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Abstract

Support Vector Machine (SVM) is an efficient classification tool. Based on the principle of structured
risk minimization, SVM is designed to generalize well. But it has been shown that SVM is not immune
to the curse of dimensionality. Also SVM performance is not only critical to the choice of kernel but also
to the kernel parameters which are generally tuned through computationally expensive cross-validation
procedures. Typical kernels do not have any information about the subspace to ignore irrelevant features or
making relevant features explicit. Recently, a lot of progress has been made for learning a data dependent
distance metric for improving the efficiency of k-Nearest Neighbor (KNN) classifier. Metric learning
approaches have not been investigated in the context of SVM. In this paper, we study the impact of
learning a data dependent distance metric on classification performance of an SVM classifier. Our novel
approach in this paper is a formulation relying on a simple Mean Square Error (MSE) gradient based
metric learning method to tune kernel’s parameters. Experiments are conducted on major UCIML, faces
and digit databases. We have found that tuning kernel parameters through a metric learning approach
can improve the classification performance of an SVM classifier.
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1 Introduction

Support Vector Machine (SVM) classifiers have
been shown to give state of the art performance
on a wide range of classification data sets. An
SVM finds an optimal hyperplane to separate
data into two classes. Given training data set
{(~x1, y1), ...(~xn, yn)}, the decision function is found
by solving the following convex optimization prob-
lem (Lagrangian Dual):

max
α

f(α) =
n∑
i=1

αi −
1
2

n∑
i,j=1

αiαjyiyjk(~xi, ~xj)

subject to 0 ≤ αi ≤ C and
∑n
i=1 αiyi = 0

where k(~xi, ~xj) = exp
(
−‖~xi−~xj‖2

2σ2

)
(1)

where α are the Lagrange coeficients, C controls
the misclassification penalty and k(., .) is the ker-
nel function. It is a widely acknowledged fact
that SVM ’s performance is critically dependent
on the kernel’s choice and its parameters [1].
Since different kernels (also the same kernel with
different parameters) embed data in a different
high dimensional space, a linear decision boundary
which SVM finds in that space varies by the choice
of kernel and its parameters, hence affecting its
performance.
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One of the widely used kernel is the Gaussian ker-
nel (equation 1) who’s parameters are typically
tuned through expensive cross-validation proced-
ure. It should be noted that as no prior knowledge
is available about the meaning of the attributes,
for sheer simplicity, the kernel is assumed to be
isotropic. That is all attributes are given the same
weight (σ = σ1 = ..... = σd for all d features). But
in most real-world databases, attributes are of very
different nature and there is a need to scale fea-
tures so that each feature is given the appropriate
weight. Adapting the shape of the kernel is useful
as it not only results in building the knowledge
about the data into the kernel but also results in
feature selection [2]. Feature selection is extremely
desirable for removing the curse of dimensionality
1 (COD).

The need to choose σ parameter is also critical as
the kernel choice is actually a regularization choice
and scaling parameters (σ) of the kernel (often
known as the smoothing parameters) controls the
bias and variance of the classifier by controlling
the extent of smoothing [1, sec 7.8]. Having a large
value of σ results in an loosely fit function, whereas
a small value may result in an over-fit (figure 1

1COD refers to the fact that any feasible number of
training data only sparsely populate the input space. Due
to this, we will never have enough training data in high
dimensions to make learning algorithms robust.
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Figure 1: Demonstration of the impact of varying the σ parameter of a Gaussian kernel in support vector machine

framework on the synthetic data. It can be seen that Feature 2 (x-axis) is redundant and data can be well separated

with Feature 1 (y-axis) only. 1(a): σ = 1, the classifier is over-fitted. The classifier has memorized the training

data. 1(b): σ = 50, the classifier is loosely fitted to the training data. 1(c): σ = averaged distance of N nearest

neighbors (equation 2). Setting σ to be the average value of the distances between the training data seems like a

sensible strategy if no information is present about the features.

and 2). Typically in computer vision research [3, 4]
to avoid expensive cross-valiation, σ is set to be the
average value of the squared distance between all
data points, as shown in the following equation:

σ2 =
1
N

N∑
i,j=1

d2(~xi, ~xj) (2)

This strategy not only ensures that the kernel’s
numeric range is within a bounded interval but also
results in achieving an optimal trade-off between
bias and variance of the classifier (figure 1(c)). It
has been shown that SVM classifiers are not im-
mune to the curse of dimensionality [5, sec 12.3.4].
So assuming an isotropic kernel may not be op-
timal. Also using σ as the averaged value of dis-
tance between the entire training data may not be
optimal due to the presence of irrelevant features.
Consider the impact of an an-isotropic kernel on
contrived data in figure 2. Feature 2 is redundant
and σ = [0.25 10]′ gives a fine optimal decision
boundary.

Recently a lot of work has been done in the area
of metric learning to improve the performance of

Figure 2: An an-isotropic Guassian kernel with σ =

[0.25 10]′ is used. The classifier has ignored Feature 2

from consideration and resulting boundaries are more

linear and better fits the training data.

k-nearest neighbor (k-NN) classifier [6, 7, 8, 9, 10].
Metric learning algorithms are aimed at finding a
metric that results in small intra-class and large
inter-class distance. Metric is parametrized by a
norm and a positive semi-definite matrix. Typic-
ally an inverse square root of the distance matrix is
estimated. That is we learn a matrix parmeterizing
the linear transformation of the input space such
that in the transformed space k-NN performs well.
The goal of this work is to study the effect of metric
learning on SVM. To the best of our knowledge,
metric learning in the context of SVM has not been
investigated. In the following, we will establish
how learning a data dependent distance metric can
impact SVM classification performance. As can be
seen, the kernel in equation 1 can be written as:

k(~xi, ~xj) = exp
(
−d2(~xi, ~xj)

2σ2

)
(3)

In the lights of metric learning, d2(~xi, ~xj) in equa-
tion 3 can be replaced by a more general metric L:
that is d2

L(~xi, ~xj). If L = ATA, then d2
L(~xi, ~xj) =

(A~xi − A~xj)T (A~xi − A~xj). It is more helpful to
optimize A rather than L, because optimization for
L requires to fulfill semi-positive constraint which
is expensive to maintain. The kernel in equation 3
can be written as:

k(~xi, ~xj) = exp
(
−‖A~xi −A~xj‖22

)
(4)

This suggests that metric learning is in fact kernel
learning and as discussed, kernel controls SVM
performance. Therefore, learning a data depend-
ent distance metric can improve support vector
machine’s classification performance. Any metric
learning method that gives a linear transformation
of data by learning the matrix A can be used. We
have used a simple metric learning approach based
on the gradient minimization of Mean Square Error



(MSE) in k-NN framework. Other metric learning
methods for example neighborhood component
analysis [6], large margin nearest neighbor [8]
algorithms etc can be used.

2 Approach

In this section, we will describe our proposed
algorithms to train SVM with data dependent
distance metric. We have used MEGM metric
learning algorithm from [11] for learning the kernel
parameters. We will briefly explain MEGM (Mean
Square Error’s Gradient Minimization) metric
learning algorithm in the following section and
then describe our two proposed algorithms.

2.1 MEGM

In a typical regression setting, an unknown func-
tion f : RD → R is predicted from the training
data {(~x1, y1), (~x2, y2), . . . , (~xN , yN )}, where ~xi is a
data point and y is the corresponding target value.
The predicted function f̂ is chosen to be the one
that minimizes some loss function such as ‘mean
square error’ (MSE) etc. For classification task
having C classes, the MSE for a data set containing
N number of points is given as:

MSE(ŷ) =
C∑
t=1

N∑
i=1

(yti − ŷti) (5)

where ŷi denotes the predicted probability of point
~xi and yi denotes its true class label (either 0 or
1). For brevity we have denoted ŷ(~xti) with ŷti and
y(~xti) with yti. In the following discussion, we will
assume that there are only two classes to make
our derivations simple. For any query point ~xi,
nearest neighbor methods work by predicting the
value ŷi by considering the labels of its k nearest
neighbors. In order to have a smooth boundary,
each neighbor votes for the query label based on
its distance from the query point [5]. Equation 6
shows the Nadaraya-Watson kernel for regression:

ŷ(~xi) =

∑
j yjVj∑
j Vj

(6)

The vote Vj casted by each label around the query
point ~xi is usually chosen to be a function that de-
cays exponentially as the distance from the query
point increases, for example, Gaussian kernel (equa-
tion 3). Determining votes using equation 6 as-
sumes a well defined distance measure. This as-
sumption is not always true due to the reasons
like curse of dimensionality, presence of irrelevant
features etc and can lead to bad results. As de-
scribed in section 1, d2(~xi, ~xj) in the formulation
of Gaussian kernels can be replaced by a more
general metric that is: d2

L(~xi, ~xj) where L = ATA.

Since MSE is a function of ŷ and ŷ depends on
||~xi−~xj ||2L, MSE can be minimized by selecting an
optimal value of L. In other words, a change in L
induces a change in the distance, which can alter
the votes. This alteration in the votes (Vj) triggers
a change in ŷ affecting the MSE. Obviously trying
all possible values of L is not feasible. Some sort
of search mechanism is required to find an optimal
value of L. Votes Vj can be replaced by Wj as:

Wj = exp
(
−‖A~x−A~xj‖22

2σ2

)
(7)

MEGM metric learning method is based on gradi-
ent descent algorithm to minimize MSE (let us
denote MSE by E). The gradient of E with respect
to the matrix A is shown in equation 8. This
gradient is minimized to get an optimal metric that
is parameterized by the matrix A. Convergence
to the global minimum is not guaranteed. The
risk of local minima can be reduced by running
the algorithm several times with different training
samples and choosing the output with the min-
imum error (E).

2.2 Globally Adaptive SVM (GASVM)

The outline of our proposed algorithms Globally
Adaptive SVM classifiers GASVM1 and GASVM2
are given in algorithm 1 and 2.

The proposed GASVM1 algorithm tunes the ker-
nel by learning a data dependent distance metric
using MEGM algorithm before training an SVM
classifier. C SVM classifiers needs to be trained
for C classes (with one versus all strategy). Once
the matrix L is learned, the kernel kL is used by all
C SVM classifiers. GASVM2 is a slight variant of
GASVM1. That is, rather than learning one kernel
for all the categories, GASVM2 learns a different
kernel using MEGM algorithm for each category.
The learned kernel kLc is saved with the classifier
for category c. Whenever the classifier c is used
to classify the test point (~x0), it uses the learned
kernel (metric) kLc to measure the similarity. As
will be shown in section 3, in terms of the classific-
ation performance, both GASVM1 and GASVM2
perform equally well on different data sets. Since
GASVM1 uses only one kernel for all classifiers, it
is more computational efficient than GASVM2.

Though other kernels can be incorporated in
GASVM formulation, the scope of the work is
limited to the Gaussian kernels. Since Gaussian
kernels have been shown to perform extremely well
on a huge variety of data sets and are widely used,
this should not be considered as a drawback. How-
ever, those cases where similarity is more efficiently
measured by some other kernel for example linear
or polynomial, the use of GASVM algorithms may
not be beneficial.



∂E

∂A
= 2A(yi − ŷi)

1∑
jWj

∑
j

(yj − ŷj)Wj(~x− ~xj)(~x− ~xj)T (8)

Algorithm 1 GASVM1: Train an SVM classifier
using a data dependent distance metric.

Require:
- ~x0: Testing data.
- {~xn, yn}Nn=1: Training data.

- Get a data dependent distance metric L using
MEGM metric learning algorithm such that L =
ATA.
for c = 1, 2, . . . , C do

- Train an SVM classifier for category c using
the kernel:

kL(~xi, ~xj) = exp
(
−‖A~xi −A~xj‖22

)
end for
- Use C SVM classifiers in one-versus-all way to
classify ~x0 using the kernel kL.

Algorithm 2 GASVM2: Train an SVM classifier
using a data dependent distance metric.

Require:
- Testing data: ~x0.
- Training data: {~xn, yn}Nn=1.

for c = 1, 2, . . . , C do
- Get a data dependent distance metric L
using MEGM metric learning algorithm for
category c such that L = ATA.
- Train an SVM classifier for category c using
the kernel:

kLc(~xi, ~xj) = exp
(
−‖A~xi −A~xj‖22

)
end for
- Use C SVM classifiers in one-versus-all way to
classify ~x0 using the pool of kernels {kLc}Cc=1.

3 Experimental Results

In this section, we will compare the performance
of our proposed globally adaptive SVM algorithms
with other nearest neighbor classifiers and stand-
ard SVM formulations on various UCIML, face and
digit databases.

3.1 Faces, USPS and Isolet Database

We have used 5 face databases (yalefaces, AT&T,
yalefacesB, caltechfaces and caltechfacesB), USPS
digit database and Isolet database. The images

Figure 3: Example images from caltechfaces and

caltechfacesB

in all databases are pre-processed for efficiency.
That is, the dimensionality of the feature-vector
representing each image is reduced by using Prin-
cipal Component Analysis (PCA) method. The
number of training images per category, number
of testing images per category and the number of
Eigen-vectors used for each database is given in
table 1.

The classification performance in terms of the cor-
rectness rate of each of the following methods for
faces, USPS and Isolet database is shown in figure 4
and 5:

• KNN: Simple 1-nearest-neighbor classifica-
tion with the Euclidean distance.

• SVM: Standard SVM formulation, that is,
a multi-class SVM with the Gaussian kernel
is used. The C parameter is tuned through
cross-validataion (that is searched from the
set: {1, 10, 100, 1000}). The value of σ is set
to be the average distance of k-nearest neigh-
bors. A one-versus-all strategy is employed
for multi-class classification. The results are
labeled as ‘SVM’ in the performance graphs.

• MEGM-KNN: 1-nearest neighbor classifier
with a distance metric learned from MEGM
metric learning algorithm. The results are
labeled as ‘MEGM-KNN in the performance
graphs.

• GASVM1: Algorithm 1.

• GASVM2: Algorithm 2.

The value of C for GASVM1 and GASVM2 al-
gorithms is not optimized and set equal to 10 in
all experiments. It can be seen from the fig-
ure 4 and 5 that GASVM methods performed bet-
ter than other competing methods on all except
caltechfacesB database (where MEGM-KNN per-
formed best). Also, both GASVM formulations



Database #Data #Features #Classes PCA #Train/Class #Test/Class

yalefaces 165 77760 15 50 4 7
yalefacesB 5850 307200 10 20 10 20

caltechfaces 435 47500 29 30 5 10
caltechfacesB 435 47500 2 30 50 100
AT&Tfaces 400 10304 40 150 5 5

USPS 9298 256 10 50 100 30
Isolet 6238 617 26 172 50 30

Table 1: Details of databases used for classification.
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Figure 4: Comparison of the correctness rate of GASVM methods with KNN, MEGM-KNN and SVM methods

on various face databases. The mean and standard deviation of the correctness rate over 10 runs (each run with

different training data) is reported. Continued in figure 5.

resulted in significant improvement in the classific-
ation performance of standard SVM classifier ex-
cept for USPS database.

3.2 UCIML Repository Databases

The performance of GASVM algorithms is also eval-
uated on various UCIML databases. The error rate
of each method is obtained using 40 rounds of 2 fold
cross-validation. Prior to training, features in all
the databases were normalized to have zero mean
and a unit variance. The classification performance
in terms of the error rate of KNN, SVM, OSVM,
GASVM1 and GASVM2 for different databases is
shown in figure 6. The details of KNN, SVM,
GASVM1 and GASVM2 are the same as described
in section 3.1. The details of OSVM method is
given in the following:

• OSVM: Similar to the standard SVM, but
both C and σ parameters are optimized using
cross validation (we have called this formula-
tion ‘optimized SVM (OSVM)’). The C and
σ parameters are searched from the sets: C =

{1, 10, 100, 1000} and σ = {0.1, 0.5, 1, 2, 3, 5}
respectively. The results are labeled as
‘OSVM’ in the performance graphs.

It can be seen from figure 6, out of 21 UCIML data-
bases, GASVM1 performed best on 11 of them.
On the other hand, GASVM2 performed best on
4 databases. Both OSVM and KNN methods per-
formed best on 3 databases each. It can be seen
that the performance of GASVM1 is very close to
standard and optimized SVM in most case. These
results are encouraging because as mentioned be-
fore that SVM and OSVM requires tuning kernel
parameters through an expensive cross-validation
procedure, whereas GASVM methods have no such
tweaking involved. It should be noted that the res-
ults obtained with GASVM2 have particularly high
variance on most databases. For example, balance
and hayesroth (figure 6(a), 6(c)). One likely reason
for such high variance in the case of GASVM2 may
have to do with its reliance on MEGM metric learn-
ing algorithm for learning the kernel parameters.
Since, GASVM2 learns a different kernel for each
category using MEGM algorithm, there are more
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Figure 5: Continued from figure 4. Results on USPS and Isolet database.

chances that local minima will affect its perform-
ance. Although GASVM methods performed well
on a variety of methods, it can be seen from figure 6
that on ionosphere, monks2 and satimage data-
bases, the optimized SVM (OSVM) outperformed
GASVM methods. Also surprisingly, KNN method
performed better than standard SVM, OSVM and
GASVM methods on pageblock, parkinson and vowel
databases. As we discussed in section 2 that the
formulation of GASVM assumes a Gaussian kernel.
The success of GASVM methods on 15 out of 21
UCIML databases, suggests that the assumption of
a Gaussian kernel is safe and reasonable on most
databases. However, there are some exceptions
depicted by some of the results in figure 6 for ex-
ample figure 6(s), 6(t) and 6(u). The likely reasons
for poor performance of SVM methods on these
databases might be the actual kernel selection. An
SVM trained with linear or polynomial kernel may
have performed better.

4 Conclusion

In this paper we studied the effects of learning a
data dependent distance metric on SVM classific-
ation. We proposed two algorithms GASVM1 and
GASVM2 which are novel formulations of adopting
a distance metric learning algorithm (MEGM) to
train an SVM classifier. Empirical results on ma-
jor UCIML, face and digit databases revealed that
GASVM methods result in improving the classi-
fication performance of standard SVM classifier in
most cases. Also results are comparable to SVM
where both C and σ parameters are optimized. As
metric learning algorithms in k-nearest neighbor
settings have not been systematically studied in
the context of kernel based methods for example
SVM and Gaussian process classifiers, our results
are encouraging and points to an interesting direc-
tion of further research.
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Figure 6: Comparison of the error rates of GASVM methods with KNN, SVM, OSVM on various UCIML

databases. The number of data, features and classes for each database is shown in the title.


