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Abstract. Advent of Deep Learning and the emergence of Big Data has
led to renewed interests in the study of Artificial Neural Networks (ANN).
An ANN is a highly effective classifier that is capable of learning both linear
and non-linear boundaries. The number of hidden layers and the number
of nodes in each hidden layer (along with many other parameters) in an
ANN, is considered to be a model selection problem. With success of deep
learning especially on big datasets, there is a prevalent belief in machine
learning community that a deep model (that is a model with many number
of hidden layers) is preferable. However, this belies earlier theorems proved
for ANN that only a single hidden layer (with multiple nodes) is capable
of learning any arbitrary function, i.e., a shallow broad ANN. This raises
the question of whether one should build a deep network or go for a broad
network. In this paper, we do a systematic study of depth and breadth
of an ANN in terms of 0-1 Loss, RMSE, Bias, Variance and convergence
performance on 72 standard UCI datasets.

1 Introduction
The emergence of Big Data and success of deep learning on some problems have
sparked a new interest in the study and evaluation of Artificial Neural Networks
(ANN). ANN has a long history in the field of Artificial Intelligence. Earliest in-
stance of ANN came in the form of Perceptron algorithm [1]. Perceptron was not
capable of handling non-linear class boundaries and, therefore, interest in them
remained fairly limited. Breakthrough was achieved by the invention of Backprop-
agation algorithm and multi-layer Perceptron that could model non-linear bound-
aries that led to a golden era of ANN. However, results were not as good as one had
expected. Attention of Artificial Intelligence (AI) community was soon diverted to
more mathematically sound alternative such as Support Vector Machines (with
convex objective function) and non-parametric models such as Decision Trees,
Random Forest, etc.

With advancements in the computing infrastructure, access to much bigger
training datasets and better (for example greedy layer-wised) training algorithms [2]
– ANN demonstrated much successes in its application on structured problems1

1 These are mostly the problems in text, vision and NLP where there is a certain struc-
ture present in the input features. For example, deep learning performed extremely
well on MNIST digit dataset (accuracy improved over 20%) when compared to typical
machine learning algorithms.



2 Nian Liu and Nayyar A. Zaidi

and, therefore, there has been a renewed interest in the study of ANN mostly
under the umbrella term of deep learning. However, applicability of deep learning
on problems where there is no structure in the input and studying its efficacy over
other competing machine learning algorithms remains to be further investigated.

Deep refers to the fact that the network has to be very deep. Why is deep
learning effective? We believe that this is due to the feature engineering capa-
bility of a deep network. For example, for image recognition, lower-level layers
represent the pixels and middle-levels represent the edges made of these pixels
and higher-levels represent the concepts made from these edges. An example is
the convolutional neural network (CNN), where there is an explicit filtering stage
(convolution), followed by max-polling and then a fully-connected network. In an
CNN, an image is convolved with a kernel to incorporate the spatial information
present in the image, resulting in higher-order features 2. This is followed by some
sampling steps, for example, max-pooling to reduce the size of the output. There
can be many convolution and max-pooling layers, which are followed by a fully-
connected multi-layer perceptron. What about problems where we can not rely
on interactions in the features? In other words, if we cannot rely on convolutional
and max-pooling layers, will deep learning be as effective as it is on the structured
problems? Well, we argue, that the success of deep learning can be attributed to
the fact that it takes into account higher-order interactions among the features of
the data. And when faced with extremely large quantities of training data, taking
into account these higher-order interactions is beneficial [3].

Therefore, for un-structured problems, there are several directions one could
take of which we mention only three in the following:

1. Take the quadratic, cubic or higher-order features and feed them to an ANN
with no hidden layers [4].

2. Train a multi-layer ANN with many hidden layers – deep model.
3. Train an ANN with single hidden layer but many nodes – broad model.

We leave option one as an area of future research, and will focus on the second
and third option.

To the best of our knowledge, there are no comparative studies of deep and
broad ANN in terms of their performance, bias and variance profiles and conver-
gence analysis. We claim our main contributions in this paper are:

– We provide a comparison of 0-1 Loss, RMSE, bias and variance of deep ANNs
(with two, three, four and five hidden layers) and broad ANNs (with two,
four, eight and ten nodes in one hidden layer). We show that on standard UCI
datasets [8], broad ANNs leads to better results than deeper models.

– We compare the convergence analysis of deep ANNs and broad ANNs. We show
that broad ANN have far superior convergence profiles than deeper models.

The rest of this paper is organized as follows. In Section 2, we provide a brief
overview of ANN and learning algorithm used to train the models. In Section 3,

2 Earlier applications of multi-layer perceptrons presented only the pixels to the input
layer which failed to encode the structure present in the images.
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we provide the empirical results. We conclude in section 4 with pointers to future
work.

2 A Simple Feed-Forward ANN

An Artificial Neural network (ANN) mimics how the neurons in a biological brain
work. In the brain, each neuron receives input from other neurons. The effect and
magnitude of the input is controlled by synaptic weight. The weight will change
over time so that the brain can learn and perform tasks. We will denote the input
layer of an ANN as X, each hidden layer as Hk, and the output layer will be
denoted as Y . In this paper, we only considered sigmoid nodes with the activation
function of form: ak = f(hk ·wk), where wk represent the weighting of each layer as
mentioned earlier. Also, w0 is the weighting for the input layer. Here, hk represents
the input of each layer and ak represents the output of each layer. Since the output
of the previous layer is the input of the current layer, the following equality holds:

ak−1 = hk (1)

Note that the output of the last hidden layer is input of the output layer. Hence
as, where s represents the index of the final hidden layer, will be the prediction
given by the NN.

The objective function of an ANN is to minimize the Mean Squared Error
(MSE) that is:

J(w) =
1

2
(as − Y )2.

The weights for all layers are randomized initially. Using the input value h0, all
activations functions are calculated layer by layer allowing for an output as. This
process is called forward propagation. Using this output value, back propagation
can be implemented through gradient descent to minimize the MSE.

In order to use gradient descent, we need the partial derivatives of each wk:
4wk = δJ

δwk
. Let us show the derivation of partial derivatives of the last two layers

and the pattern will be apparent. For the output layer s:

δJ

δws
=

δJ

δas

δas
δws

.

The first part is the plain derivative of the cost function with respect to as.

δJ

δas
= (as − y).

The second part is the derivative of the sigmoid function with respect to ws. Since
both hs and ws are variables, chain rule must be used:

δas
δws

= f ′(hs · ws)hs.
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Putting it altogether:

4ws = (as − y)f ′(hs · ws)hs = γshs. (2)

Note that we have introduced a new notation of γk. For the second last layer s−1,
we have:

δJ

δws−1
=

δJ

δas−1

δas−1

δws−1
.

Let us focus on the first part:

δJ

δas−1
=
∑ δ

δas−1

[
1

2
(as − y)2

]
.

Note, the above sum is over all the nodes in hidden layer s−1. We have removed the
subscript indexing each node in layer s−1 for simplicity purposes. In the following
equations, all the summations are over the number of nodes in the hidden layer
unless explicitly stated otherwise. We expand above Equation as:

δJ

δas−1
, =

∑
(as − y)

δas
δas−1

,

=
∑

(as − y)
δas
δhs

,

=
∑

(as − y)f ′(hs · ws)ws =
∑

γsws.

The jump from the second line to the third line above is valid because of Equation
1. The summation sign is needed because each node in layer s−1 provides an input
to each node in layer s, hence the partial derivatives need to be added together.
The second part is the same as before:

δas−1

δws−1
= f ′(hs−1 · ws−1)hs−1.

Putting it together:

4ws−1 =
∑

γs−1hs−1 =
∑

(as − y)f ′(hs · ws)ws × f ′(hs−1 · ws−1)hs−1.

It can be seen that:

γs−1 =
∑

γsws · f ′(hs−1 · ws−1).

Using this, we have a general formula for each wk:

4wk−1 =
∑

γk−1hk−1 =
∑

γkwkf
′(hk−1 · wk−1)hk−1,

where γk=s is provided in Equation 2.
All the above derivation was for a single class of a single instance. To generalize

it, we only need to sum over all instances and over all classes hence the following
new cost function – with nc classes and n features, we have:

J(w) =

nc∑ n∑ 1

2
(as − y)2.
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Luckily, derivatives of sums are the sum of the derivatives. Hence all the derivation
above is valid in the general case.

4wk−1 =
∑

γk−1hk−1 =
∑

γkwkf
′(hk−1 · wk−1)hk−1,

with

γs =

nc∑ n∑
(as − y)f ′(hs · ws).

In this work, we used Stochastic Gradient Descent (SGD) for optimization. We
leave investigation of batch-optimization methods such as quasi-Newton (L-BFGS)
and conjugate Gradient methods for future work 3.

3 Experimental Results

In this section, we compare and analyze the performance of our proposed algo-
rithms and related methods on 72 natural domains from the UCI repository of
machine learning datasets [8]. The experiments are conducted on the datasets
described in Table 1. 40 datasets have fewer than 1, 000 instances, 20 datasets
have between 1, 000 and 10, 000 instances and 12 datasets have more than 10, 000
instances. These datasets are shown in bold font in Table 1. Each algorithm is
tested on each dataset using 3 rounds of 2-fold cross validation. We compare four
different metrics, i.e., 0-1 Loss, RMSE, Bias and Variance4. There are a num-
ber of different bias-variance decomposition definitions. In this research, we use
the bias and variance definitions of [9] together with the repeated cross-validation
bias-variance estimation method proposed by [10]. Kohavi and Wolpert [9] define

bias and variance as follows: bias2 = 1
2

∑
y∈Y

(
P(y|x)− P̂(y|x)

)2

, and variance =

1
2

(
1−

∑
y∈Y P̂(y|x)2

)
. We report Win-Draw-Loss (W-D-L) results when compar-

ing the 0-1 Loss, RMSE, bias and variance of two models. A two-tail binomial
sign test is used to determine the significance of the results. Results are considered
significant if p ≤ 0.05 and shown in bold.

The datasets in Table 1 are divided into three categories. When discussing
results, we denote all the datasets in Table 1 as All. We denote the following
datasets as Big – Poker-hand, Covertype, Census-income, Localization,

Connect-4, Shuttle, Adult, Letter-recog, Magic, Sign, pendigits. The
remaining datasets (i.e., {All - Big}) are denoted as Little in the results.

Numeric features are discretized by using the Minimum Description Length
(MDL) supervised discretization method [11]. A missing value is treated as a sep-
arate feature value and taken into account exactly like other values.

3 As the comparison is between a deep and broad model of the same ANN – the exact
implementation of the ANN is less consequential, as long as the implementation is
consistent between the two, we believe that the results should remain valid.

4 The reason for performing bias/variance estimation is that it provides insights into
how the learning algorithm will perform with varying amounts of data. We expect low
variance algorithms to have relatively low error for small data and low bias algorithms
to have relatively low error for large data [6].
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Domain Case Att Class Domain Case Att Class
Poker-hand 1175067 11 10 Annealing 898 39 6
Covertype 581012 55 7 Vehicle 846 19 4
Census-Income(KDD) 299285 40 2 PimaIndiansDiabetes 768 9 2
Localization 164860 7 3 BreastCancer(Wisconsin) 699 10 2
Connect-4Opening 67557 43 3 CreditScreening 690 16 2
Statlog(Shuttle) 58000 10 7 BalanceScale 625 5 3
Adult 48842 15 2 Syncon 600 61 6
LetterRecognition 20000 17 26 Chess 551 40 2
MAGICGammaTelescope 19020 11 2 Cylinder 540 40 2
Nursery 12960 9 5 Musk1 476 167 2
Sign 12546 9 3 HouseVotes84 435 17 2
PenDigits 10992 17 10 HorseColic 368 22 2
Thyroid 9169 30 20 Dermatology 366 35 6
Pioneer 9150 37 57 Ionosphere 351 35 2
Mushrooms 8124 23 2 LiverDisorders(Bupa) 345 7 2
Musk2 6598 167 2 PrimaryTumor 339 18 22
Satellite 6435 37 6 Haberman’sSurvival 306 4 2
OpticalDigits 5620 49 10 HeartDisease(Cleveland) 303 14 2
PageBlocksClassification 5473 11 5 Hungarian 294 14 2
Wall-following 5456 25 4 Audiology 226 70 24
Nettalk(Phoneme) 5438 8 52 New-Thyroid 215 6 3
Waveform-5000 5000 41 3 GlassIdentification 214 10 3
Spambase 4601 58 2 SonarClassification 208 61 2
Abalone 4177 9 3 AutoImports 205 26 7
Hypothyroid(Garavan) 3772 30 4 WineRecognition 178 14 3
Sick-euthyroid 3772 30 2 Hepatitis 155 20 2
King-rook-vs-king-pawn 3196 37 2 TeachingAssistantEvaluation 151 6 3
Splice-junctionGeneSequences 3190 62 3 IrisClassification 150 5 3
Segment 2310 20 7 Lymphography 148 19 4
CarEvaluation 1728 8 4 Echocardiogram 131 7 2
Volcanoes 1520 4 4 PromoterGeneSequences 106 58 2
Yeast 1484 9 10 Zoo 101 17 7
ContraceptiveMethodChoice 1473 10 3 PostoperativePatient 90 9 3
German 1000 21 2 LaborNegotiations 57 17 2
LED 1000 8 10 LungCancer 32 57 3
Vowel 990 14 11 Contact-lenses 24 5 3
Tic-Tac-ToeEndgame 958 10 2

Table 1. Details of Datasets (UCI Domains)

3.1 Comparison in terms of W-D-L and Geometric Averages

Let us start by comparing five broad models with five deep models in terms of
their Win, Draw and Loss results on standard datasets. We denote broad models
as NN2, NN4, NN6, NN8 and NN10. This denotes ANN with one hidden layer
with two, four, six, eight and ten nodes in the hidden layer.

We denote deep models as NN2, NN22, NN222, NN2222, NN22222. This de-
notes ANN with one hidden layer with two nodes, two hidden layers with two
nodes each, three hidden layers with two nodes each, four hidden layers with two
nodes each and five hidden layers with two nodes each, respectively.

We also include an ANN with no hidden layer. This is denoted as NN0. This
is actually similar to Logistic Regression except that it is using Mean-square-error
instead of Conditional Log-Likelihood (CLL) [4].

Broad Models Let us start with comparing the bias and variance of broad mod-
els. We compare the results in Table 2. A systematic trend in bias, as expected can
be seen. A broader model is lower-biased than the less broader model. NN10 being
lowest biased winning significantly in terms of W-D-L when compared to other
lesser broad models. Variance results are slightly surprising. An NN10, though has
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(non-significant) higher variance than NN0, has significantly lower variance than
NN2, NN4 and non-significantly lower variance than NN6 and NN8.

vs. NN0 vs. NN2 vs. NN4 vs. NN6 vs. NN8

W-D-L p W-D-L p W-D-L p W-D-L p W-D-L p

All Datasets - Bias

NN2 35/3/34 1

NN4 45/4/23 0.010 49/7/16 <0.001

NN6 47/4/21 0.002 47/5/20 0.001 37/7/28 0.321

NN8 48/3/21 0.002 44/5/23 0.014 37/7/28 0.321 36/11/25 0.200

NN10 52/3/17 <0.001 47/5/20 0.001 41/9/22 0.023 43/10/19 0.003 40/15/17 0.003

All Datasets - Variance

NN2 20/2/50 <0.001

NN4 21/2/49 0.001 38/6/28 0.268

NN6 27/3/42 0.091 43/7/22 0.013 40/8/24 0.060

NN8 32/2/38 0.550 42/7/23 0.025 44/8/20 0.004 36/9/27 0.314

NN10 30/3/39 0.336 42/7/23 0.025 43/9/20 0.005 34/13/25 0.298 33/10/29 0.704

Table 2. A comparison of Bias and Variance of broad models in terms of W-D-L on All datasets. p is
two-tail binomial sign test. Results are significant if p ≤ 0.05.

As discussed in Section 1, lower-bias of broad models translates into better 0-1
Loss and RMSE performance on Big datasets. This can be seen in Table 3. It can
be seen that on Big datasets, NN10 leads to much better performance than NN8,
NN6, NN4, NN2 and NN0. Some of the results are not significant statistically, but
a general trend can be seen that a broader ANN leads to better performance than
less broader ANN.

vs. NN0 vs. NN2 vs. NN4 vs. NN6 vs. NN8

W-D-L p W-D-L p W-D-L p W-D-L p W-D-L p

All Datasets – 0-1 Loss

NN2 27/2/43 0.072

NN4 31/6/35 0.712 50/9/13 <0.001

NN6 33/3/36 0.801 49/3/20 <0.001 45/7/20 0.003

NN8 37/1/34 0.813 50/5/17 <0.001 44/8/20 0.004 31/14/27 0.694

NN10 40/2/30 0.282 51/4/17 <0.001 49/5/18 <0.001 38/9/25 0.130 40/8/24 0.060

Big Datasets – 0-1 Loss

NN2 6/0/6 1.226

NN4 7/0/5 0.774 12/0/0 0.011

NN6 7/0/5 0.774 12/0/0 0.001 11/0/1 0.006

NN8 8/0/4 0.388 12/0/0 <0.001 9/0/3 0.146 8/0/4 0.388

NN10 8/0/4 0.388 12/0/0 <0.001 10/0/2 0.039 9/0/3 0.146 9/0/3 0.146

All Datasets – RMSE

NN2 40/1/31 0.3425

NN4 46/0/26 0.025 51/0/21 <0.001

NN6 45/0/27 0.044 46/2/24 0.012 43/2/27 0.07

NN8 49/0/23 0.003 47/0/25 0.012 44/2/26 0.041 38/2/32 0.550

NN10 52/0/20 <0.001 48/1/23 0.004 47/2/23 0.006 39/3/30 0.336 38/6/28 0.268

Big Datasets – RMSE

NN2 8/0/4 0.388

NN4 9/0/3 0.146 12/0/0 <0.001

NN6 9/0/3 0.146 12/0/0 <0.001 10/0/2 0.039

NN8 10/0/2 0.039 11/0/1 0.006 10/0/2 0.039 9/0/3 0.146

NN10 10/0/2 0.039 10/1/1 0.011 9/0/3 0.146 9/0/3 0.146 8/0/4 0.388

Table 3. A comparison of 0-1 Loss and RMSE of broad models in terms of W-D-L on All and Big
datasets. p is two-tail binomial sign test. Results are significant if p ≤ 0.05.

Finally, let us compare the geometric averages of broad models on standard
datasets in Figure 1. The results corroborates W-D-L results. It can be seen that
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All Big
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
0-1 Loss

NN0
NN2
NN4
NN6
NN8
NN10

All Big
0

0.5

1

1.5
RMSE

NN0
NN2
NN4
NN6
NN8
NN10

All Big
0

0.5

1

1.5
Bias

NN0
NN2
NN4
NN6
NN8
NN10

All Big
0

0.5

1

1.5

2

2.5

3
Variance

NN0
NN2
NN4
NN6
NN8
NN10

Fig. 1. Comparison (geometric average) of 0-1 Loss, RMSE, Bias and Variance for broad
models on Little and Big datasets. Results are normalized w.r.t NN0.

a broader model leads to a low-biased classifier, which leads to low 0-1 Loss and
RMSE. Similarly variance is higher than NN0, but one can not infer a trend in
the growth of variance as model becomes broader and broader.

Deep Models Let us start by comparing the bias-variance profile of deep models
in Table 4. It can be seen that unlike broad models, a deep model does not lead
to low bias at all. In fact, bias increases as the model is made deeper and deeper.
It can be seen that only NN2 wins to NN0 (a bare win over one dataset), whereas
all other deeper models lose to NN0 in terms of the bias. Similarly, all deeper
models except NN22222 loses significantly to NN0 in terms of variance. N22222
(non-significantly) wins to NN0 in terms of the variance.

vs. NN0 vs. NN2 vs. NN22 vs. NN222 vs. NN2222

W-D-L p W-D-L p W-D-L p W-D-L p W-D-L p

All Datasets – Bias

NN2 35/3/34 1

NN22 30/3/39 0.336 28/4/40 0.182

NN222 26/1/45 0.032 21/3/48 0.002 24/4/44 0.021

NN2222 5/0/67 <0.001 3/1/68 <0.001 3/2/67 <0.001 4/9/59 <0.001

NN22222 0/1/71 <0.001 0/1/71 <0.001 1/2/69 <0.001 1/9/62 <0.001 0/61/11 <0.001

All Datasets – Variance

NN2 20/2/50 <0.001

NN22 20/1/51 <0.001 27/6/39 0.175

NN222 24/1/47 0.009 34/3/35 1 32/4/36 0.905

NN2222 34/1/37 0.813 34/1/37 0.813 36/2/34 0.905 32/9/31 1

NN22222 40/2/30 0.282 38/1/33 0.6353 39/2/31 0.403 35/9/28 0.450 8/61/3 0.227

Table 4. Bias W-D-L on All and Big datasets. p is two-tail binomial sign test. Results are significant
if p ≤ 0.05.

A comparison of W-D-L of 0-1 Loss and RMSE values of deep models is given
in Table 5. It can be seen that NN2 and NN22 are competitive with NN0 in terms
of RMSE on Big datasets, deeper models NN222, NN2222 and NN22222 are not
very competitive to simple model such as NN0. A comparison of the average 0-1
Loss, RMSE, Bias and Variance of different deep models is given in Figure 2. It can
be seen that deeper the model, higher its bias is. The performance in terms of the
variance is very surprising, as it shows that the deep models leads to lower-variance
than simple models such as NN0.
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vs. NN0 vs. NN2 vs. NN22 vs. NN222 vs. NN2222

W-D-L p W-D-L p W-D-L p W-D-L p W-D-L p

All Datasets – 0-1 Loss

NN2 27/2/43 0.072

NN22 28/1/43 0.096 24/5/43 0.027

NN222 24/1/47 0.009 25/5/42 0.050 28/3/41 0.148

NN2222 7/0/65 <0.001 4/2/66 <0.001 4/2/66 <0.001 3/9/60 <0.001

NN22222 7/1/64 <0.001 5/1/66 <0.001 4/2/66 <0.001 3/9/60 <0.001 1/61/10 0.012

Big Datasets – 0-1 Loss

NN2 6/0/6 1.226

NN22 5/0/7 0.774 4/0/8 0.388

NN222 4/0/8 0.388 2/0/10 0.039 4/0/8 0.388

NN2222 2/0/10 0.039 0/0/12 <0.001 1/0/11 0.006 1/1/10 0.012

NN22222 1/1/10 0.012 0/0/12 <0.001 0/0/12 <0.001 0/1/11 <0.001 0/6/6 0.031

All Datasets – RMSE

NN2 40/1/31 0.343

NN22 41/0/31 0.289 24/0/48 0.006

NN222 35/0/37 0.9063 19/0/53 <0.001 24/2/46 0.011

NN2222 15/0/57 0.044 4/0/68 <0.001 3/2/67 <0.001 3/8/61 0.072

NN22222 14/0/58 <0.001 5/0/67 <0.001 4/2/66 <0.001 3/8/61 <0.001 2/58/12 0.013

Big Datasets – RMSE

NN2 8/0/4 0.388

NN22 9/0/3 0.146 3/0/9 0.146

NN222 8/0/4 0.388 1/0/11 0.006 4/0/8 0.388

NN2222 5/0/7 0.774 0/0/12 <0.001 0/0/12 <0.001 1/1/10 0.023

NN22222 3/0/9 0.146 0/0/12 <0.001 0/0/12 <0.001 0/1/11 <0.001 0/6/6 0.031

Table 5. 0-1 Loss W-D-L on All and Big datasets. p is two-tail binomial sign test. Results are significant
if p ≤ 0.05.
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Fig. 2. Comparison (geometric average) of 0-1 Loss, RMSE, Bias and Variance for deep
models on Little and Big datasets. Results are normalized w.r.t NN0.

3.2 Deep vs. Broad Models – Discussion

From the comparative results on deep and broad models, one can conclude that
broader models have better performance than deeper models. However, we stress,
that we are comparing very different models in terms of the number of parameters
being optimized 5, and, hence, we didn’t gave a direct comparison of broad and
deep models. For example, with 10 numeric features and three classes, NN10 will
learn 143, whereas NN22222 will learn 61 parameters. Therefore, we used NN0
as the base model against which we compared the performance. We showed that

5 If n is the no. of attributes and nc is the number of classes, then, broad model has
((n + 1) ∗N(H1)) + ((N(H1) + 1) ∗ nc) number of parameters, where N(H1) denotes
the number of nodes in hidden layer H1. A deep model, on the other hand, optimizes
((n + 1) ∗N(H1)) +

∑K
k=1 (N(Hk) + 1 ∗N(Hk+1)) + ((N(HK) + 1) ∗ nc) number of

parameters.
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Fig. 3. Variation in Mean Square Error of NN2, NN4, NN6, NN8 and NN10 with increasing number
of (optimization) iterations on sample datasets – letter-recog, magic, sign, pendigits, nursery, adult,
census-income, connect-4, localization.

broader models results in decreasing the bias of NN0, whereas, deeper models were
not successful in doing that. For example, NN4 and NN22222 will learn (almost)
the same number of parameters with 10 numeric features and 3 classes, NN4 wins
in terms of Bias with NN0 45 times, draws 4, and loses 23 times. NN22222 loses
to NN0 in terms of bias, 71 times.

In Figures 3 and 4, we compare the convergence profiles of broad and deep
models respectively on sample datasets. Note, what we plot is the variation in
mean-square-error on training data. Of course, the results are averaged over three
rounds of two-fold cross validation. As just mentioned, we do not compare broad
and deep models directly, but instead used NN2 as the reference point between
the two paradigms. As we expected, a broader model results in better convergence
profile than less broader model. On all except one dataset (census-income) that
is shown in Figure 3, NNk results in better convergence than NN(k-1). For deep
models, it can be seen that most models are worst than NN2 (red line) except on
census-income datasets, where NN22 (green line) leads to the best convergence.
We argue, that based on these results, broader models not only lead to better
results, but also have better convergence profile. Of course, this property will lead
to faster training and better efficiency overall.
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Fig. 4. Variation in Mean Square Error of NN2, NN22, NN222, NN2222 and NN22222 with increasing
number of (optimization) iterations on sample datasets – letter-recog, magic, sign, pendigits, nursery,
adult, census-income, connect-4, localization.

4 Conclusion and Future Works

Deep artificial neural networks have proven to be very effective for extremely
large datasets on structured problems. However, on non-structured, problems, it
is not very clear, how good the performance will be. An obvious question is the
expansion of the breadth of ANN instead of depth. In this paper, we studied
empirically the effect of altering the breadth and depth of ANN on it performance.
We analysed performance in terms of 0-1 Loss, RMSE, bias and variance. Since
success of deep learning is attribute to creating higher-order features, we expected
low-bias classifiers for deep ANN as well as for broad ANN. However, our results
showed that only broader ANN led to a lower-biased model. Deeper models led to
increasing the bias.

The results we have presented in this paper are preliminary and warrants fur-
ther investigation. There are several areas which we needs to be explored:

– The number of nodes in deeper model are set to two. Since the datasets in our
experiments are not hugely big (biggest is the poker-hand with 1.17 million
instances), we assumed that five hidden-layer neural network with two hidden
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nodes in each layer covers the essence of a deep network. Obviously, the number
of nodes in each layer effects the performance and a systematic study is needed
to assess the effect on performance.

– The maximum number of optimization iterations are set to 500. It can be
the case that a deeper network just converge slowly, therefore, variations with
more number of iterations needs to be tested.

– In this work, we have constrained ourselves to (feed-forward) multi-layer per-
ceptrons – further experimentations needs to be conducted to check if results
will hold on other ANN types such as Deep Belief Networks or Restricted
Boltzmann machines, etc.
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