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Abstract. The contributions of this work are threefold. First, various
metric learning techniques are analyzed and systematically studied un-
der a unified framework to highlight the criticality of data-dependent
distance metric in machine learning. The metric learning algorithms are
categorized as naive, semi-naive, complete and high-level metric learn-
ing, under a common distance measurement framework. Secondly, the
connection of feature selection, feature weighting, feature partitioning,
kernel tuning, etc. with metric learning is discussed and it is shown that
they are all in fact forms of metric learning. Thirdly, it has been shown
that the realm of metric learning is not limited to k-nearest neighbor
(k-NN) classification, and that a metric optimized in the k-nearest neigh-
bor setting is likely to be effective and applicable in other kernel-based
frameworks, for example Support Vector Machine (SVM) and Gaussian
Processes (GP) classifiers. We support our hypotheses by tuning the
length-scale parameters of GP with metric learning method proposed
in k-NN framework. Our empirical results on a huge range of machine
learning databases suggest that a metric optimized in the framework of
one learning algorithm is likely to be effective in those of others.

1 Introduction

A typical machine learning algorithm takes advantage of training data to dis-
cover patterns among observed variables. For example, a learning algorithm can
predict the label of a test data point by measuring its similarity with the training
data points. Since the data is constituted of features which are not necessarily
related by any evident relation, the notion of similarity is not trivially defined.
When measuring similarity, one should not necessarily treat all features as be-
ing equally important. The problem of learning in high-dimensional machine
learning data is actually the problem of estimating the relative importance of
the features. Therefore, a lot of research in machine learning has focussed on
estimating the relevance of individual and group of features. This relevance de-
termination in fact tunes a data-dependent similarity measure. Most machine
learning algorithms either implicitly or explicitly learn this similarity measure
on which their performance is critically dependent.

The estimation of a similarity measure can be referred to as ‘learning of a
data-dependent distance metric’ or ‘metric learning’. Several techniques such as
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feature selection, feature scaling, feature relevance, feature partitioning, kernel
tuning, kernel scaling, kernel fusion, distance fusion, etc., that are used for mak-
ing learning algorithms more efficient, are in fact metric learning methods. That
is, they are doing nothing but estimating a measure of similarity that is suitable
for the data.

The need to estimate a similarity metric arises because of the heterogeneous
structure of the input space in which the data lies. Therefore, the estimation of
a data-dependent similarity measure is in fact estimation of the properties of an
input space. One can deduce that the performance of learning algorithms will
depend on how well these properties are estimated. It is important to make a
distinction between the properties of the learning algorithm and the properties
of the input space. The properties of an input space depends on data distribution
and are independent of any learning algorithm. Therefore, a similarity measure
optimized in the framework of one learning algorithm is likely to be applicable
and effective in those of other learning algorithms.

As mentioned above, several different terms are used for metric learning in
the literature, for example feature selection, feature weighting, feature parti-
tioning, scale estimation, kernel tuning, etc. In this work, we present a novel
categorization scheme for scale estimation and metric learning approaches un-
der a common distance framework. The algorithms are categorized as naive,
semi-naive, complete and high-level metric learning. By analyzing and catego-
rizing different methods under a common framework, it has been shown that
all these methods are in fact special cases of metric learning. We also introduce
kernel learning and integrate metric learning in kernel framework. By unveil-
ing the obvious connection between the two frameworks i.e., kernel and metric
learning, we propose to extend the realms of metric learning beyond k-NN clas-
sification. Therefore, we suggest to learn a distance metric in k-NN framework
and use the metric as a kernel in GP framework which is inherently kernel based.
GP classifiers typically estimate the kernel parameters using Automatic Rele-
vance Determination (ARD) or cross-validation. On multiple UCIML and other
databases, we compare the performance of our proposed method with those of
ARD and other state-of-the-art methods. A similar scheme has been proposed
for Support Vector Machine (SVM) classifiers in [1, 2].

2 Categorization of Metric Learning Methods

Metric learning is a method that is often applied to improve the performance
of a k-NN classifier learns a metric in some Distance Measurement Framework
(DMF). An example of a DMF is:

d2(x1,x2) = (x1 − x2)TA(x1 − x2) (1)

The Mahalanobis distance between x1 and x2 is a special case of DMF and can
be written as:

d2(x1,x2) = (x1 − x2)TΣ−1(x1 − x2) (2)
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where the matrix Σ is the covariance matrix of the data [3, 4]. The idea behind
Mahalanobis distance formulation is to normalize the effect of different features
when measuring distance between the two points. The matrix A in equation 1
can take any form and of course is not restricted to the inverse covariance matrix.
We can modify equation 1 as:

d2A(x1,x2) = ‖x1 − x2‖2A
= (x1 − x2)TA(x1 − x2)

= (x1 − x2)TLTL(x1 − x2) where A = LTL

= (Lx1 − Lx2)T I(Lx1 − Lx2) where I = identity matrix

= d2(Lx1 − Lx2)

= ‖Lx1 − Lx2‖22 (3)

Note, the decomposition of matrix A into LTL imposes a constraint that matrix
A is symmetric positive semidefinite. It can be seen from equation 3 that the
effect of matrix A in DMF is nothing but a linear transformation of the data by
the matrix L. This is where metric learning algorithms come into play. Metric
learning algorithms aim to learn a data-dependent distance metric (matrix A)
such that in the transformed space induced by the matrix A, some desirable
behavior is expected from the data. Some examples of desirable behavior in
the transformed space are: points belonging to the same class tends to be close
together, the predicted function changes isotropically, the transformed data lie
in the Euclidean space1, etc. Let us suppose that the matrix A is the inverse
covariance matrix. It is desirable in some scenarios to transform the data such
that the covariance matrix in the transformed space is the identity matrix. If ϕ
is a matrix whose columns are the eigenvectors of A, and Λ is a diagonal matrix
of the corresponding eigenvalues, then we can write matrix L as:

L = ϕΛ−1/2

The resulting transformation of data induced by the matrix L is typically known
as the whitening transformation. The data in the transformed space is uncorre-
lated. Its covariance matrix is the identity matrix. Another motivation for metric
learning is to transform data into a subspace such that the variance of the data
is preserved in that subspace. This is again motivated from the dimensionality
reduction point of view.

Using equation 1 the similarity between the two feature-vectors x1 and x2

can be defined as kernel k:

k(x1,x2) =

(
(x1 − x2)TA(x1 − x2)

λ2

)
(4)

1 The Euclidean space is equipped with a norm (‖.‖) which can be used to define a
metric (Euclidean distance). The Euclidean distance between x1 and x2 is:

d(x1,x2) = ‖x1 − x2‖ =
√

(x1 − x2)T (x1 − x2).
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Let us suppose that the matrix A is the inverse covariance matrix of the data
and λ is the smoothing parameter. If the matrix A take the form:

A =


σ−21 0 · · · 0

0 σ−22 · · · 0
...

...
. . .

...
0 0 · · · σ−2P

 (5)

we can write equation 4 as:

k(x1,x2) = (x1 − x2)T


σ−21 λ−2 0 · · · 0

0 σ−22 λ−2 · · · 0
...

...
. . .

...
0 0 · · · σ−2P λ−2

 (x1 − x2) (6)

There are two issues that needs to be discussed about equation 6. First, in
equation 6, we have assumed the kernel to be isotropic, that is λ = λ1 = λ2 =
· · · = λP . This is not necessarily the case and the neighborhood can be adapted
in any directions by choosing suitable λp. Multiple scaling parameters λp can be
treated as a vector and equation 6 can be written as:

k(x1,x2) = (x1 − x2)T


σ−21 λ−21 0 · · · 0

0 σ−22 λ−22 · · · 0
...

...
. . .

...
0 0 · · · σ−2P λ−2P

 (x1 − x2) (7)

Secondly, the σp and λp can be merged into a single value resulting in:

k(x1,x2) = (x1 − x2)T


a1 0 · · · 0
0 a2 · · · 0
...

...
. . .

...
0 0 · · · aP

 (x1 − x2)

= (x1 − x2)TA(x1 − x2) (8)

So far we have assumed that the matrix A is diagonal. This does not have to
be the case. We can learn diagonal and off-diagonal terms of the matrix. The
metric learning algorithms studied in nearest neighbor framework [5–8] learn
both the diagonal and off-diagonal terms of the matrix A. Therefore, we can
rewrite equation 8 as:

k(x1,x2) = (x1 − x2)T


a11 a12 · · · a1P
a21 a22 · · · a2P
...

...
. . .

...
aP1 aP2 · · · aPP

 (x1 − x2)

= (x1 − x2)TA(x1 − x2) (9)
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The learning of matrix A in equations 8 and 9 is the goal of metric learning
algorithms. As the kernels are used to transform data to a dot-product space
H (using the kernel trick) where the similarity between the two points can be
measured by the dot-product, the matrix A in equation 8 controls the trans-
formation of the input space X into H. A different value of matrix A will in
fact transform data into a different space. Therefore, the performance of any
classifier leveraging transformation of data by a kernel will depend critically on
the choice of the kernel function and the distance matrix A.

Why Learn matrix A? Features in most machine learning data sets are not
commensurate, coming from different sources and having different scales. The
influence of each feature on the distance is proportional to the dispersion of its
values over the training data. For example, if we change the scale of a feature
by measuring it in a different unit, the contribution of this feature to distance
measurement will change. This will in turn affect classification performance.

The relevance of each feature in predicting the class labels may differ. There
is a need to give more weight to those features that are more important and less
weight to unimportant features. It can be seen that the influence of an individual
feature can by controlled through matrix A. For example, if A is modeled as a
diagonal matrix, the influence of feature i can be increased or decreased by
modifying ai (equation 8).

Metric learning has the effect of neighborhood adaptation. Such an adaptive
neighborhood is absolutely essential for reducing bias in higher dimensions and
helps in alleviating the effects of the curse of dimensionality. A small value for ai
will result in a neighborhood that is elongated in the direction of the i’th feature.
And similarly, a large value of ai will result in neighborhood being constricted
in the direction of the i’th feature. Making the value of ai very small (note this
will result in a−2i to be very large) will result in extending the neighborhood
to the entire training data along the i’th feature. As a result of this, all the
training data along i’th feature will be assigned equal weights in predicting the
class label. This will result in removing the i’th feature from the consideration
as the model has become global in i’th feature’s direction [9].

2.1 Metric Learning Categorization

The following categorization has also been explored in some detail in [10].

Naive/Semi-naive Metric Learning Feature selection and feature relevance
are well studied and effective techniques for ignoring or down-weighting irrele-
vant or redundant features and making relevant features more explicit. Feature
selection can be viewed as a form of metric learning. For example learning a di-
agonal matrix in equation 2 with some diagonal elements as zero results in those
features being ignored, i.e. feature selection. The case of learning a diagonal
matrix in equation 2 is categorized as either naive metric learning or semi-naive
metric learning. The naive metric learning case arises when we learn the diagonal
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terms of matrix A in equation 2 and assume that features are independent from
each other. The relevance of each feature is estimated separately. The problem
with naive metric learning is that features that are irrelevant when analyzed
separately may become relevant when analyzed together with other features.
Therefore, there is a need to estimate the relevance of a feature in combina-
tion with the other features. This is the motivation behind semi-naive metric
learning. Semi-naive metric learning is a modification of naive metric learning
where a diagonal matrix is learned by learning the relevance of each feature in
combination with the other features.

Naive and Semi-naive metric learning are actually forms of feature selection.
Feature selection and weighting have been extensively studied in machine learn-
ing [11], but usually it is not explicitly specified that feature selection is in fact
learning of a distance metric such that the measurement of distances across cer-
tain features is ignored. It should be noted that any feature selection technique
can be viewed as a naive or semi-naive metric learning method and vice-versa.
Though the two techniques (feature selection and metric learning) have been
studied separately, the motivations behind them are exactly the same.

Complete Metric Learning As discussed, the matrix A learned in equation 2
does not have to be diagonal and a full distance matrix can be learned. Complete
metric learning deals with the learning of both the diagonal and the off-diagonal
terms of the matrix A in the form shown in equation 9. It should be noted that
this form of matrix A is more reasonable, in that we can not simply assume that
the function changes only along the directions of axes only. Typical metric learn-
ing algorithms studied in the k-NN classification framework generally estimate
the full distance matrix A and are in fact complete metric learning methods [7,
6, 8].

High-level Metric Learning High-level metric learning deals with learning
a data-dependent distance metric in cases where data is represented as feature-
sets. Data is represented in the form of feature-sets in those problems when
there is a natural partitioning among features, for example object recognition.
High-level metric learning is concerned with how to deal with feature-vectors in
the feature-sets. Let us suppose that m and n are two types of feature-vector
used for object recognition problem (say m representing the ‘shape’ information
and n representing the ‘color’ information). Let xm and xn be the feature-
vector representing the m and n types of information about the data point x
respectively. We can denote the feature-set representing the data point x as:

FS(x) = {xm,xn} (10)

In the following, a brief introduction of the two schemes is given. In the first
scheme, we can concatenate the two feature-vectors into one, learn a naive/semi-
naive/complete metric with the resulting feature-vectors, and train a single clas-
sifier.
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In the second scheme, we can treat xm and xn separately. A separate naive/semi-
naive, complete distance metric is learned for each type of feature-vector. Using
the learned distance matrices we can train a separate classifier for each type of
feature-vector and combine the outputs of the classifiers using some weighting
scheme to reach consensus about the label of the object (classifier fusion). Al-
ternatively, we can combine the distances computed using the learned distance
matrices for each type of feature-vector (distance fusion) and learn a single clas-
sifier. Note that this will have the same effect as measuring distances using a
block-diagonal matrix A in equation 2 such that:

A =

(
Am 0
0 An

)
(11)

where Am and An are the distance matrices learned for feature-vector of type
m and n.

3 Gaussian Processes and Metric Learning

The Gaussian Processes (GP) is a non-linear nonparametric technique that has
proven to be very effective for a wide range of classification and regression tasks.
We can define GP as a collection of random variables, any finite number of which
have a joint Gaussian distribution [12]. The GP is completely specified by its
mean and covariance function. We can write GP as:

f(x) ∼ GP(m(x), k(x,x′)) (12)

where m(x) and k(x,x′) are the mean and covariance functions respectively.
Usually, for simplicity, m(x) is taken to be zero. The GP can thus be specified
completely in terms of its covariance function. The problem of learning with GP
is exactly the problem of finding a suitable covariance function (also known as
the kernel).

One of the most widely applied covariance functions in GP setting is the
isotropic Squared Exponential (SE) covariance function:

k(xi,xj) = σ2
f exp

(
−‖xi − xj‖2

2λ2

)
+ σ2

n∆ij (13)

σ2
f and σ2

n denotes the signal and noise variance in the data and λ is a pa-
rameter specifying the characteristic length scale. Informally, the characteristic
length scale is the distance one can move in the input space before the function
value changes significantly. Of the three parameters {σ2

f , σ
2
n, λ}, λ is the most

important, as the classification performance of GP classifier depends a great deal
on the characteristic length scale parameters. During the course of this work, σ2

f

and σ2
n will not be taken into account. Therefore, the kernel we are interested in

has the following form:

k(xi,xj) = exp

(
−‖xi − xj‖2

2λ2

)
(14)
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Using equation 9, the kernel in equation 14 can be generalized as:

k(xi,xj) = exp
(
−(xi − xj)TA(xi − xj)

)
(15)

This suggests that, as for any other kernel-based learning algorithm, the problem
of learning with GP is actually finding the right specification of matrix A in
equation 15.

Algorithm 1 GPML1: GP classification using a data-dependent distance met-
ric.

Require:
- x0: Testing data.
- {xn, yn}Nn=1: Training data.

for c = 1, 2, . . . , C do
- Get a data-dependent distance metric (matrix A) using MEGM for category c
such that A = LTL. The kernel learned for category c is:

kAc(xi,xj) = exp
(
−‖Lxi − Lxj‖2

)
end for
- Predict the label of the query point x0 using the pool of learned kernels {kAc}Cc=1

in the GP formulation.

Algorithm 2 GPML2: GP classification using a data-dependent distance met-
ric.

Require:
- Testing data: x0.
- Training data: {xn, yn}Nn=1.

- Get a data-dependent distance metric (matrix A) for all C categories using megm
such that A = LTL. The kernel learned is:

kA(xi,xj) = exp
(
−‖Lxi − Lxj‖2

)
- Predict the label of the query point x0 using the learned kernel kA in the GP
formulation.

The outline of the proposed algorithms ‘Gaussian process metric learning’
(GPML) is given in algorithms 1 and 2. For multi-class GP classification a one-
versus-all strategy is used. GPML1 algorithm learns a different kernel using
Mean-Square-Error-Gradient-Minimization (MEGM) metric learning algorithm
for each category. MEGM [13] is a simple metric learning algorithm in k-NN
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framework that has been shown to perform better than other metric learning
algorithms. Whenever the classifier for category c is used to classify a test point
x0, the kernel kAc is used to measure the similarity. GPML2 is a slight variant of
GPML1. Instead of learning a separate kernel for each category, GPML2 learns
only one kernel kA for all categories. The learned kernel kA is used by all c
GP classifiers. The two algorithms will be denoted as GPML in the subsequent
discussion.

4 Related Work

The unified view of metric and kernel learning has been hinted upon by Hastie et
al. [14, section 6.4.1]. Similarly, the idea of defining various techniques such as
feature selection, feature relevance, feature scaling, and kernel tuning in terms
of metric learning and viewing as of learning the elements of the matrix A in
equation 8 has also been mentioned by Chapelle et al. [15, page 133]. Within
the GP framework, the representation of length scale parameters as the elements
of a matrix has been mentioned by [12, sec. 5.1]. Also, [16–19] and others have
also proposed methods for learning the elements of matrix A in GP setting.

The problem of optimizing the length-scale parameters of anisotropic Gaus-
sian kernel in a GP framework was investigated by Neal [16]. The log-likelihood
function of a GP model can be given as:

log p(y|θ) = −1

2
yTK−1y − 1

2
log |K| − n

2
log 2π (16)

where θ = (L, σ2
f , σ

2
n), y is the prediction of GP, and K is the covariance matrix

of the input data. L can be optimized by getting the partial derivatives of log
likelihood with respect to L and maximize it using gradient based methods.
Note, L is a diagonal matrix. It is also straight forward to introduce priors over
θ and maximize the log posterior. Maximizing the log posterior to determine
length-scale parameters allows the relative importance of different dimensions to
be inferred from the data. This represents an example of Automatic Relevance
Determination (ARD) in the GP.

Zhou et al. in [17] have used spectral techniques to determine the relevance
of each feature. They have proposed a measure called ’Major Bandwidth’ to
measure the spectral properties of each feature and tuned a metric based on this
measure. By learning a metric, data is transformed into a space where isotropic
behavior is expected. The authors have reported good results in [17] for human
action recognition. A major drawback of their method is the assumption that
features are uncorrelated. Similarly, Snelson et al in [18] and Schmidt et al.
in [19] have proposed a transformation of data so that it is well modeled as a
Gaussian process. The technique proposed in [18] learns a transformation as a
part of probabilistic modeling rather that as a pre-processing stage.

The methods proposed in [17, 16, 19] have been the major motivation for our
work. Our work is different from all these in the sense that we pre-process data
by learning a full distance metric whereas previous work in GP framework has
only considered optimizing diagonal terms.
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Database #Data #Features #Classes #Eigen-faces #(Train,Test)/Class

yalefaces 165 77760 15 50 (4, 7)
yalefacesB 5850 307200 10 20 (10, 20)

caltechfaces 435 47500 29 30 (5, 10)
caltechfacesB 435 47500 2 30 (50, 100)
AT&Tfaces 400 10304 40 150 (5, 5)

USPS 9298 256 10 50 (100, 30)

Table 1. Details of Face and USPS Databases used for classification

5 Experimental Results

In this section, the performance of the proposed GPML algorithms is compared
with other standard GP methods, the standard SVM classifier, and the k-NN
classifier on various UCIML, faces and digit databases. Faces and USPS data-sets
are pre-processed for efficiency. Pre-processing images using PCA is a common
approach in object recognition research to reduce dimensionality. This results
in vastly reduced computational cost. In our experiments, the results are ob-
tained by reducing the dimensionality of data-set by projecting data on first few
eigenfaces. Number of eigenfaces used for each database is given in table 1. No
pre-processing is done for UCIML databases. The following methods are com-
pared:

– KNN: Simple 1-nearest neighbor classification with the Euclidean distance..
– SVM: Standard SVM formulation that is, a multi-class SVM with a Gaus-

sian kernel is used. The C and σ parameters for the SVM are tuned through
cross-validation, that is they are selected from the sets: C = {1, 10, 100, 1000}
and σ = {0.1, 0.5, 1, 2, 3, 5} respectively. A one-versus-all strategy is em-
ployed for multi-class classification.

– GP: Standard GP classifier with an isotropic Gaussian kernel. The value
of σ is optimized through cross-validation. σ is selected from the following
values: {0.1, 0.5, 1.3, 2.0, 2.0}.

– ISO: Standard GP classifier with an isotropic Gaussian kernel whose length
scale value is optimized through the automatic relevance determination pro-
cedure.

– ARD: Standard GP classifier with an anisotropic Gaussian kernel. The val-
ues of the length scale parameters are tuned through automatic relevance
determination procedure.

– GPML1: GP with metric learning (algorithm 1). Apart from the distance
matrix, no other parameter is learned.

– GPML2: GP with metric learning (algorithm 2). Apart from the distance
matrix, no other parameter is learned.

For faces and USPS, each experiment is repeated 10 times, mean and standard
deviation results are reported. Note that no optimization is done for GPML1
and GPML2. Rasmussen et al. implementation of GP from [20] is used to train
GP, ISO and ARD classifiers.
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5.1 UCIML Repository Databases

The number of data, features and classes for each UCIML database used is
reported in the title of each graph portraying the results. The correctness rate
of each method is obtained using 40 rounds of 2-fold cross-validation. Prior to
training, features in all the databases were normalized to have zero mean and
unit variance.

The comparative performance (correctness rate) of the different methods for
various UCIML databases is shown in figure 1. As can be seen from figure 1,
GPML2 performed better than GPML1. It appears that training one metric for
all classes is more effective than training a separate metric for each class. Out of
the 12 databases, GPML2 performed best on nine whereas GPML1 performed
best on only three (figures 1(i), 1(j), 1(k)). There are two possible reasons: first,
due to MEGM, since the MEGM algorithm suffers from local minima problems.
There are more chances that local minima will affect the results in the case of
GPML1, as the algorithm has to be run C times. Secondly, possibly training
a separate metric for each class leads to over-fitting and hence affects GPML1
performance.

5.2 Face Databases

This section deals with GPML performance evaluation on large databases. Five
face (yalefaces, AT&T, yalefacesB, caltechfaces and caltechfacesB) and one (USPS)
digit database are used. The details of databases used in this section are given
in table 1.

The comparative results (correctness rate) are shown in the figure 2. GPML2
performed best on yalefaces, yalefacesB, caltechfaces and caltechfacesB, whereas
GPML1 performed best on AT&Tfaces and USPS digit database. On all six
databases, the GP classifier trained with metric learning algorithm performed
not only better than the standard GP, but also better than ISO and ARD for-
mulations of GP, where parameters are tuned through the computationally ex-
pensive automatic relevance determination procedure. As mentioned, there is no
tuning of parameters in the GPML algorithms. It only requires a data-dependent
distance metric. This highlights the efficacy of the proposed approach, as the re-
sults are comparable with, and in most cases better than, the ISO and ARD
formulations. GPML performance is also comparable with SVM performance. It
should be noted, however, that SVM is optimized by grid searching over C and
σ values.

5.3 Comparison with Metric Learning in k-NN Framework

In this section, GPML results are compared with the following two metric learn-
ing methods in k-NN settings:

– MEGM-KNN: MEGM complete metric learning based on the minimiza-
tion of Mean-Square-Error in k-NN framework as proposed in [13].
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– NCA: Neighborhood Component Analysis complete metric learning algo-
rithm based on the maximization of margin in k-NN framework [6].

The comparison of the results of GPML algorithms with MEGM and NCA on
the face and digit databases is given in figure 3. The GPML and MEGM-KNN
methods each performed best on three databases. The results on the UCIML
databases are given in figure 4. GPML methods results in significant improve-
ment over the classification accuracy of both MEGM-KNN and NCA. It per-
formed better than all other methods on all but the tictactoe data set.

6 Conclusion

In this paper we proposed a unified framework for categorizing metric learning
techniques and examined feature selection, feature weighting, kernel tuning, fea-
ture fusion under the proposed framework. Even though these techniques are
introduced in different scenarios, most of them can be viewed as doing some sort
of i.e. naive, semi-naive, complete or high-level metric learning. Categorizing
these methods as metric learning provides a unified analysis of these techniques
and help the understanding of the learning algorithm. For example, metric is
the property of the data and if a metric is optimized for one learning algorithm,
it is likely to be effective and applicable in those of others. We investigated
the connection between kernel and metric learning and proposed algorithms to
train a kernel function for GP by learning a data-dependent distance metric in
k-NN framework. Rather than learning length-scale parameters in GP settings
like ARD, we learned the metric in k-NN framework. Our empirical results on
various UCIML and face data-sets showed that learning a linear transformation
of data as a pre-processing step for GP can improve GP performance. And in
most cases results are better than the competing method like ARD. As metric
learning approaches have only been studied in the Nearest Neighbor perspec-
tives, there is a need to study the impact of learning a linear transformation on
GP and SVM classification performance.
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Fig. 1. Comparison of the correctness rate of GPML1 and GPML2 with the standard
GP, the ISO and ARD formulation of GP, KNN and standard SVM on various UCIML
databases. The mean and standard deviation of the correctness rate over ten runs (each
run with different training data) is reported.
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Fig. 2. Comparison of the correctness rate of GPML1 and GPML2 with the standard
GP, the ISO and ARD formulation of GP, KNN, and standard SVM on various faces
and USPS databases.
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Fig. 3. Comparison of the correctness rate of MEGM-KNN, NCA, GPML1 and
GPML2 on faces and USPS databases.
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Fig. 4. Comparison of the correctness rate of MEGM-KNN, NCA, GPML1 and
GPML2 on UCIML databases.


