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Abstract Recent advances have demonstrated substantial benefits from learn-
ing with both generative and discriminative parameters. On the one hand,
generative approaches address the estimation of the parameters of the joint
distribution – P(y,x), which bluefor most network types is very computa-
tionally efficient (a notable exception to this are Markov networks) and on
the other hand, discriminative approaches address the estimation of the pa-
rameters of the posterior distribution – and, are more effective for classifi-
cation, since they fit P(y|x) directly. However, discriminative approaches are
less computationally efficient as the normalization factor in the conditional
log-likelihood precludes the derivation of closed-form estimation of parame-
ters. This paper introduces a new discriminative parameter learning method
for Bayesian network classifiers that combines in an elegant fashion parame-
ters learned using both generative and discriminative methods. The proposed
method is discriminative in nature, but uses estimates of generative probabili-
ties to speed-up the optimization process. A second contribution is to propose
a simple framework to characterize the parameter learning task for Bayesian
network classifiers. We conduct an extensive set of experiments on 72 standard
datasets and demonstrate that our proposed discriminative parameterization
provides an efficient alternative to other state-of-the-art parameterizations.
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1 Introduction

Efficient training of Bayesian Network Classifiers has been the topic of much
recent research [1,3,8,12,16,19,27,29]. Two paradigms predominate [13]. One
can optimize the log-likelihood (LL). This is traditionally called generative
learning. The goal is to obtain parameters characterizing the joint distribu-
tion in the form of local conditional distributions and then estimate class-
conditional probabilities using Bayes rule. Alternatively, one can optimize the
conditional-log-likelihood (CLL) – known as discriminative learning. The goal
is to directly estimate the parameters associated with the class-conditional
distribution – P(y|x).

Naive Bayes (NB) is a Bayesian network BN that specifies independence
between attributes given the class. Recent work has shown that placing a
per-attribute-value-per-class-value weight on probabilities in NB (and learning
these weights by optimizing the CLL) leads to an alternative parameterization
of vanilla Logistic Regression (LR) [28]. The introduction of these weights (and
optimizing them by maximizing CLL) also makes it possible to relax NB’s
conditional independence assumption and thus to create a classifier with lower
bias [17,28]. The classifier is low-biased, as weights can remedy inaccuracies
introduced by invalid attribute-independence assumptions.

In this paper, we generalize this idea to the general class of BN classifiers.
Like NB, any given BN structure encodes assumptions about conditional inde-
pendencies between the attributes and will result in error if they do not hold
in the data. Optimizing the log-likelihood in this case will result in suboptimal
performance for classification [8,11,25] and one should either optimize directly
the CLL by learning the parameters of the class-conditional distribution or by
placing weights on the probabilities and learn these weights by optimizing the
CLL.

The main contributions of this paper are:

1. We develop a new discriminative parameter learning method for Bayesian
network classifiers by combining fast generative parameter (and structure)
learning with subsequent fast discriminative parameter estimation (using
parameter estimates from the former to precondition search for the param-
eters of the latter). To achieve this, discriminative parameters are restated
as weights rectifying deviations of the discriminative model from the gener-
ative one (in terms of the violation of independence between factors present
in the generative model).

2. A second contribution of this work is the development of a simple frame-
work to characterize the parameter learning task for Bayesian network
classifiers. Building on previous work by [8,10,20,22,29], this framework
allows us to lay out the different techniques in a systematic manner; high-
lighting similarities, distinctions and equivalences.

Our proposed parameterization is based on a two-step learning process:

1. Generative step: We maximize the LL to obtain parameters for all local
conditional distributions in the BN.
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2. Discriminative step: We associate a weight with each parameter learned in
the generative step and re-parameterize the class-conditional distribution
in terms of these weights (and of the fixed generative parameters). We can
then discriminatively learn these weights by optimizing the CLL.

In this paper, we show that:

– The proposed formalization of the parameter learning task for BN is actu-
ally a re-parameterization of the one step (discriminative) learning problem
(this will become clear when we introduce the proposed framework) but
with faster convergence of the discriminative optimization procedure. In
the experimental section, we complement our theoretical framework with
an empirical analysis over 72 domains; the results demonstrate the su-
periority of our approach. In Section 5.5, we will discuss our proposed
approach from the perspective of pre-conditioning in unconstrained opti-
mization problems.

– The proposed approach results in a three-level hierarchy of nested param-
eterizations, where each additional level introduces (or “unties”) exponen-
tially more parameters in order to fit ever smaller violations of indepen-
dence.

– Regularization of the discriminative parameters in the proposed discrimi-
native learning approach allows to limit the amount of allowable violation
of independence and effectively interpolate between discriminative and gen-
erative parameter estimation.

The rest of this paper is organized as follows. In Section 2, we present our
proposed framework for parameter learning of Bayesian network classifiers.
We also give the formulation for class-conditional Bayesian Network models
(CCBN) in this section. Two established parameterizations of class-conditional
Bayesian networks are given in Sections 3 and 4, respectively. In Section 5, we
present our proposed parameterization of CCBN. In Section 6, we discuss some
related work to this research. Experimental analysis is conducted in Section 7.
We conclude in Section 8 with some pointers to future work.

All the symbols used in this work are listed in Table 1.

2 A Simple Framework for Parameter Learning of BN Classifiers

We start by discussing Bayesian Network classifiers in the following section.

2.1 Bayesian Network Classifiers

A BN B = 〈G, Θ〉, is characterized by the structure G (a directed acyclic
graph, where each vertex is a variable, Zi), and a set of parameters Θ,
that quantifies the dependencies within the structure. The variables are
partitioned into a single target, the class variable Y=Z0 and n covariates
X1=Z1, X2=Z2, . . . Xn=Zn, called the attributes. The parameter Θ, contains
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Notation Description
n Number of attributes
N Number of data points in D
P(e) Probability of event e
P(e | g) Conditional probability of event e given g

P̂(.) An estimate of P(.)

D = {x(0), . . . ,x(N)} Data consisting of N objects

L = {y(1), . . . , y(N)} Labels of data points in D
x = 〈x1, x2, . . . , xn〉 An object (n-dimensional vector of attribute values)

z = 〈z0, z1, . . . zn〉 A labeled object, where z0 = y(i), z1 = x1, . . . , zn =
xn and x(i) ∈ D

Y Random variable associated with class label
y y ∈ Y . Class label for object. Same as z0
|Y | Number of classes
Xi Random variable associated with attribute i
xi xi ∈ Xi. i-th attribute value
|Xi| Number of values of attribute Xi
Zi Random variable associated with attribute i, or in the

case of Z0, the class.
zi zi ∈ Zi. i-th attribute value, or for z0, the class
|Zi| Number of values of variable Zi
B Bayesian Network (directed acyclic graph), parame-

terized by Θ
B∗ Class-conditional BN based on B, parameterized by θ
G Structure of BN B
Θ Set of parameters associated with B
PB(.) Probability is based on BN B
Πi(.) Function taking z as an input, returns the values of

the attributes which are the parents of i
Π0(.) Parents of class
θZi=zi|Πi(z) Probability of Zi = zi given its parents
θzi|Πi(z) Short form of θZi=zi|Πi(x)
θzi:j|y:k,Πi:l Probability of variable i taking value j, class (y) taking

value k and its parents (Πi) taking value l
βy,xi,Πi(x) Parameter associated with class y, attribute i taking

value xi and i’s parent’s-values Πi
βy,xi,Πi Same as βy,xi,Πi(x)
βxi:j,y:k,Πi:l Parameter associated with attribute i taking value j,

class (y) taking value k and its parents (Πi) taking
value l

θ,w, β Vector of θ, w and β parameters respectively
Nxi,y,Πi(x) Empirical count of data with attribute i taking value

xi, class taking value y and parents taking value Πi(x)

Table 1: List of symbols used.

a set of parameters for each vertex in G: θz0|Π0(x) and for 1 ≤ i ≤ n, θzi|y,Πi(x),
where Πi(.) is a function which given the datum x = 〈x1, x1, . . . , xn〉 as
its input, returns the values of the attributes that are the parents of node
i in structure G. For notational simplicity, instead of writing θZ0=z0|Π0(x) and
θZi=zi|y,Πi(x), we write θz0|Π0(x) and θzi|y,Πi(x). A BN B computes the joint
probability distribution as: PB(y,x) = θz0|Π0(x) ·

∏n
i=1 θzi|y,Πi(x).
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For a BN B, we can write:

PB(y,x) = θy|Π0(x)

n∏
i=1

θxi|y,Πi(x). (1)

Now, the corresponding conditional distribution PB(y|x) can be computed
with the Bayes rule as:

PB(y|x) =
PB(y,x)

PB(x)
,

=
θy|Π0(x)

∏n
i=1 θxi|y,Πi(x)∑

y′∈Y θy′|Π0(x)

∏n
i=1 θxi|y′,Πi(x)

. (2)

If the class attribute does not have any parents, we write: θy|Π0(x) = θy.

Given a set of data points D = {x(1), . . . ,x(N)}, the Log-Likelihood (LL)
of B is:

LL(B) =

N∑
j=1

log PB(y(j),x(j)),

=

N∑
j=1

(
log θy(j)|Π0(x(j)) +

n∑
i=1

log θ
x
(j)
i |Πi(x(j))

)
, (3)

with
∑
y∈Y

θy|Π0(x) = 1, and
∑
xi∈Xi

θxi|Πi(x) = 1. (4)

Maximizing Equation 3 to optimize the parameters (θ) is the maximum-
likelihood estimation of the parameters.

Theorem 1 Within the constraints in Equation 4, Equation 3 is maximized
when θxi|Πi(x) corresponds to empirical estimates of probabilities from the data,
that is, θy|Π0(x) = PD(y|Π0(x)) and θxi|Πi(x) = PD(xi|Πi(x)).

Proof See Appendix A.

The parameters obtained by maximizing Equation 3 (and fulfilling the con-
straints in Equation 4) are typically known as ‘Generative’ estimates of the
probabilities.

2.2 Class-Conditional BN (CCBN) Models

Instead of following a two-step process for classification with BN, where step 1
involves maximizing P(y,x) and the second step is application of Bayes rule
to obtain P(y|x), one can directly optimize for P(y|x) by maximizing the
Conditional Log-Likelihood (CLL). Optimizing CLL is generally considered a
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more effective objective function (for classification) since it directly optimizes
the mapping from features to class labels. The CLL can be defined as:

CLL(B) =

N∑
j=1

log PB(y(j)|x(j)),

which is equal to:

=

N∑
j=1

log PB(y(j),x(j))− log

| Y |∑
y′

PB(y′,x(j))


=

N∑
j=1

(
log θy(j)|Π0(x(j)) +

n∑
i=1

log θ
x
(j)
i |Πi(x(j))

)
−

log

 | Y |∑
y′

θy′|Π0(x(j))

n∏
i=1

θxi|y′,Πi(x(j))

 . (5)

The only difference between Equation 3 and Equation 5 is the presence of the

normalization factor in the latter, that is: log
∑ | Y |
y′ PB(y′,x(j)). Due to this

normalization, the values of θ maximizing Equation 5 are not the same as those
that maximize Equation 3. We provide two intuitions as to why maximizing
the CLL should provide a better model of the conditional distribution:

1. It allows the parameters to be set in such a way as to reduce the effect of
the conditional attribute independence assumption that is present in the
BN structure and that might be violated in data.

2. We have LL(B) = CLL(B) + LL(B\y). If optimizing LL(B), most of the
attention will be given to LL(B\y) – because CLL(B)� LL(B\y) – which
will often lead to poor estimates for classification.

Note, that if the structure is correct, maximizing both LL and CLL should
lead to the same results [23]. There is unfortunately no closed-form solution for
θ such that the CLL would be maximized; we thus have to resort to numerical
optimization methods over the space of parameters.

Like any Bayesian network model, a class-conditional BN model is com-
posed of a graphical structure and of parameters (θ) quantifying the depen-
dencies in the structure. For any BN B, the corresponding CCBN will be
based on graph B∗ (where B∗ is a sub-graph of B) whose parameters are opti-
mized by maximizing the CLL. We present below a slightly rephrased definition
from [22]:

Definition 1 A class-conditional Bayesian network model MB∗ is the set of
conditional distributions based on the network B∗ equipped with any strictly
positive parameter set θB

∗
; that is the set of all functions from (X1, X2, ...., Xn)

to a distribution on Y takes the form of Equation 2.



Efficient Parameter Learning of Bayesian Network Classifiers 7

This means that the nodes in B∗ are nodes comprising only the Markov blanket
of the class y. However, for most BN classifiers the class has no parents and is
made a parent of all attributes. This has the effect that every attribute is in
the Markov blanket of the class.

We will assume that the parents of the class attribute constitute an empty
set and, therefore, replace parameters characterizing the class attribute from
θy(j)|Π0(x(j)) with θy(j) . We will also drop the superscript j in equations for
clarity.

2.3 A Simple Framework

It is no exaggeration to say that Equation 1 has a pivotal role in BN classi-
fication. Let us modify Equation 1 by introducing an extra set of parameter,
say w for every parameter θ. Let θ and w, represent the vectors of all θ and
w parameters. In the following, let us also make a distinction between ‘Fixed’
and ‘Optimized’ parameters – during the optimization process. Parameters
that are optimized are referred to as Optimized parameters and parameters
that do not change their value during the optimization process are referred to
as Fixed. Now, we can write:

PB(y,x) = θwyy

n∏
i=1

θ
wxi,y,Πi(x)

xi|y,Πi(x) . (6)

Optimizing to compute class-probabilities using Equation 6, there are several
possibilities, of which we will discuss only four in the following:

1. Generative: Initialize w with 1 and treat it as fixed parameter. Treat,
θ as optimized parameter and optimize it with the generative objective
function as given in Equation 3.

2. Discriminative: Initialize w with 1 and treat it as fixed parameter. Treat,
θ as an optimized parameter and optimize it with the discriminative objec-
tive function as given in Equation 5. As discussed, this results in adding a
normalization term to convert P(y,x) in Equation 6 to P(y|x). We denote
this ‘discriminative CCBN’ and describe it in detail in Section 3.

3. Discriminative: Initialize w with 1 and treat it as a fixed parameter.
Treat, θ as an optimized parameter and optimize it with the discriminative
objective function as given in Equation 5, but constrain parameter θ to
be actual probabilities. We denote this ‘extended CCBN’ and provide a
detailed description in Section 4.

4. Discriminative: Two step learning. In the first step, initialize w with 1
and treat it as a fixed parameter. Treat, θ as an optimized parameter and
optimize it with the generative objective function as given in Equation 3.
In the second step, treat θ as a fixed parameter and optimize for w using a
discriminative objective function. This approach is inspired from the fact
that weights w in Equation 6 are set through generative learning, unlike
discriminative and extended CCBN, where it is set to one. We denote this
‘weighted CCBN’ and describe it in detail in Section 5.

A brief summary of these parameterizations is also given in Table 2.
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3 Parameterization 1: Discriminative CCBN Model

Logistic regression (LR) is the CCBN model associated to the NB structure
optimizing Equation 2. Typically, LR learns a weight for each attribute-value
(per-class). However, one can extend LR by considering all or some subset of
possible quadratic, cubic, or higher-order features [15,31]. Inspired from [22],
we define discriminative CCBN as:

Definition 2 A discriminative class-conditional Bayesian Network model
MB∗d is a CCBN such that Equation 2 is re-parameterized in form of pa-
rameter β such that β = log θ and parameter β is obtained by maximizing
the CLL.

Let us re-define PB(y|x) in Equation 5 and write it on a per datum basis as:

PB(y|x) =
exp(log θy +

∑n
i=1 log θxi|y,Πi(x))∑ | Y |

y′ exp(log θy′ +
∑n
i=1 log θxi|y′,Πi(x))

. (7)

In light of Definition 2, let us define a parameter β• that is associated with
each parameter θ• in Equation 7, such that:

log θy = βy, and log θxi|y,Πi(x) = βy,xi,Πi .

Now Equation 7 can be written as:

PB(y|x) =
exp(βy +

∑n
i=1 βy,xi,Πi)∑ | Y |

y′=1 exp(
∑
y′ βy′ +

∑n
i=1 βy′,xi,Πi)

. (8)

One can see that this has led to the logistic function of the form 1
1+exp(−βTx)

for

binary classification and softmax
exp(−βy

Tx)∑′
y(exp(−βy′

Tx))
for multi-class classification.

Such a formulation is a Logistic Regression classifier. Therefore, we can state
that a discriminative CCBN model with naive Bayes structure is a (vanilla)
logistic regression classifier.

In light of Definition 2, CLL optimized byMB∗d , on a per-datum-basis, can
be specified as:

log PB(y|x) = (βy +

n∑
i=1

βy,xi,Πi)−

log(

| Y |∑
y′=1

exp(βy′ +

n∑
i=1

βy′,xi,Πi)). (9)

Now, we will have to rely on an iterative optimization procedure based on
gradient-descent. Therefore, let us first calculate the gradient of parameters in
the model. The gradient of the parameters in Equation 9 can be computed as:

∂ log PB(y|x)

∂βy:k
= (1y=k − P(k|x)) , (10)
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for the class parameters. For the other parameters, we can compute the gra-
dient as:

∂ log PB(y|x)

∂βy:k,xi:j,Πi:l
= (1y=k − P(k|x)) 1xi=j1Πi=l, (11)

where 1 is the indicator function. Note, that we have used the notation
βy:k,xi:j,Πi:l to denote that class y has the value k, attribute xi has the value
j and its parents (Πi) have the value l. If the attribute has multiple parent
attributes, then l represents a combination of parent attribute values.

4 Parameterization 2: Extended CCBN Model

The name Extended CCBN Model is inspired from [10], where the method
named Extended Logistic Regression (ELR) is proposed. ELR is aimed at ex-
tending LR and leads to discriminative training of BN parameters. We define:

Definition 3 [10] – An extended class-conditional Bayesian Network model
MB∗e is a CCBN such that the parameters (θ) satisfy the constraints in Equa-
tion 4 and is obtained by maximizing the CLL in Equation 5.

Let us re-define PB(y|x) in Equation 5 on a per-datum-basis as:

log PB(y|x) = (log θy +

n∑
i=1

log θxi|y,Πi(x))−

log

| Y |∑
y′

(θy′
n∏
i=1

θxi|y′,Πi(x)). (12)

Let us consider the case of optimizing parameters associated with the at-
tributes θxi|y,Πi(x). Parameters associated with the class can be obtained sim-
ilarly. We will re-write θxi|y,Πi(x) as θxi:j|y:k,Πi:l which represents attribute i
(xi) taking value j, class (y) taking value k and its parents (Πi) takes value l.
Now we can write the gradient as:

∂ log PB(y|x)

∂θxi:j′|y:k,Πi:l
=

(
1y=k1xi=j′1Πi=l
θxi:j′|y:k,Πi:l

− P̂(k|x)1xi=j′1Πi=l
θxi:j′|y:k,Πi:l

)
,

=
1xi=j′1Πi=l
θxi:j′|y:k,Πi:l

(
1y=k − P̂(k|x)

)
.

Enforcing constraints that
∑
j′ θxi:j′|y:k,Πi:l = 1, we introduce a new parame-

ters β and re-parameterize as:

θxi:j′|y:k,Πi:l =
exp(βxi:j′|y:k,Πi:l)∑
j′′ exp(βxi:j′′|y:k,Πi:l)

. (13)
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It will be helpful if we differentiate θxi:j′|y:k,Πi:l with respect to βxi:j|y:k,Πi:l

(the use of notation j and j′ will become obvious when we apply the chain
rule afterwards), we get:

∂θxi:j′|y:k,Πi:l

∂βxi:j|y:k,Πi:l
=

exp(βxi:j′|y:k,Πi:l)1y=k1xi=j′=j1Πi=l∑
j′′ exp(βxi:j′′|y:k,Πi:l)

−
exp(βxi:j′|y:k,Πi:l) exp(βxi:j′′|y:k,Πi:l)1xi=j′′=j1Πi=l(∑

j′′ exp(βxi:j′′|y:k,Πi:l)
)2 ,

= 1y=k1xi=j′=j1Πi=lθxi:j|y:k,Πi:l −
1xi=j′′=j1Πi=lθxi:j′|y:k,Πi:lθxi:j|y:k,Πi:l,

= (1y=k − θxi:j|y:k,Πi:l)1xi=j1Πi=lθxi:j′|y:k,Πi:l.

Applying the chain rule:

∂ log PB(y|x)

∂βxi:j|y:k,Πi:l
=
∑
j′

∂ log P(y|x)

∂θxi:j′|y:k,Πi:l

∂θxi:j′|y:k,Πi:l

∂βxi:j|y:k,Πi:l
,

= (1y=k1xi=j1Πi=l − 1xi=j1Πi=lP(k|x))−

θxi:j|y:k,Πi:l

∑
j′

(1y=k1xi=j′1Πi=l − 1xi=j′1Πi=lP(k|x)) , (14)

we get the gradient of log PB(y|x) with respect to parameter βxi:j|y:k,Πi:l. Now
one can use the transformation of Equation 13 to obtain the desired parameters
of extended CCBN. Note that Equation 14 corresponds to Equation 11. The
only difference is the presence of the normalization term that is subtracted
from the gradient in Equation 14.

5 Parameterization 3: Combined generative/discriminative
parameterization: Weighted CCBN Model

Inspired from [28], we define a weighted CCBN model as follows:

Definition 4 A weighted conditional Bayesian Network model MB∗w is a
CCBN such that Equation 2 has an extra weight parameter associated with
every θ such that it is re-parameterized as: θw, where parameter θ is learned
by optimizing the LL and parameter w is obtained by maximizing the CLL.

In light of Definition 4, let us re-define Equation 2 to incorporate weights as:

PB(y|x) =
θ
wy
y
∏n
i=1 θ

wy,xi,Πi
xi|y,Πi(x)∑ | Y |

y′ θ
wy′

y′
∏n
i=1 θ

wy′,xi,Πi
xi|y′,Πi(x)

. (15)
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The corresponding weighted CLL can be written as:

log PB(y|x) = (wy log θy +

n∑
i=1

wy,xi,Πi log θxi|y,Πi(x))−

log

| Y |∑
y′

(θ
wy
y′

n∏
i=1

θ
wy,xi,Πi
xi|y′,Πi(x)). (16)

Note, that Equation 16 is similar to Equation 12 except for the introduction
of weight parameters. The flexibility to learn parameter θ in a prior gener-
ative process of learning greatly simplifies subsequent calculations of w in a
discriminative search. Since w is a free-parameter and there is no sum-to-
one constraint, its optimization is simpler than for MB∗e . The gradient of the
parameters in Equation 16 can be computed as:

∂ log PB(y|x)

∂wy:k
= (1y=k − P(k|x)) log θy|Π0(x), (17)

for the class y, while for the other parameters:

∂ log PB(y|x)

∂wy:k,xi:j,Πi:l
=(1y=k−P(k|x)) 1xi=j1Πi=l log θxi|y,Πi(x). (18)

One can see that Equations 17 and 18 correspond to Equations 10 and 11.
The only difference between them is the presence of the log θ• factor in the
MB∗w case.

5.1 On Initialization of Parameters

Initialization of the parameters, which sets the starting point for the opti-
mization, is critical to the speed of convergence and will be addressed in this
section. Obviously, a better starting point (in terms of CLL), will make the
optimization easier and conversely, a worse starting point will make optimiza-
tion harder. In this paper, we will study two different starting points for the
parameters:

Initialization with Zeros This is the standard initialization where all the
optimized parameters are initialized with 0 [21].

Initialization with Generative estimates Given that our approach uti-
lizes generative estimates, a fair comparison with other approaches should
study starting from the generative estimates for all approaches. This will
correspond to initializing the θ parameter with the generative estimates
for Parameterizations 1 and 2 (MB∗d and MB∗e ), and initializing the w
parameter to 1 for Parameterization 3 (MB∗w ).

Note that in the initialization with “Zeros” case, only our proposed Weighted
CCBN parameterization requires a first (extra) pass over the dataset to com-
pute the generative estimates, while for the initialization with “Generative
estimates” case all methods require this pass (when we report training time,
we always report the full training time).
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5.2 Comment on Regularization

MB∗w parameterization offers an elegant framework for blending discrimina-
tively and generatively learned parameters. With regularization, one can in-
deed ‘interpolate’ between the two sets of parameters. Traditionally, one regu-
larizes parameters towards 0 to prevent over-fitting. For example, let us modify
Equation 15 to integrate an L2-regularization:

PB(y|x) =
1

Z
exp(wy log θy +

n∑
i=1

wy,xi,Πi log θxi|y,Πi(x)) +
λ

2
‖w‖2,

where Z is the normalization constant and λ is the parameter controlling reg-
ularization. The new term will penalize large (and heterogeneous) parameter
values. Larger λ values will cause the classifier to progressively ignore the data
and assign more uniform class probabilities. Alternatively one could penalize
deviations from the BN conditional independence assumption by centering the
regularization term at 1 rather than zero. In this case, we can write:

PB(y|x) =
1

Z
exp(wy log θy +

n∑
i=1

wy,xi,Πi log θxi|y,Πi(x)) +
λ

2
‖w − 1‖2.

Doing so allows the regularization parameter λ to be used to ‘pull’ the dicrim-
inative estimates toward the generative ones. A very small value of λ results
in optimized parameter w dominating the determination of P(y|x), whereas,
a very large value of λ pulls w towards 1 and, therefore, the fixed parameters
will dominate the class-conditional probabilities. Regularization for MB∗w re-
mains an area for future research, but we conjecture that one can tune a value
of λ (for example through cross-validation) to attain better performance than
can be achieved by either generative or discriminative parameters alone. Once
could also interpret the regularization parameter as controlling the amount of
independence violation between the discriminative and generative models.

5.3 Optimizing Discriminative/Generative Parameterization

There are great advantages in optimizing an objective function that is convex.
The convexity of the three discriminative parameterizations that we have dis-
cussed depends on the underlying structure of the CCBN (MB∗). From [22], it
follows that optimizing a CCBN parameterized by eitherMB∗d ,MB∗e orMB∗w

leads to a convex optimization problem if and only if the structure has no im-
moral nodes. In other words, the optimization problem is convex if and only
if parents of all the nodes are are connected with each other. This constraint
is true for a number of popular BN classifiers including NB, TAN and KDB
(K = 1), but not true for general BN or for KDB structures with K > 1.
Therefore, in this work, we have used only limited BN structures such as NB,
TAN and KDB (K = 1). Investigation of the application of our approach to
more complex moral structures is a promising topic for future work. We note
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X0 X1 X2 XnLevel 1, m = n

a b c

x1 =

Level 2, m =
∑
i |Xi |

0 1

y =

Level 3, m =
∑
i( |Y | × |Xi | )

ad bd cd ae be ce

X1 ×X2 =

Level 4, m =
∑
i( |Y | × |Xi | × |Πi(x) | )

Fig. 1: Depiction of various levels in parameter nesting, along with number of parameters
(m) to be optimized at each level. Note that only one node per level is expanded, for
illustration. Attribute X1 takes values {a, b, c} and takes class Y = {0, 1} and attribute
X2 = {d, e, f} as parents.

in passing, that a similar two step discriminative parameterization has also
been shown to be effective for the non-convex objective function mean-square-
error [30].

5.4 Nested Parameterizations

One can see that learning MB∗d , MB∗e and MB∗w models can lead to a large
number of parameters that need to be optimized, even on moderate size
datasets. One can, however, nest these parameters. The idea is to exploit rela-
tionships between parameters so that the number of parameters that need to
be optimized are reduced significantly. Figure 1 depicts four levels of parame-
ter nesting. The first level entails learning a parameter for each attribute. The
second level entails learning a parameter for every attribute-value. The next
level learns a parameter for every attribute-value-per-class-value. The final
level (Level 4) is the most comprehensive case. It entails learning a parameter
for every attribute-value-per-class-per-parent-value.

Nesting as shown in Figure 1, though effective, is not very intuitive forMB∗e

andMB∗d . For example, doing a logistic regression by learning a parameter as-
sociated only with the attributes will result in optimizing fewer parameters
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but might not be effective in terms of classification accuracy. However, the hi-
erarchy of models applies naturally toMB∗w .MB∗w incorporates learning initial
parameters by optimizing the LL objective function. Therefore, the searched
parameters optimized in the second step can be nested effectively. For exam-
ple, Level 1 weighting in Figure 1 can be seen as alleviating the conditional at-
tribute independence assumption (CAIA) between attributes. Similarly, Level
2 will have the effect of binarizing each attribute, and alleviating CAIA be-
tween new attributes. In the following we will derive the respective gradients
for each level from the most comprehensive case of Level 4.

Gradients for Level 4 are given in Equation 17 and 18. Level 3 corresponds
to learning a weight-per-attribute-value-per-class. The weight vector in this
case will be of the size m =

∑
i( |Y | × |Xi | ). The gradients with respect to

new weight vectors can be obtained in the following way:

∂ log PB(y|x)

∂wxi:j|y:k
= (1y=k − P(k|x))1xi=j log θxi|y,Πi(x). (19)

Level 2 weighting corresponds to learning a weight-per-attribute-value. We can
compute the gradient with respect to the weight vector of size m =

∑
i |Xi | ,

as:

∂ log PB(y|x)

∂wxi:j
= (log θxi|y,Πi(x) −

∑
y′

P(y′|x) log θxi|y′,Πi(x))1xi=j . (20)

Similarly, learning a weight-per-attribute leads to a weight vector of size m
and can its gradients can be obtained as:

∂ log PB(y|x)

∂wi
= log θxi|y,Πi(x) −

∑
y′

P(y′|x) log θxi|y′,Πi(x). (21)

Now, one can control the bias and variance of the classifier by selecting between
three different levels of parameterization with ever greater model complexity.

5.5 Discussion

5.5.1 Pre-conditioning - Why is our technique helpful?

It can be seen thatMB∗w results in re-scaling ofMB∗d parameterization. What
is the effect of this re-scaling on the model? Since there is no closed-form
solution, we optimize the CLL with first-order gradient-descent methods, such
as gradient descent, conjugate gradient, quasi-Newton (L-BGFS) or Stochastic
Gradient Descent. These are all affected by scaling1. We use the generative
estimates as an effective pre-conditioning method.

1 Note that second-order algorithms such as the Newton method are not affected by
scaling, but they are often computationally impractical because they require computation
and inversion of the Hessian at each step.
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Fig. 2: On the importance of scaling for first-order gradient descent methods.
Axes represent two possible β1 and β2. Left: non-scaled space. Right:Re-scaled.

A pre-conditioner converts an ill-conditioned problem into a better condi-
tioned one, such that the gradient of the objective function is uniform across
all dimensions. A better conditioned optimization problem has a better conver-
gence profile. This is because if different parameters have significantly different
“influence” on the objective function, then the gradient does not point directly
towards the minimum that is the objective of the optimization process. We
illustrate this in Figure 2 where we show the contour plot of the CLL for
different β. We can see that when the CLL has an ‘elliptical’ shape with re-
spect to the parameters, then the gradient is not oriented directly towards
the objective and each step makes only partial progress in the true direction
of the final objective. Our re-scaling improves the orientation of the gradient
speeding convergence.

Note that it is the relative scaling of the axes that affects the orientation
of the gradient. Isotropic scaling (that is, scaling all axes uniformly) has no
effect on convergence.

To further demonstrate our point, we perform a simple experiment with
synthetic data that we generate so that the CLL is more or less “elliptical”. We
use with three binary features and two class values. We sample the covariates
randomly and uniformly and use a simple logistic regression model, which
corresponds to our framework using Naive Bayes as the BN structure. The
class distribution is given by

P(y |x1, x2, x3) =
1

exp(−(10α · x1 + 1 · x2 + 10−α · x3))
.

By increasing the value of α, we increase the elongation of the CLL space.
When α = 0, the three features contribute uniformly to the class prediction
and it is a well-conditioned problem. We can then expect pre-conditioning to
have little to no influence on the convergence. As α→ 1, the problem becomes
very ill-conditioned. On such problems, pre-conditioning will have greatest
effect.

We compare the convergence profile of vanilla LR (discriminative CCBN)
and our pre-conditioned weighted CCBN with Naive Bayes structure (which
is associated to a LR model) by varying α from 0 to 1. For each dataset



Efficient Parameter Learning of Bayesian Network Classifiers 17

10
0

10
1

No. of Iterations

-2000

-1800

-1600

-1400

-1200

-1000

-800

-600

-400

-200

0

N
e
g

a
t
iv

e
 L

o
g

-
L

ik
e
li
h

o
o

d

α = 0

β
wlogθ

(a) α = 0

10
0

10
1

No. of Iterations

-2000

-1800

-1600

-1400

-1200

-1000

-800

-600

-400

-200

0

N
e
g

a
t
iv

e
 L

o
g

-
L

ik
e
li
h

o
o

d

α = 0.1

β
wlogθ

(b) α = 0.1
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Fig. 3: Comparison of rate of convergence on the three synthetic datasets by varying α.
The X-axis is on log scale. Parameters are initialized to zero.

10,000 data points were generated. We report the convergence results in Fig-
ure 3. These confirm the explanation given above. The benefit of our technique
progressively increases as the relative influence of the covariates on the class
increases. We will show in Section 7 that this is the case for the vast majority
of real-world datasets.

5.5.2 Is this an over-parametrised model?

It can be seen that theMB∗w parameterization is based on Equation 6 – which
is over-parameterized in the sense that there are twice as many parameters
specifying the likelihood as would strictly be necessary. The question is: do
we benefit from having both w and θ parameters? In this section, we will
discuss the implications of introducing w parameters to the following vanilla
(per-datum) likelihood (on which MB∗d is based on):

PB(y,x) = θy

n∏
i=1

θxi|y,Πi(x), (22)

If one goal of weighted CCBN is to combine generative and discriminative
learning by using over-parameterized likelihood in Equation 6, one could do
the following two-step learning. In step 1, one can learn the θ by optimizing a
generative objective function, and in the second step, optimize a discriminative
objective function but initialize the θ parameters with the parameters that
were obtained in step 1. In fact, this should be a recommended procedure
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to speed-up discriminative training (for discriminative CCBN and extended
CCBN) as it is often effective in practice.However, one should notice that in
this case, the discriminative learning model does start from the estimates of
parameters that were obtained from generative learning, but once an iterative
step is taken for discriminative learning, the generative estimates are lost, and
have no further influence on the discriminative learning process.

6 Related Work

There have been several comparative studies of discriminative and generative
structure and parameter learning of Bayesian Networks [9,11,18]. In all these
works, generative parameter training is the estimation of parameters based on
empirical estimates whereas discriminative training of parameters is actually
the estimation of the parameters of CCBN models such asMB∗e orMB∗d . The
MB∗e model was first proposed in [9]. Our work differs from these previous
works as our goal is to highlight different parameterization of CCBN models
and investigate their inter-relationship. Particularly, we are interested in the
learning of parameters corresponding to a weighted CCBN model that leads
to faster discriminative learning.

An approach for discriminative learning of the parameters of BN based on
discriminative computation of pseudo-frequencies from the data is presented
in [25]. Discriminative Frequency Estimates (DFE) are computed by injecting
a discriminative element to generative computation of the probabilities. Dur-
ing the pseudo-frequencies computation process, rather than using empirical
frequencies, DFE estimates how well the current classifier does on each data
point and then updates the frequency tables only in proportion to the clas-
sifier’s performance. For example, they propose a simple error measure, as:
L(x) = P(y|x)− P̂(y|x), where P(y|x) is the true probability of class y given
the datum x, and P̂(y|x) is the predicted probability. The counts are updated
as: θt+1

ijk = θtijk + L(x). Several iterations over the dataset are required. The
algorithm is inspired from Perceptron based training and is shown to be an
effective discriminative parameter learning approach.

7 Empirical Results

In this section, we compare and analyze the performance of our proposed algo-
rithms and related methods on 72 natural domains from the UCI repository of
machine learning [7]. The experiments are conducted on the datasets described
in Table 3.

There are a total of 72 datasets, 41 datasets with less than 1000 instances,
21 datasets with between 1000 and 10000 instances, and 11 datasets with more
than 10000 instances. Each algorithm is tested on each dataset using 5 rounds
of 2-fold cross validation. 2-fold cross validation is used in order to maximize
the variation in the training data from trial to trial, which is advantageous
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Domain Case Att Class Domain Case Att Class
Poker-hand 1175067 11 10 Annealing 898 39 6
Covertype 581012 55 7 Vehicle 846 19 4
Census-Income(KDD) 299285 40 2 PimaIndiansDiabetes 768 9 2
Localization 164860 7 3 BreastCancer(Wisconsin) 699 10 2
Connect-4Opening 67557 43 3 CreditScreening 690 16 2
Statlog(Shuttle) 58000 10 7 BalanceScale 625 5 3
Adult 48842 15 2 Syncon 600 61 6
LetterRecognition 20000 17 26 Chess 551 40 2
MAGICGammaTelescope 19020 11 2 Cylinder 540 40 2
Nursery 12960 9 5 Musk1 476 167 2
Sign 12546 9 3 HouseVotes84 435 17 2
PenDigits 10992 17 10 HorseColic 368 22 2
Thyroid 9169 30 20 Dermatology 366 35 6
Pioneer 9150 37 57 Ionosphere 351 35 2
Mushrooms 8124 23 2 LiverDisorders(Bupa) 345 7 2
Musk2 6598 167 2 PrimaryTumor 339 18 22
Satellite 6435 37 6 Haberman’sSurvival 306 4 2
OpticalDigits 5620 49 10 HeartDisease(Cleveland) 303 14 2
PageBlocksClassification 5473 11 5 Hungarian 294 14 2
Wall-following 5456 25 4 Audiology 226 70 24
Nettalk(Phoneme) 5438 8 52 New-Thyroid 215 6 3
Waveform-5000 5000 41 3 GlassIdentification 214 10 3
Spambase 4601 58 2 SonarClassification 208 61 2
Abalone 4177 9 3 AutoImports 205 26 7
Hypothyroid(Garavan) 3772 30 4 WineRecognition 178 14 3
Sick-euthyroid 3772 30 2 Hepatitis 155 20 2
King-rook-vs-king-pawn 3196 37 2 TeachingAssistantEvaluation 151 6 3
Splice-junctionGeneSequences 3190 62 3 IrisClassification 150 5 3
Segment 2310 20 7 Lymphography 148 19 4
CarEvaluation 1728 8 4 Echocardiogram 131 7 2
Volcanoes 1520 4 4 PromoterGeneSequences 106 58 2
Yeast 1484 9 10 Zoo 101 17 7
ContraceptiveMethodChoice 1473 10 3 PostoperativePatient 90 9 3
German 1000 21 2 LaborNegotiations 57 17 2
LED 1000 8 10 LungCancer 32 57 3
Vowel 990 14 11 Contact-lenses 24 5 3
Tic-Tac-ToeEndgame 958 10 2

Table 3: Details of Datasets (UCI Domains)

when estimating bias and variance. Note that the source code with running
instructions is provided as a supplementary material to this paper.

We compare four metrics: 0-1 Loss, RMSE, Bias and Variance. The reason
for performing bias/variance estimation is to investigate if optimizing a dis-
criminative function leads to a lower bias classifier or not. There are a number
of different bias-variance decomposition definitions. In this research, we use the
bias and variance definitions of [14] together with the repeated cross-validation
bias-variance estimation method proposed by [26]. Kohavi and Wolpert [14]
define bias and variance as follows:

bias2 =
1

2

∑
y∈Y

(
P(y|x)− P̂(y |x)

)2

,

and

variance =
1

2

1−
∑
y∈Y

P̂(y |x)2

 .
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The reason for reporting 0-1 Loss and RMSE is to investigate if the pro-
posed parameterizationMB∗w leads to a comparable performance toMB∗d and
MB∗e parameterizations and also to determine how much performance gain is
achieved over generative learning. We will also evaluate parameterizations in
terms of training time (measured in seconds) and number of iterations it takes
each parameterization to converge.

We report Win-Draw-Loss (W-D-L) results when comparing the 0-1 Loss,
RMSE, bias and variance of two models. A two-tail binomial sign test is used
to determine the significance of the results. Results are considered significant
if p ≤ 0.05. Significant results are shown in bold font in the table.

We report results on two categories of datasets. The first category, labeled
All, consists of all datasets in Table 3. The second category, labeled Big, con-
sists of datasets that have more than 10000 instances. The reason for splitting
datasets into two categories is to show explicitly the effectiveness of our pro-
posed optimization on bigger datasets2. It is only on big datasets, that each
iteration is expensive and, therefore, any technique that leads to faster and
better convergence is highly desirable. Note, that we do not expect the three
discriminative parameterizations MB∗d , MB∗e and MB∗w to differ in their pre-
diction accuracy. That is, we should expect a similar spread of both 0-1 Loss
and RMSE values. However, we should be interested in each parameterization’s
convergence profile and the training time.

Numeric attributes are discretized using the Minimum Description Length
(MDL) discretization method [6]. A missing value is treated as a separate
attribute value and taken into account exactly like other values.

Optimization is done with L-BFGS [2] using the original imple-
mentation available at http://users.eecs.northwestern.edu/~nocedal/

lbfgsb.html. Following standard procedures [32], the algorithm terminates

when improvement in the objective function, given by (ft−ft+1)
max{|ft|,|ft+1|,1} , drops

below 10−32, or the number of iterations exceeds 104.
We experiment with three Bayesian network structures that is: naive Bayes

(NB), Tree-Augmented naive Bayes (TAN) [8] and k-Dependence Bayesian
Network (KDB) with K = 1 [24]. Naive Bayes, is a well-known classifier which
is based on the assumption that when conditioned on the class, attributes
are independent. Tree-Augmented Naive Bayes augments the NB structure by
allowing each attribute to depend on at most one non-class attribute. It re-
lies on an extension of the Chow-Liu tree [4], that utilizes conditional mutual
information (between pairs of attributes given the class) to find a maximum
spanning tree over the attributes in order to determine the parent of each.
Similarly, in KDB, each attribute takes k attributes plus the class as its par-
ents. The attributes are selected based on their mutual information with the
class. Then, the parent of an attribute i is chosen that maximizes the condi-
tional mutual information of attribute i and parent j given the class that is:
argmaxjCMI(Xi, Xj |Y ).

2 By big, we mean datasets that have large number of instances, rather than large number
of features.



Efficient Parameter Learning of Bayesian Network Classifiers 21

We denoteMB∗w ,MB∗d andMB∗e with naive Bayes structure as NBw, NBd

and NBe respectively. With TAN structure,MB∗w ,MB∗d andMB∗e are denoted

as TANw, TANd and TANe. With KDB (K = 1), MB∗w , MB∗d and MB∗e are

denoted as KDB-1w, KDB-1d and KDB-1e.
As discussed in Section 5.1, we initialize the parameters to the log of the

MAP estimates (or parameters optimized by generative learning). The follow-
ing naming convention is used in the results:

– The ‘(I)’ in the label represents this initialization
– An absence of ‘(I)’ means the parameters are initialized to zero.

7.1 NB Structure

Comparative scatter plots on all 72 datasets for 0-1 Loss, RMSE and training
time values for NBw, NBd and NBe are shown in Figure 4. Training time
plots are on the log scale. The plots are shown separately for Big datasets.
It can be seen that the three parameterizations have a similar spread of 0-1
Loss and RMSE values, however, NBw is greatly advantaged in terms of its
training time. We will see in Section 7.4 that this computational advantage
arises due to the desirable convergence property of NBw. Given that NBw

achieves equivalent accuracy with much less computation indicates that it is
a more effective parameterization than NBd and NBe. Slight variation in the
accuracy of three discriminative parameterizations (that is 0-1 Loss and RMSE
performance) on All datasets is due to the numerical instability of the solver
use for optimization. The difference mainly arises on very small datasets. It
can be seen that on big datasets, the three parameterizations result in the
same accuracy.

The geometric means of the 0-1 Loss and RMSE results are shown in Fig-
ure 5. It can be seen that the three discriminative parameterizations, especially
on Big datasets, has much better performance (both 0-1 Loss and RMSE) than
the generative learning.

The training time comparison is given in Figure 6a. Note that the training
time is measured in seconds and is plotted on the log scale. It can be seen
that in terms of the training time, the three discriminative parameterizations
are many orders of magnitude slower than plain naive Bayes. To show the
comparison of the training time of MB∗d , MB∗e and MB∗w only, we normalize
the results with respect to MB∗w . Results are shown in Figure 6b. It can be
seen thatMB∗d is almost twice as slow as compared toMB∗w , whereas,MB∗e is
order of magnitude slower that MB∗w .
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Fig. 4: Comparative scatter of results for NBw, NBd and NBe. NBw is on the X-axis
whereas NBd (red-cross) and NBe (green-triangle) are on the Y-axis. For any points above
the diagonal line NBw wins.
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of training time for NBw, NBd and NBe on All and Big datasets. Results are normalized
with respect to NBw.



24 Nayyar A. Zaidi et al.

7.2 TAN Structure

Figure 7 shows the comparative spread of 0-1 Loss, RMSE and training time in
seconds of TANw, TANd and TANe on All and Big datasets. A trend similar
to that of NB can be seen. With a similar spread of 0-1 Loss and RMSE among
the three parameterizations, training time is greatly improved for TANw when
compared with TANd and TANe. Note, as pointed out before, that minor
variation in the performance of three discriminative parameterizations is due
to the numerical issues with-in the solver on some small datasets. On big
datasets, one can see a similar spread of 0-1 Loss and RMSE.

The geometric means of the 0-1 Loss and RMSE results are shown in
Figure 8. It can be seen that TANd, TANe and TANw, on average results in
much better accuracy than generative model (TAN).

A comparison of the training time is shown in Figure 9a. It can be seen that,
like NB, training time of the discriminative methods is orders of magnitude
longer than that of generative learning. Note, the training time of discrimi-
native learning also includes the structure learning process. We also show the
comparison of the training time of TANd, TANe and TANw in Figure 9b. Like,
NB, it can be seen that TANw is almost twice as fast as TANd, whereas, TANe

is orders of magnitude slower than TANw.
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Fig. 7: Comparative scatter of results for TANw, TANd and TANe. TANw is on the X-
axis whereas TANd (red-cross) and TANe (green-triangle) are on the Y-axis. For any points
above the diagonal line TANw wins.
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7.3 KDB (K = 1) Structure

Figure 10 shows the comparative spread of 0-1 Loss, RMSE and training time
in seconds of KDB-1w, KDB-1d and KDB-1e on All and Big datasets. Like NB
and TAN, it can be seen that a similar spread of 0-1 Loss and RMSE is present
among the three parameterizations of discriminative learning. Similarly, it can
be seen that training time is greatly improved for KDB-1w when compared
with KDB-1d and KDB-1e.

Geometric average of the 0-1 Loss and RMSE results are shown in Fig-
ure 11. It can be seen that the three discriminative parameterizations have
better 0-1 Loss and RMSE than generative learning (KDB-1).

A comparison of the training time is given in Figure 12a. Note, the training
time of discriminative methods also includes the time of structure learning. It
can be seen that discriminative learning leads to a significantly longer train-
ing time than generative learning. We compare the training time of KDB-1d,
KDB-1e and KDB-1w in Figure 12b. Like, NB and TAN structure, it can be
seen that KDB-1w is faster than both KDB-1d and KDB-1e.
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Fig. 10: Comparative scatter of results for KDB-1w, KDB-1d and KDB-1e. KDB-1w is on
the X-axis whereas KDB-1d (red-cross) and KDB-1e (green-triangle) are on the Y-axis. For
any points above the diagonal line KDB-1w wins.
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7.4 Convergence Analysis

A comparison of the convergence of Negative Log-Likelihood (NLL) of the
three parameterizations on some sample datasets with NB, TAN and KDB
(K = 1) structure is shown in Figure 13 and 14.

As discussed in Section 5.1, in Figure 13, parameters are initialized to zero,
whereas, in Figure 14, parameters are initialized to the log of the MAP esti-
mates. It can be seen that for all three structures and for both initializations,
MB∗w not only converges faster but also reaches its asymptotic value much
quicker than the MB∗d and MB∗e . The same trend was observed on all 72
datasets. A comparison on many more datasets is given in Figure 18 and 19
in Appendix B.

To quantify how muchMB∗w is faster than the other two parameterizations,
we plot a histogram of the number of iterations it takes MB∗d and MB∗e after
five iterations to reach the negative log-likelihood that MB∗w achieved in the
fifth iteration. If the three parameterizations follow similar convergence, one
should expect many zeros in the histogram. Note that if after the fifth iteration,
NLL of MB∗w is greater than that of MB∗d , we we plot the negative of the
number of iterations it takes MB∗w to reach the NLL of MB∗d . Similarly, if
after the fifth iteration, NLL of MB∗w is greater than that of MB∗e , we we
plot the negative of the number of iterations it takes MB∗w to reach the NLL
of MB∗e . Figures 15, 16 and 17 show these histogram plots for NB, TAN
and KDB (K = 1) structure respectively. It can be seen that MB∗w (with all
three structures) achieves a NLL that otherwise, will take on average 10 more
iterations over the data for MB∗d and 15 more iterations for MB∗e . This is
an extremely useful property of MB∗w especially for big data where iterating
through the dataset is expensive.
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Fig. 13: Comparison of rate of convergence on the four biggest datasets for NB, TAN
and KDB (K = 1) (right column) structures. The X-axis is on log scale. Parameters are
initialized to zero. Note, the first iteration is actually NLL before the start of optimization.
It can be seen that the three parameterizations start from the same point in the space.
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Fig. 14: Comparison of rate of convergence on the four biggest datasets for NB, TAN
and KDB (K = 1) (right column) structures. The X-axis is on log scale. Parameters are
initialized to the log of the MAP estimates. Note, the first iteration is actually NLL before
the start of optimization. It can be seen that the three parameterizations start from the
same point in the space.
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NBw vs. NB TANw vs. TAN KDB-1w vs. KDB-1

W-D-L p W-D-L p W-D-L p

All Datasets

Bias 62/3/7 <0.001 50/4/18 <0.001 54/5/13 <0.001

Variance 19/3/50 <0.001 21/2/49 0.011 19/4/49 <0.001

0-1 Loss 45/4/23 0.010 34/3/35 1 39/4/29 0.275

RMSE 45/3/24 0.015 25/1/46 0.017 29/2/41 0.1882

Big Datasets

0-1 Loss 11/1/0 <0.001 11/1/0 <0.001 11/0/1 <0.001

RMSE 11/0/1 <0.001 11/0/1 <0.001 11/0/1 <0.001

Table 4: Win-Draw-Loss: NBw vs. NB, TANw vs. TAN and KDB-1w vs. KDB-1. Significant
results are shown in bold.

7.5 Comparison with MAP

The purpose of this section is to compare the performance of the discrimi-
native learning with that of generative learning. In Table 4, we compare the
performance of NBw with NB (i.e., naive Bayes with MAP estimates of proba-
bilities), TANw with TAN (i.e., TAN with MAP estimates of probabilities) and
KDB-1w with KDB (K = 1) (i.e., KDB with MAP estimates of probabilities).
We use NBw, TANw and KDB-1w as a representative of discriminative learning
- since MB∗w , MB∗d and MB∗e have similar 0-1 Loss and RMSE profile. It can
be see that the discriminative learning of parameters has significantly lower
bias but higher variance. On big datasets, it can be seen that discriminative
learning results in much better 0-1 Loss and RMSE performance.

Note that though discriminative learning (optimizes the parameters char-
acterizing CCBN) has better 0-1 Loss and RMSE performance than gen-
erative learning (optimizing joint probability), – generative learning has
the advantage of being extremely fast as it incorporates counting of suffi-
cient statistics from the data. Another advantage of generative learning is
its capability of back-off in case a certain combination does not exist in
the data. For example, if TAN or KDB classifiers have not encountered a
< feature-value, parent-value, class-value > combination at training
time they can resort back to < feature-value, class-value > at testing
time. For instance TAN classifier can step back to NB and NB can step back to
class prior probabilities. Such elegantly back-tracking is missing from discrimi-
native learning. If a certain combination does not exist in the data, parameters
associated to that combination will not be optimized and will remain fixed to
the initialized value (for example 0). A discriminative classifier will have no
way of handling unseen combinations but to ignore them if they occur in the
testing data. How to incorporate such hierarchical learning with discriminative
learning is the goal of future research as will be discussed in Section 8.
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8 Conclusion and Future Work

In this paper, we propose an effective parameterization of BN. We present a
unified framework for learning the parameters of Bayesian network classifiers.
We formulate three different parameterizations and compare their performance
in terms of 0-1 Loss, RMSE and training time each parameterization took to
converge. We show with NB, TAN and KDB structures that the proposed
weighted discriminative parameterization has similar 0-1 Loss and RMSE to
the other two but significantly faster convergence. We also show that it not
only has faster convergence but it also asymptotes to its global minimum much
quicker than the other two parameterizations. This is desirable when learning
from huge quantities of data with Stochastic Gradient Descent (SGD). It is
also shown that discriminative training of BN classifiers also leads to lower
bias than the generative parameter learning.

We plan to conduct following future work as the result of this study:

– The three parameterizations presented in this work learn a weight for
each attribute-value-per-class-value-per-parent-values. As discussed in Sec-
tion 5.4, contrary toMB∗d andMB∗e ,MB∗w parameterization can generalize
parameters. For example, once MAP estimates of probabilities are learned,
one can learn a weight: a) for each attribute only (i.e., same weight for
all attribute-values, for all class values and for all parent values), b) for
each attribute-value only, c) for each attribute-value-per-class-value, d) for
each attribute-value-per-class-value-per-parent, etc. Such parameter gener-
alization could offer additional speed-up of the training and is a promising
avenue for future research.

– Handling combinations of 〈feature-value, parent-value, class-value〉
that have not been seen at training time is one of the weaker properties
of discriminative learning. We plan to design an hierarchical algorithm of
discriminative learning that can learn lower-level discriminative weights
and can back-off from higher levels if a combination is not observed in the
training data.

– We plan to conduct an extended analysis of BN models that can capture
higher-order interactions. Because the CLL is not convex for most of these
models [22], it falls outside the scope of this paper. This does, however,
suggest inviting avenues for big data research, in which context low-bias
classifiers are required.

9 Code and Datasets

All the datasets used in this paper are in the public domain and can be
downloaded from [7]. Code with running instructions can be download from
https://github.com/nayyarzaidi/EBNC.git.
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A Proof of Theorem 1

Let us use Lagrange multipliers for constraints in Equation 4 to be placed in Equation 3.
Now, we can maximize the resulting objective function:

LL(B) + λ0(1−
∑
y∈Y

θy|Π0(x)
) +

n∑
i

λi(1−
∑
xi∈Xi

θxi|Πi(x)),

by first computing its derivative as:

∂LL(B)

∂θxi|Πi(x)
=

N∑
j=1

1
x
(j)
i =xi

1y(j)=y1Π(j)
i (x)=Πi(x)

θ
x
(j)
i |Πi(x)

− λi.

and then setting it to zero. This will lead to

θxi|Πi(x) =

∑N
j=1Nxi,y,Πi(x)

λi
,

where Nxi,y,Πi(x) is the empirical count of instances with attribute i taking value xi, class
taking value y and parents taking value Πi(x). Placing θxi|Πi(x) value in Equation 4, we
get:

∑
xi∈Xi

∑N
j=1Nxi,y,Πi(x)

λi
= 1,

which implies: λi =
∑
xi∈Xi

∑N
j=1Nxi,y,Πi(x). Therefore, λi = Ny,Πi(x). Hence we can

write:

θxi|Πi(x) =
Nxi,y,Πi(x)

Ny,Πi(x)
. Similarly: θy|Π0(x) =

Ny,Π0(x)

NΠ0(x)

.

This equals empirical estimates of probabilities from the data: PD(xi|Πi(x)).

B Convegence Curves

Continued from Section 7.4, in this section, we present some more results to compare the
convergences of three discriminative parameterizations. In Figure 18, we initialize the param-
eterizations with the generative estimates, whereas, in Figure 19, parameters are initialized
to zero.



Efficient Parameter Learning of Bayesian Network Classifiers 39

10
0

10
1

10
2

10
3

No. of Iterations

-1.7

-1.65

-1.6

-1.55

-1.5

-1.45

-1.4

N
e

g
a

ti
v

e
 L

o
g

-L
ik

e
li

h
o

o
d

×10
4 Connect-4

NB
d
 (I)

NB
e
 (I)

NB
w

 (I)

10
0

10
1

10
2

10
3

10
4

No. of Iterations

-1.88

-1.86

-1.84

-1.82

-1.8

-1.78

-1.76

-1.74

N
e

g
a

ti
v

e
 L

o
g

-L
ik

e
li

h
o

o
d

×10
4 Connect-4

TAN
d
 (I)

TAN
e
 (I)

TAN
w

 (I)

10
0

10
1

10
2

10
3

10
4

No. of Iterations

-1.82

-1.8

-1.78

-1.76

-1.74

-1.72

-1.7

N
e

g
a

ti
v

e
 L

o
g

-L
ik

e
li

h
o

o
d

×10
4 Connect-4

KDB1
d
 (I)

KDB1
e
 (I)

KDB1
w

 (I)

10
0

10
1

10
2

10
3

No. of Iterations

-10500

-10000

-9500

-9000

-8500

-8000

-7500

-7000

N
e

g
a

ti
v

e
 L

o
g

-L
ik

e
li

h
o

o
d

Adult

NB
d
 (I)

NB
e
 (I)

NB
w

 (I)

10
0

10
1

10
2

10
3

10
4

No. of Iterations

-1.08

-1.07

-1.06

-1.05

-1.04

-1.03

-1.02

-1.01

N
e

g
a

ti
v

e
 L

o
g

-L
ik

e
li

h
o

o
d

×10
4 Adult

TAN
d
 (I)

TAN
e
 (I)

TAN
w

 (I)

10
0

10
1

10
2

10
3

10
4

No. of Iterations

-1.08

-1.07

-1.06

-1.05

-1.04

-1.03

-1.02

-1.01

N
e

g
a

ti
v

e
 L

o
g

-L
ik

e
li

h
o

o
d

×10
4 Adult

KDB1
d
 (I)

KDB1
e
 (I)

KDB1
w

 (I)

10
0

10
1

10
2

10
3

No. of Iterations

-3200

-3000

-2800

-2600

-2400

-2200

-2000

-1800

N
e

g
a

ti
v

e
 L

o
g

-L
ik

e
li

h
o

o
d

Magic

NB
d
 (I)

NB
e
 (I)

NB
w

 (I)

10
0

10
1

10
2

10
3

10
4

No. of Iterations

-3550

-3500

-3450

-3400

-3350

-3300

-3250

-3200

N
e

g
a

ti
v

e
 L

o
g

-L
ik

e
li

h
o

o
d

Magic

TAN
d
 (I)

TAN
e
 (I)

TAN
w

 (I)

10
0

10
1

10
2

10
3

No. of Iterations

-3550

-3500

-3450

-3400

-3350

-3300

-3250

-3200

-3150

N
e

g
a

ti
v

e
 L

o
g

-L
ik

e
li

h
o

o
d

Magic

KDB1
d
 (I)

KDB1
e
 (I)

KDB1
w

 (I)

10
0

10
1

10
2

No. of Iterations

-5.645

-5.64

-5.635

-5.63

-5.625

-5.62

-5.615

-5.61

N
e

g
a

ti
v

e
 L

o
g

-L
ik

e
li

h
o

o
d

×10
4 Shuttle

NB
d
 (I)

NB
e
 (I)

NB
w

 (I)

10
0

10
1

10
2

No. of Iterations

-5.643

-5.642

-5.641

-5.64

-5.639

-5.638

-5.637

-5.636

-5.635

-5.634

-5.633

N
e

g
a

ti
v

e
 L

o
g

-L
ik

e
li

h
o

o
d

×10
4 Shuttle

TAN
d
 (I)

TAN
e
 (I)

TAN
w

 (I)

10
0

10
1

10
2

No. of Iterations

-5.643

-5.642

-5.641

-5.64

-5.639

-5.638

-5.637

-5.636

-5.635

-5.634

-5.633
N

e
g

a
ti

v
e

 L
o

g
-L

ik
e

li
h

o
o

d

×10
4 Shuttle

KDB1
d
 (I)

KDB1
e
 (I)

KDB1
w

 (I)

10
0

10
1

10
2

10
3

10
4

No. of Iterations

-3.1

-3

-2.9

-2.8

-2.7

-2.6

-2.5

-2.4

-2.3

-2.2

N
e

g
a

ti
v

e
 L

o
g

-L
ik

e
li

h
o

o
d

×10
4 Letter-recog

NB
d
 (I)

NB
e
 (I)

NB
w

 (I)

10
0

10
1

10
2

No. of Iterations

-3.3

-3.25

-3.2

-3.15

-3.1

-3.05

-3

N
e

g
a

ti
v

e
 L

o
g

-L
ik

e
li

h
o

o
d

×10
4 Letter-recog

TAN
d
 (I)

TAN
e
 (I)

TAN
w

 (I)

10
0

10
1

10
2

No. of Iterations

-3.3

-3.25

-3.2

-3.15

-3.1

-3.05

-3

N
e

g
a

ti
v

e
 L

o
g

-L
ik

e
li

h
o

o
d

×10
4 Letter-recog

KDB1
d
 (I)

KDB1
e
 (I)

KDB1
w

 (I)

10
0

10
1

10
2

10
3

No. of Iterations

-9400

-9300

-9200

-9100

-9000

-8900

-8800

-8700

N
e

g
a

ti
v

e
 L

o
g

-L
ik

e
li

h
o

o
d

Nursery

NB
d
 (I)

NB
e
 (I)

NB
w

 (I)

10
0

10
1

10
2

10
3

No. of Iterations

-10200

-10100

-10000

-9900

-9800

-9700

-9600

-9500

-9400

N
e

g
a

ti
v

e
 L

o
g

-L
ik

e
li

h
o

o
d

Nursery

TAN
d
 (I)

TAN
e
 (I)

TAN
w

 (I)

10
0

10
1

10
2

10
3

No. of Iterations

-10200

-10100

-10000

-9900

-9800

-9700

-9600

-9500

-9400

N
e

g
a

ti
v

e
 L

o
g

-L
ik

e
li

h
o

o
d

Nursery

KDB1
d
 (I)

KDB1
e
 (I)

KDB1
w

 (I)

10
0

10
1

10
2

10
3

No. of Iterations

-2600

-2500

-2400

-2300

-2200

-2100

-2000

-1900

N
e

g
a

ti
v

e
 L

o
g

-L
ik

e
li

h
o

o
d

Sign

NB
d
 (I)

NB
e
 (I)

NB
w

 (I)

10
0

10
1

10
2

10
3

10
4

No. of Iterations

-3500

-3450

-3400

-3350

-3300

-3250

-3200

N
e

g
a

ti
v

e
 L

o
g

-L
ik

e
li

h
o

o
d

Sign

TAN
d
 (I)

TAN
e
 (I)

TAN
w

 (I)

10
0

10
1

10
2

10
3

No. of Iterations

-3350

-3300

-3250

-3200

-3150

-3100

-3050

-3000

-2950

N
e

g
a

ti
v

e
 L

o
g

-L
ik

e
li

h
o

o
d

Sign

KDB1
d
 (I)

KDB1
e
 (I)

KDB1
w

 (I)

10
0

10
1

10
2

No. of Iterations

-1.3

-1.25

-1.2

-1.15

-1.1

-1.05

-1

-0.95

-0.9

-0.85

N
e

g
a

ti
v

e
 L

o
g

-L
ik

e
li

h
o

o
d

×10
4 Pendigits

NB
d
 (I)

NB
e
 (I)

NB
w

 (I)

10
0

10
1

10
2

No. of Iterations

-1.27

-1.265

-1.26

-1.255

-1.25

-1.245

-1.24

N
e

g
a

ti
v

e
 L

o
g

-L
ik

e
li

h
o

o
d

×10
4 Pendigits

TAN
d
 (I)

TAN
e
 (I)

TAN
w

 (I)

10
0

10
1

10
2

No. of Iterations

-1.27

-1.265

-1.26

-1.255

-1.25

-1.245

-1.24

N
e

g
a

ti
v

e
 L

o
g

-L
ik

e
li

h
o

o
d

×10
4 Pendigits

KDB1
d
 (I)

KDB1
e
 (I)

KDB1
w

 (I)

Fig. 18: Comparison of rate of convergence on the six sample datasets for NB (left column),
TAN (middle column) and KDB (K = 1) (right row) structures. The X-axis is on log scale.
Parameters are initialized to the log of the MAP estimates.
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Fig. 19: Comparison of rate of convergence on the four biggest datasets for NB (left col-
umn), TAN (middle column) and KDB (K = 1) (right row) structures. The X-axis is on log
scale. Parameters are initialized to the log of the MAP estimates.
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C Training Time Significance Test

Let us discuss the significance of the training time for three discriminative parameterizations
using Friedman and Nemenyi tests. Following procedure is taken to generate the results:

– We have three algorithms to compare that is: MB∗w , MB∗d and MB∗e , therefore, k = 3.
– We compare the results on 72 datasets, therefore, N = 72.
– Friedman test rank each algorithm for each dataset separately. In case of ties, it uses

average ranks.
– If rji is the rank of algorithm j on i-th dataset, average rank for each algorithm compared

are computed as: Rj = 1
N

∑
i r
j
i .

– We state:
– Null hypothesis – Algorithms are equivalent and, therefore, ranks should be equal.

Mean rank is 2.5.
– p-value – probability of getting ranks Rj if null-hypothesis as stated in previous

point is true.
– Compute the Friedman statistics:

χ2
F =

12N

k(k + 1)

∑
j

R2
j −

k(k + 1)2

4

 ,
to determine if the measure ranks are significantly different from the mean rank of 2.5
(under null hypothesis).

– If the p-value is ≤ 0.05, we reject the null hypothesis and proceed with the post-hoc
test.

– We use the Nemenyi test which states that the performance of two algorithms is signifi-
cantly different if the corresponding average ranks differ by at least the critical difference
(CD) of:

CD = qα

√
k(k + 1)

6N
,

where qα in our experiments is 2.3430 as k = 3.
– If the difference between top rank and the bottom rank is less than the CD, we conclude

pos-hoc test to be not powerful.
– Otherwise (following the graphical representation of [5],), we plot the ranks (along with

the name of algorithm) on a horizontal line. Algorithms are connected by a line if their
differences are not significant. We also show the CD on the same scale to highlight the
significance of the difference of two ranks.

We show the significance test using Friedman and Nemenyi test on All datasets in terms
of training time and no. of iterations it takes each algorithm to converge in Figures 20, 21
and 22. It can be seen that for all three structures that is NB, TAN and KDB-1, MB∗w is

rank lower than MB∗d and MB∗e both in terms of training time and no. of iterations.

For NB and TAN,MB∗w has significantly better training time and converges in far fewer
iterations than the other two. However, for KDB-1 structure, the difference is not significant
between MB∗w and MB∗d .
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Fig. 20: Significance testing of Training time (Figure: 20a) and No. of Iterations (Figure:
20b) to converge for three parameterizations NBw, NBd and NBe, with Friedman and Ne-
menyi test on All datasets. Ranks are different according to Friedman test and, therefore,
null-hypothesis is rejected. (Nemenyi) Post-hoc test is powerful.
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(b) No. of Iterations – – p ≤ 0.001, CD = 0.39

Fig. 21: Significance testing of Training time (Figure: 21a) and No. of Iterations (Figure:
21b) to converge for three parameterizations TANw, TANd and TANe, with Friedman and
Nemenyi test on All datasets. Ranks are different according to Friedman test and, therefore,
null-hypothesis is rejected. (Nemenyi) Post-hoc test is powerful.
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Fig. 22: Significance testing of Training time (Figure: 22a) and No. of Iterations (Figure:
22b) to converge for three parameterizations KDB-1w, KDB-1d and KDB-1e, with Friedman
and Nemenyi test on All datasets. Ranks are different according to Friedman test and,
therefore, null-hypothesis is rejected. (Nemenyi) Post-hoc test is powerful.
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D Convergence Significance Test

We compare the NLL obtained by each parameterization at fifth,tenth and fiftieth iteration
and presented results in terms of win-draw-loss in Table 5 for MB∗w versus MB∗d and for

MB∗w versusMB∗e in Table 6. It can be seen from the two tables, thatMB∗w wins significantly

against MB∗d with all three structures. The trend is extremely impressive when comparing
against 12 big datasets. Since, each iteration encompasses looping through all the data, these
are datasets where each iteration is expensive. It can be seen that MB∗w achieves a better
NLL not only after fifth and tenth iteration, but better even after fiftieth iteration.

NBw vs. NBd TANw vs. TANd KDB-1w vs. KDB-1d

W-D-L p W-D-L p W-D-L p

All Datasets

NLL (5) 67/2/2 <0.001 64/6/1 <0.001 66/5/0 <0.001

NLL (10) 67/2/2 <0.001 63/7/1 <0.001 65/5/1 <0.001

NLL (50) 56/14/1 <0.001 44/25/2 <0.001 46/22/3 <0.001

Big Datasets

NLL (5) 12/0/0 <0.001 12/0/0 <0.001 12/0/0 <0.001

NLL (10) 12/0/0 <0.001 12/0/0 <0.001 12/0/0 <0.001

NLL (50) 12/0/0 <0.001 11/1/0 <0.001 11/1/0 <0.001

Table 5: Win-Draw-Loss: NBw vs. NBd, TANw vs. TANd and KDB-1w vs. KDB-1d. Sig-
nificant results are shown in bold.

NBw vs. NBe TANw vs. TANe KDB-1w vs. KDB-1e

W-D-L p W-D-L p W-D-L p

All Datasets

NLL (5) 69/0/2 <0.001 67/4/0 <0.001 66/5/0 <0.001

NLL (10) 68/0/3 <0.001 65/5/1 <0.001 65/5/1 <0.001

NLL (50) 61/10/0 <0.001 51/19/1 <0.001 52/19/0 <0.001

Big Datasets

NLL (5) 12/0/0 <0.001 12/0/0 <0.001 12/0/0 <0.001

NLL (10) 12/0/0 <0.001 12/0/0 <0.001 12/0/0 <0.001

NLL (50) 12/0/0 <0.001 11/1/0 <0.001 11/1/0 <0.001

Table 6: Win-Draw-Loss: NBw vs. NBe, TANw vs. TANe and KDB-1w vs. KDB-1e. Sig-
nificant results are shown in bold.
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