
Preconditioning an Artificial Neural
Network Using Naive Bayes

Nayyar A. Zaidi, Francois Petitjean, Geoffrey I. Webb

Introduction

I Maximum likelihood estimates of naive Bayes probabilities can
be used to greatly speed-up logistic regression

I This talk demonstrates that this speed-up can also be
attained for Artificial Neural Networks

I Talk outline
I Introduction (2 minutes)
I Proposed Approach (6 minutes)
I Experimental Analysis (6 minutes)
I Future Research, Q & A (3 minutes)

Contributions of the Paper

I We show that:

1. Preconditioning based on naive Bayes is applicable and equally
useful for Artificial Neural Networks (ANN) as it is for Logistic
Regression (LR)

2. Optimizing MSE objective function leads to lower bias than
optimzing CLL, this leads to lower 0-1 Loss and RMSE on big
datasets

Logistic Regression

I One of the state-of-the-art classifier

I Maximizes the Conditional Log-Likelihood (NLL)

CLL(β) =
N∑
i=1

logPLR(y (i)|x(i)) (1)

I If constrained to categorical attributes and multi-class
problems, it leads to:

PLR(y | x) =
exp (βy +

∑a
i=1 βy ,i ,xi)∑

c∈ΩY
exp

(
βc +

∑a
j=1 βc,j ,xj

) (2)

I and

exp
(
βy +

a∑
i=1

βy ,i ,xi − log
∑
c∈ΩY

exp
(
βc +

a∑
j=1

βc,j ,xj

))
(3)

Naive Bayes and Weighted Naive Bayes

I Naive Bayes can be written as:

PNB(y | x) =
P(y)

∏a
i=1 P(xi | y)∑

c∈ΩY
P(c)

∏a
j=1 P(xj | c)

(4)

I Adding weights in naive Bayes:

PW(y | x) =
P(y)wy

∏a
i=1 P(xi | y)wy,i,xi∑

c∈ΩY
P(c)wc

∏a
j=1 P(xj | c)

wc,j,xj
(5)

= exp
(
wy logP(y) +

a∑
i=1

wy ,i ,xi logP(xi | y)−

log
∑
c∈ΩY

exp
(
wc logP(c) +

a∑
j=1

wc,j ,xj logP(xj | c)
))
.

(6)

WANBIA-C

I LR

exp
(
βy +

a∑
i=1

βy ,i ,xi − log
∑
c∈ΩY

exp
(
βc +

a∑
j=1

βc,j ,xj

))
I Weighted Naive Bayes

exp
(
wy logP(y) +

∑a
i=1 wy ,i ,xi log P(xi |y) −

log
∑

c∈ΩY
exp
(
wc logP(c) +

∑a
j=1wc,j ,xj logP(xj | c)

))

WANBIA-C

I LR

exp
(
βy +

a∑
i=1

βy ,i ,xi − log
∑
c∈ΩY

exp
(
βc +

a∑
j=1

βc,j ,xj

))
I Weighted Naive Bayes

exp
(
wy logP(y) +

∑a
i=1 wy ,i ,xi logP(xi | y)−

log
∑

c∈ΩY
exp
(
wc logP(c) +

∑a
j=1wc,j ,xj logP(xj | c)

))

WANBIA-C

I LR

exp
(
βy +

a∑
i=1

βy ,i ,xi − log
∑
c∈ΩY

exp
(
βc +

a∑
j=1

βc,j ,xj

))
I Weighted Naive Bayes

exp
(
wy logP(y) +

∑a
i=1 wy ,i ,xi logP(xi | y)−

log
∑

c∈ΩY
exp
(
wc logP(c) +

∑a
j=1wc,j ,xj logP(xj | c)

))
I βc ∝ wc logP(c) and βc,i ,xi ∝ wc,i ,xi logP(xi | c)

I WANBIA-C: Proposed in [1] shows an equivalence between
LR and weighted naive Bayes

I For sake of clarity - we denote it by: WANBIAC
CLL

WANBIA-C

I View 1: Learn weights by
optimizing CLL to alleviate
naive Bayes independence
assumption

I View 2: WANBIAC
CLL uses

generative estimates of the
probabilities to speed-up the
convergence

I View 3: Way of combining
generative and
discriminative models

I WANBIAC
CLL and LR

generate equivalent models

I But have different
convergence profiles

10
0

10
1

10
2

10
3

10
4

−1.35

−1.3

−1.25

−1.2

−1.15

−1.1

−1.05

−1
x 10

4

No. of Iterations

C
o

n
d

it
io

n
a
l
L

o
g

 L
ik

e
li
h

o
o

d

Magic

LR

WANBIA−C

Artificial Neural Networks (LR)

I Minimizes MSE Objective Function instead of NLL

I We begin by writing an objective function:

MSE(β) =
1

2

N∑
i=1

C∑
c=1

(
δ(y = c)− P(c |x(i))

)2

I where

P(c | x) =
exp (βc +

∑a
i=1 βc,i ,xi)∑

c ′∈ΩY
exp

(
βc ′ +

∑a
j=1 βc ′,j ,xj

)

Artificial Neural Networks (WANBIA-C)

I Minimizes MSE Objective Function instead of NLL

I We begin by writing an objective function:

MSE(w) =
1

2

N∑
i=1

C∑
c=1

(
δ(y = c)− P(c |x(i))

)2

I where

P(c | x) =
P(y)wy

∏a
i=1 P(xi | y)wy,i,xi∑

c∈ΩY
P(c)wc

∏a
j=1 P(xj | c)

wc,j,xj

Proposed Method – WANBIAC
MSE

I Step 1:

I Calculate class-probabilities as P(y) = πy =
#y+m/C
N+m

I Calculate other probabilities as P(xi | y) = θxi |c =
#xi ,y

+m/|xi |
#y+m

I Step 2:
I Optimize MSE based on weighted naive Bayes
I Use gradient-based iterative optimization algorithm
I Calculate the gradient:

∂MSE(w)

∂wk,i,xi

= −
N∑
i=1

C∑
c

(δ(y = c)− P(c |x))
∂P(c |x)

∂wk,i,xi

,

I where

∂P(c |x)

∂wk,i,xi

= P(c |x) (δ(c = k)− P(k |x)) δ(xi) log θxi |k ,

I Use L-BFGS to get parameter vector w

WANBIAC
MSE vs. ANN

I Gradient of parameters can be defined as:

∂MSE(w)

∂wk,i ,xi

= −
N∑
i=1

C∑
c

(
δ(y = c)− P̂(c |x)

)
P(y |x)

(δ(y = k)− P(k|x)) log θxi |kδ(xi)

I Note for ANN, we have:

∂MSE(w)

∂βk,i ,xi
= −

N∑
i=1

C∑
c

(δ(y = c)−P(c |x))P(y |x)

(δ(y = k)− P(k|x)) δ(xi)

I WANBIAC
MSE has the effect of re-scaling the gradients of

ANN

∂MSE(w)

∂wk,i ,xi

=
∂MSE(β)

∂βk,i ,xi
log θxi |k ,

∂MSE(w)

∂wk
=
∂MSE(β)

∂βk
log πk

Experimental Results

I 73 standard UCI datasets

I Algorithms evaluated in terms of bias, variance, 0-1 Loss and
RMSE

I 40 datasets with < 1000 instances

I 21 between 1000 and 10000 instances

I 12 datasets with > 10000 instances

I Datasets are divided into two categories All and Big

I MDL discretization is used to discretize numeric attributes

I L-BFGS solver is used

MSE vs. CLL

WANBIAC
MSE vs. WANBIAC

CLL ANN vs. LR

W-D-L p W-D-L p

All Datasets

Bias 39/15/18 0.007 36/14/22 0.086

Variance 21/8/42 0.011 26/7/38 0.168

0-1 Loss 33/12/27 0.519 34/9/29 0.614

RMSE 30/5/37 0.463 28/4/40 0.181

Big Datasets

0-1 Loss 10/1/1 0.011 8/2/2 0.109

RMSE 8/1/3 0.226 8/0/4 0.387

Table: Win-Draw-Loss: WANBIAC
MSE vs. WANBIAC

CLL and ANN vs. LR. p is
two-tail binomial sign test. Results are significant if p ≤ 0.05.

WANBIAC
MSE vs. ANN

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ANN

0

0.2

0.4

0.6

0.8

1

W
A

N
B

I
A

C M
S

E

0-1 Loss

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ANN

0

0.2

0.4

0.6

0.8

1

W
A

N
B

I
A

C M
S

E

0-1 Loss

Figure: Comparative scatter of 0-1 Loss of ANN and WANBIAC
MSE on All (Left)

and Big (Right) datasets.

WANBIAC
MSE vs. ANN

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

ANN

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

W
A

N
B

I
A

C M
S

E

Training Time

10
0

10
1

10
2

10
3

10
4

10
5

ANN

10
0

10
1

10
2

10
3

10
4

10
5

W
A

N
B

I
A

C M
S

E

Training Time

Figure: Comparative scatter of training time of ANN and WANBIAC
MSE on All

(Left) and Big (Right) datasets.

WANBIAC
MSE vs. ANN

10
0

10
1

10
2

10
3

10
4

10
5

ANN

10
0

10
1

10
2

10
3

10
4

10
5

W
A

N
B

I
A

C M
S

E

Iterations

10
1

10
2

10
3

10
4

10
5

ANN

10
1

10
2

10
3

10
4

10
5

W
A

N
B

I
A

C M
S

E

Iterations

Figure: Comparative scatter of number of iterations to convergence of ANN and
WANBIAC

MSE on All (Left) and Big (Right) datasets.

Convergence Curves

10
0

10
1

10
2

10
3

10
4

No. of Iterations

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

M
e
a
n

 S
q

u
a
r
e
 E

r
r
o

r

×10
5 Covtype

ANN

WANBIA
C

MSE

10
0

10
1

10
2

10
3

10
4

No. of Iterations

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

M
e
a
n

 S
q

u
a
r
e
 E

r
r
o

r

×10
4 Census-income

ANN

WANBIA
C

MSE

Figure: Comparative convergence profiles of ANN and WANBIAC
MSE on Covtype

(Left) and Census-income (Right) datasets.

Convergence Curves

10
0

10
1

10
2

10
3

No. of Iterations

2400

2600

2800

3000

3200

3400

3600

3800

M
e
a
n

 S
q

u
a
r
e
 E

r
r
o

r

Sign

ANN

WANBIA
C

MSE

10
0

10
1

10
2

10
3

No. of Iterations

0

2000

4000

6000

8000

10000

12000

14000

M
e
a
n

 S
q

u
a
r
e
 E

r
r
o

r

Shuttle

ANN

WANBIA
C

MSE

Figure: Comparative convergence profiles of ANN and WANBIAC
MSE on Sign (Left)

and Shuttle (Right) datasets.

WANBIAC
MSE vs. Random Forest

All Big
0

0.5

1

1.5

2
Training Time

WANBIA
C

MSE

RF100

All Big
0

5

10

15

20

25

30
Classification Time

WANBIA
C

MSE

RF100

WANBIAC
MSE vs. RF100

W-D-L p

All Datasets

Bias 41/5/26 0.086

Variance 32/2/38 0.550

0-1 Loss 30/2/40 0.282

RMSE 27/0/45 0.044

Big Datasets

0-1 Loss 5/0/7 0.774

RMSE 5/0/7 0.774

Table: Win-Draw-Loss: WANBIAC
MSE vs.

Random Forest. p is two-tail binomial sign
test. Results are significant if p ≤ 0.05.

Conclusion and Future Work

I Simple (naive Bayes based) preconditioning can speed-up
convergence of ANN

I The proposed WANBIAC
MSE approach has the desirable

property of asymptoting to optimum much quicker than ANN

I We are investigating:

1. Why naive Bayes estimates are such a good pre-conditioner?

2. An out-of-core Stochastic Gradient Descent (SGD)
optimization

3. WANBIAC
MSE for ANN with hidden layers

4. Applicability of WANBIA-C style pre-conditioning to other
objective functions

I Q & A

I Offline Discussions

I @nayyar zaidi

I nayyar.zaidi@monash.edu

I nayyar zaidi

I http://users.monash.edu.au/~nzaidi

I For further discussions, contact:

http://users.monash.edu.au/~nzaidi

N. A. Zaidi, M. J. Carman, J. Cerquides, and G. I. Webb,
“Naive-Bayes inspired effective pre-conditioners for
speeding-up logistic regression,” in IEEE International
Conference on Data Mining, pp. 1097–1102, 2014.

N. A. Zaidi, J. Cerquides, M. J. Carman, and G. I. Webb,
“Alleviating naive Bayes attribute independence assumption by
attribute weighting,” Journal of Machine Learning Research,
vol. 14, pp. 1947–1988, 2013.

