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Abstract. The nearest neighbor classification/regression technique, be-
sides its simplicity, is one of the most widely applied and well studied
techniques for pattern recognition in machine learning. A nearest neigh-
bor classifier assumes class conditional probabilities to be locally smooth.
This assumption is often invalid in high dimensions and significant bias
can be introduced when using the nearest neighbor rule. This effect can
be mitigated to some extent by using a locally adaptive metric. In this
work we present a detailed analysis of the introduction of bias in high di-
mensional machine learning data and propose an adaptive metric learn-
ing algorithm that learns an optimal metric at the query point using
respective class distributions on the input measurement space. We learn
a distance metric using a feature relevance measure inspired by boost-
ing. The modified metric results in a smooth neighborhood that leads
to better classification results. We tested our technique on major UCI
machine learning databases and compared the results to state of the art
techniques. Our method resulted in significant improvements in the per-
formance of the K-NN classifier and also performed better than other
techniques on major databases.
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1 Introduction

Nearest neighbor methods for pattern recognition have proven to be very useful
in machine learning. Despite their simplicity, their performance is comparable
to other, more sophisticated, classification and regression techniques and they
have been applied to a great variety of problems. Computer vision research has
benefited greatly from advancements in nearest neighbor methods, for example
some state of the art techniques for object recognition are based on nearest
neighbor analysis [1, 2]. Given a query point, a nearest neighbor classifier works
by assigning to it the label of the majority class in its neighborhood. In order
to obtain a smooth boundary, each point in the neighborhood votes for the
prediction based on its distance from the query point [3].
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The performance of a nearest neighbor classifier depends critically on two
major factors: (a) the distance metric used and (b) size of the neighborhood
K. The size of the neighborhood that controls the smoothness of the predicted
function is usually tuned through cross-validation [3].3 In the current research on
nearest neighbor methods, a dichotomy exists here. Typical ‘Metric Learning’
algorithms aim at finding a metric that results in small intra-class and large
inter-class distances [4–7]. ‘Metric Learning’ has also been introduced as a bias
reduction strategy in high dimensions [8]. In this paper we focus on the latter
version, that is optimizing a distance metric to reduce bias. Our goal is an
optimal metric that depends on the problem at hand, as characterized by the
respective class distribution on the input measurement space and, within a given
problem, on the location of the query point in that space.

The effectiveness of nearest neighbor-based methods stems from their asymp-
totic properties. The asymptotic results in [9, 10] suggests that a 1-NN method
based on simple Euclidean distance will perform well provided the training sam-
ple is not too small. These asymptotic results are based on the fact that bias in
the prediction of function f(x) becomes vanishingly small. If the number of train-
ing dataN is large with few features p, these asymptotic results hold. Typical ma-
chine learning data sets, however, have a large p and the N required to validate
these asymptotic results is not feasible because of the ‘curse-of-dimensionality’.

Equation 1 shows the well-know phenomenon of the ‘curse-of-dimensionality’
effect. Let us consider training data of size N drawn from a uniform distribution
in a p-dimensional unit hypercube. The expected diameter of a K = 1 neighbor-
hood using Euclidean distance is shown. It can be seen that even for moderate
number of dimensions, a very large number of training data is required to make
even a K = 1 nearest neighborhood relatively small. This has the consequence
that the bias can be large even for thus smallest possible value of K, invalidating
the asymptotic results.

d1(p,N) = 2
(
pΓ (p/2)
2πp/2N

)1/p

(1)

Metric learning can be employed to mitigate the effects of the ‘curse-of-
dimensionality’. There are several motivating reasons for using metric learning
for this purpose:

– Bias can be reduced by learning a metric that gives no influence to the
‘irrelevant’ features. This removes irrelevant features thereby reducing the
dimensionality. This in turn reduces the diameter in equation 1 of the K-NN
neighborhood, hence lowering the bias.

3 The size of the neighborhood around query point x is specified by K, which denotes
the number of nearest neighbors of x, and a choice of distance measure which in turn
is determined by a norm and a metric defined by a positive semi-definite matrix. A
small K implies small bias but high variance, and vice-versa.
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One of the other reasons for optimizing the distance metric has to do with
the heterogeneous nature of features. Since different features come from different
sources and are of different natures, their input/votes into the classification
procedure may not all be equally relevant for classifying a new object. It is
important to note that this relevance may depend on the location of object in the
input measurement space. A feature relevant at one location may be irrelevant
at an other location. It is well known that features having low relevance can
degrade performance if they are allowed to be equally influential with those of
high relevance in defining the distance from the point to be classified [11].

The requirement of a large neighborhood (equation 1) can affect bias differ-
entially for the respective class probability estimates. This differential bias can
be reduced by taking advantage of the fact that the class probability functions
may not vary locally with equal strength, or in the same manner, across all
features in the measurement space around the prediction point x0. Bias can be
reduced by choosing a metric so that the resulting neighborhood elongates in
directions for which class probabilities do not change much and is constricted
along dimensions where class probabilities changes. This will make class con-
ditional probabilities smooth in the modified neighborhood and will result in
better classification performance (refer to figure 1).

Fig. 1. Illustration of Adaptive Metric Learning on 2-D data. Data belongs to two
classes which are well separated by a linear classifier. Round curves depicts the Eu-
clidean metric. As can be seen, this assumption of isotropy is not valid near class
boundaries and a modified metric depicted as elliptical curves seems more accurate.

In this paper we propose a technique for local adaptive metric learning to
reduce bias in high dimensions. As will be discussed in section 2, current work
in adaptive metric learning determines feature relevance at a query point us-
ing some numerical index. This index gauges the relevancy of a feature and
controls the form of metric around the query point. Our proposed index is in-
spired from work in the area of boosting [12], where at each iteration data is
partitioned across the most discriminative dimension. The index is based on the
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logit-transform of the class probability estimate. In our work using this index,
we pick the dimension that is most discriminative. This is similar to ‘boosting
classifiers’ where at each iteration a feature is selected on which the data can be
classified most accurately based on the weight distribution.

The rest of the paper is organized as follows. In section 2 we discuss related
work and compare our method with related techniques. We discuss our algorithm
in section 3. Experimental results are given in section 4. We conclude in section 5,
and suggest directions for future work.

2 Related Work

The earliest work in adaptive metric learning can be traced back to Friedman [8].
In this work Friedman proposed a technique for reducing bias in high dimen-
sional machine learning problems. It is based on learning a local metric around
a query point by recursively splitting the neighborhood based on a feature rele-
vance index and learning a new metric on this modified neighborhood. Our work
is inspired by this paper. The main difference of our work from [8] is feature
relevance determination at each step. We have used a measure inspired by the
boosting literature, whereas in [8] a GINI-like (entropy-based) index is used for
feature relevance. Another difference is that in our work a feature is deemed more
relevant if it is more discriminatory but in [8] a feature is considered relevant if
the class label varies the most.

In [13], Hastie and Tibshirani propose an adaptive metric learning algorithm
based on linear discriminant analysis (LDA). A distance metric is computed as a
product of properly weighted within and between sum-of-squares matrices. The
authors also revealed the connection of their resulting method to the approxima-
tion of the chi-squared distance by a Taylor series expansion. Though sound in
theory, the method has limitations. The major limitation is that in high dimen-
sions we may not have sufficient data to fill in p× p within class sum-of-square
matrices (due to sparsity). They found it more effective to estimate only the
diagonal terms of within class sum-of-square matrices and assume that the off-
diagonal terms are zero. This is especially true if the dimensionality of the input
space is large, as there will be insufficient data locally to estimate the Θ(p2)
elements of within class sum of square matrices. In our work, similar to [8], we
estimate only the diagonal terms of metric.

Some other notable techniques for adaptive metric learning are proposed
in [14–17]. In [14] an algorithm is proposed for adaptive metric learning based
on the analysis of the chi-squared distance. An algorithm for metric learning
has been proposed in [15] which uses SVM-based analysis for feature relevance.
A similar but slightly modified method for metric learning based on SVMs is
proposed in [17]. As will be discussed in section 3, our method differs from these
methods in the sense that it is recursive. We recursively home in around the
query point and the estimated metric is modified iteratively. In above mentioned
methods, however, a metric is estimated in a single cycle.
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3 Approach

In this section we describe our two algorithms, BoostML1 and BoostML2, for
adaptive metric learning. BoostML2 is a variant of BoostML1.

3.1 Feature Relevance

We start by describing our local feature relevance measure technique. In the
following discussion we will denote the query point by x0 and the training points
by xn where n = [1, .....N ], N is the number of training data, while P denotes
number of features. Also x0p or xnp denotes the value at the pth feature of the
x0 and xn data points respectively. The feature used for splitting is the one
that maximizes the estimated relevance score (equation 2) as evaluated at query
point x0. The estimate of relevance is:

p∗(x0) = argmax1≤p≤P cp(x0), (2)

where cp(x0) is defined as

cp(x0) =
Ip(x0p)∑P

p=1 Ip(x0p)
. (3)

Equation 3 normalizes the weights Ip(x0) defined in equation 4.

Ip(x0) =
C∑

c=1

abs
(

1
2

ln
(

Pr(c|xnp = x0p) + ε

Pr(c|xnp 6= x0p) + ε

))
(4)

The ε in equation 4 is introduced for numerical tractability. Small Ip (close
to zero) implies that there is an equal split of positive and negative training
data points in the neighborhood of x0, whereas large Ip implies that one class
dominates the other class. The computation of Pr(c|xnp 6= x0p) in equation 4 is
not trivial, as we may not have sufficient data in the neighborhood of the query
point to accurately define the probability. The probabilities in equation 4 are
computed as in equation 6. We define a small neighborhood around query point
x0 denoted by N(x0) and make sure that it contains some number δp of points
(refer to equation 5). In other words we look for δp points that are close to the
query point on feature p and compute the probabilities in equation 4 on these
points.

N∑
n=1

1(|xnp − x0p| ≤ δp)1(yn = c) = L (5)
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Pr(c|xnp = x0p) =

P
xn∈N(x0) 1(|xnp − x0p| ≤ δp)1(yn = c)P

xn∈N(x0) 1(|xnp − x0p| ≤ δp)
(6)

It is important to consider the output of feature relevance analysis as a p× p
diagonal matrix, the diagonal terms of which are the estimated relevances of the
features. Based on equation 2 we can write the distance metric as a matrix A for
local relevance (as shown in equation 7). This local metric is used to measure
distances.

A(x0) =


c1 0 · · · 0
0 c2 · · · 0
...

...
. . .

...
0 0 · · · cp

 (7)

3.2 Details of the Algorithm

Given a query point x0 and training data {xnyn}Nn=1, the goal is to estimate the
label of a query point that can belong to any one of C classes. Our method starts
by initializing the neighborhood of the query point to be the entire measurement
space (R0). Similar in essence to decision trees, the neighborhood is split in two
on one of the features. The feature used for splitting is the one that maximizes the
relevance score as shown in equation 2. Thus for the same training data, different
features can be selected for this split for different query points x0 based on the
relevance of that feature at that location in the input measurement space. The
split divides the input measurement space into two regions. R1(x0), that contains
the query point and the M1 training points that are closest to it on the chosen
feature. The other (complement) region R2(x0) contains the N −M1 points that
are farthest from x0 on that feature. The complement region is removed from
consideration by discarding the data contained within it. Thus the result of the
split is just one region R1(x0). The above procedure is applied on region R1(x0).
We have named this method BoostML1 and its outline is given in algorithm 1.

As can be seen in algorithm 1, the splitting procedure is recursively applied
until there are only L training observations left in the final neighborhood. The
metric (equation 7) obtained at the final step is used to measure the distance to
the K nearest neighbors that predict the label of query point. Refer to section 5
for a discussion of a non-recursive version of BoostML.

At each step, a region is split on the feature that is estimated to be most
relevant in terms of capturing the variation of target functions within that region.
All diagonal terms of the A matrix in equation 7 are ignored except the one with
the maximum value, which is retained to split region at each step. This is a greedy
approach which is not necessarily effective all the time.

BoostML2 is a variant of the above method, but at every iteration it splits
the region based on the metric defined by matrix A in equation 7 as computed in
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the current iteration. As will be shown in section 4, BoostML2 is an improvement
on algorithm 1 and results in an increase in classification performance. Refer to
figure 2 for illustration of BoostML algorithm.

Algorithm 1 BoostML1: Iterative algorithm for learning local adaptive metric
for nearest neighbor classification.

Require: – Testing data: x0

– Training data: {xn, yn}Nn=1 where x is a p dimensional feature vector. N is the
number of training data. y is training label. y = {1, 2, ...C} where C is the
number of classes.

– k : Number of nearest neighbors, L : Number of elements in final neighborhood,
α: Stepping size.

- K = N
- Find all x in NK(x0), where NK(x0) denotes neighborhood of x0 consisting of K
points.
- Initialize A as a p dimensional diagonal matrix

while flag do
- cp(x0) = Get Feature Relevance index at x0

- r = argmaxpc
- Update A by setting all diagonal terms to zero except that of r.
- Modify neighborhood by setting K = αK
- Find all x in NK(x0) using metric A
if NK(x0) < L then

flag = false
end if

end while

- Find k closest elements to x0 using metric A and returns respective probabilities
of class labels in the neighborhood.

4 Experimental Results

In this section we show the results of our adaptive metric learning algorithm
on some well known databases from UCI Machine Learning Repository [18].
Details of the databases are given in table 1. Databases were selected such that
the competing techniques perform best on at least one of the databases.

The other competing local adaptive metric learning techniques against which
we tested our algorithms are as follows:

– k-NN Simple k nearest neighbor classifier based on Euclidean distance be-
tween data points.
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Fig. 2. Demonstration of our algorithm BoostML on synthetic data. Data consists of
two classes shown in red and blue. Green ellipses shows the learnt metric at different
points in the measurement space.

Databases Name Data Features Classes

Iris 150 4 3
Ionosphere 351 34 2

Dermatology 358 34 6
Credit-Screeing 653 15 2
Echocardiogram 61 12 2

Statlog Heart 270 13 2
Sonar 208 60 2

Diabetes 768 8 2

Table 1. Database Details: Number of data, Number of Features and Number of
Classes on Column 2,3 and 4 respectively

– DANN Discriminative Adaptive Nearest Neighbor classifier based on [13]
as described in section 2.

– ADAMENN Adaptive metric nearest neighbor classification technique based
on chi-squared analysis as implemented in [14].

– Machette Recursive partitioning algorithm as described in [8].
– Scythe This is a generalization of the Machette algorithm in which fea-

tures influence each split in proportion to their estimated local relevance, in
contrast to the ‘winner-takes-all’ strategy of Machette.

– BoostML1 As described in section 3.2 and algorithm 1. The implementa-
tion details regarding tuning of input parameters are described in following
discussion.

– BoostML2 Variant of BoostML1 as described in section 3.2.
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Iris Ionosphere Dermatology Credit Echocardiogram Heart Sonar Diabetes

K-NN 4.66 16.52 3.35 13.47 8.19 20 23.07 25.91
DANN 4.66 12.53 3.35 14.09 6.55 17.4 13.46 26.17

ADAMENN 4.66 15.95 5.58 15.15 10.11 21.48 18.75 26.56
Machete 4 12.53 3.07 16.23 24.59 24.81 21.15 29.55
Scythe 4 16.8 2.51 15.62 9.83 19.62 19.23 23.43

BoostML1 3.333 8.83 2.79 15.62 18.03 23.33 20.67 29.16
BoostML2 3.333 11.68 3.07 13.32 4.91 19.25 18.75 25.13

Table 2. Average classification error rates for different techniques across various
databases, K = 10, refer to the text for details

To obtain error rates, we used leave-one-out cross-validation for the Iris,
Ionoshphere, Dermatology, Echocardiogram and Heart data sets as these data
sets are quite small. 10 rounds of two-fold cross-validation were used for the
Credit and Diabetes data sets.

As can be seen, our metric learning algorithm results in an improvement of k-
NN classification. This improvement, however, does come at an extra cost. As can
be seen in algorithm 1, BoostML1 has introduced two new tuning parameters.
The value of L in all our experiments have been set to 20. We tested with other
values but there wasn’t any significant improvement in the results for setting the
value of L less than 20.

The α parameter which controls the size of the neighborhood at each step is
critical to the performance. A large value of α results in a better performance,
but will increase the computational cost. A small value of α results in poorer
performance, but will be faster. A tradeoff has to be achieved between compu-
tational cost and performance. In this work we have not optimized this value. A
value of 0.8 is set in all experiments.

Table 2 shows the average classification error rates for the different techniques
for the different databases. It can be seen that BoostML1 and BoostML2 perform
well on the majority of data sets. It results in significant improvement on the
classification of the basic k-NN classifier, and also performs better than the
competing algorithms in some cases.

To compare the robustness of our algorithm with other algorithms we used
the technique described in [8]. This test measures that how well a particular
method m performs on average in situations that are most favorable to other
procedures. Robustness can be measured by computing the ratio bm of its error
rate em and the smallest error rate over all other methods that are compared in
that example. That is:

bm =
em

min1≤k≤7ek
(8)
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Fig. 3. Box plots for various techniques.

The best method m∗ will have b∗m = 1 and all other methods will have values
larger than 1. The larger the value of bm the worse the performance is of the
mth method in relation to the best one for that data set.

Figure 3 shows the distribution of bm for each method over all data sets
considered. BoostML2 turned out to be most robust among all the methods,
with DANN coming second.

5 Conclusion and Future Work

In this work we presented a study of distance measurement in high dimen-
sional spaces. We showed that significant bias is introduced due to the ‘curse-
of-dimensionality’ in high dimensions and proposed techniques to mitigate the
effects of bias. We introduced an adaptive metric learning algorithm based on an
index inspired by work on boosting. We tested our algorithm on a variety of well-
known machine learning databases and found that our system performs better
than several well known techniques for adaptive metric learning. Also, our system
results in the improvement of the nearest neighbor classifier. This improvement,
however, comes at an extra cost. Our algorithm is computationally expensive as
compared to simple k-NN. We had to introduce two new parameters, the values
of which should be optimized. Though this complicates matters, other competing
algorithms also have one or more tuning parameters, so it should not be taken
as a major drawback of our algorithm.

Since our work is inspired by boosting, and boosting has been used for tuning
distance metric [19], we designed an algorithm to use boosting for learning an
adaptive distance metric. To improve the computational cost of our approach,
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we are working on algorithm that, rather than recursively homing in around the
query point to determine an adaptive metric, specifies a neighborhood around the
query point (similar to [14]) and defines a metric by determining the relevance
of features in that neighborhood alone.
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