. Macroscopic Properties

while in the limit of pure planar elongational flow (i.e., γ̇ = 0), Eq. (4.19)

simplifies to

ηPEF = −σxx − σyy
4ε̇

(4.21)

Clearly, Eq. (4.19) can be rewritten as a linear combination of ηPSF and ηPEF as,

ηPMF =
(4ε̇2ηPEF + γ̇2ηPSF)

4ε̇2 + γ̇2
(4.22)

Eqs. (4.20) - (4.22) have been used by Hounkonnou et al. (1992); Baranyai and

Cummings (1995); Todd and Daivis (1998); Daivis et al. (2003) and Hunt et al.

(2010) in their nonequilibrium molecular dynamics (NEMD) simulations for the

viscosity of various fluids.

While the form of the velocity gradient tensor given by (∇v)PMF [Eq. (4.15)]

instinctively separates the shear and elongational flow components, it does not

permit one to easily study the variation in material behavior as the flow changes

smoothly from pure shear to pure elongation or vice versa. Secondly, the elon-

gational viscosity limit of the definition of viscosity in Eq. (4.18), namely ηPEF,

differs from the conventional definition of viscosity in PEF, which is (Bird et al.,

1987)

η̄1 = −σxx − σyy
ε̇

(4.23)

As can be seen by comparing Eqs. (4.21) and (4.23), η̄1 = 4ηPEF.

An alternative form for (∇v) in PMF proposed by Fuller and Leal (1981)

resolves the first of these issues

(∇v) =




0 Γ̇χ 0

Γ̇ 0 0

0 0 0


 (4.24)
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where, Γ̇ is the characteristic strain rate and χ (∈ [−1, 1]) is the mixedness

parameter which measures the relative strength of rotational and elongational

components of a planar mixed flow. It can be shown that this form for (∇v)

reduces to PSF when χ → 0, while the pure PEF limit is recovered when χ →
1. Eq. (4.24) is also valid in the limit of χ → −1, which corresponds to the

pure rotational flow limit. In their studies of PMF of dilute polymer solutions,

Hoffman and Shaqfeh (2007) showed that Eq. (4.24) was equivalent to

(∇v) =




Γ̇
√
χ 0 0

Γ̇(1− χ) −Γ̇
√
χ 0

0 0 0


 (4.25)

in a suitably rotated coordinate system, where they confined their attention to

elongation-dominated mixed flow, for which χ > 0. Clearly, (∇v) and (∇v)PMF

are similar in structure. Comparing Eqs. (4.15) and (4.25), we can express the

shear rate γ̇ and elongational rate ε̇ in terms of Γ̇ and χ as follows

γ̇ = Γ̇(1− χ) (4.26)

and

ε̇ = Γ̇
√
χ (4.27)

Clearly, the velocity gradient defined in this manner approaches the limit of pure

planar shear flow when χ → 0, and pure planar elongation flow when χ → 1.

As a result, it allows us to study the smooth crossover between the pure planar

shear and pure planar elongational flow limits by varying χ between 0 and 1.

In an attempt to address the issue of ηPEF not being equal to η̄1, we propose
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the following definition of the PMF viscosity

η = − Γ̇
?

: σ?

Γ̇
(4.28)

where Γ̇
?

= Γ̇/Γ̇ and σ? =
1

2(
√
χ+ 1− χ)

σ. Using Eq. (4.25), Γ̇ can be shown

to be

Γ̇ =

√
Γ̇ : Γ̇

8χ+ 2(1− χ)2
(4.29)

while Eq. (4.28) leads to

η = −
√
χ(σxx − σyy) + (1− χ)σxy

Γ̇(
√
χ+ 1− χ)

(4.30)

Clearly, Eq. (4.30) reduces to Eq. (4.20) for planar shear flow in the limit

χ → 0, while for χ → 1, we recover the expression for the planar elongational

flow viscosity η̄1. η can be related to ηPMF through the expression

η =

[
4χ+ (1− χ)2

√
χ+ (1− χ)

]
ηPMF (4.31)

Equation (4.30) not only allows us to study the crossover of PMF viscosity

smoothly between the pure PSF and pure PEF limits, but also leads to an expres-

sion for the PEF viscosity which is consistent with that reported in the polymer

rheology literature. As we shall see subsequently, defining the PMF viscosity in

this manner allows us to compare our multi-chain simulation results with the BD

simulation results for single polymer chain systems (dilute solutions) obtained

earlier by Prakash (2001b, 2002) and Kumar and Prakash (2003), who used the

conventional definition of the various viscosities.
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Chapter 5

Development of a Brownian

Dynamics Simulation Algorithm

for Semidilute Polymer Solutions

5.1 Introduction

This chapter describes the implementation, optimization and validation of a

Brownian dynamics simulation algorithm for semidilute polymer solutions at

equilibrium. This section presents the background related to mesoscopic sim-

ulation algorithm development. As discussed in Section 1.2, one of the major

challenges in algorithm development is to achieve maximum computational ef-

ficiency. It is consequently worth reviewing and comparing the performance of

the different mesoscopic simulations algorithms, mentioned in Section 1.2.

To our knowledge, there has been no systematic investigation to compare the

performance of the different techniques in terms of their computational efficiency

in the semidilute regime. Recently, however, a quantitative comparison of the

predictions of the explicit solvent LB/MD method with the predictions of the
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implicit solvent BD method for the dynamics of a single chain in a solvent, i.e.

in the dilute regime, has been carried out with a view to compare their com-

putational efficiencies (Pham et al., 2009; Ladd et al., 2009). It was shown in

Pham et al. (2009) that in order to observe the system for the same time span

in physical units, significantly less CPU time is required with BD in comparison

to LB/MD, for bead-spring chains with Nb . 106. The situation, however, is

expected to be quite different in the semidilute regime. For the LB/MD method,

the CPU cost scales linearly with the number of particles, which implies that

the CPU costs grows as L3 since the solvent particles (the calculation of whose

dynamics dominates the CPU cost) are distributed on lattice grid points in a

simulation box of size L. In order to prevent a chain from wrapping over itself

due to spatial restriction and hence altering its static conformation, it is nec-

essary to ensure that L ≥ 2
√
〈R2

e〉, where 〈R2
e〉 is the mean-square end-to-end

distance of the chain. In the dilute case, this leads to the CPU time scaling as

N3ν
b for the LB/MD method. Using a simple scaling argument based on the blob

picture of semidilute solutions, Pham et al. (2009) suggest that the CPU effort

is even somewhat decreased in semidilute solutions due to the shrinkage of the

chains resulting from the screening of excluded volume interactions (de Gennes,

1979; Doi and Edwards, 1986).

In the case of BD, even though the number of degrees of freedom is signif-

icantly reduced by eliminating the solvent, implementation of pairwise hydro-

dynamic interactions between segments proves to be extremely computationally

expensive. For dilute polymer solutions, the computational cost of evaluating

intramolecular hydrodynamic interactions arises from the need to carry out a

decomposition of the diffusion tensor that appears in Eq. (4.1). A straight-

forward Cholesky decomposition leads to an algorithm that scales like O(N3
b ).

Many current implementations of single chain BD simulations, however, mitigate
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this large CPU cost by using Fixman’s polynomial approximation to this decom-

position, which leads to O(N2.25
b ) scaling (Fixman, 1986; Jendrejack et al., 2000;

Kroger et al., 2000; Prabhakar and Prakash, 2004). In the case of semidilute

polymer solutions, both intramolecular and intermolecular hydrodynamic inter-

actions must be taken into account. For a typical segment on a polymer chain,

the use of periodic boundary conditions to imitate bulk systems necessitates the

evaluation of the sum of pairwise hydrodynamic interactions not only between

the particular segment and all other segments within the primary simulation box,

but also with all the other segments in all the periodic images of the box. Be-

cause of the long-range nature of hydrodynamic interactions, which decay only

reciprocally with distance, this sum converges very slowly and only conditionally

(Hasimoto, 1959; Beenakker, 1986). Inspired by its earlier success in summing

electrostatic interactions between charged species (Allen and Tildesley, 1990;

Luty et al., 1994; Toukmaji and Board, 1996; Deserno and Holm, 1998) (which

are also long-ranged in nature), the problem of slow convergence has been re-

solved through the use of the Ewald summation technique (Ewald, 1921) — both

in the context of BD simulations of colloidal suspensions where hydrodynamic

interactions between particles with a finite radius must be taken into account

(Smith et al., 1987; Brady et al., 1988; Rinn et al., 1999; Sierou and Brady, 2001;

Banchio and Brady, 2003), and in the context of BD simulations of semidilute

polymer solutions where the polymer segments are assumed to be point particles

(Stoltz et al., 2006).

Rapid convergence is achieved in the Ewald sum by splitting the slowly con-

verging sum into two sums, one of them in real space and the other in reciprocal

space, both of which converge exponentially. A straightforward implementation

of the Ewald sum, however, is computationally demanding, scaling like O(N2),

where it may be recalled, N = Nc × Nb, is the total number of beads in the
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primary simulation box with Nc polymer chains. Interestingly, by a suitable

choice of a parameter α in the Ewald sum that tunes the relative weights of the

real space and reciprocal space contributions (consequently splitting the load of

calculating the total sum between the real space and reciprocal space sums), it

is possible to make the computational cost of calculating either the real space

or the reciprocal space sum scale like O(N2), while the remaining sum scales as

O(N). In their recent simulation of semidilute polymer solutions, Stoltz et al.

(2006) have implemented a BD algorithm that leads to the real space sum scal-

ing like O(N2). In the case of colloidal suspensions, accelerated BD algorithms

have been developed by Brady and co-workers with the Ewald sum scaling like

O(N logN) (Sierou and Brady, 2001; Banchio and Brady, 2003). The essential

idea is to retain an O(N) scaling for the real space sum, while reducing the com-

plexity of the reciprocal part of the Ewald sum to O(N logN) with the help of

Fast Fourier Transformation. For confined systems which are non-periodic, and

in which methods based on Fourier transforms are not applicable, the Wisconsin

group have recently successfully introduced a BD simulation technique they term

the “general geometry Ewald-like method”, which achieves O(N logN) scaling

(Hernández-Ortiz et al., 2007). Analogous to the Ewald method, the technique

is based on splitting the solution to Stokes equation into singular short-ranged

parts and smooth long-ranged parts. Thus, even though a detailed quantitative

comparison of all the currently available mesoscopic simulation techniques is yet

to be carried out, they all appear to scale, in their most efficient versions, roughly

linearly with system size.

In the context of electrostatic interactions, to date broadly two different

classes of schemes have been proposed for the optimization of the Ewald sum

over the Coulomb potential (Allen and Tildesley, 1990; Deserno and Holm, 1998;

Perram et al., 1988; Fincham, 1994). One of these classes of schemes (on which
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the accelerated BD schemes are modeled), achieves O(N logN) scaling by as-

signing particles to a mesh and then using fast Fourier transform techniques to

evaluate the reciprocal space part of the Ewald sum on this mesh (Luty et al.,

1994; Deserno and Holm, 1998). The other class of schemes (Perram et al., 1988;

Fincham, 1994) achieves O(N1.5) scaling by balancing the computational cost of

evaluating the real space and reciprocal space sums. To our knowledge, the latter

approach has so far not been trialled for summing hydrodynamic interactions.

In the context of hydrodynamic interactions, it is also worth noting that the

BD simulation of semidilute polymer solutions carried out by Stoltz et al. (2006)

differs from BD simulations of colloidal suspensions (Brady et al., 1988; Ban-

chio and Brady, 2003) in the procedure adopted for the calculation of far-field

hydrodynamic interactions, even though both are based on the Ewald summa-

tion technique. While the latter are based on Hasimoto’s solution of the Stokes

equations for flow past a periodic array of point forces (Hasimoto, 1959), the

former is based on Beenakker’s solution (Beenakker, 1986), which generalises

Hasimoto’s treatment to the Rotne-Prager-Yamakawa (RPY) tensor (Rotne and

Prager, 1969; Yamakawa, 1970). The RPY tensor, which is a regularization of the

Oseen-Burgers tensor to account for finite particle radius, is commonly used in

BD simulations of polymer solutions in order to maintain the positive-definiteness

of the diffusion tensor. Essentially, the RPY tensor avoids the singularity of the

Oseen-Burgers tensor for vanishing inter-bead distance by having two branches

depending on the magnitude of the inter-bead distance relative to the parti-

cle diameter. In BD simulations of colloidal suspensions on the other hand,

near-field hydrodynamic interactions are taken into account through short-range

lubrication forces (Brady et al., 1988). Notably, even though Beenakker’s peri-

odic hydrodynamic interaction tensor is based on the RPY tensor, the original

derivation by Beenakker is only valid for the long-ranged branch of the tensor.
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As a result, it is not applicable to situations where bead overlap might occur.

In their BD simulations of semidilute solutions, Stoltz et al (Stoltz et al., 2006)

avoid bead overlap through the use of an excluded volume potential between

beads. However, one can anticipate that bead overlap can occur in simulations

of semidilute θ-solutions, since θ-solutions are commonly simulated by switching

off excluded volume interactions (Prabhakar and Prakash, 2004; Sunthar and

Prakash, 2005). An extension of Beenakker’s derivation of the periodic RPY

tensor is consequently necessary in order for it to be useful for the treatment of

hydrodynamic interactions in semidilute θ-solutions.

As discussed earlier in Section 4.2, in the absence of flow, there are two major

challenges to integrating the stochastic differential equation (4.1): (i) calculation

of the drift term, which can be done using the Ewald summation method and

(ii) calculation of the diffusion term, which can be done using the Chebyshev

polynomial approximation. Also, since it is required to simulate a large number

of beads, optimization of the algorithm is necessary. The plan of the chapter is

as follows. In Section 5.2, the evaluation and implementation of the Ewald sum

and its modification to handle overlapping beads, are discussed. Sections 5.4,

5.5 and 5.6 consider the optimization of (i) the Ewald sum for hydrodynamic

interactions, (ii) the Chebyshev polynomial approximation for the decomposi-

tion of the diffusion tensor, and (iii) the execution of a single Euler time step,

respectively. The optimized BD algorithm is validated by a variety of different

means, under both θ and good solvent conditions, in Section 5.7. In Section

5.8, its computational cost is compared with that of the LB/MD method at a

concentration that lies in the semidilute regime.
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5.2 Ewald Summation Method for Hydrody-

namic Interactions

5.2.1 Evaluation of
∑

µ Dνµ · Fµ as an Ewald sum

Beenakker’s (Beenakker, 1986) representation of the sum
∑

µ Dνµ·Fµ as an Ewald

sum for infinite periodic systems, using the RPY tensor to represent hydrody-

namic interactions, has the form

N∑

µ=1

Dνµ · Fµ =

(
1− 6aα√

π
+

40a3 α3

3
√
π

)
Fν +

∑

n

′
N∑

µ=1

M(1)(rνµ,n) · Fµ

+
∑

k 6=0

M(2)(k) ·
{

cos(k · rν)
N∑

µ=1

cos(k · rµ)Fµ − sin(k · rν)
N∑

µ=1

sin(k · rµ)Fµ

}

(5.1)

where the first and the second sums on the right hand side, both of which con-

verge rapidly, are carried out in real and reciprocal space, respectively. The first

term on the RHS is the correction due to self-interactions and does not involve

any summation. A brief introduction to the Ewald summation method and the

detailed derivation of Eq. (5.1) is presented in Appendix B. In Eq. (5.1), the

parameter α determines the manner in which the computational burden is split

between the two sums. The vector rνµ,n is defined by rνµ,n = rν−rµ+nL, where

n = (nx, ny, nz) is the lattice vector with nx, ny, nz being integer numbers (see

Fig. 5.1). The first summation on the RHS of Eq. (5.1) is carried out in the

original simulation box and over all the neighboring periodic images. The prime

on the summation indicates that the lattice vector n = 0 is omitted for ν = µ.

M(1)(r) is a 3× 3 matrix (in real space), which depends on a and α, and M(2)(k)

is also a 3×3 matrix (in reciprocal space), which depends on a, α and the volume
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of the simulation box V . The expressions for M(1)(r) and M(2)(k) are

M(1)(r) =

[
erfc(αr)

(
3a

4r
+

a3

2r3

)
+

exp (−α2r2)√
π

(
3aα3r2 − 9aα

2

+ 4a3 α7r4 − 20a3 α5r2 + 14a3 α3 +
a3α

r2

)]
δ

+

[
erfc(αr)

(
3a

4r
− 3a3

2r3

)
+

exp (−α2r2)√
π

(
3aα

2
− 3aα3r2

− 4a3 α7r4 + 16a3 α5r2 − 2a3 α3 − 3a3α

r2

)]
r̂r̂

(5.2)

with erfc denoting the complementary error function, and

M(2)(k) =

(
a − a3k2

3

) (
1 +

k2

4α2
+

k4

8α4

)(
6π

k2V

)
exp

(−k2

4α2

) (
δ − k̂ k̂

)

(5.3)

The second summation in Eq. (5.1) (denoted here as the reciprocal space

sum) is carried out over lattice vectors k = 2πn/L. In Eq. (5.2), r and r̂ are

the magnitude and unit vector, respectively, in the direction of r. In Eq. (5.3),

k and k̂ are the magnitude and unit vector, respectively, corresponding to k.

5.2.2 Modification of the Ewald sum to account for over-

lapping beads

As pointed out earlier, the derivation of the Ewald sum by Beenakker (1986) is

valid only for the branch A of the RPY functions Ω1 and Ω2 (Eq. (4.5)), which

forbids its use for the case of overlapping beads (r < 2a). The original expres-

sion consequently cannot be used for the simulation of θ solvents by neglecting

excluded volume interactions, as in this case beads on the same or on different

chains are highly prone to overlap with each other. The Ewald sum can be modi-

fied to account for such situations (Zhou and Chen, 2006), and we discuss it here
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Figure 5.1: Periodic boundary conditions in 2-D: demonstration of the distance
vector between two beads

as follows.

Starting from a given bead ν, we consider all those beads that have dis-

tances less than 2a from it, including bead ν itself. By a proper re-labeling,

we can assume that these are the beads µ = 1, . . . , N∗. The number of non-

overlapping particles is thus N − N∗. As the correction needs to be carried

out only in the real space sum, the first summation on the RHS of Eq. (5.1)(∑′
n

∑N
µ=1 M(1)(rνµ,n) · Fµ

)
is replaced by

N∗∑

µ=1
µ6=ν

MB
(1)(rνµ,n=0) · Fµ +

∑

n6=0

N∗∑

µ=1

M(1)(rνµ,n) · Fµ +
∑

n

N∑

µ=N∗+1

M(1)(rνµ,n) · Fµ

(5.4)
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where, MB
(1) is equivalent to the M(1) matrix, but for branch B of the RPY

tensor given by Eq. (4.6). The summation in the first term is carried out

only over the overlapping particles in the original simulation box (n = 0). The

second summation is carried out over the periodic images of the overlapping

particles (whose distances are more than 2a), and the third summation is similar

to that given in Eq. (5.1) but here it is carried out only over the non-overlapping

particles. Note that the second sum is not carried out in the original box. In

order to make this sum extend over the original box and periodic images, a term

is added and subtracted as follows

N∗∑

µ=1
µ 6=ν

MB
(1)(rνµ,n=0) · Fµ +

∑

n6=0

N∗∑

µ=1

M(1)(rνµ,n) · Fµ (5.5)

+
N∗∑

µ=1
µ6=ν

M(1)(rνµ,n=0) · Fµ −
N∗∑

µ=1
µ6=ν

M(1)(rνµ,n=0) · Fµ

+
∑

n

N∑

µ=N∗+1

M(1)(rνµ,n) · Fµ

Note that while the first sum involves branch B of the RPY tensor, the third

sum involves branch A. The second, third and fifth summations of the above

equation together represent the original real space sum in Eq. (5.1). Equation

(5.5) can consequently be rearranged as

(∑

n

′
N∑

µ=1

M(1)(rνµ,n) · Fµ

)
+

N∗∑

µ=1
µ6=ν

[
MB

(1)(rνµ,n=0)− M(1)(rνµ,n=0)
]
· Fµ (5.6)

where the second summation is carried over all overlapping particles in the orig-

inal box. Denoting the second term in Eq. (5.6) by M∗, it is straightforward to
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show that

M∗(x) = δ

[
1− 1

2x3

(
3x2

4
+ 1

)2
]

+ x̂ x̂

[
1

2x3

(
3x2

4
− 1

)2
]

(5.7)

where x = r(νµ,n=0)/a and x̂ is the unit vector in the direction of r(νµ,n=0) (see

Appendix B.3.4). The modified form of the Ewald sum that is valid for arbitrary

inter-particle distance is consequently

N∑

µ=1

Dνµ · Fµ =

(
1− 6aα√

π
+

40a3 α3

3
√
π

)
Fν +

∑

n

′
N∑

µ=1

M(1)(rνµ,n) · Fµ

+
∑

k 6=0

M(2)(k) ·
{

cos (k · rν)
N∑

µ=1

cos (k · rµ)Fµ − sin (k · rν)
N∑

µ=1

sin (k · rµ)Fµ

}

+
N∗∑

µ=1
µ6=ν

M∗(rνµ,n=0) · Fµ (5.8)

5.2.3 Implementation of the Ewald summation method

As discussed earlier, the real space sum is carried out over all the periodic images

while the reciprocal space sum involves particles only in the original simulation

box. There are three parameters which control the accuracy of both the real and

reciprocal space sums: nmax, an integer which defines the range of the real space

sum (governed by the number of periodic images, see Fig. 5.1), kmax, an integer

that defines the summation range in reciprocal space and the Ewald parameter

α. These three parameters are related to each other from the point of view of

accuracy and speed. A large value of α makes the real space sum converge faster

(since a smaller value of nmax is required). However, this leads to the reciprocal

space sum requiring a larger number of wave-vectors kmax. On the other hand,

a small value of α implies an expensive real space sum but a cheaper reciprocal

space sum. The optimal choice of these parameters has been discussed previously
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5.2. Ewald Summation Method for Hydrodynamic Interactions

by Fincham (1994) in the context of electrostatic interactions. Here, a similar

study is performed for hydrodynamics interactions.

Choice of Ewald parameters

At fixed monomer bulk concentration c, the box size increases as N1/3. As can

be seen from Eqs. (5.1) and (5.2), the convergence of the real space sum depends

on the complementary error function erfc(αr), where r is the distance between a

pair of beads. In practice, the sum is evaluated only for r ≤ rc, where rc denotes

a cutoff radius. The value of α is chosen such that erfc(αrc) is small. At large

values of the argument, erfc(αrc) behaves as exp(−α2rc
2). If we specify M such

that exp(−M2) is very small, then

α2rc
2 = M2 or α = M/rc (5.9)

Similarly the rate of convergence of the reciprocal space sum is controlled by

the factor exp(−k2/4α2). If it is required (Fincham, 1994) that the accuracy of

the real space sum is roughly equal to that of the reciprocal space sum at the

reciprocal space cutoff, Kr, then using Eq. (5.9) we find

M2 = K2
r /(4α

2) or Kr = 2αM = 2M2/rc (5.10)

These relations allow us to specify α and Kr for given values of M and rc,

while the latter parameters control the accuracy and speed of the algorithm, as

discussed subsequently.

The real space and reciprocal space sums

Locating all pairs of beads which are separated by less than the cutoff distance

rc is the first step in evaluating the real space sum. A naive all-pairs neighbor
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search results in O(N2) performance and therefore the link-cell method, which is

a cell-based neighbor search method, is used to improve the performance (Hock-

ney et al., 1973; Griebel et al., 2007; Grest et al., 1989). The calculation of the

infinite real space sum is thus reduced to the calculation of the sum locally over

only a small number of neighboring beads. Here, the neighbor search is imple-

mented with cells of side rc/5. The reciprocal space sum is more straightforward

to implement. The major effort is expended in the evaluation of terms of the

form exp(ik · rµ). The method adopted here precomputes the components of

these factors by recursion and stores them (Fincham, 1994). This avoids calling

the complex exponential function repeatedly. However, it involves a substantial

amount of computer memory.

5.3 Validation of
∑

µDνµ · Fµ Calculations

Three different approaches have been used to validate the calculations of the

Ewald sum:

1. A single-chain code (developed to simulate a dilute polymer solution) (Prab-

hakar, 2005; Prabhakar and Prakash, 2004) is used to validate the Ewald

sum in the dilute regime

2. Hasimoto’s solution (Hasimoto, 1959) of the Stokes equation of motion for

viscous fluid flow past a periodic array of spherical obstacles is used to

validate the implementation of periodic boundary conditions, again in the

dilute limit.

3. The pairwise summation of hydrodynamic interactions is carried out explic-

itly i.e. without using the Ewald summation and this sum is then compared

with the Ewald sum. This approach enables us to validate the Ewald sum
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for finite concentration systems.

Each of these approaches are discussed below in detail.

5.3.1 Comparison with single-chain simulations

In this approach, firstly the values of
∑

µ [Dνµ · Fµ] from a single-chain code,

written for dilute polymer solutions (Prabhakar, 2005; Prabhakar and Prakash,

2004), are computed. Thereafter, data for
∑

µ [Dνµ · Fµ] for the same set of

parameters (a = 0.1, Nc = 1, Nb = 20, 100) are generated using the current code

for various values of box size L. The element by element difference between the

vector D · F of the single-chain code and the current code is calculated to get

the sum of the square of the error (SSE). As can be seen in Fig. 5.2, the SSE

approaches to ∼ 10−8 as 1/L→ 0, which indicates that at lower concentrations,

the current code agrees with the single-chain code. Note that a tolerance criteria

of 10−8 is used in the current code for the convergence of the Ewald summation.

5.3.2 Verification of the prediction of the Madelung con-

stant

In this approach, the Madelung constant for the motion of a viscous fluid flow-

ing past a periodic array of spherical particles is verified by the current code.

Madelung’s constant was first derived by Hasimoto (1959) by solving the Stokes

equation for the system mentioned above. Note that the Hasimoto solution as-

sumes that the suspension is dilute. By considering a single particle at the centre

of a box and periodic images of that particle, Hasimoto derived an expression
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Figure 5.2: Validation of the Ewald sum with the single-chain code

for the velocity field at the centre of a box,

v =
(

1−Md
a

L

)
F +O(a3) (5.11)

where a is the radius of the particle, F is the force on the particle, L is the

box size and Md is the Madelung constant whose value is reported by Hasimoto

(Hasimoto, 1959) to be 2.8373. Derivation of Eq. (5.11) is presented in Hasimoto

(1959). In order to calculate the Madelung constant, firstly the diffusion tensor

D is calculated for a single bead located at the center of the box with an infinite

number of periodic images. Since there is only one particle, D is diagonal, and

it can be shown that the value of the diagonal element, for small values of a/L

should equal
(

1−Md
a

L

)
. As expected, Fig. 5.3 shows that the computed value

of Md approaches 2.8373 for small values of a/L. This approach ensures that the
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Figure 5.3: Validation of the Ewald sum with Hasimoto’s solution for the
Madelung constant

periodic boundary conditions are implemented correctly in the algorithm.

5.3.3 Explicit vs Ewald sum

The velocity of the solvent, vν , at the location of a bead ν, due to forces on all

the other beads in the system, is given by,

vν =
∑

n

N∑

µ=1

[Dνµ,n · Fµ] (5.12)

As mentioned earlier, in general, it is not possible to evaluate this sum explicitly

because of the slow and conditional nature of the sum. For a periodic system,

however, as we have seen, the sum can be evaluated using an Ewald summation

technique. It would seem, consequently, that we cannot validate the result of
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Ewald summation by comparison with the explicit sum, since the latter cannot

in general be evaluated.

We have found, however, that by constructing a special kind of periodic

system, we can in fact compare the Ewald and explicit sums, and as a result

obtain a validation of our implementation of the Ewald sum for systems at finite

concentrations.

Before we discuss the special periodic arrangement, it is worth making a

few remarks on our observations for a general periodic arrangement of particles,

where they are placed at random in the original simulation box. A converged

value for the velocity vν at an arbitrary location rν in the original simulation

box, for a periodic but random system of particles, was obtained when it was

evaluated using the explicit sum, provided the sum of forces on all the beads was

zero, i.e.,
∑

µ=1 Fµ = 0. The converged value was independent of the order in

which summation was carried out, i.e., whether all the particles in the simulation

box were first summed, and then all the sums over the images carried out, or the

sum for each particle over all the images was followed by a sum over all particles

in the original simulation box. However, this converged value of velocity did

not agree with that obtained using the Ewald sum for the same arrangement of

particles.

We are not entirely sure of the reason for this discrepancy. A possible reason

is that while the Ewald sum is strictly valid only for a periodic system the explicit

sum has to in some sense discover the periodicity, and is unable to do so for a

random periodic arrangement of particles. In order to check this hypothesis, we

evaluated the solvent velocity with the explicit sum at locations, one of which

was the periodic image of the other. The only points in the simulation box that

also have a periodic image in the box are points on the walls of the box. As a

result, we placed a particle on one of the walls, and evaluated the velocity vν at
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Figure 5.4: An example to illustrate the placement of particles in the simulation
box in a highly symmetric manner

this particle and at it’s image on the opposite wall. Note that each particle is

simultaneously an original particle and the image of the particle on the opposite

wall. In addition to placing the particles on the walls, we also had to set the

force on the particles to zero to ensure they do not appear in the explicit sum.

The reason for considering such ghost particles is the following. if γ1 and γ2

are the two particles on the opposite walls and rγ1 and rγ2 are their locations,

then rγ1γ2,n = 0 for n corresponding to the two image boxes that lie adjacent to

these particles, and this leads to problems in the calculation of the explicit sum

(see Fig. 5.4). By following this procedure, we found that while the Ewald sum

leads to a perfectly periodic solvent velocity at the wall particles, the explicit

sum leads to differing values.

An alternative special periodic system however leads to a prediction of a
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periodic solvent velocity by the explicit sum, which also agrees with the value

obtained with the Ewald sum. In this special arrangement, rather than choosing

a random distribution of particles, the particles are placed in a highly symmetric

manner in the original simulation box. A typical example is shown in Fig. 5.4.

Further, the particles are subjected to forces that are also symmetric. Thus, for

instance, particles 1 and 6 in Fig. 5.4 have equal and opposite forces acting on

them. The constraint
∑

µ=1 Fµ = 0 is also imposed. Under these conditions, we

find that for a range of values of concentration c, bead radii a, and number of

beads N , the velocities of the solvent at all the particle locations are identical in

the explicit and Ewald sum, within the prescribed tolerance for the convergence

of the sums. This completes the validation of the implementation of the Ewald

sum under a variety of different circumstances.

5.4 Optimization of the Evaluation of
∑

µDνµ·Fµ

The Ewald parameter α, which splits the computational burden between the

real space sum and the reciprocal space sum, is related to the real space cutoff

rc by Eq. (5.9). The aim of optimization is to minimize the total execution time

(which is the sum of the real space execution time, TR and the reciprocal space

execution time, TF ), with respect to the real space cutoff rc. Following Fincham

(1994), the execution time TR is calculated as follows. A sphere of cutoff radius

rc contains on average Nrc =
4π

3
r3

c c beads. Each bead interacts with the Nrc

beads that surround it. Since for symmetry reasons, each pair interaction needs

to be considered only once, the execution time is

TR =
1

2
N

4π

3
r3

c c tr (5.13)
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where tr is a constant parameter with a unit of time, and it depends on the code

architecture and on the execution time to evaluate one interaction. Equation

(5.13) is fit to data obtained by running BD simulations for a range of parameters

on a 156 SGI Altix XE 320 cluster, and the fitted parameter tr is then found to be

0.75µs. The execution time TF is evaluated as follows. Within the cutoff Kr, the

volume of the reciprocal space is
4π

3
K3
r =

4π

3

8M6

r3
c

(the latter follows from Eq.

(5.10)). The reciprocal space points are defined by k =
2π

L
(l,m, n) where l,m, n

are integers and L is the simulation box size. The volume of reciprocal space per

point is, thus, (2π/L)3, and
4π

3

8M6

r3
c

L3

8π3
is the number of points in the cutoff

sphere. Using L3 = N/c to highlight the N dependence at fixed concentration c,

the number of reciprocal space points in the cutoff sphere becomes
4π

3

M6

π3

N

cr3
c

.

It is worth pointing out that for fixed cutoff radius, the number of k-space points

increases as N , because the concentration of points in reciprocal space increases

with system size. Further, inversion symmetry of reciprocal space halves the

number of reciprocal space points mentioned above. A sum over the N beads

must be performed for each k-space point, so the execution time is

TF =
1

2

4π

3

M6

π3

N2

cr3
c

tf (5.14)

where tf is a constant parameter with a unit of time, and it depends on the

code architecture and on the execution time to evaluate one term in the sum.

As in the real space instance, Eq. (5.14) is fitted to simulation data to obtain

tf = 0.063µs. The total execution time is consequently

T = TR + TF =
1

2

4π

3

[
N r3

c c tr +
M6

π3

N2

cr3
c

tf

]
(5.15)

Equation (5.15) shows that, for fixed M and rc, TR varies as N , but TF varies

as N2, because of the increasing concentration of points in reciprocal space.
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Figure 5.5: Execution time scaling for the real space and the Fourier space sums for:
(a) Constant rc (b) Constant L/rc
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This behavior is demonstrated for c = 4.44 c? and rc = 10 in Fig. 5.5 (a) for

the simulation data (symbols), which agrees with the expressions given in Eqs.

(5.13) and (5.14) (solid lines). Here c? is the overlap concentration defined by

Nb/

[
4π

3
(R0

g)
3

]
, where R0

g is the gyration radius of a polymer chain in the dilute

limit. To increase the value of N , we fix the value of beads per chain at Nb = 10

and increase the number of chains Nc. Conversely, if rc is increased as the system

size increases in such a way that rc/L is constant (as in the approach adopted

by Stoltz et al. (2006)), then since c = N/L3, TR varies as N2 but TF varies as

N . Fig. 5.5 (b) displays this behavior for Nb = 10, c = 4.44 c?, M = 3.3 and

L/rc = 3. Once again the simulation data is seen to match the expressions given

in Eqs. (5.13) and (5.14). This suggests that by appropriate choice of parameters

it may be possible to achieve better than N2 behavior in the total time T . For a

given accuracy, the only free parameter is rc, since this determines α and hence

K by Eqs. (5.9) and (5.10). To find the value of rc which minimizes the total

execution time, we set dT/drc = 0. This leads to

(
rE

c

)
opt

=
M√
π

(
tf
tr

)1/6
N1/6

c1/3
(5.16)

Thus the optimal choice of the cutoff radius
(
rE

c

)
opt

increases slowly (1/6th power)

with N . The validity of Eq. (5.16) has been verified by carrying out simulations.

Assuming that the quantityN1/6 in Eq. (5.16) is replaced byNx, various values of

the exponent x are selected in place of the exponent 1/6, and the total execution

time for a given value of N is estimated. Figure 5.6 (a) shows the total execution

time as a function of the exponent x and it is clear that the minimum execution

time is achieved when x = 1/6 as given by Eq. (5.16), for all N . Substituting
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(
rE

c

)
opt

in Eq. (5.15) we find for the optimal time

Topt = 2TR = 2TF =
4π

3
N1.5 M3

π1.5

√
tr tf (5.17)

Thus, when the total time is optimized, it is equally divided between the real and

reciprocal space parts of the calculation. This is verified in Fig. 5.6 (b), which

displays plots of TR, TF and T as a function of N , at x = 1/6 and for Nb = 10,

c = 4.44c? and M = 3.3. Symbols indicate simulation data and solid lines

correspond to Eq. (5.17) with the appropriate values for the various parameters.

Equation (5.17) also indicates that the real space, reciprocal space and total

time scale as N1.5. Simulation results shown in Fig. 5.6 (b) substantiate this

prediction. These results are similar to those obtained by Fincham (1994) in the

context of electrostatic interactions.

5.5 Decomposition of the Diffusion Tensor

In component form, the decomposition rule (Eq. (4.2)) for obtaining the block

matrix B can be expressed as follows,

N∑

β=1

3∑

q=1

Brqνβ Bsqµβ = Drsνµ (5.18)

where {ν, β, µ = 1, . . . , N}, {r, q, s = 1, 2, 3}, and Drsνµ is the ‘rs’th Cartesian

component of the tensor Dνµ. The matrix B is not unique. Assuming that B

is a lower (or upper) triangular matrix leads to its calculation using a Cholesky

decomposition of D, which as mentioned earlier in Section 5.1, requires O(N3)

operations. Fixman’s (Fixman, 1986) approach achieves an attenuation of this

CPU intensity by recognizing that (i) it is sufficient to find B approximately, and
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(ii) the individual columns of the matrix B are in themselves not of much interest,

only the vector dS = B ·∆W is required, where ∆W is a vector consisting of

the 3N Gaussian noise coordinates ∆W s
µ, with µ = 1, . . . , N , and s = 1, 2, 3. By

assuming that B =
√
D, and using a Chebyshev polynomial approximation for

the square root function, Fixman showed that (Fixman, 1986; Jendrejack et al.,

2000; Kroger et al., 2000; Prabhakar, 2005)

dS =
√
D ·∆W ≈

NCh−1∑

p=0

cpVp −
c0

2
∆W (5.19)

where NCh is the number of terms used in the Chebyshev polynomial approxi-

mation, cp are the Chebyshev coefficients, and the vectors Vp are defined by the

recurrence relations

Vp = 2Y · Vp−1 − Vp−2 ; p ≥ 2 (5.20)

with V0 = ∆W and V1 = Y · V0. The linear mapping

Y =

(
2

dmax − dmin

)
D −

(
dmax + dmin

dmax − dmin

)
I (5.21)

(where I denotes the 3N × 3N -dimensional identity matrix), ensures that the

eigenvalues of Y lie in the domain [−1, 1] when the eigenvalues of D are within

[dmin, dmax]. This is essential for the validity of the Chebyshev approximation.

It is clear that for a given NCh, the cost of the direct calculation of the 3N -

dimensional vector dS, without the intermediate calculation of B, is proportional

to NCh× [the cost of evaluating Vp]. The number of terms NCh that are required

is determined by the desired accuracy in the estimation of the square root. The

choice of NCh is also affected by the necessity of ensuring that the bounds dmax

and dmin satisfy the following constraints relative to the maximum (λmax) and
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minimum (λmin) eigenvalues of D, namely, dmax ≥ λmax and dmin ≤ λmin.

The CPU cost involved in adopting Fixman’s procedure for dilute polymer

solutions has been discussed in depth in Jendrejack et al. (2000); Kroger et al.

(2000) and Prabhakar (2005). Here, we briefly summarize the main conclusions:

(i) The cost of evaluating Vp is simply O(N2). (ii) The number of terms in

the Chebyshev approximation is determined using the expression (Kroger et al.,

2000; Prabhakar and Prakash, 2004)

NCh = nint

[(
λmax

λmin

) 1
2

]
+ 1 (5.22)

where nint is the nearest integer function. The use of Eq. (5.22) is motivated

by the finding (Fixman, 1986; Jendrejack et al., 2000) that the value of NCh

required to keep the error in the estimation of the square root below a fixed

tolerance, scales as (λmax/λmin)
1
2 . (iii) The limiting eigenvalues λmax and λmin can

be calculated exactly inO(N2) operations using standard software packages—this

procedure was adopted in Jendrejack et al. (2000) with the package ARPACK.

On the other hand, Kroger et al. (2000) and Prabhakar and Prakash (2004) avoid

explicit evaluation of the eigenvalues, but instead obtain approximate estimates

for λmax and λmin. In particular, Prabhakar and Prakash (2004) use the following

expressions based on a suggestion by Fixman (1986)

λFixman
max =

1

3N
(U+ ·D · U+) and λFixman

min =
1

3N
(U− ·D · U−) (5.23)

where U+ is a 3N -dimensional vector, all of whose elements are equal to 1 and U−

is a 3N -dimensional vector with alternating 1’s and −1’s. Further, the bounds

dmax = 2λFixman
max and dmin = 0.5λFixman

min were chosen to satisfy the conditions on the

magnitudes of dmax and dmin relative to the maximum and minimum eigenvalues.

Since for dilute polymer solutions, (λmax/λmin) ∼ N0.5 and consequently NCh ∼

90



5.5. Decomposition of the Diffusion Tensor

N1/4, the CPU time requirement for the calculation of dS in Fixman’s method

scales as NChN
2 ∼ N9/4.

In the case of semidilute polymer solutions, since determining Vp requires

the recursive evaluation of the product of a linear transformation of the diffusion

tensor with various 3N -dimensional vectors (see Eq. (5.20)), the Ewald sum can

be used for its evaluation, with the force vector Fµ in Eq. (5.1) replaced by

the relevant vector in the Chebyshev recursive relationship Eq. (5.20). Thus

the cost of evaluating Vp is identical to the cost of carrying out the Ewald sum.

With the optimization introduced here, this would imply a cost that scales as

O(N1.5). The issues of determining the number of terms NCh, and the maximum

and minimum eigenvalues of D, must also be addressed before the total cost of

Fixman’s procedure in the context of semidilute solutions can be estimated.

As pointed out earlier, it is not necessary to know the diffusion matrix D

explicitly in order to describe the conformational evolution of polymer molecules

in a semidilute solution. However, since Beenakker (1986) provides an expression

for the periodic diffusion tensor Dνµ in his original derivation, it can used to

determine the exact values of the maximum and minimum eigenvalues, denoted

here by λexact
max and λexact

min . By comparing the values given by Eq. (5.23) with the

exact values (obtained with the gsl eigen symm subroutine of the GNU Scientific

Library), we find that the behavior for our semidilute system is quite different

from what is known for single-chain simulations: While in the latter case, λFixman
max

is a reasonable approximation to λexact
max (meaning that it scales in the same way

with the number of beads, with a constant ratio of order unity), we here find that

λFixman
max is essentially independent of N , while λexact

max increases with N , roughly

like N0.6. One such example for these scalings are illustrated in Fig. 5.7 (a). In

other words, Eq. (5.23) provides only a poor approximation. The reason why

the behavior is so different for dilute and semidilute systems is not clear to us;

91



5.5. Decomposition of the Diffusion Tensor

we speculate that it might have to do with the different density distributions

of segments. Nevertheless, we can still use λFixman
max for estimating the maximum

eigenvalue, since we empirically find, for a range of values of c/c?, a, Nb and Nc,

and for a variety of polymer conformations, the relation

λexact
max = 0.35N0.6 λFixman

max (5.24)

which is therefore used to estimate λmax, assuming that it is valid throughout.

An example showing this scaling is plotted in Fig. 5.7 (b). Similarly, we find

empirically that the lowest exact eigenvalue is essentially independent of the

number of segments, i.e.
λexact

max

λexact
min

= C N0.6 (5.25)

where the prefactor C depends on the values of c/c?, a and Nb, increasing with

an increase in a and Nb and decreasing with an increase in c/c?. For instance,

for c = 4.44c?, a = 0.5 and Nb = 10, we find C = 8. The scaling of λexact
max /λ

exact
min

is shown in Fig. 5.8. It follows that in the course of simulations a fairly accurate

estimate of the minimum eigenvalue can be obtained, once λmax is determined, by

using the expression λmin = λmax/(C N
0.6). In general, the value of C is obtained

by trial and error. Once λmax and λmin are determined by this procedure, we find

that it is adequate to use the bounds dmax = λmax and dmin = λmin to ensure a

robust implementation of the Chebyshev polynomial approximation.

With regard to the number of Chebyshev terms, we find that for semidilute

solutions, as in the case of dilute solutions, the value of NCh required to keep

the error in the estimation of the square root below a fixed tolerance, scales as

(λmax/λmin)
1
2 . This immediately suggests from Eq. (5.25) that the CPU time

requirement for the calculation of dS for semidilute solutions using Fixman’s

method scales as NChN
1.5 ∼ N1.8. Equation (5.22) is used here to provide an
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Figure 5.7: Scaling of maximum eigen values with N for c = 4.44c?, a = 0.5 and
Nb = 10 (a) Actual and Fixman maximum eigenvalues (b) Ratio of actual to Fixman
maximum eigenvalues as a function of N
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initial guess for NCh, which is then incrementally increased until the relative

error Ef in the estimation of the square root function, given by the following

expression suggested in Jendrejack et al. (2000),

Ef =

( | (B ·∆W) · (B ·∆W)−∆W ·D ·∆W |
∆W ·D ·∆W

)1/2

(5.26)

is less than a specified tolerance. In practice we find that the choice of C affects

the efficiency with which the final value of NCh is obtained.

5.6 Optimization of Each Euler Time Step

The implementation of the Euler algorithm used here to determine the configura-

tional evolution of the system requires the estimation of the drift term
∑

µ Dνµ·Fµ
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and the diffusion term
∑

µ Bνµ ·∆Wµ at each time step, since the algorithm pro-

ceeds by evaluating the right hand side of Eq. (4.1) for each bead ν in the original

simulation box. As mentioned earlier, determining the latter sum involves the

repeated invocation of the Ewald sum. Since the spatial configuration of the

system is frozen in a single time step, all terms in the Ewald sum that are either

(i) constant, (ii) only dependent on the reciprocal space vector k, or (iii) only

dependent on the spatial configuration, do not have to be repeatedly evaluated.

As a result, it becomes necessary not only to discuss the optimal evaluation and

scaling with system size of the drift and diffusion terms individually (as we have

in Sections 5.4 and 5.5), but also to consider the overall optimization of each

Euler time step.

It turns out that there are two ways in which this optimization can be carried

out. In order to give a flavor of the issues involved, we only discuss here the treat-

ment of the term involving M(1)(rνµ,n) in the Ewald sum (see Eq. (5.8)). The

remaining terms are either treated similarly, or entail a more straightforward

treatment. Clearly, the term involving M(1)(rνµ,n) is first evaluated when the

drift term
∑

µ Dνµ · Fµ is evaluated. Subsequently, it is required that each time

the term D ·Vp ; p = 0, . . . , NCh−1 is evaluated in the Chebyshev polynomial ap-

proximation (see Eqs. (5.20) and (5.21)). For ease of discussion, we denote by Vsµ
the 3N components of a typical vector Vp. Then the term involving M(1)(rνµ,n) in

the implementation of the Chebyshev polynomial approximation can be written

as
∑′

n

∑N
µ=1

∑3
s=1M

rs
νµ,nVsµ, where M rs

νµ,n represents the ‘rs’th Cartesian compo-

nent of the tensor M(1)(rνµ,n). Before discussing the two methods of optimization

used here, it is worth noting the following point that is common to both methods.

For each bead ν, in any periodic image n, the sum over the index µ is carried

out only over the nearest neighbors of bead ν, i.e., over the Nrc particles that

lie within a sphere centered at bead ν with cutoff radius rc. The choice of rc,
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however, is different in the two schemes, as detailed below.

In the first method of optimization, which we denote here as HMA (for “High

Memory Algorithm”), the 3N × 3N matrix Srsνµ =
∑′

nM
rs
νµ,n is calculated once

and for all and stored in the course of evaluating the drift term
∑

µ Dνµ · Fµ.

Note that the cost of evaluating Srsνµ scales as O(N ×Nrc) since in each periodic

image n, only the beads µ whose distance from bead ν is less than a cutoff ra-

dius
(
rHMA

c

)
opt

are considered in the sum over all periodic images. The nature of
(
rHMA

c

)
opt

and the value of Nrc in this context, is discussed in more detail below.

It should be noted that the matrix Srsνµ becomes increasingly sparse when the

system size is increased. While it is therefore possible to save memory by sparse-

matrix techniques (meaning in practice the construction of a Verlet table (Grest

et al., 1989) and making use of indirect addressing), this was not attempted here,

i.e. we stored the matrix with a simple O(N2) implementation. Subsequently,

each time the term D · Vp ; p = 0, . . . , NCh − 1 is calculated in the Chebyshev

polynomial approximation, the O(N2) matrix multiplication
∑N

µ=1

∑3
s=1 S

rs
νµVsµ

is carried out. Again, a sparse matrix implementation might be able to reduce

this computational complexity. Ultimately this term dominates and the total

CPU cost of this scheme scales as O(NCh ×N2). For systems that are not suffi-

ciently large, the CPU cost might lie in the crossover region between O(N ×Nrc)

(the cost for the deterministic drift) and O(NCh ×N2).

The reason that
(
rHMA

c

)
opt

is different from the cutoff radius
(
rE

c

)
opt

(calcu-

lated earlier for just the evaluation of the Ewald sum) is because in the HMA

algorithm a different procedure is used in the repeated evaluation of the Ewald

sum, with certain quantities being calculated once and for all and stored. By re-

peating the procedure adopted earlier for optimizing the bare Ewald sum, namely,

by estimating the total time required to evaluate the various quantities in the

real space and reciprocal space sums, we find for the CPU time for one step in
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nanoseconds

THMA/ns = 30N(N − 1) + 1500N r3
cc

+ 23N2(2 +NCh) + 0.67
M6

r3
cc
N2 (9.2 + 4.2NCh) (5.27)

where the constants reflect the various execution times for individual terms on a

156 SGI Altix XE 320 cluster. Minimizing this with respect to the cutoff radius

leads to
(
rHMA

c

)
opt

=
M

2c1/3
[0.25N + 0.12NNCh]1/6 (5.28)

It turns out that
(
rHMA

c

)
opt

>
(
rE

c

)
opt

. This is because a major part of the real

space calculation of
∑′

n M(1)(rνµ,n) and M∗(rνµ,n = 0) is not repeated NCh times

in the HMA, leading to a cheaper real space implementation. As a result, the

optimization procedure allows the HMA to attribute a greater computational

load to the real space sum relative to the reciprocal space sum by having a larger

cutoff radius than
(
rE

c

)
opt

. In contrast to the bare Ewald sum, where Nrc ∼ N0.5,

we find empirically that in the HMA, Nrc ∼ N0.7. It is clear from Fig. 5.9 (a)

that the CPU time for HMA scales as O(N2.1) when the simulation is run at a

cutoff radius of
(
rHMA

c

)
opt

, with the empirically estimated exponent 2.1 lying in

the crossover regime discussed earlier. Fig. 5.9 (a) also indicates that the CPU

cost is greater when
(
rE

c

)
opt

is used in the HMA, confirming the necessity to

optimize the total procedure for evaluating a single Euler time step rather than

using the cutoff radius obtained from the Ewald sum optimization.

The major difference from the HMA, in the alternative method of optimiza-

tion used here (denoted by LMA for “Low Memory Algorithm”), is the treatment

of the sum
∑′

n

∑N
µ=1

∑3
s=1M

rs
νµ,nVsµ. While many quantities, such as those that

are constant, or only functions of the reciprocal space vector k, are still calcu-

lated and stored once and for all when the drift term
∑

µ Dνµ · Fµ is evaluated,
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Figure 5.9: CPU time scalings for (a) HMA (b) LMA. Symbols represent simulations
results, and the lines are analytical estimates for the total time.

98



5.6. Optimization of Each Euler Time Step

the 3N × 3N matrix Srsνµ is not stored. Instead, the following two steps are

carried out: (i) For a given bead index ν and periodic image n, the quantity

T rν,n =
∑N

µ=1

∑3
s=1M

rs
νµ,nVsµ is evaluated, ensuring that only those beads µ that

lie within a cutoff radius
(
rLMA

c

)
opt

of bead ν are considered in the sum over µ.

Note that for each bead µ, the sum over s involves a simple (3×3)×(3×1) matrix

multiplication. (ii) The sum
∑′

n T
r
ν,n over periodic images n is then performed

to obtain the required quantity in the Ewald sum.

Since, even in the LMA, some quantities are stored during the evaluation

of the drift term
∑

µ Dνµ · Fµ, we can optimize the entire process involved in

executing one time step in the Euler algorithm by choosing the appropriate cutoff

radius. Adopting the procedure described earlier, we find for the CPU time per

step in nanoseconds

T LMA/ns = 1200 r3
ccN(1 +NCh) + 2

M6

r3
cc
N2 (1.8 + 1.5NCh) (5.29)

(
rLMA

c

)
opt

=
M

2c1/3

[
0.18N + 0.15NNCh

1 +NCh

]1/6

(5.30)

Fig. 5.9 (b) compares the CPU cost involved when either the cutoff radius
(
rLMA

c

)
opt

or
(
rE

c

)
opt

is used in the LMA. The reason that
(
rLMA

c

)
opt

and
(
rE

c

)
opt

are nearly equal to each other is because practically all the time consuming parts

of the Ewald sum are calculated repeatedly NCh times in the LMA. As a result,

in contrast to the HMA, the saving achieved by storing some quantities does not

make a significant difference to the choice of cutoff radius. Unlike the HMA,

there is no large storage requirement in the LMA, as shown in Fig. 5.10 (a),

where it is seen to scale as O(N) for sufficiently large N . Further, the CPU

cost scales as O(NCh × N × Nrc), which is identical to the scaling for the basic

Ewald sum, namely, O(N1.8) as can be seen in Fig. 5.10 (b). On the other hand,

since Srsνµ is not stored, the components M rs
νµ,n are repeatedly evaluated in each
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Figure 5.10: Comparison between HMA and LMA for (a) Computer memory re-
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of the recursive Chebyshev calculations. This extra calculation leads to a large

pre-factor in the scaling of the CPU with N . However, at N ∼ 35000 a crossover

in the CPU cost can be seen to occur, suggesting that it is advisable to use HMA

below a system size of roughly 35000, while the LMA would be cheaper for larger

systems.

5.7 Testing and Verification of the Algorithm

The optimized BD algorithm developed here is validated by testing and verifi-

cation under both θ solvent and good solvent conditions. In the former case,

we first check to see if static equilibrium properties, namely, the gyration radius

and the end-to-end vector, agree with known analytical results. Secondly, the

current implementation of the Ewald sum for hydrodynamic interactions (which

enables its use even in simulations that do not incorporate excluded volume inter-

actions) is tested by comparing the prediction of the infinite dilution equilibrium

self-diffusion coefficient, which is a dynamic property, with the results of a BD

simulation of single chain dynamics. As mentioned in Section 5.1, Pham et al.

(2009) have recently quantitatively compared the predictions of the explicit sol-

vent LB/MD method with the predictions of the implicit solvent BD method

for the dynamics of a single chain under good solvent conditions in the dilute

limit. A natural follow up of the development of the current BD algorithm is to

compare the two methods at finite concentrations under good solvent conditions.

Here we carry out our study by comparing the predictions of the radius of gy-

ration, the end-to-end vector, and the self-diffusion coefficient. This serves both

to verify the predictions of the current algorithm in a regime where there are no

analytical predictions, and to obtain an estimate of the relative computational

costs of the two mesoscopic simulation methods in the semidilute regime.
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The mean-square end-to-end distance is given by

〈R2
e〉 = 〈(rNb − r1)2〉 (5.31)

while the mean-square radius of gyration is given by

〈R2
g〉 =

1

2N2
b

Nb∑

µ=1

Nb∑

ν=1

〈r2
µν〉 (5.32)

with rµν = |rν−rµ| being the inter-particle distance. The long-time self-diffusion

coefficient is calculated by tracking the mean-square displacement of the centre

of mass rc of each chain

D = lim
t→∞

〈
|rc(t)− rc(0)|2

6t

〉
(5.33)

The predictions of the gyration radius, the end-to-end vector, and the self-

diffusion coefficient by the current algorithm under θ solvent and good solvent

conditions, and their verification by various means, are discussed in turn below.

5.7.1 θ solvents

The mean-square end-to-end distance and the mean-square radius of gyration

at equilibrium were obtained by carrying out simulations of bead-spring chains

with Hookean springs, using Nb = 20 and 40 and a fixed number of chains

Nc = 20. The nondimensional bead radius a was chosen to be 0.5, and a time step

∆t = 0.01 was used to carry out the Euler integration. A range of concentrations

from 3× 10−4 c? to 3 c? were considered, with the concentration being varied by

changing the size of the simulation box L. Since the chains are free to cross

each other for θ solvents, static properties such as the end-to-end distance and
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the gyration radius are independent of concentration. Further, as is well known,

their dependence on Nb can be shown analytically to be Bird et al. (1987)

〈R2
e〉 = 3(Nb − 1) (5.34)

and

〈R2
g〉 =

N2
b − 1

2Nb

(5.35)

Note that c? can be determined once a choice for Nb is made. Figs. 5.11 (a)

and (b) display the results for 〈R2
e〉 and 〈R2

g〉, respectively, for the range of con-

centrations considered here. Symbols indicate simulation data, while solid lines

represent the analytical results given by Eqs. (5.34) and (5.35). Clearly, the

simulated static properties are in good agreement with analytical predictions.

The single chain diffusion coefficient in a dilute solution under θ solvent con-

ditions is used here as the benchmark for verifying the current implementation of

the Ewald sum. The value of the diffusion coefficient for Nb = 20 and a = 0.5 is

displayed as the solid line in Fig. 5.12, obtained here by a conventional BD sim-

ulation algorithm that uses a semi-implicit predictor corrector scheme developed

in our group for simulating a single chain that is not confined in a box (Prab-

hakar and Prakash, 2004). For the same set of input simulation parameters, the

long-time diffusivity is obtained from the current multi-chain BD algorithm for

a range of concentrations. It is clear from Fig. 5.12 that the simulated data

(symbols) for the diffusivity D approaches the single-chain result in the limit of

zero concentration. The value of D at c/c? = 0 was obtained by fitting the values

at c/c? = 0.001, 0.003 and 0.01 with a second order polynomial and extrapolating

to zero concentration.
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Figure 5.11: Validation of static properties under θ-conditions: (a) Mean-square
end-to-end distance 〈R2

e〉 (b) Mean-square gyration radius 〈R2
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simulation data, while solid lines represent the analytical results given by Eqs. (5.34)
and (5.35).

104



5.7. Testing and Verification of the Algorithm

!" # !" $ !" % !" ! !"" !"!
"&"!

"&"%

"&"$

"&"#

"&"'

"&"(

c/c*

)
*

+,-./01234,-15,6678,9,:;

<=:>4?@/4:05194/70

D

Figure 5.12: Long-time self-diffusion coefficient under θ solvent conditions. Sym-
bols indicate simulation data obtained with the current multi-chain algorithm,
while the solid line represents the value obtained by simulating the dynamics of
a single chain in a dilute solution. The circle symbol on the y-axis is the value
obtained by extrapolating the finite concentration results to the limit of zero
concentration.

5.7.2 Good solvents

In order to carry out a quantitative comparison between the LB/MD and BD

methods, it is necessary to ensure that the underlying polymer model is iden-

tical for both the methods, and to map the input parameters of the hybrid

model onto the input values of the BD model. A detailed discussion of how

this can be achieved in the context of dilute solutions has been given in Pham

et al. (2009). Exactly the same procedure has been adopted here as discussed

in Appendix E. In particular, Appendix E discusses (i) the mapping of different
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simulation parameters between BD and LB/MD, and (ii) the procedure to run

LB/MD simulations using an open source software ESPResSo (Extensible Sim-

ulation Package for Research on Soft matter). Essentially, a bead-spring chain

with FENE springs is used, with a Weeks-Chandler-Andersen potential, which

acts between all monomers, employed to model the excluded volume (EV) ef-

fect. While in the LB/MD simulation approach, the Weeks-Chandler-Andersen

parameters are used to define the units of energy, length, and time, the corre-

sponding units in the BD simulations have been discussed earlier in Section 4.2.

Appendix E discusses the details of the length and time unit conversions between

the two methods. The comparison of the two methods proceeds by first picking

the simulation parameters for the LB/MD model, using these for the LB/MD

simulations, then converting them to BD units using the procedure outlined in

Pham et al. (2009) and Appendix E, and finally running the equivalent BD model

obtained in this manner. In other words, the two units systems are maintained

in the respective methods, and a comparison of predicted quantities carried out

a posteriori.

The results of carrying out this procedure for 〈R2
e〉, 〈R2

g〉 and D are shown in

Table 5.1 for Nb = 10 at three different concentrations. It is worth noting that,

since EV interactions are short-ranged, we have implemented a neighbor-list in

the current BD algorithm for computing the pairwise summation of EV interac-

tions, with a cutoff radius equal to the range of the Weeks-Chandler-Andersen

potential. All values are reported in BD units, unless specified otherwise.
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5.8. Comparison of Computational Cost with LB/MD

We find it convenient to maintain the same absolute concentration in the

two methods rather than the same c/c?, as this would entail an interpolation

procedure. In the BD method, c? is determined from 〈R2
g〉 in the dilute limit, by

carrying out a single-chain simulation for parameter values that are identical to

those in the multi-chain BD simulation. In the LB/MD method, simulations are

carried out for three box sizes, L = 12, 17 and 21, with the number of monomers

held fixed (we use Nc = 20 and Nb = 10). As a result, the monomer concentra-

tion decreases with increasing box size. The values of 〈R2
g〉 obtained for these

three box sizes are extrapolated to infinite box size in order to determine 〈R2
g〉

(and consequently c?) in the dilute limit.

It is clear from Table 5.1, both in the dilute limit, with regard to values of

c/c?, and at all three finite concentrations, with regard to values of 〈R2
e〉, 〈R2

g〉
and D, that there is excellent agreement between the two mesoscopic simulation

methods, since all properties agree with each other within error bars. This vali-

dates the current algorithm in a regime where there are no analytical solutions.

Further, it demonstrates the robustness of the parameter mapping technique

developed by Pham et al. (2009) for comparing the two simulation methods.

5.8 Comparison of Computational Cost with

LB/MD

Recent comparison by Pham et al. (2009) of the predictions of the explicit solvent

LB/MD method with the predictions of the implicit solvent BD method for the

dynamics of a single chain indicated that in the dilute limit, BD is the method of

choice as it is significantly more efficient than LB/MD. However, Fig. 5.13 sug-

gests that for our current implementation the situation is quite the reverse at the

finite concentration, c/c? = 1.2, at which the simulation data in the figure were
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5.8. Comparison of Computational Cost with LB/MD

obtained. The comparison of the two mesoscopic simulation methods displayed

in Fig. 5.13 was carried out using the identical procedure developed earlier by

Pham et al. (2009). Essentially, the LB/MD method was run for a total of 100
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Figure 5.13: Comparison of the CPU time required by the LB and BD systems
for a wide range of system sizes N , at concentration c/c? = 1.2, for the equivalent
of one LB time unit.

MD time steps (with a step size of 0.01 in LB units, or 0.018 in BD units). This

amounts to a total simulation time of one time unit in terms of LB units. The

BD algorithm was then run for the same length of physical time, by converting

one LB time unit to BD time units. The BD algorithm required a significantly

smaller time step of 10−4 in BD units. The reason for this choice is because the

current implementation uses a simple Euler integration scheme, with a rejection

algorithm that ensures that none of the springs in any of the bead-spring chains

exceeds the upper limit of the FENE spring length
√
bp. In contrast, the ear-

lier comparison of the two methods in the dilute limit was based on a BD code
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5.8. Comparison of Computational Cost with LB/MD

that uses a semi-implicit predictor-corrector method, enabling the use of a much

larger step size of 5 × 10−3 BD units. The dependence of CPU time on system

size was examined here by increasing the number of chains Nc, while keeping the

number of beads in a chain fixed at Nb = 10. The concentration was maintained

constant at c/c? = 1.2 (or c = 0.031 in BD units) by increasing the box size

L suitably. Since the difference between the HMA and LMA BD algorithms is

insignificant on the scale of the difference between LB/MD and BD, only results

for the LMA are shown in Fig. 5.13.

The CPU time scaling of the LMA algorithm has been established in Sec-

tion 5.6 to be N1.8. From Eqs. (5.29) and (5.30) one immediately sees that

after optimization the CPU time depends only on the particle number N , but is

independent of the concentration c (or the system volume V ):

T LMA(N, V ) = γLMAN1.8 (5.36)

with some proportionality constant γLMA. Conversely, the LB/MD method is

dominated by the CPU effort of the solvent, i.e.

T LB(N, V ) = γLBV = γLBN

c
(5.37)

with another constant γLB. Hence

T LMA

T LB
=
γLMA

γLB
cN0.8 (5.38)

From our CPU timings we find a value γLMA/γLB = 1.3×104 in BD units, i.e. our

current implementation of Ewald BD becomes competitive with LB/MD only if

the concentration is below the very small value 7.8× 10−5 ×N−0.8.

However, it should be noted that the present version is by far not the fastest
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conceivable BD code. Firstly, we expect that by implementing an implicit in-

tegrator the time step may be increased by nearly two orders of magnitude.

Secondly, the evaluation of the real space HI should be substantially faster (both

in the LMA and HMA versions) by making use of Verlet tables. Thirdly, the

HMA algorithm could then take advantage of sparse-matrix techniques (see also

the discussion in Section 5.6). Finally, the evaluation of the Fourier part can be

speeded up by making use of Fast Fourier Transformation, which, as shown pre-

viously, gives rise to a complexity of the total algorithm of O(N1.3 logN) (Sierou

and Brady, 2001; Banchio and Brady, 2003). All together, achieving accelera-

tions by up to three orders of magnitude does not seem unrealistic.

5.9 Conclusions

A range of issues related to the development of an optimized BD algorithm for

simulating the dynamics of semidilute solutions in unbounded domains has been

considered here. In particular:

1. It is possible to develop an optimized Ewald method for hydrodynamic

interactions that splits the cost of evaluating the real space and reciprocal

space sums evenly, leading to a CPU cost that scales as N1.5, rather than

the N2 scaling that would result from a straightforward implementation.

2. While Beenakker’s original implementation of the Ewald sum is only valid

for systems without bead overlap, it can be modified to account for bead

overlap, such that θ-solutions can be simulated by switching off excluded

volume interactions.

3. As in the case of dilute solutions, the number of Chebyshev terms required

to maintain a desired accuracy scales as (λmax/λmin)
1
2 , where λmax and λmin
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are the maximum and minimum eigenvalues of the diffusion tensor D. It

is shown that this leads to an additional computational load that scales as

N0.3.

4. It is necessary to consider the optimization of the overall time required to

perform one Euler time step, in addition to the individual optimizations of

the Ewald sum and Chebyshev polynomial approximation. In this context,

two different schemes for optimization have been proposed in the form

of the “high memory” (HMA), and the “low memory” (LMA) algorithms.

While the LMA leads to an overall CPU time scaling of N1.8, which appears

better than the N2.1 scaling of the HMA, the large prefactor in the former

makes it preferable only for large systems with more than roughly 35,000

particles.

5. The optimized BD algorithm gives accurate predictions under both θ and

good solvent conditions. In the latter case, BD predictions are compared

with those of the LB/MD method. The parameter mapping scheme devel-

oped by Pham et al. (2009) for dilute solutions is found to be valid and

useful even at a finite concentration in the semidilute regime.

6. In contrast to dilute solutions, where BD was shown to be significantly

more computationally efficient than LB/MD (Pham et al., 2009), exactly

the opposite is true for semidilute solutions. The CPU cost of the BD

method scales as N1.8, while the cost of the LB/MD method scales linearly

with system size. The necessity of carrying out an Ewald sum renders the

BD method developed here significantly more computationally expensive

than LB/MD. Nevertheless, it should be noted that the BD method can

be further refined and dramatically speeded up, as discussed at the end of

Section 5.8.
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Chapter 6

Dynamic Crossover Scaling in

Semidilute Polymer Solutions

6.1 Introduction

This chapter aims to verify the scaling arguments developed in Chapter 3, using

the Brownian dynamics simulation algorithm discussed in Chapter 5. Broadly,

this chapter attempts to validate the two important conclusions of the scaling

analysis with the help of computer simulations:

1. The existence of universal crossover scaling functions in the solvent quality

driven crossover region.

2. The suggestion that there is only a single crossover scaling function from

which others can be inferred.

These conclusions can be validated by carrying out simulations for the different

crossover scaling functions such as φR and φD for a range of c/c? and z. In order to

perform simulations for these crossover scaling functions for semidilute polymer

solutions and verify their universality, it is necessary to consider sufficiently long
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6.2. Extrapolation Procedure and the Single Chain Diffusivity

chains. However, due to the limitation in the computational speed of the current

algorithm, it is not possible to perform simulations for very long chains. A

discussion of the CPU costs involved in such simulations is given in Appendix

C. Nonetheless, simulations for smaller chains can be carried out and the results

can be extrapolated to the infinite chain limit (Nb →∞).

The structure of the rest of this chapter is as follows: In Section 6.2, the

extrapolation procedure used here is described and the means by which we decide

universality is discussed. Section 6.3 discusses the results of the double crossover

studies, and establishes the scaling laws in the crossover region. Section 6.4

addresses the issue of the existence of a single crossover scaling function from

which others can be inferred. Finally, the findings of this chapter are summarized

in Section 6.5. The work presented in this chapter has been published in Jain

et al. (2012).

6.2 Extrapolation Procedure and the Single Chain

Diffusivity

In order to observe the behavior of semidilute polymer solutions, it is necessary

to simulate long enough polymer chains. In this work, results in the infinite

chain limit are obtained by an extrapolation procedure. The example of the

ratio D/DZ (which is the ratio of the single chain diffusion constant at a finite

concentration to its value in the dilute limit) is used here to illustrate the proce-

dure. The asymptotic result for D/DZ at any value of z and c/c? is obtained by

accumulating finite chain data for D/DZ from BD simulations, and subsequently

extrapolating to the limit Nb →∞. For example, the red circles in Fig. 6.1 rep-

resent D/DZ data for z = 0.7, c/c? = 3 and hydrodynamic interaction parameter

h? = 0.28 for various values of Nb. Mean values and error bars of D for all values
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6.2. Extrapolation Procedure and the Single Chain Diffusivity

of Nb are estimated using the procedure discussed in Appendix A. The reason

for choosing 1/
√
Nb as the x axis is justified shortly. The finite chain data are

extrapolated to 1/
√
Nb → 0 limit with the help of a “Least-Squares Fitting” nu-

merical routine, which is discussed in Appendix D. This routine, which accounts

for the error bars at each finite size data point, also reports the error bar on the

extrapolated data.

Kroger et al. (2000); Prakash (2001a); Kumar and Prakash (2003); Sunthar

and Prakash (2005, 2006) found, for a single chain, that the extrapolation of

finite chain data leads not only to asymptotic predictions at constant z, but

also to values independent of the choice of h∗. This independence from the

choice of a microscopic simulation parameter was taken to indicate the existence

of universality. In their extrapolation analysis, they considered the x axis as

1/
√
Nb, which was motivated by the fact that the leading order corrections to

the infinite chain length limit, of various material properties, is of order 1/
√
Nb.

A similar behavior appears to hold true for semidilute polymer solutions as

well, by considering the x axis as 1/
√
Nb. The red asterisks in Fig. 6.1 represent

data for the same values of z = 0.7 and c/c? = 3 but for a different value of

h? = 0.15. As can be seen in Fig. 6.1, the error bars on the extrapolated

values are large because of a conservative estimation of the error (see Appendix

D). However, as the extrapolated data for h? = 0.28 and 0.15 are very close to

each other, we consider the prediction of D/DZ in the infinite chain limit to be

independent of h?. Fig. 6.1 shows another data set for z = 1.7 and c/c? = 2 using

blue symbols, and here also the results in the infinite chain limit are independent

of h?. This clearly indicates that the extrapolated value is a universal value

independent of the choice of the simulation parameter h?.

Apart from the hydrodynamic interaction parameter h?, there is another ar-

bitrary parameter which arises from the use of the narrow Gaussian potential
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Figure 6.1: Universal predictions of the ratio of the single chain diffusion constant
D (at a finite concentration c/c?), to its value in the dilute limit DZ, at two values
of the solvent quality z = 0.7 and z = 1.7. Data accumulated for finite values of
chain length Nb (symbols) for two different values of h? extrapolate to a unique
value in the limit Nb →∞.

for excluded volume interactions. For a given value of solvent quality z, the

parameters used in the narrow Gaussian potential are (i) z? = z/
√
Nb and (ii)

d?. Note that z? is determined once a choice for z and Nb is made. The param-

eter d? can be chosen arbitrarily. For reasons elaborated in Kumar and Prakash

(2003), instead of d?, we choose to pick a value for the constant K, and then

determine d? from the relation d? = Kz?1/5. It has been shown previously by

Kumar and Prakash (2003) that, for a given z, the results extrapolated in the

limit Nb →∞ are independent of the particular choice of K. This finding turns

out to be true for semidilute solutions as well. We carried out simulations for

fixed values of z = 1.7 and c/c? = 2.5, and varied d? according to d? = Kz?1/5,
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6.2. Extrapolation Procedure and the Single Chain Diffusivity

with three different values of K. It is clear from Fig. 6.2 that the extrapolated

results are essentially independent of K. Therefore, it can be concluded that

0 0.1 0.2 0.3 0.40.2

0.25

0.3

0.35

0.4

N
−1/2
b

D
/
D

Z

 

 

d! = Kz!1/5

Extrapolated values

K = 1
K = 1.5
K = 3

Figure 6.2: Extrapolated values of D/DZ are independent of K for z = 1.7 and
c/c? = 2.5.

the extrapolation procedure not only provides the result for infinite chains but

also leads to parameter free predictions that can be used to directly compare

with experimental data. In this work, data accumulated for chains ranging from

lengths Nb = 6 to Nb = 20 have been extrapolated to the limit Nb →∞.

6.2.1 Comparison with experimental data

The main advantage of obtaining parameter free predictions in the long chain

limit is that the extrapolated values of D/DZ can be directly compared with ex-
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6.2. Extrapolation Procedure and the Single Chain Diffusivity

perimental data. The self diffusion coefficientD was first measured by Marmonier

and Leger (1985) for polystyrene in Benzene (good solvent) for different concen-

trations and molecular weights using forced Rayleigh light scattering. They also

measured D at very low concentrations, which corresponds to DZ. As a result,

the ratio D/DZ obtained from BD simulations can be compared with experi-

mental D/DZ data. Fig. 6.3 (a) shows the simulation results for various values

of z, along with the experimental data for a good solvent system for a range of

molecular weights (ranging from 78000− 750000). Colored symbols indicate the

simulation results and black symbols represent experimental data. We conjecture

that the disagreement between simulation results and experimental observations

may be due to two reasons. Firstly, the overlap concentration c? used by Mar-

monier and Leger (1985) is based on the following definition: c? =
Nmmvs
NA (R0

g)
3
,

where Nm is the number of monomers in a chain, m is the molar weight of a

monomer, vs is the partial specific volume and NA is the Avogadro number.

Marmonier and Leger (1985) deduced the values of vs from Pouyet et al. (1976),

for polystyrene in Benzene for a range of molecular weights. This definition of

c? does not have the factor of 4π/3 in the denominator which is included in the

definition used here for c?.

Secondly, Marmonier and Leger (1985) do not report the values of R0
g used

in their paper but rather provide reference to an unpublished PhD thesis. We

are consequently unable to compare with simulation results for R0
g. For these

reasons, the value of c/c? reported by Marmonier and Leger (1985) could be

different from simulation values at the same absolute concentration c.

In addition, there is another noteworthy aspect to the experimental data

obtained by Marmonier and Leger (1985). In general, the semidilute regime is

considered to span the range 1 ≤ c/c? < 10 in neutral linear polymer solutions.

According to scaling theory, the diffusivity in the semidilute regime scales as
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Figure 6.3: Comparison of experimentally found D/DZ data with BD simulation
results: (a) Experimental data disagree with simulation results (b) Shifting the exper-
imental x axis by a factor of 2.5 leads to agreement between the experimental data
and simulation results
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(c/c?)−0.54 in good solvents. The experimental data of Marmonier and Leger

(1985) however suggests that the onset of this scaling occurs at a much lower

value of c/c?.

We can bring experimental data and similar results much closer to each other,

as shown in Fig. 6.3 (b) by applying a horizontal shift factor of 2.5 to the

experimental data. Given the uncertainty in the experimental value of c/c?, this

is perhaps not completely unreasonable. It would be worthwhile revisiting the

problem of measuring the diffusivity in semidilute solutions and carrying out

detailed comparisons in the entire crossover regime.

6.3 Universal Crossover Scaling Functions

In this section, the question of the form of the universal scaling function in

the crossover regime is addressed with the help of simulation results for universal

crossover scaling functions φR(c/c?, z) and φD(c/c?, z). These results are obtained

by carrying out a careful Brownian dynamics simulations of short chains and then

extrapolating the short chain results to infinite size chains as discussed in Section

6.2. Simulations to explore the solvent quality crossover have been carried out

by keeping the value of z constant at four different values: {0, 0.7, 1.7, 3}, with

z = 0 corresponding to θ-solutions. At each fixed value of z, a range of c/c?

from 0.1 to 4 have been used to sample both the dilute and semidilute regimes.

The overlap concentration c? is calculated from c? = Nb/
[
(4π/3)R0

g
3
]
, where

R0
g is computed apriori by running single-chain BD simulations. The box size

L is selected to ensure L ≥ 2Re, in order to prevent a chain from wrapping

over itself. For this purpose, the value of Re at any value of c/c? is estimated

from the blob scaling law Re = R0
e (c/c?)(2ν−1)/(2−6ν) where R0

e is the end-to-end

distance of a chain computed in the dilute limit. Typical simulations consist of an
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equilibration run for approximately one relaxation time followed by a production

run whose length varies from 10 to 60 relaxation times; here, the relaxation time

τ1 was estimated via τ1 = R2
g/(6D). Moreover, data were obtained by averaging

over 30 − 70 independent runs. Some examples of the simulation parameters

used in this study are shown in Table 6.1. The resulting crossover scaling

z c/c? Nb L Nc Simulation length

0.1 10 23.4 28 68.2 τ1

0 1 20 15.1 27 12.9 τ1

4 16 13.4 103 10.2 τ1

0.1 8 24.3 32 44.7 τ1

0.7 1 10 14.9 51 28.7 τ1

4 14 12.2 64 9.8 τ1

0.1 10 30.5 34 20.5 τ1

1.7 1 18 20.4 38 12.8 τ1

4 14 13.5 67 10 τ1

0.1 10 30.1 27 28.3 τ1

3 1 6 10 25 26.7 τ1

4 16 15.8 69 12.7 τ1

Table 6.1: Some examples of simulation parameters used in obtaining universal
crossover scaling functions.

functions φR(c/c?, z) and φD(c/c?, z) are shown in Figs. 6.4 and 6.5, where the

mean polymer size R is Rg. The data are limited to the crossover region where in

principle none of the power laws of Table 3.2 hold. Since the observation regime

is small, it is nevertheless possible to fit a power law to the data (without deeper

theoretical justification). This gives rise to a convenient description in terms of

an effective empirical exponent νeff (see Table 6.2 and Fig. 6.4 for the values of

νeff), which is obtained by adjusting the value of ν in the scaling laws of regime

C of Table 3.2 to the observed slope for φR. Since the crossover scaling functions

are related to each other (see below), each crossover yields the same value for

νeff. For instance, in Fig. 6.5, lines are drawn, on top of φD data, based on the
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Figure 6.4: Concentration dependence of the crossover scaling function φR in the
semidilute regime, for different values of solvent quality z, obtained by Brownian
dynamics simulations. The effective exponents νeff have been determined by
fitting power laws to the data φR ∝ (c/c?)−p and requiring p = (2νeff−1)/(6νeff−
2), according to Table 3.2 in regime C.

z νeff

0 0.5
0.7 0.54 ± 0.02
1.7 0.58 ± 0.03
3 0.63 ±0.03

Table 6.2: Values of νeff for various z, found by adjusting the value of ν in the
scaling laws of regime C of Table 3.2 to the observed slope for φR
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Figure 6.5: Concentration dependence of the crossover scaling functions φD in the
semidilute regime, for different values of solvent quality z, obtained by Brownian
dynamics simulations. Using the values of effective exponents for φR, lines are
drawn according to φD ∝ (c/c?)−q with q = (1 − νeff)/(3νeff − 1). φD data for
z = 0 are omitted because of large statistical errors.

slopes (or effective exponents) obtained for φR. Moreover, consistency with the

asymptotic laws requires that νeff varies between 0.5 and 0.6.

A similar crossover scaling behavior is observed by Pan, Nguyen, Sunthar,

Sridhar & Prakash (Pan et al.) for φη(c/c
?, z) from measurements of zero-shear

rate viscosity ηp for semidilute DNA solutions (see Fig. 6.6). In their experimen-

tal studies, they performed static and dynamic light scattering measurements on

double-stranded DNA molecules, ranging in length from 3 to 300 kilobase pairs,

to obtain the values of z and the theta temperature. Further, the parameter c/c?
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Figure 6.6: Concentration dependence of the crossover scaling functions φη in
the semidilute regime, for different values of solvent quality z, obtained from
rheological measurements on DNA solutions performed by Pan, Nguyen, Sunthar,
Sridhar & Prakash (Pan et al.). Using the values of effective exponents for
φR, lines are drawn according to φη ∝ (c/c?)r with r = 1/(3νeff − 1). This
experimental data is reproduced with permission from Pan, Nguyen, Sunthar,
Sridhar & Prakash (Pan et al.).

defined in their study is identical to the definition used in our simulations. This

allows a decent comparison with simulation results for various values of c/c? and

z.

While we have not obtained predictions of ηp due to computational limita-

124



6.4. The Existence of a Single Universal Crossover Scaling Function

tions, we can still compare our prediction of the scaling in the double crossover

regime with experimental measurements. The lines shown in Fig. 6.6 are based

on νeff obtained from simulations for φR at the corresponding values of z. Clearly,

the predicted scaling at each value of z agrees remarkably well with experimental

observations. As we shall see in the next section, this corroborates the expecta-

tion that there is only one scaling function.

6.4 The Existence of a Single Universal Crossover

Scaling Function

As discussed in Chapter 3, the combination of crossover scaling functions to-

gether in certain specific ways leads to very simple functional dependences in the

(c/c?, z) phase diagram, as displayed in Table 3.2. In this section we validate

these predictions of scaling theory with BD simulations.

Figure 6.7 examines the validity of the scaling prediction that the combination

(c/c?)1/4 φR φ
1/4
D = 1 in the entire semidilute regime, while it is proportional to

(c/c?)1/4 in the dilute limit. It is clear from the Fig. 6.7 that indeed the functions

φR and φD, which have been obtained by BD simulations in the long-chain limit,

when combined as suggested by scaling theory lead to the predicted functional

dependence in the two regimes, respectively.

Figure 6.8 examines the validity of the scaling prediction that the combination

(c/c?)1/3 φR φ
−1/6
η = 1 in the semidilute regime, while it scales as (c/c?)1/6 in

the dilute regime. We have obtained φη from the experimental measurements

reported in Pan, Nguyen, Sunthar, Sridhar & Prakash (Pan et al.), and φR from

BD simulations as discussed previously. Clearly in this case as well, the scaling

predictions are well substantiated. The departure of data from the (c/c?)1/4 and

(c/c?)1/6 curves for values of c/c? ≈ 1 in Figs. 6.7 and 6.8 can be attributed to
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Figure 6.7: Demonstration that the combination (c/c?)1/4 φR φ
1/4
D = 1 in the

semidilute regime and scales as (c/c?)1/4 in the dilute regime. Here, z = 0 data
are omitted because of large statistical errors.

the fact that these data are in the crossover region between dilute and semidilute,

while the expression is strictly valid in the dilute limit.

Clearly, the knowledge of a single two-argument scaling function is sufficient

to describe the entire double crossover regime in polymer solutions, since the

other scaling functions can be obtained from the scaling combinations. Due to

the universality of our results, these arguments should be broadly applicable to

a large class of experimental systems.

Apart from polymer size and diffusivity, we have also studied the intra-chain
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Figure 6.8: Demonstration that the combination (c/c?)1/3 φR φ
−1/6
η = 1 in the

semidilute regime and scales as (c/c?)1/6 in the dilute regime.

static structure factor of semidilute polymer solutions for a range of c/c? and z,

which is discussed in Appendix F.

6.5 Conclusions

The double crossover behavior for various physical properties was examined in

semidilute polymer solutions with the help of Brownian dynamics simulations.

Following are the key findings of this study:
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1. Because of the high CPU cost, the current algorithm is restricted in simu-

lating chains of up to 20 beads. However, an extrapolation technique can

be used to circumvent the problem.

2. The extrapolation procedure was used to elucidate universal behavior. It

was shown that, in the limit of infinite size chain, parameter free predictions

are obtained that can be directly compared with experimental data.

3. Universal crossover scaling functions φR, φD and φη defined in terms of c/c?

and z were obtained. In particular, the blob scaling relationships, that are

valid only for very good solvents and θ solvents, were shown to be also

applicable in the solvent quality driven crossover regime, with an effective

exponent in place of the Flory exponent.

4. The prediction of scaling theory that there exists only a single universal

crossover scaling function from which others can be inferred, has been ver-

ified by simulations.
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Chapter 7

Multi-Chain Brownian Dynamics

Simulation Algorithm for Planar

Shear, Elongational and Mixed

Flows

7.1 Introduction

We have achieved a fairly complete description of static and dynamic properties

of semidilute polymer solutions near equilibrium as shown in Chapters 3 and

6. The next challenge is to extend this understanding to the case where the

solution is undergoing flow. Because of time constraints, we have only done the

preliminary work of extending the multi-chain BD algorithm to an algorithm

which is capable of simulating planar shear, elongational and mixed flows. This

chapter discusses the issues pertaining to the implementation of these flows, and

summarizes some preliminary results that we have obtained.

In simulations, periodic boundary conditions (PBC’s) are often used to mimic
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real systems, enabling us to compute bulk properties by simulating only a small

number of particles. This chapter discusses the implementation of suitable PBC’s

for planar shear flow, planar elongational flow and planar mixed flow in the multi-

chain Brownian dynamics simulation algorithm for semidilute polymer solutions.

The term [κ · rν(t)] in Eq. (4.1) (in Chapter 4) accounts for the presence

of a homogeneous flow field, where κ is a 3 × 3 tensor and is equal to (∇v)T ,

with v being the unperturbed solvent velocity. While the implementation of the

term [κ · rν(t)] is straightforward, the major challenge is the implementation of

PBC’s. Details of the implementation procedure are discussed in Section 7.2.

Another difficulty that arises in the implementation of various flows is in treat-

ing the diffusion term in Eq. (4.1), which accounts for pairwise hydrodynamic

interactions. As discussed in Section 5.2, the Ewald summation method is used

to compute pairwise summation of hydrodynamic interactions. However, for a

solution undergoing flow, some additional considerations must be taken into ac-

count while calculating the Ewald summation because the simulation cell may

not be cubical. A few important points that need to be considered in calculating

the Ewald sum (Wheeler et al., 1997) are discussed in Section 7.3. Validation

studies for the algorithm in different flow geometries are presented in Section 7.4.

Some preliminary results for a semidilute polymer solution of FENE dumbbells

at finite concentration undergoing planar mixed flow are presented in Section

7.5. Finally, the conclusions of this chapter are given in Section 7.6.

7.2 Implementation of Periodic Boundary Con-

ditions

It is a prerequisite condition for flow simulations with PBCs that the shape of the

simulation box changes with time in accordance with the flow; this way Eq. (4.1)
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is in conjunction with suitably compatible PBCs. As the simulation box deforms

with respect to time, there comes a time when the box has deformed to such an

extent that the minimum spacing between any two sides of the box becomes less

than twice the inter-particle interaction range. At that point in time, particles

start to interact with themselves and the simulation needs to be stopped. There

might also be cases, such as in shear flows, where after some time, one of the sides

of the box becomes very large resulting in numerical problems. In other words,

the deformation of the simulation box in such a manner restricts the simulation

from proceeding for long times. In fact, this issue becomes even more serious for

polymer molecules, since in this case, relaxation times in general are quite long,

and it is very important to simulate them for sufficiently long time in order to

capture their dynamics accurately.

PBCs for planar shear flows were developed by Lees and Edwards (1972)

such that the simulation could be carried out for sufficiently long times. Unfor-

tunately, it is not possible to generalize the Lees-Edwards PBCs to other flow

geometries. In order for PBCs to be applicable to any flow, it is required that the

simulation box should deform in accordance to the streamlines of that particular

flow. However, as the simulation box cannot keep deforming for a very long time,

it is required to perform a mapping of the box such that the initial box configura-

tion is periodically recovered. Remapping of the box configuration requires two

conditions to be met: (i) Compatibility, which means that the minimum lattice

spacing should never be less than twice the range of inter-particle interactions,

(ii) Reproducibility, which means that the lattice points of a lattice should over-

lap onto the lattice points of the same lattice at a different time. Remapping

of lattice in nonequilibrium molecular dynamics (NEMD) simulations of planar

shear flow was first carried out by Bhupathiraju et al. (1996) who modified the

original sliding-brick algorithm of Lees and Edwards (1972) to a deforming-box
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algorithm. Satisfying the two conditions of compatibility and reproducibility,

Kraynik and Reinelt (1992) developed PBCs capable of being remapped, for pla-

nar elongational flows. Kraynik-Reinelt PBCs were first implemented by Todd

and Daivis (1998); Baranyai and Cummings (1999) in their planar elongational

NEMD simulation algorithm. In these PBCs, basically the lattice (or simulation

box) is deformed for a certain period of time τp, and then mapped back to its

original state. This process of deforming the lattice till τp and mapping back to

its original state is repeated for as many times as needed. This way, an extended

simulation can be performed.

These special PBCs are derived and discussed in this section. In Section 7.2.1,

PBCs are discussed for planar shear flows. Section 7.2.2 then presents PBCs for

planar elongational flows and finally PBCs for combined planar shear and planar

elongational flows or planar mixed flows are described in Section 7.2.3.

7.2.1 Planar shear flow

The simplest type of flow to be studied is the planar shear flow (PSF) or planar

Couette flow. Because of the simplicity of studying PSF, there have been many

studies that have attempted to compare experimental data with simulation pre-

dictions.

In a planar shear flow, the fluid flows only in a single direction, and the veloc-

ity has a gradient in the direction perpendicular to the flow, which is indicated

by the shear rate γ̇. The velocity gradient tensor for PSF is written as,

(∇v)PSF =




0 0 0

γ̇ 0 0

0 0 0


 (7.1)
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Though we have mentioned in Section 7.1 that the simulation box should de-

form with the flow, it is worth justifying this argument here by a visual picture.

Originally, the PBC for planar shear flow was developed by Lees and Edwards

(1972), in which they did not allow the lattice to deform but did allow it to move

in a specific manner. This is illustrated in Fig. 7.1, where red marks indicate

particles, the box in grey is the original simulation box, and other boxes are pe-

riodic images of the original box. First, we examine the case in which the lattice

is not allowed to move (as in equilibrium simulations). The top panel in Fig. 7.1

shows this case. It is clear that after being subjected to shear flow, there is no

periodicity in the lattice and hence this case is inconsistent with PBC. However,

as can be seen in the bottom panel, moving or sliding the lattice with the flow

in a specific manner maintains the periodicity in the lattice. This method is also

called the sliding brick method. In this method, the image box above the simula-

tion box is displaced by L2yγ̇∆t, and the image box below the simulation box is

displaced by −L2yγ̇∆t, where L2y is the height of the simulation box and ∆t is

the time step size. The advantage of this method is that the shape of each box

does not change and hence the lattice vectors are always orthonormal. However,

the major drawback of this method is the presence of non-aligned boundaries.

When these boxes or cells slide past each other, their cell neighbors change and

it is a burden in any algorithm to keep a track of all the neighbors of a cell with

time.

Hansen and Evans (1994) and Bhupathiraju et al. (1996) found it inefficient

to use the sliding brick method in a parallel computing environment. Therefore,

they implemented an efficient algorithm by modifying the sliding brick method

to the deforming brick method. In this method, instead of moving the cells, they

deformed the cell with time as shown in Fig. 7.2. The periodic boundary condi-

tion in this method works in the following two ways: (i) if particles move out of
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At rest After shearing 

At rest After shearing 

Figure 7.1: Demonstration of the necessity for sliding the lattice in planar shear
flow.

the left/right side of the box, they are moved back in the box through right/left

side of the box. (ii) if particles leave the box from the top/bottom side, they

come back through bottom/top sides, but with a displacement of ∓∆x in the

x direction as shown in Fig. 7.2. The expression for this displacement can be

shown to be ∆x = L2yγ̇∆t, as will be discussed shortly.

We next address the question of how these boxes deform, or evolve with re-
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∆x

L1x

L2y

∆x = L2yγ̇∆t

Figure 7.2: Demonstration of deforming brick method

spect to time. If Li(t) is a lattice vector (or box vector) at time t, then the

evolution equation for Li(t) can be written for an arbitrary velocity gradient ∇v

as,
dLi

dt
= Li(t) ·∇v (for i = 1, 2, 3) (7.2)

For a planar shear flow, ∇v in Eq. (7.2) can be replaced by (∇v)PSF. Equation

(7.2) can then be written for the x, y and z components as given below,

dLix
dt

= Liyγ̇ (7.3)

dLiy
dt

= 0 (7.4)

dLiz
dt

= 0 (7.5)

It can be inferred from Eqs. (7.3) - (7.5) that the y and z components of any

lattice vectors are constant, and only the x component evolves with respect to
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time. For a planar flow, L3x is also constant and the only remaining variables

are L1x and L2x that may change with time. Writing Eq. (7.3) for i = 1,

dL1x

dt
= L1yγ̇ (7.6)

Here, L1y can be considered to be 0 for convenience; this way the lattice will

always be aligned with the x-axis. As a result, L1x is constant, implying that

the top and bottom sides of the box are always constant and equal to L1x, as

depicted in Fig. 7.2. When Eq. (7.3) is written for i = 2,

dL2x

dt
= L2yγ̇ (7.7)

Recall that L2y is constant. Upon integrating Eq. (7.7), and considering an

initial condition that at time t = 0, L1 ⊥ L2, i.e., L2x(t = 0) = 0, we obtain,

L2x = L2yγ̇t (7.8)

Based on these lattice vectors, the evolution of the lattice system is shown in

Fig. 7.3 for greater clarity. The simulation box is initially considered to be

a square in 2-D (or cube in 3-D), hence the angle between L1 and L2 is π/2

at t = 0. This angle, based on simple geometry, can be expressed in terms of

time as θs(t) = tan−1[L2y/L2x(t)] = tan−1[1/γ̇t], where L2y is constant and L2x

increases with time as given by Eq. (7.8). It is obvious that as t→∞, θs → 0 or

L2x →∞. This situation is computationally very inefficient as it requires dealing

with very large numbers. Therefore, the simulation is not carried out for a very

long time but rather until the time at which θs = π/4, at which time, the box

is transformed back to its original square lattice shape (θs = π/2). In this way,

L2x never gets too large. The reason for choosing π/4 comes from the fact that
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Figure 7.3: Lattice evolution in planar shear flow (Reproduced from Todd and
Daivis (2007))

at this angle all the deformed lattice points can be overlapped with the original

square lattice, as indicated by the black circles in Fig. 7.4. In this figure, the

initial lattice is depicted in grey, while the lattice at θs = 450 is indicated in red.

This also means that the lattice is reproducible at θs = π/4, and the time to reach

there is simply τp = 1/γ̇. A slight modification can be made to this process to

double the speed of the algorithm. In the modified form (Bhupathiraju et al.,

1996), the initial box is considered to have an angle of −π/4 and is allowed

to deform till θs = π/4. In this way, the transformations are carried out less

frequently. For this case, the evolution equation for L2x has a different form due

to a different initial condition (i.e., at t = 0, L2x = −L2y),

L2x = L2yγ̇t− L2y (7.9)

The modified process is shown in Fig. 7.5. Here, the square lattice is indicated

in grey, while the initial lattice, which is oriented at −450, is shown in blue.

Upon imposing the shear flow, the blue lattice deforms and passes through a

stage, at time τp , where it overlaps with the square lattice. Continuing the
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L2x(t)

+450

L2y

L1x

Figure 7.4: Lattice evolution in planar shear flow: 900 to 450 (Todd and Daivis,
2007)

−450 +450

L1x(0)

L2y

L2x(0) = −L2y

Figure 7.5: Lattice reproducibility in planar shear flow: Blue indicates initial
lattice, grey indicates lattice after time τp and red indicates lattice after time 2τp
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deformation, at time 2τp the angle θs becomes +450 (red lattice) and then, as

discussed above, the red lattice is transformed back to the blue lattice. The

reason why this transformation is feasible is clear from Fig. 7.5; this is simply

because the lattice at +450 is reproducible to the lattice at −450. In other words,

the lattice points in these two stages (θs = −450 and + 450) overlap on top of

each other, as indicated by the black symbols in Fig. 7.5. This confirms the

reproducibility of lattices in planar shear flow, and also completes our discussion

on the PBC’s for planar shear flow.

7.2.2 Planar elongational flow

Elongational flow occurs in many industrial processes. It is generally difficult

to study this flow using computer simulations and experimental techniques. In

elongational flow, the fluid element is stretched exponentially with time, when

subjected to a constant elongational rate. Therefore, a sample of fluid quickly

becomes very thin and long as soon as elongational flow is imposed, and there

is a very short span of time in which to observe the phenomena of stretching.

Moreover, as discussed in Section 7.2.1, the simulation box needs to be deformed

to follow the motion of the fluid, resulting in an exponential increase or decrease

in the size of the simulation box. This situation is challenging because once a

side of the stretched box becomes less than twice the inter-particle interaction

range, the simulation has to cease. For carrying out indefinitely long simulations,

special periodic boundary conditions need to be developed for elongational flows.

A general velocity gradient for elongational, shear free and volume preserving

flows can be written as (Bird et al., 1987)

(∇v) =




ε̇ 0 0

0 −ε̇(1 + bf)/2 0

0 0 −ε̇(1− bf)/2


 (7.10)
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where ε̇ is the rate of elongation and bf determines the type of elongational flow.

For instance:

1. Uniaxial elongational flow occurs when bf = 0 and ε̇ > 0

2. Biaxial elongational flow occurs when bf = 0 and ε̇ < 0

3. Planar elongational flow occurs when bf = 1 and ε̇ 6= 0

Kraynik and Reinelt (1992) showed that it is not possible to derive PBCs for

uniaxial and biaxial elongational flows that can be used for indefinite simula-

tion. However, they derived PBCs for planar elongational flows that satisfies

this criteria. This section discusses the periodic boundary conditions for planar

elongational flow proposed by Kraynik and Reinelt (1992).

In planar elongational flow (PEF), the fluid is stretched in one direction and

contracts in another direction with the same elongational rate ε̇. The velocity

gradient tensor for PEF is given by

(∇v)PEF =




ε̇ 0 0

0 −ε̇ 0

0 0 0


 (7.11)

Here, the fluid is being stretched in the x direction and contracts in the y direc-

tion. Figure 7.6 illustrates a schematic of the deformation of a cubic simulation

box under planar elongational flow. Here, blue indicates the initial lattice and

red indicates a lattice after some time of elongation. Using this square lattice,

molecular dynamics simulations for elongational flow were first carried out by

Heyes (1985). Unfortunately, they were not able to simulate for an indefinitely

long time because at least one of the sides of the box becomes smaller than 2rc,

where rc is the cutoff radius of the inter-particle potential. If L0
2y is the length of

the simulation box in the contracting direction, then the maximum simulation
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x

y

Figure 7.6: Schematic of a square lattice undergoing planar elongational flow

time can be shown to be tmax =
1

ε̇
log

(
2rc
L0

2y

)
.

As we have seen earlier, the lattice can be allowed to deform for an indef-

inite time if there is any state in the lattice evolution at which the lattice is

reproducible and re-mappable to its original (t = 0) shape and size. It turns out

that as long as reproducibility conditions are met, the compatibility condition is

automatically satisfied. Kraynik and Reinelt (1992) derived periodic boundary

conditions for planar elongational flow that satisfies the reproducibility condi-

tion. They discovered that if the initial lattice is inclined at a magic angle, then

a reproducible lattice is achieved after a certain time called the strain period. As

an example, a typical reproducible lattice is shown in Fig. 7.7. The derivation of

the magic angle, initial lattice vectors and strain period have been carried out by

Kraynik and Reinelt (1992). The starting point in the derivation is to obtain a

reproducibility condition for the lattice, which is discussed here along with some

key results. A detailed derivation of the Kraynik and Reinelt PBCs is presented

in Appendix G.

Considering a lattice described by the unit lattice vectors bi (i = 1, 2, 3), the
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x

y

θ → Magic angleθ → Magic angle

Figure 7.7: A reproducible lattice oriented at the magic angle

evolution of bi can be written as,

dbi

dt
= bi · (∇v)PEF (7.12)

If b0
1, b0

2 and b0
3 are the initial basis vectors, then Eq. (7.12) can be integrated

to give,

bi = b0
i · Λ (7.13)

where Λ = exp [(∇v)PEFt]. Given (∇v)PEF is a diagonal tensor, Λ can be written

as,

Λ =




eε̇t 0 0

0 e−ε̇t 0

0 0 1


 (7.14)
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Λ is also called the time evolution matrix. As Kraynik and Reinelt (1992) pointed

out, for a given Λ, a lattice is reproducible if and only if there exists integers Nij

such that,

bi = b0
i · Λ = Ni1b

0
1 +Ni2b

0
2 +Ni3b

0
3 (7.15)

The justification of this reproducibility condition is explained in Appendix G.

The reproducibility condition can be framed in terms of an eigenvalue problem,

and the different results (such as the strain period τp and magic angle θ etc . . . )

can be interpreted in terms of eigenvalues as discussed in Appendix G. There

exist multiple solutions for the strain period and the magic angle. An example

of one such solution is θ ≈ 31.720 and τp = 0.9624/ε̇. This example is shown

Figure 7.8: Lattice reproducibility for planar elongational flow

schematically in Fig. 7.8, where the lattice in blue indicates the initial lattice

and the red lattice represents the lattice after τp. Clearly, the lattice points on

the red and the blue lattices overlap on top of each other (indicated by the big

blue circles), confirming the reproducibility. Once the magic angle θ is known,
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the basis vectors of the initial lattice (b1,b2,b3) can be written as

b1 = (cos θ, sin θ, 0) (7.16)

b2 = (− sin θ, cos θ, 0) (7.17)

b3 = (0, 0, 1) (7.18)

The lattice based on these basis vectors is reproducible, and can be deformed till

τp. At this time (t = τp), the lattice is mapped back to its original shape and

size. This guarantees that the lattice is not deformed any more once t reaches

τp, which ensures that the compatibility condition is satisfied as well.

Having addressed issues regarding the initial lattice, magic angle and strain

period, the only remaining question to ask is: how do the lattices evolve or how

does a point in the lattice evolve? Following is a derivation for the evolution

of lattice points in PEF. If r is a position vector of a lattice point, then the

evolution equation for r can be written as

dr

dt
= r · (∇v)PEF (7.19)

Using Eq. (7.11), the left hand side of the above equation can be written as

r · (∇v)PEF =
(
ε̇rx, −ε̇ry, 0

)
(7.20)
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where rx and ry are the x and y components of r, respectively. Using Eqs. (7.19)

and (7.20), the differential equations for rx, ry and rz can be written as,

drx
dt

= ε̇rx

dry
dt

= −ε̇ry
drz
dt

= 0

(7.21)

This set of equations can easily be integrated, if the initial conditions for each

component is known. Therefore, if r0
x, r

0
y and r0

z are the values of rx, ry and rz,

respectively, at time t = 0, then the expressions for rx, ry and rz are:

rx = r0
x exp (ε̇t)

rx = r0
y exp (−ε̇t)

rz = r0
z = constant

(7.22)

Hence, the lattice point r evolves as {r0
x exp (ε̇t), r0

y exp (−ε̇t), r0
z}. In the simula-

tion algorithm, the x and y component of any lattice vector are evolved according

to Eq. (7.22). The lattice vectors Li are related to bi through Li = |Li|bi since

bi are the unit vectors in the direction of Li. It follows that if L1 is a lattice

vector in the direction of extension, then L1x will evolve as L0
1x exp (ε̇t) and L1y

will evolve as L0
1y exp (−ε̇t), where L0

1x and L0
1y are the values of L1x and L1y at

time t = 0. This completes our discussion of lattice evolution and the periodic

boundary conditions for planar elongational flow.

7.2.3 Planar mixed flow

There has been a significant amount of work on computer simulations of planar

shear and planar elongational flows because of their relative simplicity. However,
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in many practical applications, a linear combination of planar shear and planar

elongational flows occur, which are denoted as planar mixed flows. An extended

molecular dynamics simulation of planar mixed flow was first carried out by Hunt

et al. (2010). With regard to polymer solutions undergoing mixed flow, simula-

tion studies have been carried out only in the dilute concentration limit by Woo

and Shaqfeh (2003); Dua and Cherayil (2003) and Hoffman and Shaqfeh (2007).

Since only a single chain is required for simulating dilute polymer solutions, there

is no need for reproducible periodic boundary conditions. However, in order to

simulate planar mixed flow of semidilute polymer solutions, this is essential. To

the best of our knowledge, there has been no attempt to simulate semidilute

polymer solutions under planar mixed flow conditions. In this thesis, we adopt

the reproducible periodic boundary conditions for planar mixed flow developed

by Hunt et al. (2010), and use it in a multi-chain Brownian dynamics simulation

algorithm for semidilute polymer solutions.

For planar mixed flow (PMF), the canonical form of the velocity gradient

tensor ∇v (Hunt et al., 2010) is given by,

(∇v)PMF =




ε̇ 0 0

γ̇ −ε̇ 0

0 0 0


 (7.23)

As discussed in Section 4.5.2, for the canonical form of the velocity gradient

tensor, the planar shear flow contribution is due to the velocity gradient in the

y-direction, and the contribution from planar elongational flow leads to extension

in the x-direction and contraction in the y-direction. In the canonical represen-

tation, the eigenvalues of (∇v)PMF are {ε̇,−ε̇, 0}, and a possible choice of the

corresponding eigenvectors is

(
1,
γ̇

2ε̇
, 0

)
, (0, 1, 0) and (0, 0, 1). It is worth noting

that the eigenvalues of the velocity gradient tensor of the canonical PMF are
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equivalent to those for PEF, where (∇v)PEF is already in a diagonal form. How-

ever, the eigenvectors corresponding to the eigenvalue ε̇ are different for (∇v)PMF

and (∇v)PEF. For PEF, the eigenvector corresponding to ε̇ is (1, 0, 0), which

leads to the fact that the extension axis and contraction axis are orthogonal.

In case of the canonical PMF, the eigenvector corresponding to ε̇ is (1, γ̇/2ε̇,

0), resulting in a system where the extension axis and contraction axis are non-

orthogonal. The angle β between the extension axis and the contraction axis

depends on the ratio of γ̇ to ε̇. The expression for β is displayed in Fig. 7.9 and

given below

β = cos−1

[
γ̇√

γ̇2 + 4ε̇2

]
(7.24)

Note that, for the sake of simplicity, we will use the phrase PMF instead of

y

x

Contraction axis 

Extension axis 

β = cos−1

�
γ̇�

γ̇2 + 4�̇2

�

Figure 7.9: Axis of extension and contraction in planar mixed flow

“canonical” PMF.

Since the eigenvalues of the velocity gradient tensor for PMF and PEF are
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the same, the magic angle and strain period for PMF can be obtained in a sim-

ilar manner as in the case of PEF. However, the initial lattice configuration for

PMF is different from that of PEF because of the differences in the eigenvec-

tors discussed above. An important point made by Kraynik and Reinelt (1992)

in their derivation of PBCs for PEF is that (∇v)PEF can be replaced by any

diagonalizable constant matrix with real eigenvalues and zero trace. Following

this point, Hunt et al. (2010) realized that, in fact, (∇v)PMF is a diagonalizable

matrix as written below




ε̇ 0 0

γ̇ −ε̇ 0

0 0 0


 =




1 0 0

γ̇
2ε̇

1 0

0 0 1







ε̇ 0 0

0 −ε̇ 0

0 0 0







1 0 0

− γ̇
2ε̇

1 0

0 0 1


 = T ·D · T−1 (7.25)

where T is a transformation matrix that consists of the eigenvectors of (∇v)PMF,

and the diagonal matrix D has the same component form as (∇v)PEF. The

Kraynik-Reinelt periodic boundary condition for PEF is written in terms of the

lattice evolution matrix Λ = exp (Dt). Similarly for PMF, as the velocity gradient

tensor (∇v)PMF is diagonalizable, we can write the lattice evolution matrix Λ′

as

Λ′ = exp ((∇v)PMFt) = exp (T ·D · T−1t) = T · exp (Dt) · T−1 (7.26)

As (∇v)PMF = T ·D · T−1 with D being a diagonal matrix, a new set of initial

basis vectors,

b0
i
′
= b0

i · T−1 (for i = 1, 2, 3) (7.27)

exists in PMF, such that this new set is reproducible in the case of PMF (Hunt

et al., 2010). The tensor T−1, thus, can be understood as a mapping necessary

to make the PEF basis vectors b0
i (in PEF) reproducible in the PMF. Similar to
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Eqs. (7.13) and (7.15), an equation for the lattice reproducibility condition for

PMF can be written as

bi
′ = b0

i
′ · Λ′ (7.28)

where bi
′ denotes the lattice vector at time τp (strain period). Using this rela-

tion, and substituting Λ′ form Eq. (7.26) in Eq. (7.28) leads to the following

simplification

bi
′(t = τp) = b0

i
′ · Λ′(τp)

= b0
i · T−1 · T · exp (Dt) · T−1

= b0
i · exp (Dt) · T−1

=
[
Ni1b

0
1 +Ni2b

0
2 +Ni3b

0
3

]
· T−1 (see Eq. (7.15))

= Ni1b
0
1 · T−1 +Ni2b

0
2 · T−1 +Ni3b

0
3 · T−1

= Ni1b
0
1
′
+Ni2b

0
2
′
+Ni3b

0
3
′

(7.29)

This equation for the reproducibility condition is identical to the one for PEF

(Eq. (7.15)), except that b0
i is replaced by b0

i
′
. The vectors b0

1
′
, b0

2
′
and b0

3
′
can

be found easily since b0
1, b0

2 and b0
3 are known as discussed in Section 7.2.2. The

mapping of Eq. (7.27) is applied to b0
i to obtain a reproducible lattice under

mixed flow as follows.

b0
1
′
= b0

1 · T−1

=
(

cos θ sin θ 0
)



1 0 0

− γ̇
2ε̇

1 0

0 0 1




=

[(
cos θ − γ̇

2ε̇
sin θ

)
, sin θ, 0

]

(7.30)
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b0
2
′
= b0

2 · T−1

=
(
− sin θ cos θ 0

)



1 0 0

− γ̇
2ε̇

1 0

0 0 1




=

[(
− sin θ − γ̇

2ε̇
cos θ

)
, cos θ, 0

]

(7.31)

b0
3
′
= b0

3 · T−1

=
(

0 0 1
)



1 0 0

− γ̇
2ε̇

1 0

0 0 1




= [0, 0, 1]

(7.32)

where θ is the magic angle, which is similar to that for PEF. In contrast to

PEF, where the basis lattice vectors are orthogonal, in the case of PMF, they

are non-orthogonal and not equal in length. If the elongational rate is high or the

shear rate is small, these lattice vectors becomes almost orthogonal and equal

in length. These basis lattice vectors are used as an initial lattice configuration

and the simulation is then run till the time approaches τp. The lattice is then

mapped back to its original state, and this way the simulation can be carried out

for extended period.

The question of how the lattices evolve in PMF can be addressed in a similar

manner as has been done for PEF in Section 7.2.2. The evolution equation for

a lattice point is shown in Eq. (7.19). The same equation can be used here but

with (∇v)PEF replaced by (∇v)PMF given by Eq. (7.23). The left hand side of

Eq. (7.19) for PMF becomes

r · (∇v)PMF =
(
ε̇rx + γ̇ry, −ε̇ry, 0

)
(7.33)
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Equations (7.19) and (7.33) can be used to obtain the differential equations for

rx, ry and rz as,

drx
dt

= (ε̇rx + γ̇ry)

dry
dt

= −ε̇ry
drz
dt

= 0

(7.34)

If r0
x, r

0
y and r0

z are considered to be the initial values of rx, ry and rz, respectively,

then these equations can be integrated and expressions for rx, ry and rz can be

found. For instance, ry can be found to be

ry(t) = r0
y exp (−ε̇t) (7.35)

and rz is simply a constant equal to r0
z . The governing differential equation for

rx is a first order linear differential equation that can be integrated to give

rx = exp(ε̇t)

[
−

˙γr0
y

2ε̇
exp(−2ε̇t) + C

]
(7.36)

Using the initial condition for rx, C can be found to be r0
x +

γ̇

2ε̇
r0
y. As a result,

rx =
γ̇

ε̇
r0
y sinh(ε̇t) + r0

x exp (ε̇t) (7.37)

The lattice point r consequently evolves as { γ̇
ε̇
r0
y sinh(ε̇t)+r0

x exp (ε̇t), r0
y exp (−ε̇t),

r0
z}. In the simulation algorithm, the x and y components of any lattice vector

are evolved simply according to Eq. (7.22). For example, if L1 is a lattice vector

in the direction of extension, then L1x will evolve as γ̇
ε̇
L0

1y sinh(ε̇t) + L0
1x exp (ε̇t)

and L1y will evolve as L0
1y exp (−ε̇t), where L0

1x and L0
1y are the values of L1x and
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L1y at time t = 0.

There is only one issue left to discuss regarding the implementation of PMF

in the simulation algorithm, and that is related to the compatibility condition.

As discussed earlier, the length of one of the sides of the simulation box decreases

with time. Kraynik and Reinelt (1992) showed that the reproducibility condi-

tion automatically guarantees the compatibility condition. In other words, they

showed that the distance D(τp) between any two lattice points at time τp is never

less than the minimum lattice spacing Dmin, such that the lattice points do not

overlap. In simulations, the cutoff radius of any inter-particle interaction poten-

tial is always chosen to be less than Dmin/2, and that assures the compatibility

condition is satisfied. The derivation of Dmin has been carried out by Hunt et al.

(2010), and here the detailed steps of the derivation are presented in Appendix

H. This completes our discussion of the periodic boundary conditions for planar

mixed flow.

7.3 Modifications in Calculating the Ewald Sum-

mation in the Presence of Flow

The Ewald summation method for hydrodynamic interactions has been presented

in Section 5.2 for a cubic simulation cell in the context of equilibrium simulations.

However, for far from equilibrium simulations, a cubic simulation cell cannot be

considered because the simulation cell continuously deforms to be consistent

with the imposed flow. A generalized Ewald sum method for a parallelepiped

simulation cell was first developed by Wheeler et al. (1997), who adapted it

for the Lees-Edwards periodic boundary condition. The same procedure can be

adopted for any flow geometry such as planar elongational or planar mixed flows.

Here, we briefly outline the important changes that need to be made in the real
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and reciprocal space calculations of the Ewald sum.

In general, the simulation is carried out in a parallelepiped cell which is

defined by three cell basis vectors L1, L2 and L3, as shown in Fig. 7.10. While

L1

L2

L3

Figure 7.10: A parallelepiped simulation cell

performing real space calculations in the Ewald sum, the distance vector between

particle µ and ν (where µ is the reference particle and ν is the target particle) is

(Wheeler et al., 1997),

rνµ,n = rν − rµ −L · n (7.38)

where, L is the cell basis matrix given by,

L =
(
L1 L2 L3

)
=




L1x L2x L3x

L1y L2y L3y

L1z L2z L3z


 (7.39)

and n is the integer triplet given by n = [n1, n2, n3]T . The volume of the

simulation cell is V = L1 · (L2 × L3). Furthermore, in calculating the real space

153



7.3. Modifications in Calculating the Ewald Summation in the
Presence of Flow

part of the sum, it is important to make sure that the magnitude of rνµ,n for any

pair µ and ν is always less than the real space cutoff radius rc. In equilibrium

simulations, once the cutoff radius is fixed, the number of neighboring cells or

the cell neighbor-list is fixed for a given cell. However, in flow simulations,

the implementation of the neighbor-list is much more complicated because the

number of neighboring cells for a given cell keeps changing as the cells deform

(Todd and Daivis, 1999).

In the reciprocal space part of the Ewald sum, the procedure remains the

same as for equilibrium simulations, except the way in which the wave-vectors

are calculated. For flow simulations, since the simulation cell is not a cube, the

wave-vectors depend on the lattice vector of the simulation cell. The wave-vectors

are generated through (Wheeler et al., 1997),

k = 2π(LT )−1 · n (7.40)

In flow simulations, the difficulty in calculating the reciprocal space sum arises

due to the fact that M(2)(k) (see Section 5.2.1) needs to be updated at each time

step, where as in the case of equilibrium simulations this term is calculated only

once in the beginning of the simulation, and then used in all the time steps.

In equilibrium simulations there are a few terms in both the real and the

reciprocal sums that are not updated at each time step but rather calculated in

the beginning and used for the rest of the simulation. However, this is not true

for flow simulations in which all the terms need to be updated at each time step.

Therefore, this problem leads to an increase in the CPU cost as compared to the

cost in equilibrium simulations.
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7.4 Validation Studies

The validation of the extended BD algorithm has been carried out at very low

concentrations, where the results of multi-chain BD can be compared with single-

chain BD simulations for dilute polymer solutions. Due to time constraints, we

have not carried out simulations with hydrodynamic interactions, but only with

excluded volume interactions. Nevertheless, this allows us to test various aspects

of the algorithm. This section presents some preliminary data on validation of

the BD algorithm for flow simulations.

7.4.1 Planar shear flow

The main aspects in the development of a BD algorithm for flow simulations are

the implementation of (i) a neighbor-list and (ii) periodic boundary conditions.

We first validate our algorithm for a case in which these two implementations are

unnecessary. This allows us to identify errors in the algorithm from sources other

than due to the neighbor-list and PBCs implementation. The neighbor-list and

PBCs do not play any role in the simulation when hydrodynamic and excluded

volume interactions are ignored. Such a case is well described by the Rouse model

for which analytical expressions for various properties are known. We switched

off HI and EV interactions and computed the dimensionless mean square end-

to-end distance 〈R2
e〉 of chains consisting of 10 beads in the ultra dilute limit,

as a function of dimensionless shear rate γ̇, and compared with Rouse model

predictions given by (Bird et al., 1987)

〈R2
e〉Rouse = 〈R2

e〉eq

[
1 +

Nb (Nb + 1) (N2
b + 1) γ̇2

45

]
(7.41)

where, it may be recalled that 〈R2
e〉eq = 3(Nb− 1) is the mean square end-to-end

distance at equilibrium (Bird et al., 1987). Red symbols in Fig. 7.11 indicate the
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Nb = 10

Figure 7.11: Mean square end-to-end distance obtained by BD simulations com-
pared with Rouse model predictions, for bead-spring chains with Nb = 10 beads.

results for 〈R2
e〉 obtained by carrying out multi-chain BD simulations. The solid

line in the figure shows the Rouse model predictions for a 10 bead chain. Multi-

chain BD simulations were carried out by considering Nc = 30, c/c? = 4.6×10−5

and a time step size ∆t = 0.005.

In order to test the neighbor-list and PBCs implementations, we have carried

out multi-chain BD simulations of dumbbells (Nb = 2) in a ultra dilute system

with EV interactions between the beads. In this study, simulations were carried

out using z = 1.7, Nc = 10, c/c? = 6 × 10−12 and ∆t = 0.005. A large number

of independent runs (in the range of 103 - 105) were performed to obtain better

statistics. Figure 7.12 shows the results for 〈R2
e〉 and 〈R2

g〉 for a range of shear
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Figure 7.12: Comparison of the mean square end-to-end distance 〈R2
e〉 and the mean

square gyration radius 〈R2
g〉, at various shear rate γ̇, predicted by the multi-chain

BD algorithm with the results of single-chain BD simulations in the dilute limit. EV
interactions are taken into account but HI is switched off. The parameter values are
indicated in the figure.
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rates. These results are compared with the results obtained using single-chain

BD simulations (for which the neighbor-list and PBCs are not required). Clearly,

the agreement with single-chain simulations indicates our BD algorithm is valid.

We have also computed the viscosity η as a function of the shear rate γ̇ and

compared the results with single-chain BD simulations. Here η is calculated using

Eq. (4.30), by considering χ = 0 and Γ̇ = γ̇. Blue circles in Fig. 7.13 show the

multi-chain BD simulation results for the viscosity and the red plus symbols rep-

resent the data obtained by running single-chain BD simulations. Clearly, there

is agreement between the multi-chain and single-chain BD simulation results.

Also, shear thinning behavior can be observed in Fig. 7.13. At low shear rates,

excluded volume effects increase the size of polymer chains and hence increase

the viscosity. The decrease in viscosity with increasing γ̇ is due to excluded vol-

ume interactions being switched off as the dumbbells undergo stretching in shear

flow.

Though HI was not considered in the validation of physical properties, a basic

check of the implementation of the Ewald sum for HI was carried out by compar-

ing the numerical value of the Ewald sum obtained using the planar shear flow

code at θs = 00 with that obtained using the equilibrium code for the same bead

configuration. We also calculated the Ewald sum at θs = 450 and −450, and

obtained results that matched with the equilibrium results. A more thorough

check will be carried out by evaluating dynamic properties in the future, with

the inclusion of HI.

7.4.2 Planar elongational flow

We now turn our attention to validation studies for the planar elongational flow

(PEF) case. Our implementation of the Ewald sum was checked by using a sim-

ilar approach to that for the case of PSF. We computed the Ewald sum for a
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Figure 7.13: Comparison of the viscosity η, at various γ̇, predicted by the multi-
chain BD algorithm with the results of single-chain BD simulations in the dilute
limit

given bead configuration (i) in a simulation cell oriented at the magic angle of

θ = 31.720, which corresponds to the initial simulation setup, and (ii) in a simu-

lation cell at its maximum permissible deformed state, which occurs at the strain

period. Ewald sums in both the cases were found to be identical because in these

two cases the lattices are reproducible and periodic. This agreement establishes

the correct implementation of the modified Ewald sum in the context of PEF as

well. This study required calculating the Ewald sum at just one instant of time.

A more thorough check of physical property predictions will be carried out in
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the future with the inclusion of HI.

We have, however, computed physical properties in PEF with EV interac-

tions included. In PEF simulations, it turns out that as time progresses, the

numerical values of the x coordinates of beads increases due to elongation in the

x direction. As a result, after a long time, the numerical values are so high that

the simulation suffers from numerical instability. In order to illustrate the prob-

lem, an example of PEF viscosity η̄1 for FENE dumbbells with finite extensibility

parameter bp = 50 and for elongation rate ε̇ = 0.3 is shown as a function of time

in Fig. 7.14. The correct value of η̄1 for the same parameters can be found by

carrying out single-chain BD simulations, and it is found to be 4.351 ± 0.002.

It is clear that the value of η̄1 reaches 4.35 very rapidly, however, after about

25 strain periods, a catastrophic change is observed. Eventually, η̄1 settles to a

wrong value. A similar numerical instability has been observed in NEMD sim-

ulations of PEF, however, the source of this instability has been attributed to

the lack of momentum conservation due to numerical round-off errors (Todd and

Daivis, 2000).

We have solved the instability problem with the following approach. After

each strain period, it is checked whether a chain is in close proximity of the

simulation box. In order to check this proximity, the following steps are used.

If rν,x, rν,y and rν,z are the coordinates of bead ν, then, if either |rν,x| > 2L1,

|rν,y| > 2L2, or |rν,z| > 2L3, the bead ν is considered to not be in the proximity of

the simulation box. Here, L1, L2 and L3 are the magnitudes of cell basis vectors

L1, L2 and L3, respectively. If all the beads of a chain are not in the proxim-

ity of the simulation box, then we abandon this chain, and begin to follow the

trajectory of the image of this chain that is in the proximity of the simulation

box. This does not affect in anyway the calculation of any of the properties,

since we are still tracking the trajectories of the same set of N unique particles
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Figure 7.14: Illustration of inherent numerical instability in planar elongational
flow simulations

and their images. This way, the numerical values of the coordinates of the beads

never blow up and numerical instability is avoided. Note that in all our PEF

simulations, we have used k = 3 and N11 = 2, required in calculating the strain

period and the magic angle as discussed in Section 7.2.3.

We have performed multi-chain BD simulations for dumbbells with EV in

the ultra dilute limit and compared our results with single-chain BD simula-

tions. It is worth pointing out that for planar elongational flow simulations,

spring forces cannot be modeled using the Hookean force law since this model
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Figure 7.15: Comparison of η̄1, at various ε̇, predicted by the multi-chain BD algo-
rithm with the results of single-chain BD simulations in the dilute limit: (a) for z? = 0
and (b) for z? = 10.
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allows the molecule to be extended indefinitely, which is clearly physically unre-

alistic. The finite extensibility of the polymer becomes important in situations

where a polymer molecule is likely to be close to full extension, such as in strong

shear or elongational flows. We use FENE springs to model the spring forces in

simulating planar elongational flow.

We have carried out multi-chain BD simulations to obtain the planar elon-

gational flow viscosity η̄1 for a range of ε̇, for z? = 0 and for z? = 10. Note that

z? = 10 corresponds to z = 10 ×
√

2 = 14.142. We set the other parameter in

EV potential, d? to be equal to 1. Other than these parameters, we have used

Nc = 500, c/c? = 2×10−16 and the FENE parameter bp = 50. Simulation results

for z? = 0 and 10 are shown in Figs. 7.15 (a) and (b), respectively, obtained

by both multi-chain and single-chain simulations. Clearly, in both the cases, we

can see the agreement between the multi-chain and single-chain BD simulation

results for dilute solutions of FENE dumbbells.

This completes our discussion of validation studies for planar shear and pla-

nar elongational flow. Clearly, as the planar mixed flow is a linear combination of

planar shear and elongational flows, the algorithm developed here can be used to

predict various rheological properties of semidilute polymer solutions undergoing

planar mixed flow. Some preliminary results are presented in the next section.

7.5 Preliminary Results and Discussion for Pla-

nar Mixed Flows

The purpose of this section is to show that we have a working algorithm to

simulate semidilute polymer solutions at finite concentration, undergoing planar

mixed flow. In order to show this, we consider a very simple system of FENE

dumbbells (Nb = 2) at the overlap concentration (c = c?). With regard to
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microscopic interactions, for reasons discussed in the previous section, we do

not account for hydrodynamic interactions in this study. However, we consider

excluded volume interactions, which allows us to capture some of the interesting

rheological behavior of polymer solutions at finite concentration in the mixed flow

geometry. Various results, obtained by running BD simulations with the FENE

parameter bp = 50, and for excluded volume interaction parameters z? = 10 and

d? = 1, are presented here. In discussing results for PMF, we have a choice

of using either the pair (Γ̇, χ), or (ε̇, γ̇) as variables with which to explore the

behavior of polymer solutions. Both give valuable insights. However, because of

time constraints, only the latter pair of variables has been examined here.

Prior to carrying out simulations for a finite concentration system, it is a

prerequisite to know the value of c?, which is defined as Nb/

[
4π

3
(R0

g)
3

]
, where

R0
g is the gyration radius for an isolated chain at equilibrium. We carry out

BD simulation for an ultra dilute system (as discussed in the previous section)

at equilibrium for Nb = 2, bp = 50, z? = 10 and d? = 1. Using a time step

size of 0.005, the value of R0
g is found to be 1.2023 ± 0.0001, which is used to

calculate c? as 0.27473 ± 9 × 10−5. Using c = c?, BD simulations for PMF are

then carried out for a range of shear rates γ̇ and elongation rates ε̇. For the

strain period and magic angle calculations, we use k = 3 and N11 = 2, which

results in a magic angle θ ∼= 31.720. For better statistical accuracy of the various

results, a large number of dumbbells (Nc = 500 − 1000), a sufficiently large

number of independent trajectories (in the range of 500 − 1000), and a long

enough simulation length (500 dimensionless time units) are considered in our

simulations.

Figure 7.16 (a) displays results for the mean square end-to-end distance 〈R2
e〉

as a function of elongation rate ε̇ at fixed values of shear rate γ̇. The coil-stretch

transition can be seen in Fig. 7.16 (a), where the dumbbells are coils for low ε̇,
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and become stretched objects at high elongation rates. At lower ε̇, 〈R2
e〉 increases

with increasing γ̇. However, at higher ε̇ the values of 〈R2
e〉 are independent of

shear rate and asymptotically approach the nondimensional value of the square

of the maximum stretch of the dumbbell, which is bp = 50. Interestingly, at

intermediate values of ε̇ the dependence of 〈R2
e〉 on γ̇ is non-monotonic. This is

seen more clearly by plotting 〈R2
e〉 as a function of γ̇ at fixed values of ε̇ in Fig.

7.16 (b). For instance, at ε̇ = 0.7, 〈R2
e〉 does not change with increasing shear

rate until γ̇ = 0.3, while for γ̇ between 0.3 and 3, 〈R2
e〉 decreases. Upon further

increasing the shear rate, 〈R2
e〉 increases.

This behavior can be understood to arise as a result of competition between

elongation and shear. Elongation tends to stretch a molecule in the flow direction,

while shear tends to rotate and stretch a molecule through a cyclic tumbling

motion. It appears that there are combinations of ε̇ and γ̇ at which the mean size

of the molecule exhibits non-monotonic behavior due to the effective orientation

of the molecule in the flow. This non-monotonic behavior will probably not be

observed if 〈R2
e〉 is plotted as a function of Γ̇ for a fixed value of χ. However, this

remains to be confirmed in the future.

A similar discussion of the coil-stretch transition and the competition between

tumbling and stretching can be performed in the context of mean square gyration

radius. Figure 7.17 shows the results for 〈R2
g〉 for the same set of γ̇ and ε̇. Clearly,

we can see the similar pattern in the results as observed for the case of 〈R2
e〉.

As discussed in Section 4.5.2, the PMF viscosity η can be calculated using

Eq. (4.30), which involves the mixedness parameter χ. In order to calculate η,

first the values of χ are calculated for a number of pairs of γ̇ and ε̇ using Eqs.

(4.26) and (4.27). Figure 7.18 displays a 3-D plot to show the values of χ for

all the combinations of γ̇ and ε̇. Clearly, the value of χ approaches unity as the

ratio of ε̇ to γ̇ becomes larger, which is the case of pure PEF. On the other hand,
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Figure 7.16: Mean square end-to-end distance of dumbbells of bp = 50 in PMF at
c/c? = 1: (a) 〈R2

e〉 as a function of ε̇ for various values of γ̇. (b) 〈R2
e〉 as a function of

γ̇ for various values of ε̇.
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Figure 7.17: Mean square gyration radius of dumbbells of bp = 50 in PMF at c/c? = 1:
(a) 〈R2

g〉 as a function of ε̇ for various values of γ̇. (b) 〈R2
g〉 as a function of γ̇ for various

values of ε̇.
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Figure 7.18: Mixedness parameter χ as function of γ̇ and ε̇

χ→ 0 as
ε̇

γ̇
→ 0, which corresponds to pure PSF limit.

The PMF viscosity is then calculated using these values of χ for a number

of values of γ̇ and ε̇. Figure 7.19 (a) shows the results for η as a function of ε̇

at fixed values of γ̇. Similar to the discussion in the context of Fig. 7.16, here

also we can see the PMF viscosity corresponds to the coiled state at low ε̇, while

it corresponds to the stretched state at high ε̇. It is worth pointing out that

the PEF viscosity η̄1 for FENE dumbbells in dilute solutions at high ε̇ is given

analytically by (Bird et al., 1987)

η̄1 = 2bp(1−
bp + 3

2bp

1

ε̇
+ . . .) (7.42)

which, in the limit ε̇→∞, becomes η̄1 = 2bp = 100. Interestingly, Fig. 7.19 (a)

shows that the PMF viscosity η seems to be approaching this value for high ε̇,

irrespective of the shear rate. Note that for a given ε̇, the viscosity is lower as γ̇
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increases. This can be attributed to shear thinning.

The shear-thinning phenomena can be observed in Fig. 7.19 (b), which is

a plot of η as function of γ̇ for various values of ε̇. It is interesting to observe

that the shear-thinning sets in later when the elongational rate is higher. For

instance, for ε̇ = 5, the shear-thinning starts at about γ̇ = 1, while it sets in at

about γ̇ = 0.3 for ε̇ = 1. The phenomena of shear-thinning is related to the align-

ment of polymer chains. Tumbling brought about by shear favors alignment. For

higher ε̇/γ̇ ratios, it appears that tumbling is hindered, and as a result alignment

is weaker.

This completes our discussion on the few preliminary results obtained for

semidilute polymer solutions of FENE dumbbells at overlap concentration un-

dergoing PMF. These results which appear physically meaningful, give us confi-

dence that the algorithm is correctly implemented, and paves the way to carry

out more detailed studies of PMF in the future.

7.6 Conclusions

The implementation of a variety of flows in the context of a BD simulation algo-

rithm for semidilute polymer solutions was presented in this chapter. Though,

a detailed simulation study was not carried out using the algorithm we have

developed, validation studies and some preliminary results show that this algo-

rithm can indeed be used to study planar mixed flows in detail in the future. In

summary,

1. Periodic boundary conditions for planar shear flow have been implemented

using the Lees Edwards periodic boundary condition (Lees and Edwards,

1972).

2. The Kraynik-Reinelt periodic boundary condition (Kraynik and Reinelt,
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Figure 7.19: PMF viscosity of a solution of dumbbells of bp = 50 at c/c? = 1: (a) η
as a function of ε̇ for various values of γ̇. (b) η as a function of γ̇ for various values of
ε̇.
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1992) has been used to implement planar elongational flow. This PBC has

also been extended to the case of planar mixed flow, developed by Hunt

et al. (2010) in the context of NEMD simulations.

3. The calculation of the Ewald sum for hydrodynamics interactions has been

modified to account for a non-cubical simulation box.

4. Planar shear and planar elongational flows have been validated in the dilute

concentration regime by comparing results of the multi-chain code with the

results obtained from running single-chain BD simulations.

5. Some preliminary results have been obtained for FENE dumbbells at the

overlap concentration for a range of shear and elongational rates.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

The broad objective of this work has been to understand the behavior of poly-

mer solutions in the semidilute regime at and far from equilibrium with the help

of Brownian dynamics simulations. In particular, we have focused greater at-

tention on understanding the concentration and solvent quality dependence of

various static and dynamic properties at equilibrium. With regard to far from

equilibrium systems, a BD algorithm for planar mixed flow, which is a linear

combination of shear and elongational flows, was developed for semidilute poly-

mer solutions. In particular, the following is a brief list of the key aspects of this

thesis:

1. Semidilute polymer solutions have largely been understood through scaling

theories, particularly in the limit of theta and good solvents. We have

developed a scaling theory (Chapter 3) that is valid in the entire double

crossover region of the phase diagram of polymer solutions.

2. Scaling theory has helped us arrive at the general conclusion that the
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crossover scaling functions φR, φD and φη depend on the scaling variables

z and (c/c?). This can be tested either by experiments or computer simu-

lations. However, scaling theory does not reveal the specific forms of these

functions.

3. We have developed an optimized BD algorithm (Chapter 5) that is capa-

ble of (i) simulating semidilute polymer solutions with hydrodynamic and

excluded volume interactions, and (ii) controlling solvent quality across

the entire domain from theta to good solvents. We have also developed a

systematic procedure for obtaining universal predictions in the long-chain

limit.

4. With the help of the BD algorithm, we have shown the general validity of

the scaling predictions, and in particular, we have teased out the specific

dependence of the crossover scaling functions on z and (c/c?) (Chapter 6).

It appears that the dependence on (c/c?) is identical to the good solvent

limit, while the dependence on z comes in through an effective exponent.

It can be said that by these steps, a fairly complete understanding of the

static and dynamic behavior of semidilute solutions has been achieved at

equilibrium.

5. The challenge in the future is to study semidilute solutions far from equilib-

rium and to carry out a systematic comparison with experimental observa-

tions. Not much is currently understood of the behavior of semidilute poly-

mer solutions across a range of concentrations. With a view to facilitating

these studies in the future, we have extended the BD algorithm to describe

planar mixed flows (Chapter 7). The advantage of our implementation is

that it allows one to study the limit of planar shear and elongational flows
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and all the combinations in between. Preliminary results show that our

implementation is robust and agrees with earlier results where relevant.

8.2 Future Work

Some directions in which the current work can be taken further are listed below.

1. An improvement in the speed of the current BD algorithm is essential in

order to be able to tackle the large number of long polymer chains that are

required in order to study the universal behavior of semidilute solutions.

There is plenty of scope for improvement of the current BD algorithm.

Firstly, the algorithm is implemented based on a simple Euler integrator.

A semi-implicit predictor-corrector integrator may lead to an increased

time step, as observed previously for dilute polymer solutions. Secondly,

a fast Fourier transform technique can be used to make the calculation

of the Fourier space part of the Ewald sum much faster. This will lead

to an algorithm of computational complexity of O(N1.3 logN) (Sierou and

Brady, 2001; Banchio and Brady, 2003). Further, a Verlet table can be

implemented to make the evaluation of the real space part of the Ewald

sum more efficient. These improvements would make the current code

competitive with other mesoscopic simulation algorithms.

2. The scaling theory in the present work is restricted to polymer solutions

close to equilibrium. In the presence of flow, an additional scaling variable,

namely, the Weissenberg number determines the behavior of polymer so-

lutions. It is important to develop a scaling theory for flowing semidilute

polymer solutions since it would guide both experiments and simulations,

as demonstrated here at equilibrium. Clearly, the concept of a Pincus blob

(de Gennes, 1979; Rubinstein and Colby, 2003), that determines relevant
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length scales in the presence of flow would play an important role in such

a scaling theory.

3. There is currently very little that is known experimentally about the behav-

ior of semidilute solutions in flow, particularly across a range of molecular

weights, concentrations and temperatures, except for some early work by

Shaqfeh and co-workers (Hur et al., 2001). There is currently work in the

rheology lab at Monash where benchmark data on semidilute solutions of

DNA molecules is being acquired. The challenge for simulations would be

to obtain a parameter free comparison with this experimental data. Such a

comparison would establish that a predictive understanding of the behavior

of semidilute solutions has been attained.
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Appendix A

Averaging Methods

We have used the ensemble averaging method to estimate static properties and

the sliding average method to estimate diffusivity. Details of both these averaging

methods are discussed below.

A.1 The Ensemble Averaging Method

Average values and error bars of static properties are conventionally estimated

based on the block averaging method (Rapaport, 2004). We tried the block

averaging method to calculate the various static properties but it turned out

that the block averaging method was not useful to us to obtain properties with

acceptable error estimates. Below is a brief discussion to show why the block

averaging method was unsuitable.

Consider a trajectory or time series of any property A containing Ns data

points, which are divided into nb blocks. Hence each block contains Ns/nb data

points. If Aij is the jth element in ith block for A, an average over block i can be

estimated as

Āi =
1

(Ns/nb)

Ns/nb∑

j=1

Aij (A.1)
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Consequently, the block averaging method estimates the average value of A with

the expression

〈A〉 =
1

nb

nb∑

i=1

Āi (A.2)

Note that the mean value of A is always the same, irrespective of the choice of nb

because the same data points are always used in the sum. However, the standard

deviation, which is obtained by computing the variance of the block averages,

depends on the choice of nb. For any nb, an estimate of the standard deviation

of the mean can be shown to be

σbA =

√√√√ 1

(nb − 1)

nb∑

i=1

Āi
2 − 〈A〉2 (A.3)

Clearly, one can envisage that the choice of nb could affect the estimated value of

the standard deviation. In order to illustrate this argument, the Ornstein−Uhlenbeck

process (which is a stochastic process that describes the velocity of a massive

Brownian particle under the influence of friction) is used as a tool. This process

is also considered to be a modification of the random walk in continuous time, or

Wiener process. The equation below represents the Ornstein−Uhlenbeck (OU)

process

A(t+ ∆t) = A(t) + α [µ− A(t)] ∆t+ σ dWt (A.4)

where α > 0, µ and σ are OU parameters, ∆t is the time step and Wt denotes

the Wiener process. Using Eq. (A.4), with α = 0.9, µ = 0, ∆t = 0.01 and

σ = 1, the process A(t) is generated, of which a small snap shot is shown in

Fig. A.1 (a). The error analysis for A is carried out using the block averaging

method for different values of nb. As anticipated, Fig. A.1 (b) shows that for

a range of values of nb, σ
b
A increases until a limiting value is reached, and this
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Figure A.1: Demonstration of block averaging method using the Ornstein−Uhlenbeck
process: (a) A typical trajectory in the Ornstein−Uhlenbeck process (b) The standard
deviation reaches a limiting value.
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value corresponds to the true standard deviation of the mean. If the number of

data points are not sufficient, the limiting value is not reached. The error for

small values of nb indicates poor statistics.

In our case, the calculation of error estimates for 〈Re
2〉 and 〈Rg

2〉 using the

block averaging method failed because the standard deviation for both these

properties never reached their corresponding limiting values. An example is

shown in Fig. A.2 for the mean value and the standard deviation of 〈Re
2〉,

denoted as σb〈R2
e〉

, as a function of block size. The failure of using the block aver-

aging method for 〈Re
2〉 and 〈Rg

2〉 stems from the fact that the current code is

not able to generate sufficiently long trajectories, which is mainly because of the

poor speed of the code and insufficient computational resources.

An alternative approach is used in this work to calculate the error estimates.

In this approach many trajectories for any static property A are generated si-

multaneously and the time average of each trajectory is calculated. Next, an

ensemble average of all these mean values is calculated, along with the standard

error of the ensemble average obtained in this process as shown below

〈A〉 =
1

NsNT

NT∑

i=1

Ns∑

j=1

Aij (A.5)

where, Ns is the number of data points in a trajectory, NT is the number of

independent trajectories and Aij is the jth element in the ith trajectory. Also,

the standard deviation on the mean is then estimated using the expression given

below

σA =

√√√√ 1

(NsNT − 1)

NT∑

i=1

Ns∑

j=1

(Aij − 〈A〉)2 (A.6)

An example to calculate the mean value and the standard deviation of 〈Re
2〉
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Figure A.2: Illustration of block averaging method to calculate the mean value and
the standard deviation of 〈Re

2〉: (a) the mean value along with the standard deviation
(b) the standard deviation does not reach a limiting value.
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using this approach is shown in Fig. A.3. As expected, the standard deviation

decreases by increasing NT , however, it does not reach a limiting value. In this

approach the length of simulation can be small (of the order of 10−70 relaxation

times) but the number of trajectories needs to be large to obtain highly accurate

results.

Comparing between Figs. A.2 (a) and A.3 (a), gives more confidence in the

mean value of 〈Re
2〉 when an ensemble averaging method is used. We have used

the ensemble averaging method for estimating all the static properties.

A.2 The Sliding Average Method

In the sliding average method, the time series of any property is analyzed by

creating a series of averages of different subsets of the full time series. If the

number of data points in a time series are Ns and the size of a subset is denoted

by Nτ , then for a fixed Nτ , the mean-square-displacement MSD(τ), where τ =

Nτ∆t, for a multi-chain system is given by

MSD(τ) =
kBT

ζ

1

Nc

Nc∑

i=1

1

Ns −Nτ

Ns−Nτ∑

j=1

〈
|ricm(j +Nτ )− ricm(j)|2

〉
(A.7)

Equation (A.7) is used to obtain MSD(τ) for Nτ = 1, 2, 3.....Ns. In other words,

we obtain the time series of MSD. Each stochastic trajectory (simulation run)

leads to a time series for the MSD. An ensemble average over all the trajectories

then gives the time series of the mean of the MSD (denoted here as MSDavg)

along with standard error. An example of MSDavg for some values of τ in the

interval 0 < τ < 400 is shown in Fig. A.4 for z = 0.7, c/c? = 1, Nb = 6, Nc =

46, Ns = 20000, where error bars on each data point is shown. Since the initial

MSDavg data represents transient short time diffusivity, while the data at large
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Figure A.3: Illustration of ensemble averaging method to calculate the mean value and
the standard deviation of 〈Re

2〉: (a) the mean value along with the standard deviation,
showing that the level of confidence increases asNT increases (b) the standard deviation
decreases with NT but does not reach a limiting value.

times have large error bars (they are based on a larger τ or a smaller number of

blocks in the sliding average method), typically the first 15-20% and last 20-30%
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Figure A.4: Illustration of window of times ∆τ in the MSDavg data

of the data are discarded. This leads to a window of times ∆τ in the MSDavg

data that can be fitted with a straight line. We use the window ∆τ estimated in

this way to find the diffusivity from the ensemble of MSD trajectories as follows.

Basically, for a fixed set of parameters, the slopes of the lines fitted to each of the

MSD trajectories in the ensemble, over the range of times ∆τ , is used to obtain

an ensemble of predicted diffusion coefficients. The mean diffusion coefficient D

and the standard error of mean is then determined from this ensemble.
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Appendix B

Ewald Summation of

Rotne-Prager-Yamakawa

Mobility Tensor

Originally the Ewald summation method was developed for electrostatic interac-

tions, therefore, a quick introduction to this method is first discussed in the con-

text of electrostatic interactions. The remainder of this appendix then presents

the derivation of the Ewald sum for hydrodynamic interactions based on the

Rotne-Prager-Yamakawa mobility tensor.

B.1 Brief introduction to the Ewald Sum for

Electrostatic Interactions

In a system of particles, the inter-particle force is defined to be short ranged if

it decreases with distance faster than r−d where d is the dimensionality of the

system. In a system where there are long-range interactions such as Coulombic

185



B.1. Brief introduction to the Ewald Sum for Electrostatic
Interactions

interactions, and a large number of particles, it becomes crucial to avoid the

computing of all pair interactions, as otherwise the computational effort would

be proportional to the square of the number of particles. If the electrostatic

potential is truncated at a distance rc, then the contribution of the tail of the

potential u(r) is (in 3-D),

U tail =
Nρ

2

∫ ∞

rc

dr u(r) 4π r2 (B.1)

where N is the number of particles and ρ is the number density. This equa-

tion shows that the tail correction to the potential energy diverges, unless u(r)

decays faster than r−3. This is why one cannot use a truncation procedure for

long-ranged Coulombic interactions. In order to solve the problem of having

to account for all the long-ranged interactions, the Ewald summation method is

used (Frenkel and Smit, 2002). Physically the Ewald method works by surround-

ing each point charge in the system by a charge distribution of equal magnitude

and opposite sign. This distribution is usually considered a Gaussian distribu-

tion, although this choice is arbitrary. The counter-charge screens the original

potential and thus making it short-ranged. This is then summed in real space.

Then a second imaginary charge distribution of opposite sign to the first (and of

the same sign as the point charges) is added to cancel out the screening charges.

We can call it the compensating charge distribution. As this screening distribu-

tion is a smooth function, its Fourier transform is rapidly convergent. Therefore,

this second term is summed in reciprocal space. One more term, which does

not involve any summation, takes care of undesired self-interactions. Details of

the Ewald summation formula for electrostatic interactions are not covered here.

However, the remaining sections of this appendix discuss the detailed derivation

of Ewald summation for hydrodynamic interactions which was originally carried
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out by Beenakker (1986).

B.2 Rotne-Prager-Yamakawa (RPY) Tensor and

the Lattice Sum

Consider a 3-D periodic lattice in which each unit cell (of nondimensional volume

V , numbered by the index n) contains N spherical particles (nondimensional

radius a, numbered by the index µ). The position vector of particle µ is given

by

rµ,n = rµ + rn (B.2)

where, rn is the lattice vector. It is convenient to visualize a position vector with

the help of Fig. 5.1 in Section 5.2.1. The force on a particle is denoted by Fν

and it is assumed that the total force on all the particles in a unit cell vanishes:

N∑

µ=1

Fµ = 0 (B.3)

If µ is a given particle in the original cell n0 then the branch A of the RPY

mobility tensor (in which the distance between two particles is more than the

particle diameter) (Rotne and Prager, 1969; Yamakawa, 1970) is given by

Dµn0 , νn =

(
3 a

4x
{I + x̂ x̂} +

a3

2x3
{I − 3 x̂ x̂}

)

for (ν,n) 6= (µ,n0)

(B.4)

Dµn0 , µn0 = I (B.5)

Here the vector x (with magnitude x and unit vector x̂) represents the separation

vector rνn− rµn0 . For a periodic lattice, we can write the lattice sum for particle
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µ as

Sµ =
N∑

ν=1

Dµν · Fν (B.6)

For simplicity, we have represented the sum
∑

n

(∑N
ν=1 Dµn0 , νn · Fν

)
by the sum

∑N
ν=1 Dµν · Fν in above equation to be consistent with Eq. (5.1), since both of

the sums are equivalent. In this appendix, these two forms of the sum will be

used interchangeably for convenience.

Because of the long-range of the RPY tensor, the sum in Eq. (B.6) converges

only slowly. Using the Ewald summation method, this sum can be written as two

fast converging sums. Note that the Ewald summation formula for the branch A
(See Section 4.4) of the RPY mobility matrix will first be derived, as was done by

Beenakker (1986). A correction term to account for the presence of the branch

B (See Section 4.4) of the RPY tensor has already been derived in Section 5.2.2.

B.3 Derivation of the Ewald Sum of RPY Ten-

sor

Following Beenakker (1986), an alternative representation of the two-sphere RPY

tensor (Eq. (B.4)) is written as:

Dµn0,νn =

(
3a

4
+
a3

4
∇2

)
(∇2I−∇∇) | rνn − rµn0 |

for (ν,n) 6= (µ,n0),

(B.7)

where ∇ = ∂/∂(rνn − rµn0). Now, exploiting the fact that the sum of the error

function and the complementary error function is 1, Eq. (B.7) can be written as

Dµn0 , νn = M(1)(rνn − rµn0) + M(2)(rνn − rµn0) ,

for (ν,n) 6= (µ,n0),
(B.8)
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where,

M(1)(r) =

(
3 a

4
+
a3

4
∇2

)
(∇2 I − ∇∇) {r erfc(αr)} (B.9)

M(2)(r) =

(
3a

4
+
a3

4
∇2

)
(∇2I−∇∇){r erf(αr)} (B.10)

and α is an arbitrary parameter. Here, r is the magnitude of the vector r =

rνn − rµn0 . Upon substituting the decomposition Eq. (B.8) into Eq. (B.6), the

lattice sum becomes,

Sµ = Fµ +

[∑

n

′
N∑

ν=1

(
M(1)(rνn − rµn0) · Fν

)]
−
[
M(2)(r = 0) · Fµ

]

+

[∑

n

N∑

ν=1

(
M(2)(rνn − rµn0) · Fν

)]
,

(B.11)

The first summation on the right-hand side of Eq. (B.11) is rapidly converging.

The ′ over the sum indicates that the terms with self-interactions in the original

cell n0 are to be omitted. If the self-interactions are not excluded, then the

second summation on the right-hand side is perfectly continuous and periodic

and hence it converges rapidly on the reciprocal lattice. However, as the self-

interactions lead to spurious results, there is a requirement of a term to correct

this. The third term on the right-hand side compensates for self-interactions, and

is subtracted from the Ewald sum as shown in Eq. (B.11). The transformation

to reciprocal space is performed by means of the formula given by Nijboer and

de Wette (1957)
∑

n

g(rn) =
1

V

∞∑

λ=−∞

g(kλ) (B.12)

with the Fourier transform of a function g defined by

g(k) =

∫
dr exp(ik · r) g(r) (B.13)
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We may, therefore, write

∑

n

N∑

ν=1

M(2)(rνn − rνn0) · Fν =
1

V

∑

λ

N∑

ν=1

(
e−ikλ·(rν−rµ) M(2)(kλ) · Fν

)
(B.14)

where terms with kλ = 0 are excluded in the sum in Eq. (B.14) by virtue of Eq.

(B.3). Now the main focus is on calculating M(1)(r), M(2)(k) and M(2)(r = 0).

B.3.1 Calculation of M(1)(r)

For the sake of simplicity, let us consider that 3a
4

= A, a3

4
= B and r erfc(αr) =

f(r) = f , then Eq. (B.9) can be written in index notation as

M(1)(r) =
[
(A+B∇2) (∇2I−∇∇)

]
f

=
[
A (∂k

2δij − ∂i∂j)
]
f +

[
B ∂k

2(∂k
2δij − ∂i∂j)

]
f

(B.15)

where, ∂k = ∂/∂xk. Now, each term of Eq. (B.15) can be calculated one by one:

∂i ∂j f(r) = ∂i

(
f ′
rj
r

)

= f ′ ∂i

(rj
r

)
+
rj
r
f ′′
(ri
r

)

=
f ′

r
δij −

f ′

r2
rj
ri
r

+ f ′′
rirj
r2

= δij

{
f ′

r

}
+
rirj
r2

{
f ′′ − f ′

r

}

(B.16)

∂k
2 δij f(r) = δij ∂k

(
f ′
rk
r

)

= δij

{rk
r
f ′′

rk
r

+ f ′ ∂k

(rk
r

)}

= δij

{
f ′′ + 3

f ′

r
− f ′

r2
rk
rk
r

}

= δij

{
f ′′ +

2f ′

r

}

(B.17)
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Subtracting Eq (B.16) from Eq (B.17) leads to

(
∂k

2 δij − ∂i ∂j
)
f = δij

{
f ′′ +

f ′

r

}
+
rirj
r2

{
f ′

r
− f ′′

}
(B.18)

which is the first part of Eq. (B.15). The second part of Eq. (B.15) requires the

second derivative of the left hand side of Eq. (B.18). Hence,

∂k
2
(
∂k

2 δij − ∂i ∂j
)
f = ∂k

2

(
δij

{
f ′′ +

f ′

r

}
+
rirj
r2

{
f ′

r
− f ′′

})

= δij ∂k
2

(
f ′′ +

f ′

r

)
+
rirj
r2

∂k
2

(
f ′

r
− f ′′

)

+

(
f ′

r
− f ′′

)
∂k

2
(rirj
r2

)
(B.19)

The derivatives of each of the three terms on the right hand side of Eq. (B.19)

will be calculated one by one.

(i) Derivative in the first term on the right hand side of Eq. (B.19):

Let us consider that g1 = f ′′+ f ′

r
. From Eq. (B.17), we know that ∂k

2(g) = g′′+ 2g′

r

for any function g(r). Therefore,

∂k
2

(
f ′′ +

f ′

r

)
= ∂k

2 (g1)

= g1
′′ +

2g1
′

r

=

(
f ′′′′ +

f ′′′

r
− 2f ′′

r2
+

2f ′

r3

)
+

(
2f ′′′

r
+

2f ′′

r2
− 2f ′

r3

)

= f ′′′′ +
3f ′′′

r

(B.20)
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(ii) Derivative in the second term on the right hand side of Eq. (B.19):

Let us consider that g2 = f ′

r
− f ′′. From Eq. (B.17), it follows that,

∂k
2

(
f ′

r
− f ′′

)
= ∂k

2 (g2)

= g2
′′ +

2g2
′

r

=

(
−f ′′′′ +

f ′′′

r
− 2f ′′

r2
+

2f ′

r3

)
+

(
−2f ′′′

r
+

2f ′′

r2
− 2f ′

r3

)

= −f ′′′′ − f ′′′

r

(B.21)

(iii) Derivative in the third term on the right hand side of Eq. (B.19):

∂k
2
(rirj
r2

)
= ∂k

(
δki rj
r2

+
δkj ri
r2
− ri rj

2

r3

rk
r

)

=
δki δkj
r2

− 2 δki rj
r3

rk
r

+
δkj δki
r2

− 2 δkj ri
r3

rk
r

− 6 ri rj
r4

+
8 ri rj rk
r5

rk
r
− 2 rk

r4
ri δkj −

2 rk
r4

rj δki

=
δij
r2
− 2 ri rj

r4
+
δij
r2
− 2 ri rj

r4
− 6 ri rj

r4
+

8 ri rj
r4

− 2 rirj
r4

− 2 ri rj
r4

= δij

{
2

r2

}
− ri rj

r2

{
6

r2

}

(B.22)

Therefore, Eq. (B.19) now becomes,

∂k
2
(
∂k

2 δij − ∂i ∂j
)
f = δij

{
f ′′′′ +

3 f ′′′

r

}
− ri rj

r2

{
f ′′′′ +

f ′′′

r

}

+

(
f ′

r
− f ′′

) (
δij

{
2

r2

}
− ri rj

r2

{
6

r2

})

= δij

{
f ′′′′ +

3 f ′′′

r
+

2 f ′

r3
− 2 f ′′

r2

}

+
ri rj
r2

{
−f ′′′′ − f ′′′

r
− 6 f ′

r3
+

6 f ′′

r2

}

(B.23)
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which can be used to obtain the second term on the right hand side of Eq. (B.15).

Hence, combining Eqs. (B.18) and (B.23), Eq. (B.15) can be written as

M(1)(r) = δij

{
Af ′′ +

Af ′

r

}
+
ri rj
r2

{
Af ′

r
− Af ′′

}

+ δij

{
B f ′′′′ +

3B f ′′′

r
+

2B f ′

r3
− 2B f ′′

r2

}

+
ri rj
r2

{
−B f ′′′′ − B f ′′′

r
+

6B f ′′

r2
− 6B f ′

r3

}

= δij

{
Af ′′ +

Af ′

r
+ B f ′′′′ +

3B f ′′′

r
+

2B f ′

r3
− 2B f ′′

r2

}

+
ri rj
r2

{
Af ′

r
− Af ′′ − B f ′′′′ − B f ′′′

r
− 6B f ′

r3
+

6B f ′′

r2

}

(B.24)

Using the definition of f = r erfc(αr), we can evaluate the derivatives of f as

follows

f ′ = erfc(αr) − 2α r β (B.25)

f ′′ =
(
4α3 r2 − 4α

)
β (B.26)

f ′′′ =
(
16α3 r − 8α5 r3

)
β (B.27)

f ′′′′ =
(
16α7 r4 − 56α5 r2 + 16α3

)
β (B.28)
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where β = exp (−α2r2)√
π

. Substitution of f ′, f ′′, f ′′′, f ′′′′, A and B into Eq. (B.24)

leads to

M(1)(r) = I

[
3 aα3 r2 β − 3 aα β +

3 a

4r
erfc(α r) − 3 aα β

2
+ 4 a3 α7 r4 β

−14 a3 α5 r2 β + 4 a3 α3 β − 6 a3 α5 β − 6 a3 α5 r2 β + 12 a3 α3 β

+
a3 erfc(α r)

2 r3
− α a3 β

r2
− 2 a3 α3 β +

2 a3 αβ

r2

]

+ r̂ r̂

[
3 a

4 r
erfc(α r) − 3 aα β

2
− 3 aα3 r2 β + 3 aα β

− 4 a3 α7 r4 β + 14 a3 α5 r2 β − 4 a3 α3 β + 2 a3 α5 r2 β − 4 a3 α3 β

− 3 a3

2 r3
erfc(α r) +

3 a3 αβ

r2
+ 6 a3 α3 β − 6 a3 αβ

r2

]

= I

[
erfc(α r)

(
3 a

4 r
+

a3

2 r3

)
+

exp (−α2 r2)√
π

(
3 aα3 r2 − 9 aα

2

+ 4 a3 α7 r4 − 20 a3 α5 r2 + 14 a3 α3 +
a3 α

r2

)]

+ r̂r̂

[
erfc(α r)

(
3 a

4 r
− 3 a3

2 r3

)
+

exp (−α2 r2)√
π

(
3 aα

2
− 3 aα3 r2

− 4 a3 α7 r4 + 16 a3 α5 r2 − 2 a3 α3 − 3 a3 α

r2

)]

(B.29)

where r̂ is unit vector in the direction of r. This completes the derivation of

M(1)(r) required for the real space sum.

B.3.2 Calculation of M(2)(k)

To derive M(2)(k), the Fourier transform of M(2)(r) using Eq. (B.10) is per-

formed. Considering r erf(αr) = g(r) = g, we can write,

M(2)(k) =

∫
dr exp (ik.r)

(
3 a

4
+
a3

4
∇2

) (
∇2 I − ∇∇

)
g (B.30)
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Partial integration of Eq. (B.30) results in

M(2)(k) =

∫
dr g

(
3 a

4
+
a3

4
∇2

) (
∇2 I − ∇∇

)
exp (ik.r) (B.31)

Note that the constant term obtained during partial integration is zero. Let us

now simplify
(

3 a
4

+ a3

4
∇2
)

(∇2 I − ∇∇) exp (ik.r),

(
∇2 I − ∇∇

)
exp (ik.r) = (∇ ·∇ I − ∇∇) exp (ik.r)

= (i k · i k I − i k i k) exp (ik.r)

=
(
−k2 I + k k

)
exp (ik.r)

(B.32)

Hence,

(
3 a

4
+
a3

4
∇2

) (
∇2 I − ∇∇

)
exp (ik.r) =

3 a

4

(
−k2 I + k k

)
exp (ik · r)

+
a3

4

(
k4 I − k2 k k

)
exp (ik · r)

= k2

{
3 a

4

(
−I + k̂ k̂

)
+
a3 k2

4

(
I − k̂ k̂

)}
exp (ik · r)

= −3 k2

4

{(
I − k̂ k̂

) (
a − a3 k2

3

)}
exp (ik · r)

(B.33)

where k̂ is the unit vector. Inserting Eq. (B.33) in Eq. (B.31) gives,

M(2)(k) = −3 k2

4

{(
I − k̂ k̂

) (
a − a3 k2

3

)}∫
dr exp (ik · r) g (B.34)

The integral in Eq. (B.34) can be evaluated as follows. It is known that for a

spherical coordinate system dr = r2 sin θ dr dθ dφ and k · r = k r cos θ (Champ-

195



B.3. Derivation of the Ewald Sum of RPY Tensor

eney, 1973), where θ is the angle between the vectors k and r. We can write,

∫
dr exp (ik · r) f =

∫ ∞

0

dr

∫ π

0

dθ

∫ 2π

0

dφ exp (ikr cos θ) r2 sin θ g

=

∫ ∞

0

dr

∫ π

0

dθ 2 π r2 sin θ g exp (ikr cos θ)

(B.35)

Considering cos θ = x,

∫
dr exp (ik · r) f = −

∫ ∞

0

dr

∫ −1

+1

2π r2 dx g (cos (krx) + i sin (krx))

= −
∫ ∞

0

dr
2π r2

k r
g (sin (−kr) − i cos (−kr) − sin (kr) + i cos (kr))

=

∫ ∞

0

4 π r2

k
sin (kr) erf(αr) dr

= −4 π

k

∂2

∂k2

[∫ ∞

0

sin (kr) erf(αr) dr

]

=
4π

k

∂2

∂k2

[
exp (−k

2

4α2 )

k

]

=
4π

k

∂

∂k

[
exp

(−k2

4α2

) (
1

k2
+

1

2α2

)]

= −4 π

k

{
exp

(−k2

4α2

) (
1

2 k α2
+

k

4α4
+

2

k3

)}

(B.36)

Using this integral, Eq. (B.34) now becomes,

M(2)(k) =
(

I − k̂ k̂
) (

a − a3 k2

3

)
(3 π k) exp

(−k2

4α2

) (
1

2 k α2
+

k

4α4
+

2

k3

)

=
(

I − k̂ k̂
) (

a − a3 k2

3

)
exp

(−k2

4α2

) (
3π

2α2
+

3π k2

4α4
+

6π

k2

)

=
(

I − k̂ k̂
) (

a − a3 k2

3

) (
1 +

k2

4α2
+

k4

8α4

)(
6π

k2

)
exp

(−k2

4α2

)

(B.37)
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This completes the derivation of M(2)(k) required for the Fourier space sum.

Recall that in the derivation of M(2)(k) we have included the self interaction

between a smooth function (M(2)(r)) and a point force Fν located at ν. In the

following section, a compensating term M(2)(r = 0) is derived which takes care

of the self correction.

B.3.3 Calculation of M(2)(r = 0) (self-correction term)

In order to proceed, first an inverse Fourier transform of M(2)(k) is performed,

M(2)(r) =
1

(2 π)3

∫ ∫ ∫
M(2)(k) exp (ik · r) dk (B.38)

Or,

M(2)(r = 0) =
1

(2 π)3

∫ ∫ ∫
M(2)(k) dk

=
1

(2 π)3

∫ ∞

0

∫ π

0

∫ 2π

0

M(2)(k) k2 sin δ dk dδ dη

=
2π

(2 π)3

∫ ∞

0

dk

∫ π

0

dδ sin δ k2 M(2)(k)

=
2

(2 π)2

∫ ∞

0

k2 M(2)(k) dk

(B.39)

Inserting M(2)(k) from Eq. (B.37) into Eq. (B.39) leads to

M(2)(r = 0) =
3

π

∫ ∞

0

dk I

(
a − a3 k2

3

) (
1 +

k2

4α2
+

k4

8α4

)
exp

(−k2

4α2

)

− 3

π

∫ ∞

0

dk k̂k̂

(
a − a3 k2

3

) (
1 +

k2

4α2
+

k4

8α4

)
exp

(−k2

4α2

)

(B.40)

Note that the result of integrating a function of the dyadic product of a unit

vector with itself, over all space, must be isotropic. Therefore, Eq. (B.40) can
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also be written as

M(2)(r = 0) = (I1 − I2) I (B.41)

where I1 and I2 are the scalar parts in the first and second terms on the right

hand side of Eq. (B.40) respectively. Both I1 and I2 are evaluated as follows:

Evaluation of I1:

I1 =
3

π

∫ ∞

0

dk

(
a − a3 k2

3

) (
1 +

k2

4α2
+

k4

8α4

)
exp

(−k2

4α2

)

=
3

π

[ −a
12α2

{
4α3 (20 a2 α2 − 9)

√
π erf

(
k

2α

)}

+
a

12α2
exp

(−k2

4α2

) {
80 k a2 α4 + 12 k α2 (a2 k2 − 2) + k3 (a2 k2 − 3)

}]∞

0

=
aα√
π

(
9 − 20 a2 α2

)

(B.42)

Evaluation of I2:

I I2 =
3

π

∫ ∞

0

dk k̂k̂

(
a − a3 k2

3

) (
1 +

k2

4α2
+

k4

8α4

)
(B.43)

× exp

(−k2

4α2

)

Since k̂k̂ : I = k̂x
2

+ k̂y
2

+ k̂z
2

= |k̂|2 = 1, a double dot product with I on both

sides of Eq. (B.43) is carried out to give

I : I I2 =
3

π

∫ ∞

0

1 dk

(
a − a3 k2

3

) (
1 +

k2

4α2
+

k4

8α4

)
exp

(−k2

4α2

)
(B.44)
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B.3. Derivation of the Ewald Sum of RPY Tensor

The same integration result that was evaluated for the case of I1, can be used

here. Also, noting that I : I = 3, we obtain,

I2 =
aα

3
√
π

(9 − 20 a2 α2) (B.45)

Using I1 and I2, Eq. (B.41) can be simplified to obtain M(2)(r = 0)

M(2)(r = 0) = (I1 − I2) I

= I

{
aα√
π

(
1 − 1

3

)
(9− 20a2α2)

}

= I
1√
π

(
6 aα − 40

3
a3 α3

)
(B.46)

Finally, using M(1)(r), M(2)(k) and M(2)(r = 0), the Ewald summation formula

for the branch A of RPY mobility tensor can be written (using Eq. (B.11)) as

follows:

Sµ =
N∑

ν=1

Dµν · Fν =

(
1 − 6 aα√

π
+

40 a3 α3

3
√
π

)
Fµ

︸ ︷︷ ︸
Point force and self correction

+
∞∑

n=0

′ N∑

ν=1

M(1)(rνn − rµn0) · Fν

︸ ︷︷ ︸
Real space sum

+
1

V

∑

λ

N∑

ν=1

M(2)(kλ) · Fν cos {kλ · (rν − rµ)}
︸ ︷︷ ︸

Reciprocal space sum

(B.47)

Recall that the first sum on the right-hand side of Eq. (B.47) converges rapidly.

The ′ over the sum indicates that the terms with self interactions are to be

omitted. The second sum converges rapidly on the reciprocal lattice. The self-

correction appears in the first term along with the point force. The summations

199



B.3. Derivation of the Ewald Sum of RPY Tensor

in Eq. B.47 are carried out for all possible pairs of particles (|rνn − rµn0 | > 0),

however it should be used only for those pairs for which |rνn − rµn0 | > 2a. A

modified Ewald summation formula which accounts for the overlapping beads

is derived in Section (5.2.2). This modified formula involves an additional term

which is evaluated only in the original simulation cell, and in particular only for

overlapping beads. This additional term is discussed in the next section.

B.3.4 Derivation of the form of the additional term in

the modified Ewald sum

In this section, an expression for the tensor M∗ is derived, which makes up the

correction term shown in Section (5.2.2). From Eq. (5.1), the sum
∑N

µ=1 Dνµ ·Fµ

for the two branches of the RPY tensor can be written as (where the overlapping

particles have been explicitly identified),

[
N∑

µ=1

Dνµ · Fµ

]

A

=

[(
1− 6aα√

π
+

40a3 α3

3
√
π

)
Fν

]

A
+



N∗∑

µ=1
µ 6=ν

M(1)(rνµ,n=0) · Fµ



A

+

[∑

n6=0

N∗∑

µ=1

M(1)(rνµ,n) · Fµ

]

A

+

[∑

n

N∑

µ=N∗+1

M(1)(rνµ,n) · Fµ

]

A

+

[∑

k 6=0

M(2)(k) ·
{

cos(k · rν)
N∑

µ=1

cos(k · rµ)Fµ − sin(k · rν)
N∑

µ=1

sin(k · rµ)Fµ

}]

A

(B.48)
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and

[
N∑

µ=1

Dνµ · Fµ

]

B

=

[(
1− 6aα√

π
+

40a3 α3

3
√
π

)
Fν

]

B
+

N∗∑

µ=1
µ6=ν

MB
(1)(rνµ,n=0) · Fµ

+

[∑

n6=0

N∗∑

µ=1

M(1)(rνµ,n) · Fµ

]

B

+

[∑

n

N∑

µ=N∗+1

M(1)(rνµ,n) · Fµ

]

B

+

[∑

k 6=0

M(2)(k) ·
{

cos(k · rν)
N∑

µ=1

cos(k · rµ)Fµ − sin(k · rν)
N∑

µ=1

sin(k · rµ)Fµ

}]

B

(B.49)

Subtracting Eq. (B.48) from (B.49) and noting that the first, third, fourth and

fifth terms in both the equations are the same, we can write,

[
N∑

µ=1

Dνµ · Fµ

]

B

−
[

N∑

µ=1

Dνµ · Fµ

]

A

=
N∗∑

µ=1
µ 6=ν

MB
(1)(rνµ,n=0) · Fµ −



N∗∑

µ=1
µ 6=ν

M(1)(rνµ,n=0) · Fµ



A

(B.50)

The right-hand side of Eq. (B.50) is the quantity
∑N∗

µ=1
µ6=ν

M?(rνµ,n=0) ·Fµ defined

in Eq. (5.6). The difference between the sums on the left hand side of Eq. (B.50)

can be calculated using explicit expressions of RPY functions given in Eqs. (4.3)

- (4.6). As a result,

M∗(x) = δ

[
1− 1

2x3

(
3x2

4
+ 1

)2
]

+ x̂ x̂

[
1

2x3

(
3x2

4
− 1

)2
]

(B.51)

where x = r(νµ,n=0)/a and x̂ is the unit vector in the direction of r(νµ,n=0).
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Appendix C

Scaling of Computational Cost

with Chain Size

Asymptotic predictions in the long chain limit have been obtained for each state

point (z, c/c?) by extrapolating finite chain data accumulated for chain lengths

ranging from Nb = 6 to Nb = 20 as illustrated in Fig. 6.1. The use of this

rather limited range of Nb values is necessitated by the computational cost of

the Brownian dynamics simulation algorithm used here. As shown below, an

estimate of the computational cost of the algorithm can be derived by using

some simple scaling arguments, and the resulting expression can be verified by

comparison with the CPU time required in the current simulations.

The computational cost of carrying out an Euler integration of the governing

stochastic differential equation for a single time step has been shown in Chapter

5 to scale with system size as Nx, where x = 2.1. Recall that N = Nb×Nc is the

total number of beads in a cubic cell of edge length L, with Nc being the number

of bead-spring chains. Since typical simulations consist of runs extending over

several relaxation times τ1, followed by averaging over many independent runs,

it is necessary to find the dependence of τ1 on Nb in order to find the scaling of
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the total CPU cost. This is done as follows for simulations carried out in the

semidilute regime C.

From Eq. (3.20), the requirement that L ≥ 2Re (where Re is the end-to-end

distance of a chain) in order to prevent chains from wrapping over themselves

leads to

L ∼ b
( c
c?

)−1
2

2ν−1
3ν−1

z2ν−1N
1/2
b (C.1)

The concentration of monomers in the simulation box is c = (NbNc)/L
3. As a

result, from Eq. (C.1)

c ∼
(
Nc

b3

)( c
c?

)3
2

2ν−1
3ν−1

z−3(2ν−1)N
−1/2
b (C.2)

Using Eqs. (3.6) and (2.10), the overlap concentration c? can be written in terms

of the solvent quality z as

c? ∼ b−3z−3(2ν−1)N
−1/2
b (C.3)

It follows from Eqs. (C.2) and (C.3) that Nc is independent of z, and related to

the scaled concentration through the relation

Nc ∼
( c
c?

)1
2

1
3ν−1

(C.4)

The number of chains in a simulation box is consequently constant when (c/c?)

is maintained constant.

The relaxation time of a macromolecule τ1 ∼ R2/D. From Eqs. (3.20) and

(3.23), this implies

τ1 ∼ τ0 (c/c?)
2−3ν
3ν−1 z3(2ν−1)N

3/2
b (C.5)

where τ0 = ηsb
3/kBT is the monomer relaxation time.
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Figure C.1: CPU time as a function of chain length for Brownian dynamics
simulations carried out at the two state points (z, c/c?) = (0.7, 3) and (1.7, 2) for
two different values of the hydrodynamic interaction parameter (h? = 0.15 and
0.28), on a 156 SGI Altix XE 320 cluster. Symbols represent the various values
of chain length Nb used in the simulations, while the dashed line is drawn with
a slope predicted by the scaling relation Eq. (C.6).

The total computational cost of a single stochastic trajectory consequently

scales as τ1 (NcNb)
x. For fixed values of z and (c/c?) therefore

Total CPU time per run ∼ N
3
2

+x

b ∼
(
N
−1

2
b

)−7.2

(C.6)

where in the last expression on the right-hand side we have substituted the value

x = 2.1 for the current algorithm, and used an exponent for Nb that enables a

representation of the CPU cost as displayed in Fig. C.1.

The various symbols in Fig. C.1 represent simulations carried out at the

two state points (z, c/c?) = (0.7, 3) and (1.7, 2), for two different values of the
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hydrodynamic interaction parameter h?, on a 156 SGI Altix XE 320 cluster. The

simulations are identical to those used to display the ratio D/DZ in Fig. 6.1.

It is immediately apparent that the prediction in Eq. (C.6) for the scaling of

the total CPU time with chain size is obeyed closely by the present simulations,

independent of solvent quality and scaled concentration.

It is clearly desirable to add data for longer chains in order to improve the

accuracy of the asymptotic value obtained by extrapolation to the long chain

limit. Unfortunately, the additional CPU cost this would entail (which can be

estimated from the scaling of computational cost with chain size shown in Fig.

C.1) makes this highly infeasible. For instance, simulating a chain with Nb = 30

would require roughly O(104) CPU hours, while Nb = 100 would require roughly

O(106) CPU hours! Indeed, by including simulations for a chain with Nb = 30,

the CPU time for obtaining the static and dynamic properties of a semidilute

solution at a single state point (z, c/c?) = (3, 4) in the phase diagram is estimated

to increase from its current value of approximately 7×104 hours to roughly 3×105

hours.
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Appendix D

Error in the Extrapolated Value

at Nb→∞

At each state point (z, c/c?) the mean value of D and the error in the mean,

for a set of finite size chains with Nb = 6, 8, ..., 20 is obtained as described in

Section 4.5.1 and Appendix A. Single chain BD simulations are used to compute

Dz for the same values of Nb and z, and then the mean and error-of-mean of

the ratio D/Dz is easily obtained . As described earlier, the asymptotic value of

D/Dz in the long-chain limit is obtained by plotting the data at finite Nb as a

function of N
−1/2
b , and extrapolating a straight line fit to the data, to the limit

Nb →∞. The fitting of the straight line, and the estimation of the error in the

extrapolated value is carried out here with the help of “Least-Squares Fitting”

numerical routines provided in the GNU Scientific Library (GSL). Essentially, the

GSL routine finds the least-squares fit by minimizing χ̃2, the weighted sum of

squared residuals, for the straight line model D/Dz = c0 + c1N
−1/2
b . The weights

are the inverse of the error at each data point. The fitting routine gsl fit wlinear

returns the best-fit parameters c0 and c1, along with a 2 × 2 covariance matrix

that measures the statistical errors on c0 and c1 resulting from the errors in
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the data. The standard deviations of the best-fit parameters are then given

by the square root of the corresponding diagonal elements of the covariance

matrix. Particularly conveniently, the routine gsl fit linear est uses the best-fit

coefficients c0, c1 and their estimated covariance to compute the fitted function

and its standard deviation at any desired point. By using gsl fit linear est to

find the value of the fitted function and its error at N
−1/2
b = 0, we determine

both the infinite chain length limit value of D/Dz and its associated error. We

find the error bars on the extrapolated values to be very large because the GSL

routines account for the error on each data point and that results to a conservative

estimate of the error bar on the extrapolated value. Though the error bars on

the extrapolated results are large, a very good fit gives us the confidence that

the actual error bar on the extrapolated result is much smaller.
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Appendix E

Running LB/MD Simulations

In the LB/MD method, a polymer chain is modeled as a bead-spring chain

consisting of Nb beads connected through Nb − 1 finitely extensible nonlinear

elastic (FENE) massless springs. The short-ranged excluded volume interactions

are accounted through a WCA potential given by,

UWCA = 4ε

(
σ12

r12
− σ6

r6

)
+ ε, r ≤ 21/6σ (E.1)

and the FENE potential is given by,

UFENE = −kFENE q2
0

2
ln

(
1−

(
r

q0

)2
)

(E.2)

where r is the distance between a pair of beads, and σ and ε are the length

scale and the energy scale parameters of the WCA potential, respectively. In

Eq. (E.2), kFENE is the spring constant and q0 is the maximum extension of a

spring. In the LB/MD method, the natural unit system is based on the WCA

potential parameters, i.e., the length unit is σ, the energy unit is ε and the

time unit is considered to be τ , where τ =
√
mσ2/ε (where m is the mass of a

209



monomer). Conversely, in the BD method with FENE springs, the length unit is

lk =
√
kBT/kFENE, the energy unit is kBT and the time unit is τk = ζ/(4kFENE)

(where ζ is the bead friction coefficient). As the unit system is different in the

LB/MD and BD methods, in order to compare these two methods, it becomes a

necessary step to represent all the data in a common unit system. Pham et al.

(2009) have carried out the parameter mapping between these two methods in

detail. Here, their findings are briefly discussed.

Pham et al. (2009) make the point that the LB/MD method is based on an

inertial time scale while the BD method is based on a diffusive time scale. This

is relevant to the existence of a difference between the short-time and long-time

friction coefficients. The short-time friction coefficient is denoted by ζbare which

is an input parameter to the LB/MD method, where as the long-time friction

coefficient ζeff is identified with the BD bead friction coefficient ζ. Dünweg and

Ladd (2009) and Ahlrichs and Dünweg (1999) showed that ζbare and ζeff can be

related through
1

ζeff

=
1

ζbare

+
1

gηsa′
(E.3)

where, they showed that, g ≈ 25 if a′ is the LB lattice spacing. Pham et al. (2009)

point out that it is intrinsically impossible to run the two simulations with the

same unit system. As a result, they scaled all the parameters of LB/MD and

BD based on the LB/MD unit system. Firstly, we set l†σ = l‡lk and t†τ =

t‡τk, where the ‡ superscript denotes BD nondimensionalization, while † denotes

a nondimensionalization for LB/MD. It follows that kFENE can be written as

k†FENE(ε/σ2), resulting in lk =

√
σ2kBT

εk†FENE

. Hence,

σ

lk
=
l‡

l†
=

√
k†FENEε

kBT
(E.4)
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Similarly using ζ = ζ†eff

√
mε

σ2
,

τ

τk
=
τ ‡

τ †
=

4k†FENE

ζ†eff

(E.5)

Note that kBT/ε is the nondimensionalized temperature in LB/MD units, and is

an input parameter to the LB/MD method. Another BD parameter that needs

to be evaluated in terms of LB/MD parameters is the nondimensional bead

radius a‡. This parameter is related to the conventionally defined (Thurston

and Peterlin, 1967; Bird et al., 1987) hydrodynamic interaction parameter h? by

a‡ =
√
πh?. We can find,

a‡lk =
ζeff

6πηs
=
ζ†effσ

6πηs
(E.6)

which implies

a‡ =
ζ†eff

6πη†

√
k†FENEε

kBT
(E.7)

In order to compare simulation results of these two methods, firstly, for given

values of Nb, Nc and c/c?, the LB/MD simulation is run using the LB/MD input

parameters k†FENE, kBT/ε, η
† and ζ†bare. Secondly, Eqs. (E.3), (E.4), (E.5) and

(E.7) are used to calculate the values of corresponding BD parameters to run

the BD simulations. The choice of LB/MD simulation parameters made in this

study, as was in the case of Pham et al. (2009), are shown in the Table E.1.

Using these parameters the LB/MD simulation is carried out. An example of a

Tcl script (Example.tcl), and the command to execute the ESPResSo package are

given at the end of this appendix. After running this script file, particles trajec-

tories are stored in a text file (‘Trajectory.dat”), which can be post-processed to

obtain various physical properties. In order to run BD simulations, as mentioned

211



Nondimensional LB/MD simulation parameters Values

kBT/ε (Temperature) 1.2
ρ† (Density) 0.864
ν† = η†/ρ† (Kinematic viscosity) 2.8

a′† (Lattice spacing) 1

ζ†bare (Short-time friction coefficient) 20.8

k†FENE (Spring constant) 7

q†0 (Maximum extension of a spring) 2
∆t† (Time step) 0.01

Table E.1: Choice of LB/MD simulation parameters

earlier, the BD parameters are first calculated. For example, if the box size in

LB/MD units is LLB, then in BD units the box size can be calculated using

Eq. (E.4) to be LBD = LLB

√
k†FENE
kBT/ε

. Similarly, if the time step in LB/MD

method is ∆tLB, then in BD the time step can be estimated using Eq. (E.5)

to be ∆tBD = ∆tLB(4k†FENE/ζ
†
eff). Once the results are obtained by running BD

simulations, they need to be interpreted in terms of LB/MD units in order to

make a proper comparison.

An example of tcl script to run ESPResSo

#########################################

Example.tcl

#########################################

set pi 3.1415926535

set verbose "yes"

set tcl_precision 12

#########################################

# System parameters

#########################################

# Following is a list of parameters used to define the system

# and also to define interaction parameters

set n_beads <insert value here> # Number of beads in a chain
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set temp 1.2

set time_step 0.01 # Time step used in the main integrator

set skin 0.4

set n_chains <insert value here> # Number of chains

set bond_l 0.95

set min_dist 0.9

set cap_start 5

set n_total [expr $n_beads*$n_chains]

set fene_k 7.0 #FENE parameter

set box_l <insert value here> #Box size L

set ccs <insert value here> #c/c*

set fene_r 2.0 #FENE parameter

set lj_eps 1.0 #WCA parameter

set lj_sig 1.0 #WCA parameter

set lj_cut 1.122462048 #WCA parameter

set lj_shift 0.25 #WCA parameter

set lj_off 0.0 #WCA parameter

#########################################

# Lattice Boltzmann parameters

#########################################

set lb_dens 0.864 # Density

set lb_visc 2.8 # Kinematic viscosity

set lb_grid 1.0 # Lattice spacing

set lb_tau 0.02 # time step used equilibration process

set lb_zeta 20.8 # bare friction coefficient

set zeta_eff [expr 1/(1/$lb_zeta+1/(25.0*$lb_dens

*$lb_visc*$lb_grid))] # This one is similar to

BD friction coefficient

#########################################

# Integration parameters

#########################################

# All warm_* variables are used in Langevin warm up step

set warm_steps <insert value here> # Number of time steps

set warm_loops <insert value here> # Number of loops

# All diff_* variables are used in LB warp up step

set diff_time <insert value here> #Physical time for the diffusion process

set diff_steps [expr int($diff_time/$time_step)] # Number of time steps

# All n_* variables are used in the main integration step

set n_steps <insert value here> # Number of time steps

set n_loops <insert value here> # Number of loops

set data_collection_interval <insert value here> # Number of data points
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after which the data will be entered in to output file

#########################################

# System identification

#########################################

set filename [format "Trajectory.dat" ] # Setting the name of output file

##########################################

# Procedures

##########################################

proc output { args } {

global verbose

if { $verbose == "yes" } {

set l [llength $args]

if { $l == 1 } {

puts [lindex $args 0]

} elseif { $l == 2 } {

puts [lindex $args 0] [lindex $args 1]

} else {

puts [lindex $args 0] [lindex $args 1] [eval concat

[lrange $args 2 $l]]

}

}

}

proc write_positions { dest } {

global n_total

for { set np 0 } { $np < $n_total} { incr np } {

set pos [part $np print pos]

lappend xpos [lindex $pos 0]

lappend ypos [lindex $pos 1]

lappend zpos [lindex $pos 2]

}

puts $dest "[setmd time] $xpos"

puts $dest "[setmd time] $ypos"

puts $dest "[setmd time] $zpos"

}

#########################################

# Setup the system

#########################################

# Random number generator

#########################################

t_random seed 54919

#########################################
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# Setting the simulation box

#########################################

setmd box_l $box_l $box_l $box_l

setmd periodic 1 1 1

cellsystem domain_decomposition -no_verlet_list

#########################################

# Setting Interactions (manual of Espresso can be see for the details)

#########################################

inter 0 FENE $fene_k $fene_r #FENE interaction

inter 0 0 lennard-jones $lj_eps $lj_sig $lj_cut $lj_shift $lj_off

#LJ or WCA interaction

#########################################

# Setting Polymer Chains (achieving SAW)

#########################################

polymer $n_chains $n_beads $bond_l type 0 0

bond 0 mode SAW 0.5 1000000

#########################################

# Integration

#########################################

setmd time_step $time_step

setmd skin $skin

#########################################

# Run the simulation

#########################################

# warmup with Langevin equation (part of equilibration)

#########################################

thermostat langevin $temp 0.5

set cap $cap_start

set act_min_dist [analyze mindist]

inter ljforcecap $cap

set i 1

while { $i <= $warm_loops || $act_min_dist < $min_dist } {

integrate $warm_steps

set act_min_dist [analyze mindist]

set cap [expr $cap+10]

inter ljforcecap $cap

incr i

}

output ""

inter ljforcecap 0

galileiTransformParticles
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invalidate_system

########################################

# warmup with Lattice Boltzmann (Diffusion process and part of equilibration)

########################################

thermostat off

lbfluid density $lb_dens viscosity $lb_visc agrid $lb_grid tau $lb_tau

lbfluid friction $lb_zeta

thermostat lb $temp

for { set i 1 } { $i <= $warm_loops } { incr i } {

output -nonewline "\[Warmup $i/$warm_loops\]\r"; flush stdout

integrate $diff_steps

}

output ""

# Langevin and Lattice Boltzmann warm ups processes equilibrate the system

########################################

# Integration (This is he main integration step which is used to store

# particle trajectories and also to compare CPU time)

########################################

setmd time 0.0

set file [open "$filename" "w"]

write_positions $file

for { set i 1 } { $i <= $n_loops } { incr i } {

output -nonewline "\[Loop $i/$n_loops\]\r"; flush stdout

for { set j 1 } { $j <= $n_steps/$data_collection_interval }

{ incr j } {

#integrate $n_steps

integrate $data_collection_interval

write_positions $file

}

}

#output ""

close $file

########################################

In order to execute this script file, ESPResSo must be installed and the

following command is used:

>> Espresso Example.tcl
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Appendix F

Static Structure Factor

Calculations

As discussed in Chapter 3, in semidilute polymer solutions both hydrodynamic

and excluded volume interactions are screened on a length scale of ξc, which

denotes the size of a concentration blob. The information about the screening

length or the concentration driven crossover in semidilute polymer solutions is

reflected in the polymer structure factor (Huang et al., 2010). The aim of this

section is to compute the structure factor for a range of c/c? and z, and we then

hope to interpret the size of a concentration blob in terms of structure factor

results. The static structure factor of a polymer chain is given by

S(k) =
1

Nb

∑

µν

〈exp (ik · rµν)〉 =
1

Nb

∑

µν

〈
sin (krµν)

krµν

〉
(F.1)

where k is the scattering vector and k is the magnitude of k, also known as

wavenumber. The distance vector rµν connecting the beads µ and ν is an abbre-

viation for rν − rµ and rµν is the magnitude of rµν .

Scaling arguments can be used to show that the structure factor S(k) of a
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chain in a dilute solution scales as k−1/ν (Doi and Edwards, 1986) in the range

2π/Rg < k < 2π/b for polymers with Rg ∼ N ν
b , where Rg is the gyration radius

of a chain and b is the size of a monomer. Values of ν are 0.5 and 0.588 for ideal

chain and good solvent chain, respectively. As discussed in Chapter 3, the length

scale ξc lies between Rg and b, and two regimes are separated by ξc: (i) good

solvent regime when the length scale is in the range b to ξc, and (ii) θ solvent

regime when the length scale is between ξc and Rg. This leads to expectation of

two different scaling laws for S(k) in semidilute solutions: (i) S(k) ∼ k−1/ν in

the good solvent regime where 2π/ξc < k < 2π/b, and (ii) S(k) ∼ k−2 in the θ

solvent regime where 2π/Rg < k < 2π/ξc. As discussed by Yamakov et al. (1997)

and Huang et al. (2010), these two scaling laws can be clearly distinguished if

very long polymer chains are considered.

Indeed, Huang et al. (2010), have shown, by considering long polymer chains

(Nb = 50, 250), that there exist two scaling laws for S(k) in the semidilute

regime by carrying out hybrid Multi-particle Collision Dynamics/Molecular Dy-

namics (MPCD) simulations. They plotted S(k) as a function of k on a log - log

scale, and showed that for lower values of k, S(k) decays as k−2 while for higher

wavenumbers, S(k) scales as k−1/ν . As a result, they were able to predict the

size of a concentration blob ξc = 2π/kc, where kc is the wavenumber at which

k−2 slope changes to k−1/ν slope.

Due to the computational limitations of our algorithm, it is not feasible for

us to simulate very long chains. We thought it worthwhile to check if the exis-

tence of two scaling laws for S(k) in semidilute solutions, and the values of ξc

for a range of c/c? and z could be predicted, with the help of the extrapolation

procedure mentioned in Section 6.2.
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F.1. Simulation results

F.1 Simulation results

As discussed in earlier sections, the behavior of semidilute polymer solutions is

captured in the asymptotic limit Nb → ∞ and only in this limit can the uni-

versal crossover scaling functions be verified. The same set of input simulation

parameters are considered here (see Table 6.1) that were used to obtain crossover

scaling functions φR, φD and φη. As a matter of fact, simulations are run only

once for a set of parameters and then all the properties (gyration radius, diffu-

sivity, structure factors) are calculated based on the beads’ trajectories in the

post-processing stage.

A similar extrapolation technique, as was used for other properties, is used

here. Extrapolation of the finite chain data to the limit Nb → ∞ is performed

in order to obtain the asymptotic result for static structure factor S(k). Though

the procedure to obtain extrapolated data is explained in Section 6.2, because

of a certain subtlety, it is important to discuss the procedure in the context of

structure factor calculations. This subtlety arises because rather than plotting

S(k) vs. k, we plot S(k)/Nb vs. kRg since it provides a wider window in the

range of k in which we are interested. In order to obtain the extrapolated data, it

is necessary to fix the value of kRg and calculate S(k)/Nb for each Nb. Note that

kRg can have different value for different Nb at a fixed value of k. Therefore, a

linear interpolation is used to obtain S(k)/Nb around a fixed value of kRg. Once

S(k)/Nb data is calculated for all Nb at a fixed value of kRg, S(k)/Nb is plotted

as a function of N−2
b as shown in Fig. F.1. A straight line is fitted through

the data and finally the fitted line is used to evaluate S(k)/Nb at N−2
b = 0 or

Nb = ∞. It is found, for this particular case, that the best extrapolation result

is obtained when a straight line is chosen, and when the x-axis is selected to be

N−2
b . The selection of whether to choose a straight line or to choose a polynomial

of a certain order can be different at different values of kRg, based on which fits
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S(k)/Nb = 3.354Nb

−2 + 0.073

Figure F.1: A straight line is fitted to obtain S(k)/Nb in the long-chain limit by
extrapolating finiteNb results at a fix value of kRg = 5.025. Following parameters
are used: z = 1.7, c/c? = 1.

best with the simulation data. This extrapolation procedure is repeated for a

range of kRg values (ranging from 0.4 to 16), and the results are shown in Fig.

F.2 for z = 1.7 and c/c? = 1, where we find that S(k)/Nb scales as a power law

in kRg. As discussed earlier, for θ-solutions, the exponent in the power law leads

to ν = 0.5 and for solutions under good solvent conditions it leads to ν = 0.588.

However, for z = 1.7, which lies in a crossover regime between θ and good solvent

condition, the concept of effective exponent νeff is more appropriate. The slope of

the extrapolated data is −1.72, which corresponds to νeff = 0.55. It is interesting

to see that this slope is not achieved for finite size chains but achieved only after

extrapolating the finite chain data to Nb →∞ limit.
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Figure F.2: Illustration of extrapolation for S(k)/Nb at z = 1.7 and c/c? = 1

It is clear from Fig. F.2 that there is only a single slope of −1.72, and hence,

a single scaling law for the static structure factor. This means that, for this set

of c/c? and z, the extrapolation procedure fails to capture information about the

concentration blob.

We have checked for a few more values of c/c? to see if the extrapolation pro-

cedure is successful in predicting the blob size. Figure F.3 shows the structure

factor for c/c? = 1 and 4, simulated at a fixed value of z = 1.7. For c/c? = 1,

as pointed out earlier, the effective exponent νeff = 0.55. However, by increasing

the concentration to c/c? = 4, the values of νeff reduces to 0.52, which is close

to an exponent value for θ-solutions. This can be explained using Flory theory,

according to which the excluded volume interaction begin to be screened as the

concentration is increased.

A similar pattern was observed when z was varied at a fixed value of c/c?.

The values of νeff tend towards the expected asymptotic values in θ and good
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Figure F.3: Effect of c/c? on structure factor scalings at a fixed value of z = 1.7.

solvents. However, the use of an extrapolation procedure is insufficient to tease

out the subtle dependences of the blob size on z and (c/c?), and simulations of

much longer chains are required for this purpose.
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Appendix G

Periodic Boundary Condition for

Planar Elongational Flow

G.1 Introduction

In this appendix, periodic boundary conditions (PBCs) are discussed for planar

elongational flows (PEF). The derivation of PBCs for PEF was first carried out

by Kraynik and Reinelt (1992). Here the intention is to elaborate many steps in

their derivation in detail. The key questions to be addressed in this appendix

are the following: (i) At what angle should the lattice be inclined initially? (ii)

What should the initial lattice vectors be? (iii) At what time should the lattice be

mapped back to its original configuration? The very first step in order to address

these questions is to recognize the condition for the reproducibility of a lattice.

A lattice is said to be reproducible with another lattice if the lattice points on

both the lattices coincide. The equations for the lattice reproducibility condition

leads to an eigenvalue problem, and the solution of the eigenvalue problem is

used to answer these three questions.
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G.2. Condition for Reproducibility

G.2 Condition for Reproducibility
We start by constructing an arbitrary 3-D lattice consisting of all the points Rn

through the expression,

Rn = n1b1 + n2b2 + n3b3 (G.1)

where b1, b2 and b3 are linearly independent basis vectors, and n = {n1, n2, n3}
is a set of integer numbers. In order to be compatible with the elongational flow,

these basis vectors need to evolve suitably with respect to time. The evolution

of these basis lattice vectors can be written in terms of the following differential

equation,
dbi

dt
= bi · ∇u = bi ·D (G.2)

where ∇u or D is the flow gradient tensor. For planar elongational flows, it is

given by

D =




ε̇ 0 0

0 ε̇ 0

0 0 0




If b0
1, b0

2 and b0
3 are considered to be the initial basis vectors, then Eq. (G.2)

can be integrated to give,

bi = b0
i · Λ (G.3)

where Λ = exp (Dt). As D is a diagonal tensor, Λ can be written as,

Λ =




eε̇t 0 0

0 e−ε̇t 0

0 0 1


 (G.4)

Λ is also called the time evolution matrix.

As pointed out by Kraynik and Reinelt (1992), for a given Λ, a lattice is
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b0
1b0

2

b2
b1

Figure G.1: Schematic illustration of lattice reproducibility condition for a 2-D
lattice with {N11, N12, N21, N22} = {6, 3, 4, 4}.

reproducible if and only if there exist integers Nij such that,

bi = b0
i · Λ = Ni1b

0
1 +Ni2b

0
2 +Ni3b

0
3 (G.5)

This can be understood easily by considering an example of the 2-D lattice shown

in Fig. G.1. The blue lattice in Fig. G.1 is generated using the initial basis

vectors b0
1 and b0

2. If we consider, for example, {N11, N12, N21, N22} = {6, 3, 4, 4},
then b1 and b2 can be calculated from Eq. (G.5). The red lattice in Fig. G.1 is

generated using b1 and b2. It is clear that the red lattice points overlap with the

blue lattice points, as indicated by yellow points in the figure. This illustrates

the reproducibility of a lattice. Figure G.1 is just a schematic representation of

these lattices, and a red cell is really a deformed version of a blue cell.
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G.3. The Eigenvalue Problem

If we need to remap the lattice to its original configuration after a certain

time, we must make sure that the lattice remains periodic after the remapping.

Todd and Daivis (1998) and Baranyai and Cummings (1999) have shown that the

reproducibility of the lattice can be successfully utilized to ensure that periodic

boundary conditions are maintained throughout the simulation. We can obtain

a reproducible lattice only for a certain set of integers that satisfy Eq. (G.5),

and therefore, our problem now reduces to solving for such integers.

G.3 The Eigenvalue Problem

The reproducibility condition (Eq. (G.5)) can be turned into an eigenvalue prob-

lem, as discussed below. Equation (G.5) is first expanded in the form,

b0
1 · Λ = N11b

0
1 +N12b

0
2 +N13b

0
3 (G.6)

b0
2 · Λ = N21b

0
1 +N22b

0
2 +N23b

0
3 (G.7)

b0
3 · Λ = N31b

0
1 +N32b

0
2 +N33b

0
3 (G.8)

Since, Λ is a diagonal matrix or Λij = 0 for i 6= j, Eqs. (G.6), (G.7) and (G.8)

can be written in component form as,

Λ11b
0
1,x = N11b

0
1,x +N12b

0
2,x +N13b

0
3,x (G.9)

Λ22b
0
1,y = N11b

0
1,y +N12b

0
2,y +N13b

0
3,y (G.10)

Λ33b
0
1,z = N11b

0
1,z +N12b

0
2,z +N13b

0
3,z, (G.11)

Λ11b
0
2,x = N21b

0
1,x +N22b

0
2,x +N23b

0
3,x (G.12)

Λ22b
0
2,y = N21b

0
1,y +N22b

0
2,y +N23b

0
3,y (G.13)

Λ33b
0
2,z = N21b

0
1,z +N22b

0
2,z +N23b

0
3,z (G.14)
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G.3. The Eigenvalue Problem

and

Λ11b
0
3,x = N31b

0
1,x +N32b

0
2,x +N33b

0
3,x (G.15)

Λ22b
0
3,y = N31b

0
1,y +N32b

0
2,y +N33b

0
3,y (G.16)

Λ33b
0
3,z = N31b

0
1,z +N32b

0
2,z +N33b

0
3,z (G.17)

Considering all the x component equations in Eqs. (G.9), (G.12) and (G.15), we

can write the matrix equation,

Λ11




b0
1,x

b0
2,x

b0
3,x


 =




N11 N12 N13

N21 N22 N23

N31 N32 N33


 ·




b0
1,x

b0
2,x

b0
3,x


 (G.18)

Similarly, all the y components can be combined in a matrix equation,

Λ22




b0
1,y

b0
2,y

b0
3,y


 =




N11 N12 N13

N21 N22 N23

N31 N32 N33


 ·




b0
1,y

b0
2,y

b0
3,y


 (G.19)

and the z components equations can be represented by

Λ33




b0
1,z

b0
2,z

b0
3,z


 =




N11 N12 N13

N21 N22 N23

N31 N32 N33


 ·




b0
1,z

b0
2,z

b0
3,z


 (G.20)

Eqs. (G.18), (G.19) and (G.20) can be written in the general form

λj




b0
1,j

b0
2,j

b0
3,j


 =




N11 N12 N13

N21 N22 N23

N31 N32 N33


 ·




b0
1,j

b0
2,j

b0
3,j


 (G.21)
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where λj = Λjj = exp (Djjt), and j = 1, 2, 3 or x, y, z. If we consider cj to be a

column vector of components {b0
1,j, b

0
2,j, b

0
3,j}, then Eq. (G.21) can be written as,

λjI · cj = N · cj (G.22)

which can be expressed as the eigenvalue problem,

(N− λjI) · cj = 0 (G.23)

The solution of this eigenvalue problem leads to results for the strain period, the

magic angle and the initial lattice vectors.

G.4 The Strain Period of the Lattice

The strain period is obtained by first finding the eigenvalues of the N tensor.

In order to obtain the eigenvalues λj, Eq. (G.23) is solved to give the following

characteristic equation

λ3
i − kλ2

i +mλi − l = 0 (G.24)

where,

k = N11 +N22 +N33 = tr(N),

m = N11N22 +N11N33 +N22N33 −N32N23 −N12N21 −N13N31

=
1

2

[
{tr(N)}2 − tr(NN)

]
,

and

l = N11N22N33−N11N32N23−N12N21N33 +N12N31N23 +N13N21N32−N13N31N22

= det(N).

We can evaluate k, l and m by making use of the fact that they are the invariants

of the matrix N, and λi (i = 1, 2, 3) are the eigenvalues of N.
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G.4. The Strain Period of the Lattice

1.

k = tr(N) = λ1 + λ2 + λ3 (G.25)

2.

m =
1

2

[
{tr(N)}2 − tr(NN)

]
= λ2λ3 + λ1λ3 + λ1λ2 (G.26)

Dividing the above equation by λ1 λ2 λ3 (= 1), leads to

m =
1

λ1

+
1

λ2

+
1

λ3

(G.27)

3.

l = det(N) = λ1 λ2 λ3 (G.28)

For isochoric deformations, det(N) = 1, hence, l = 1.

If λ1 = φ, then for planar elongational flow, it follows from Eq. (G.4) that

λ2 = 1/φ and λ3 = 1. When these eigenvalues are inserted in Eq. (G.25) we get,

φ+
1

φ
+ 1 = k (G.29)

which is a quadratic equation for φ, with a solution

φ =
(k − 1) +

√
(k − 1)2 − 4

2
= λ1 (G.30)

which is one of the roots of the quadratic equation. It can be easily shown that
1

φ
=

(k − 1)−
√

(k − 1)2 − 4

2
. As a result, the second root is simply 1/φ or λ2.

Note that from Eq. (G.27), and the known values of λ1, λ2 and λ3, it follows

that m = k.

For a discrete set of k, a discrete set of φ can be calculated. From Eq. (G.30)

it is clear that k cannot be less than 3. Since m = k, it follows that m ≥ 3. In
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G.5. Magic Angle and Initial Lattice

the case of no deformation, the matrix Λ is a unit matrix, and for this trivial

case k = m = 3. We are interested in nontrivial cases in which the lattices are

deforming, i.e., we require integers k > 3 and m > 3 for which there exist lattices

that are reproducible and periodic. For k = 4, 5, 6, . . ., discrete values of φ can

be calculated, and at only these discrete values the lattice will exhibit periodic

planar elongational flow. Since φ = eε̇t, for a given ε̇, the times at which the

lattice will be periodic are t =
log φ

ε̇
.

Finding the information for strain period is useful but not complete. It is

also required to derive the initial lattice configuration with which the simulation

starts, for instance, the initial lattice vectors and the orientation of the lattice

(the magic angle). These can be achieved by finding out a suitable N matrix.

G.5 Magic Angle and Initial Lattice

In planar flows, the lattice in the direction perpendicular to the plane of flow

remains undeformed. As a result b3 = b0
3 at all times, and it is sufficient to

consider the 2-D lattice in the plane of flow. The 2-D lattice can be defined in

terms of (i) a, the ratio of the magnitudes of b2 to b1, and (ii) Φ, the angle

between b1 and b2, as shown in Fig. G.2. If θ is the angle at which the lattice

is initially oriented, then we can write the basis vectors as

b1 = (cos θ, sin θ) and b2 = (a cos (θ + Φ), a sin (θ + Φ)) (G.31)

Here, θ is the magic angle, and the derivation of it is discussed here. We start

with rewriting Eq. (G.23) for j = 1 and 2 as,

(N− λ1I) · c1 = 0 (G.32)

(N− λ2I) · c2 = 0 (G.33)
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Origin 

θ

Φ b1

b2

|b2|
|b1| = a

Figure G.2: A general 2-D lattice with magic angle θ

For a 2-D system, Eq. (G.32) can be written as two set of equations. In this

case, λ1 = φ and c1 = (cos θ, a cos (θ + Φ)), and the two equations are

(N11 − φ) cos θ + aN12 cos (θ + Φ) = 0 (G.34)

N21 cos θ + a(N22 − φ) cos (θ + Φ) = 0 (G.35)

Similarly, for j = 2, λ2 = 1/φ and c2 = (sin θ, a sin (θ + Φ)), and the correspond-

ing two equations are

(N11 − 1/φ) sin θ + aN12 sin (θ + Φ) = 0 (G.36)

N21 sin θ + a(N22 − 1/φ) sin (θ + Φ) = 0 (G.37)

Note that for planar flows, N13 = N23 = N31 = N32 = 0, and N33 = 1. Equation

(G.34) can be solved to obtain an expression for θ in terms of a, Φ, φ, N11 and

N12,

θ = tan−1

[
(N11 − φ) + aN12 cos Φ

aN12 sin Φ

]
(G.38)

Here φ can be calculated using Eq. (G.30), and a and Φ are also known for any

specific lattice. For instance, for a square lattice a = 1 and Φ = π/2, and for a
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G.5. Magic Angle and Initial Lattice

hexagonal lattice a = 1 and Φ = π/3. Hence, the only unknowns in Eq. (G.38)

are N11 and N12. An expression for θ is also obtained from Eq. (G.36) as given

below,

θ = tan−1

[ −aN12 sin Φ

(N11 − 1/φ) + aN12 cos Φ

]
(G.39)

Now, Eqs. (G.38) and (G.39) can be equated to give

[(N11 − φ) + aN12 cos Φ] [(N11 − 1/φ) + aN12 cos Φ] =

− [aN12 sin Φ] [aN12 sin Φ]
(G.40)

Or,

N2
11 −N11 (φ+ 1/φ) + 2a cos ΦN11N12 + 1

−aN12 cos Φ (φ+ 1/φ) + a2N2
12 = 0

(G.41)

Note that for planar elongational flows, φ + (1/φ) is equal to N11 + N22 since

N33 = 1. Further, we can write

m = λ1 + λ2 + λ1λ2 = φ+ (1/φ) + 1 = N11N22 +N11 +N22 −N12N21,

or

N11N22 −N12N21 = λ1 λ2 = 1. As a result, Eq. (G.41) can be simplified to give,

−N21 + a cos Φ(N11 −N22) + a2N12 = 0 (G.42)

We define k̃ = N11 + N22, and note that N11N22 − N12N21 = 1. This leads to

equations for N22 and N21 in terms of k̃, N11 and N12, as given below,

N22 = k̃ −N11 (G.43)

N21 =
N11(k̃ −N11)− 1

N12

(G.44)
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Note that k̃ ≥ 2. Inserting N22 and N21 into Eq. (G.42) gives an equation in

terms of a, Φ, k̃, N11 and N12,

(
N11 − k̃/2

)2

+ 2a cos Φ
(
N11 − k̃/2

)
N12 + a2N2

12 = k̃2/4− 1 (G.45)

This is also an equation of ellipse centered at (k̃/2, 0). For a square lattice (a = 1,

Φ = π/2), Eq. (G.45) becomes an equation of circle,

(
N11 − k̃/2

)2

+N2
12 = k̃2/4− 1 (G.46)

and Eq. (G.42) simplifies to N21 = N12. Equation (G.46) can be used to find an

expression for N12 in terms of k̃ and N11 as,

N12 = ±
√
N11(k̃ −N11)− 1 (G.47)

If, for a given N11, we find an integer value of N12, then we have found the

solution. As mentioned by Kraynik and Reinelt (1992), the negative root is

always considered in Eq. (G.47). It is conventional to simulate PEF with square

lattices, which we also do in this work.

G.6 Step-by-Step Implementation for a Square

Lattice

Finally, in order to implement all these steps in a computer program, we sum-

marize these results in a step-by-step procedure as follows:

1. First choose an integer value of k̃ (k̃ = 3, 4, 5, . . .).
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2. Calculate the eigenvalue φ using the following expression

φ =
k̃ +

√
k̃2 − 4

2
(G.48)

3. Estimate the strain period τp using the expression τp = log (φ)/ε̇, where ε̇

is the elongational rate.

4. Select a positive integer value of N11 such that an integer value of N12 is

obtained using the following expression

N12 = −
√
N11(k̃ −N11)− 1 (G.49)

5. Calculate the magic angle using the expression

θ = tan−1

[
N11 − φ
N12

]
(G.50)

Note that this equation is a simplified form of Eq. (G.38) for a square

lattice.

Therefore, we know the initial lattice configuration and the time at which the

lattice should be deformed and mapped back to its original configuration.
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Appendix H

Compatibility Condition in

Planar Mixed Flow

Since lattices evolve only in the xy plane for planar flows, one corner of the

simulation box can be set at the origin and r1(t), r2(t) and r3(t) can be considered

to be the other three corners, as shown in Fig. H.1. The lattice spacing D(t) is

in turn expressed as the modulus of the sum of the three vectors r1, r2 and r3

(which are three of the corners in the cell). As indicated by the black dashed

lines in Fig. H.1, the trajectories of any cell vectors can be used to derive the

minimum length in the direction of the cell vectors. Considering r = r1 +r2 +r3,

expressions for rx(t) and ry(t) for PMF are given in Eqs. (7.37) and (7.35)

respectively. Note that rx and ry are the x and y components of the vector r,

respectively. D(t) reaches its minimum value when,

d

dt
(r(t) · r(t)) = 0 (H.1)
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Origin 

r1(0)

r2(0)

r3(0)

r1(t)

r2(t)

r3(t)

x

y

Figure H.1: Schematic illustration of how the corners of a simulation box evolve
in the xy plane (reproduced from Hunt et al. (2010)). Blue indicates the initial
simulation box, red indicates the simulation box at time t and the black dashed
lines represent the trajectories of cell vectors.

This implies,

d

dt
(r(t) · r(t)) = 2rx(t)ṙx(t) + 2ry(t)ṙy(t) + 2rz(t)ṙz(t) = 0 (H.2)

Since for planar flows, ṙz(t) = 0, we can write

rx(t)ṙx(t) + ry(t)ṙy(t) = 0 (H.3)

Using Eqs. (7.37) and (7.35), the derivatives of rx(t) and ry(t) are

ṙx(t) = γ̇ r0
y cosh(ε̇t) + ε̇ r0

x exp (ε̇t) (H.4)

236



and

ṙy(t) = −ε̇ r0
y exp (−ε̇t) (H.5)

Putting together rx(t), ry(t), ṙx(t) and ṙy(t) in Eq. (H.3) leads to

[
γ̇

ε̇
r0
y sinh(ε̇t) + r0

x exp (ε̇t)

] [
γ̇ r0

y cosh(ε̇t) + ε̇ r0
x exp (ε̇t)

]

+
[
r0
y exp (−ε̇t)

] [
−ε̇ r0

y exp (−ε̇t)
]

= 0

(H.6)

Equation (H.6) can be simplified by using trigonometric formulas and also using

the definitions of sinh(x), cosh(x) in terms of exponentials exp (x), to give

exp (2ε̇t)

[
γ̇2 r0

y
2

4ε̇
+ γ̇ r0

x r
0
y + ε̇r0

x
2

]
= exp (−2ε̇t)

[
γ̇2 r0

y
2

4ε̇
+ ε̇ r0

y
2

]
(H.7)

Or,

exp (4ε̇t) =
γ̇2 r0

y
2

+ 4ε̇2 r0
y

2

γ̇2 r0
y

2 + 4γ̇ ε̇ r0
x r

0
y + 4ε̇2 r0

x
2 (H.8)

Denoting by tmin, the time at which the lattice spacing is a minimum, we can see

that,

tmin =
1

4ε̇
log

[
γ̇2 r0

y
2

+ 4ε̇2 r0
y

2

γ̇2 r0
y

2 + 4γ̇ ε̇ r0
x r

0
y + 4ε̇2 r0

x
2

]
(H.9)

Therefore, the minimum lattice spacing Dmin can be found to be

Dmin =
√
r2
x(tmin) + r2

y(tmin) (H.10)

Using Eqs. (7.35), (7.37), (H.9) and (H.10), the minimum lattice spacing can

be calculated, and hence a suitable cutoff radius rc can be chosen to ensure the

compatibility condition is satisfied.
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