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Abstract This paper introduces Accelerated Logistic Regression: a hybrid
generative-discriminative approach to training Logistic Regression with high-
order features. We present two main results: (1) that our combined generative-
discriminative approach significantly improves the efficiency of Logistic Regres-
sion and (2) that incorporating higher order features (i.e. features that are the
Cartesian products of the original features) reduces the bias of Logistic Regres-
sion, which in turn significantly reduces its error on large datasets. We assess
the efficacy of Accelerated Logistic Regression by conducting an extensive set
of experiments on 75 standard datasets. We demonstrate its competitiveness,
particularly on large datasets, by comparing against state-of-the-art classifiers
including Random Forest and Averaged n-Dependence Estimators.

1 Introduction

Machine learning is confronted with ever growing data quantity [9]. However,
many state-of-the-art learning algorithms were developed in the context of rel-
atively small datasets. Large training sets often support the creation of very
detailed models that can encode complex high-order multi-variate distribu-
tions, whereas such models would over-fit small training datasets and should
be avoided [3]. We highlight this phenomenon in Figure 1. We know that the
accuracy of most classifiers increases as they are provided with more training
data. This can be observed in Figure 1 which plots the variation in error-rate of
two classifiers with increasing quantities of training data on the poker-hand
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Fig. 1: Comparative study of the error committed by high- and low-bias clas-
sifiers on increasing quantities of data.

dataset [8]. One is a low-bias and high-variance learner (KDB k = 5, a K-
Dependence Bayes estimator, taking into account quintic features, [28]) and
the other is a low-variance and high-bias learner (naive Bayes, a linear classi-
fier). For small quantities of data, the low-variance learner achieves the lowest
error. However, as the data quantity increases, the low-bias learner comes to
achieve the lower error as it can better model higher-order distributions from
which the data might be sampled.

It has been shown that Bayesian Network Classifiers (BNCs) that explic-
itly represent higher-order interactions tend to have lower bias than those that
do not [21,37]. This is because BNCs that can represent higher-order inter-
actions can exactly represent any of a superset of the distributions that can
be represented by BNCs that are restricted to lower order interactions. Thus
they have lower representation bias and hence, all other things being equal,
lower inductive bias [22] than the more restricted BNCs. Except in the spe-
cific cases where the true distribution to be modeled fits exactly into the more
restricted model, given sufficient data the more expressive BNC will form a
more accurate model.

It has also been shown that Logistic Regression (LR) tends to have lower
bias than naive Bayes, which is a Bayesian Network Classifier with a model of
equivalent form to that of LR [39,40].1 In consequence, it seems likely that vari-
ants of LR that explicitly represent higher-order interactions should have low
bias as well, and that the bias should continue to decrease as the order of the
interactions represented increases. We call such variants of LR – Higher-Order
LR – and abbreviate them as LRn, where n is the order of interactions that
are modeled. Formal definitions of these concepts are provided in Section 5.

1 Naive Bayes and LR are generally categorized as generative and discriminative counter-
parts of each other. The number of the parameters of the two models are exactly the same.
They only differ in the way the parameters are learned. For Naive Bayes, the parameters are
actual probabilities and are learned by maximizing log-likelihood of the data and for LR,
they are free parameters that are learned by optimizing the conditional log-likelihood.
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While the use of higher-order LR models is quite common and at least one
implementation of LR2 is in the public domain [16], its performance relative to
standard LR as data quantities vary, investigations of LR3 and bias/variance
profile of higher-order LR models warrants further investigation. We investi-
gate these issues herein. It is noteworthy, that a significant amount of research
has been done on correcting the estimation bias of Logistic Regression [7,34].
Most of this research has been driven by the fact that LR’s parameters are
obtained through Maximum Likelihood Estimation (MLE) which can be bi-
ased if data sample size is too small. However, it is shown that, asymptotically,
MLE estimates will have zero estimation bias. Similarly, several studies have
addressed the issue of bias due to omitted covariates in Logistic Regression
models [23,13]. Some studies have also investigated the Bayesian version of
Logistic Regression [10].

An LRn model must be learned discriminatively through computationally
intensive gradient-descent-based search. Considering all possible higher-order
features in LRn and learning the corresponding parameter by optimizing con-
ditional log-likelihood (CLL) is a computationally intensive task. Any speed-up
to the optimization process is highly desirable. A second objective of this paper
is to provide an effective mechanism for achieving this.

It has been shown that a hybrid generative-discriminate learner can exploit
the strengths of both Naive Bayes (NB) and Logistic Regression (LR) classifiers
by creating a weighted variant of NB in which the weights are optimized using
a discriminative objective function, that is, maximization of conditional log-
likelihood [40,39]. The resulting model can be viewed as either using weights to
alleviate the feature independence assumption of NB, or as using the maximum
likelihood parameterization of NB to pre-condition the discriminative search
of LR. The result is a learner that learns models that are exactly equivalent to
LR, but does so much more efficiently. In this work, we show how to achieve
the same result with LRn.

We create a hybrid generative-discriminative learner named ALRn for cat-
egorical data that learn models of equivalent order to those of LRn, but does
so much more efficiently than LRn. We further demonstrate that the resulting
models have low bias, which leads to very low error on large quantities of data.
However, in order to create this hybrid learner we must first create an efficient
generative counterpart to LRn.
In summary, the contributions of this work are:

– developing an efficient generative counter-part to LRn, named Averaged
n-Join Estimators (AnJE);

– developing ALRn: a hybrid of LRn and AnJE;
– demonstrating that ALRn has equivalent error to LRn, but is substantially

more efficient,
– demonstrating that ALRn has low error on large data.

Note that it was initially proposed in [3] that for larger quantities of data,
one should aim for low-bias models. This hypothesis was tested in the context
of Bayesian Network classifiers in [37,36] where the results corroborated the
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hypothesis. However, we are not aware of any past work that investigates
this hypothesis in the context of higher-order Logistic Regression. Therefore,
another contribution of this paper is:

– demonstrating that the bias of LRn decreases as n increases and that in
consequence LRn with higher n tends to achieve lower error with greater
data quantities.

The rest of this paper is organized as follows. In Section 2, we introduce the
notation that is used through-out this paper. We introduce higher-order Logis-
tic Regression in Section 3. We evaluate LRn empirically, and show that higher
values of n lead to lower-bias. Using generative models to pre-condition dis-
criminative learning is discussed in Section 4. The proposed algorithm (ALRn)
is presented in Section 5. Work related to the our proposed algorithm is dis-
cussed in Section 6. We empirically evaluate the proposed algorithm in Sec-
tion 7. We conclude in Section 8 with some pointers to future work.

2 Notation

We seek to assign a value y ∈ ΩY = {y1, . . . yC} of the class variable Y , to a
given example x = (x1, . . . , xa), where the xi are value assignments for the a
features A = {X1, . . . , Xa}. We define

(A
n

)
as the set of all subsets of A of size

n, where each subset in the set is denoted as α:
(A
n

)
= {α ⊆ A : |α| = n}. We

use xα to denote the set of values taken by features in the subset α for any
data object x.

LR for categorical data learns a weight for every feature value per class.
Therefore, for LR, we denote, βy to be the weight associated with class y,
and βy,i,xi to be the weight associated with feature i taking value xi with
class label y. For LRn, βy,α,xα specifies the weight associated with class y
and feature subset α taking value xα. The equivalent weights for ALRn are
denoted by wy, wy,i,xi and wy,α,xα . The probability of feature i taking value xi
given class y is denoted by P(xi | y). Similarly, probability of feature subset α,
taking value xα is denoted by P(xα | y). Note, all probabilities are estimated
probabilities. For clarity, we will not use P̂(.) notation which is typically used
for estimated probabilities.

3 Higher-order Logistic Regression

LR is a linear classifier. For categorical features LR can be expressed as:

PLR(y |x) = exp
(
βy +

a∑
i=1

βy,i,xi − log
∑
c∈ΩY

exp
(
βc +

a∑
j=1

βc,j,xj

))
. (1)
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Note, that LR for categorical data is often expressed as:

P(y |x) = exp
(
βy +

a∑
i=1

βy,i,xi1(Xi = xi, Y = y)

− log
∑
c∈ΩY

exp
(
βc +

a∑
j=1

βc,j,xj1(Xj = xj , Y = c)
))
, (2)

where 1(·) is an indicator function that is 1 if it satisfies the input condition
and zero otherwise. (2) reformulates (1) to sum only over the values that the
indicator function will not cancel out.

Because its model is linear, LR is very restricted in the posterior distribu-
tions that it can precisely model. For example, it cannot model exclusive-or
(XOR) between two features.

Adding higher-order features to LR increases the range of distributions
that it can precisely model. Here, we define higher-order categorical features
as features that are the Cartesian product of the primitive features, where the
order n is the number of primitive features in the Cartesian product.

As mentioned in Section 1, it has been shown that Bayesian Network Clas-
sifiers that explicitly represent higher-order features tend to have lower bias
than those that do not, and that the bias decreases as the order of the features
increases [21,37]. Therefore, it seems likely that LR applied to higher-order fea-
tures will likewise tend to have lower bias, with bias decreasing as the order
increases. This is very significant, as LR is a powerful learning system and
there is good reason to believe that the lower the bias of a learning system the
lower its error will tend to be on very large datasets [3].

We define LRn as:

PLRn(y |x) =
exp
(
βy +

∑
α∈(An) βy,α,xα

)∑
c∈ΩY exp

(
βc +

∑
α∗∈(An) βc,α∗,xα∗

) . (3)

Again, we are expressing the definition in a non-standard form for the sake of
clarity. The conventional definition is:

PLRn(y |x) =
exp
(
βy +

∑
α∈(An) βy,α,xα1(Xα = xα, Y = y)

)∑
c∈ΩY exp

(
βc +

∑
α∗∈(An) βc,α∗,xα∗1(Xα∗ = xα∗ , Y = c)

) .
Note, that, in this work, we do not include lower-order terms. For example, if
n = 2 we do not include terms for βy,i,xi , because doing so does not increase
the space of distinct distributions that can be modeled but does increase the
number of parameters that must be optimized. However, it should be noted
that including lower-level terms with regularization will affect the learning
process and hence the model learned. A further advantage of including lower-
order terms is that it provides an elegant backtracking procedure. If an higher-
order term is not present at the training time but only appears at classification
time, one can use the lower-order weights instead. In the current formulation,
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there is no such backtracking mechanism. As will be discussed in Section 8, this
hierarchical parameterization of ALRn has been left as a promising direction
for future work. We also note that, LRn can be viewed as a Generalized Linear
Model with a logistic link function and a fractional factorial design [14].

3.1 Kernel LR and LRn

One way to deal with non-linearities in the data when applying plain Logistic
Regression (LR) is by using kernels. Popularized with the advent of Support
Vector Machines (SVM) using the kernel trick [1], one can project the data
into a higher dimensional space without explicitly making the transformation.
We can always write LR in the following form: P(y|x) = 1

1+exp(βTφ(x))
,where

φ(x) is some function. By virtue of the representer theorem, we can write the
β vector as: β =

∑
i αiφ(x), which leads to LR of the form:

P(y|x) =
1

1 + exp(
∑
i αiφ(xi)φ(x))

,

=
1

1 + exp(
∑
i αik(xj ,x))

. (4)

Equation 4 represents a form of higher-order LR with kernels. Several kernels
can be used such as linear, Gaussian and sigmoid. Of particular relevance is
a polynomial kernel of degree d that takes the form: k(u, v) = (u.v)d that in-
cludes d-degree terms in LR. d = 1 leads to LR1, d = 2 leads to LR2 and so on.
A form similar to this is used by SVM, but SVMs have an advantage that most
of αi are zeros. This is due to the loss function that SVM optimizes – Hinge
Loss. Those αi that are not zero are known as the support vectors. However,
LR’s log loss function does not lead to such sparsity. The non-sparse nature of
KLR is one of its biggest drawback. Several methods such as Import Vector
Machines (IVM) have been proposed to address this drawback and make KLR
scalable to larger quantities of data [42,18,29,38]. The computational com-
plexity of KLR is O(N3) and is not suitable for big data classification since
it will not be any faster than the k-nearest neighbour classifier. Even sparse
models such as SVM are not suitable for big data and truly large scale appli-
cations as they can also suffer from the curse of supporting vectors, i.e., most
of αi are non-zero [30]. Kernel machines (e.g., IVM, SVM, etc.) are not sub-
stantially faster than k-nearest neighbour classifiers, as the number of support
vectors are linear in the training set size [31].

3.2 Experimental Evaluation of LRn

While LRn is part of established data analytics practice, we are not aware
of any research into its bias/variance profile or its performance relative to
standard LR with respect to varying quantities of data. We here investigate
those issues. Though we provide a detailed empirical analysis in Section 7,
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here we present some results to illustrate the power of modeling higher-order
interactions.

Figure 2 shows learning curves for LRn with n = 1, 2 and 3. We gener-
ated these curves using a prequential testing paradigm on the Localization

dataset. For each run, we first randomized the dataset. Then the ordered
dataset was processed sequentially. Each example was first classified and the
probabilistic loss: 1

C

∑C
c (δy=c − P(c|x))2, where δy=c is an indicator func-

tion that is 1 if the actual class label y is the same as c and zero otherwise,
is calculated. Then the example is used to update the model. This process
was repeated five times with different randomization of the dataset. For each
run this process generated N loss values, where N = 164860, the size of the
Localization dataset. To generate learning curves, for each point i on the X-
axis, we plot: 1

T

∑i
k=max(i−T,1) loss(xk), where T is set to 1000. For T ≤ 1000,

we plot 1
i

∑i
k=1 loss(xk). It can be seen that for very small data quantity

the lower variance LR2 results in lower error than LR3, but as data quantity
increases the lower bias of LR3 results in lowest error. It can be seen that
LR obtains better performance than LR2 and LR3 when learned from very
small quantities of data (the learning curves are zoomed in between 0 and
1000 instances in Figure 2 to illustrate this point). The obvious reason for the
poor performance of LR2 and LR3 (models that including higher-order interac-
tions) on smaller training sets is due to over-fitting. The powerful models can
fit chance regularities in the data. Hence for smaller quantities of data, some
sort of regularization that pulls the weights for many higher-order interactions
back towards zero would lead to much better performance.

We note when interpreting results presented on insufficient data (as is the
case for the bottom plot in Figure 2) it is easy for a data analyst to be misled
into believing that the curves are diverging and that the higher-order classifier
(LR3) will asymptote to poorer performance than the lower-order classifier
(LR2) on large data – a misunderstanding that is due to the faster learning
rate that is achieved initially by the lower-order classifier.

Figure 3, shows a comparative scatter of Bias of LRn as n increases (we
compare LR1 with LR2 and LR2 with LR3, where LR1 is the standard LR). It
can be seen that on the majority of 75 datasets from UCI repository (Table 1),
the higher the value of n the lower the bias of LRn. The results are based on
two rounds of two-fold cross-validation. In line with our expectation that low
inductive bias will often lead to low statistical bias which will in turn translate
to lower error on big datasets, it can be seen that in Figure 4, higher-order LR
results in much lower 0-1 Loss than standard LR and that this benefit tends to
continue as n increases. Note that for one dataset, poker-hand 2, LR2 achieves
much lower error than LR3 – we conjecture, that this is because of strong two-
level correlations that exists in the data. On this synthetic (and deterministic)

2 Dataset is about classifying poker hands (each hand constitutes five cards) into 10
different classes, i.e., one pair, two pair, three of a kind, straight, flush, full house, four of
a kind, straight flush, royal flush and nothing in hand. Each card is represented by two
attributes that is card suite and card number. Therefore, there are total of 10 attributes
describing a hand.
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Fig. 2: Comparison of the performance (RMSE) of LR1, LR2 and LR3 with
varying quantities of data. For this demonstration, we used Stochastic gradient
descent (SGD) for training the parameters of each model.
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Fig. 3: Comparison of the scatter of the bias performance on 75 different datasets of LR
vs. LR2 (Left) and LR2 vs. LR3 (Right).

dataset, LR3 will need much more data to estimate its parameters effectively.
The current results only utilize half of the training data. It can be seen that
for LR2 this much data is more than enough but not for LR3 and hence, LR3

results in poor performance than LR2.
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Fig. 4: Comparison of the scatter of 0-1 Loss on 9 Big (> 100000 instances) datasets of
LR vs. LR2 (Left) and LR2 vs. LR3 (Right).

4 Using Generative Models to Precondition Discriminative
Learning

It has been shown that a direct equivalence between a weighted NB and LR
can be exploited to greatly speed up LR’s learning rate [39,40].

NB can be expressed as:

PNB(y |x) =
P(y)

∏a
i=1 P(xi |y)∑

c∈ΩY P(c)
∏a
i=1 P(xi |c)

. (5)

One can add weights to NB to alleviate the feature independence assumption,
resulting in the WANBIA-C formulation [39], that can be written as:

PW(y |x) =
P(y)wy

∏a
i=1 P(xi |y)wy,i,xi∑

c∈ΩY P(c)wc
∏a
j=1 P(xi |c)wc,j,xj

= exp
(
wy log P(y) +

a∑
i=1

wy,i,xi log P(xi |y)−

log
∑
c∈ΩY

exp
(
wc log P(c) +

a∑
j=1

wc,j,xj log P(xj|c)
))
. (6)

When conditional log-likelihood (CLL) is maximized for LR and weighted
NB using Equation 1 and 6 respectively, we get an equivalence such that
βc ∝ wc log P(c) and βc,i,xi ∝ wc,i,xi log P(xi |c). Thus, WANBIA-C and LR
generate equivalent models.

While it might seem less efficient to use WANBIA-C, which has twice the
number of parameters of LR, the probability estimates are learned very effi-
ciently using maximum likelihood estimation, and provide useful information
about the classification task that in practice serve to effectively precondition
the search for the parameterization of weights to maximize conditional log-
likelihood [39].
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5 Accelerated Logistic Regression (ALR)

In order to create an efficient and effective low-bias learner, we want to per-
form the same strategy that is used by WANBIA-C for LR with higher-order
categorical features. To precondition such a model using generative learning,
we would like to build a model of the form:

P(y |x) =
P(y)

∏
α∈(An) P(xα |y)∑

c∈ΩY

(
P(c)

∏
α∗∈(An) P(xα∗ |c)

) (7)

= exp
(

log P(y) +
∑
α∈(An)

log P(xα |y)−

log
∑
c∈ΩY

exp
(

log P(c) +
∑

α∗∈(An)

log P(xα∗ |c)
))
. (8)

The only existing generative model of this form is a log-linear model, which
requires computationally expensive conditional log-likelihood optimization and
consequently would not be efficient to employ. It is not possible to create a
Bayesian network of this form as it would require that P(xi, xj) be independent
of P(xi, xk), which is impossible because they share the common feature xi.
However, we can use a variant of the AnDE [37,36] approach of averaging
many Bayesian networks. Unlike AnDE, we cannot use the arithmetic mean of
the probability estimates from the constituent models, as we require a product
of terms in numerator of Equation 7 rather than a sum, so we must instead
use a geometric mean.

5.1 Averaged n-Join Estimators (AnJE)

Let P be a partition of the featuresA. By assuming independence only between
the sets of features A ∈ P one obtains an n-join estimator:

PAnJE(x |y) =
∏
α∈P

P(xα |y).

For example, if there are four features X1, X2 , X3 and X4 that are par-
titioned into the sets {X1, X2} and {X3, X4} then by assuming conditional
independence between the sets we obtain

PAnJE(x1, x2, x3, x4 |y) = P(x1, x2 |y)P(x3, x4 |y).

Let ΨAn be the set of all partitions of A such that ∀P∈ΨAn ∀α∈P |α| = n. For

convenience we assume that |A| is a multiple of n. Let ΥAN be a subset of ΨAn
that includes each set of n features once,

ΥAN ⊆ ΨAn : ∀α∈(An)

∣∣{P ∈ ΥAN : α ∈ P}
∣∣ = 1.
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The AnJE model is the geometric mean of the set of n-join estimators for the
partitions Q ∈ ΥAN . Note, that this partitioning of features can be viewed from
combinatorial design theory’s perspective, where the idea of partitioning the
space is commonly used to reduce the overall complexity of the problem [32,
19].

The AnJE estimate of conditional likelihood on a per-datum-basis can be
written as:

PAnJE(y |x) ∝ P(y)PAnJE(x|y) = P(y)
∏

α∈(An)

P(xα |y)
(n−1)!(a−n)!

(a−1)! . (9)

This is derived as follows. Each P is of size s = a/n. There are
(
a
n

)
feature-

value n-tuples. Each must occur in exactly one partition, so the number of
partitions must be

p =

(
a

n

)
/s =

(a− 1)!

(n− 1)!(a− n)!
. (10)

The geometric mean of all the AnJE models is thus

PAnJE(x |y) =
p

√√√√ ∏
α∈(x

a)

P(xα |y) =
∏

α∈(Aa)

P(xα |y)(n−1)!(a−n)!/(a−1)!. (11)

Using Equation 9, we can write the log of P(y |x) as:

log PAnJE(y |x) ∝ log P(y) +
(n−1)!(a−n)!

(a−1)!

∑
α∈(Aa)

log P(xα |y). (12)

5.2 ALRn

It can be seen that AnJE is a simple model that places the weight defined in
Equation 10 on all feature subsets in the ensemble. The main advantage of this
weighting scheme is that it requires no optimization, making AnJE learning
extremely efficient. All that is required for training is to calculate the counts
from the data. However, the disadvantage of AnJE is its inability to perform
any form of discriminative learning. Our proposed algorithm, ALRn uses AnJE
to precondition LRn by placing weights on all probabilities in Equation 7 and
learning these weights by optimizing the conditional-likelihood. One can, how-
ever, initialize these weights with weights in Equation 10 for faster convergence.
We will discuss this in Appendix B. One can re-write AnJE models with this
parameterization as:

PALR(y |x) = exp
(
wy log P(y) +

∑
α∈(An)

wy,α,xα log P(xα |y)−

log
∑
c∈ΩY

exp
(
wc log P(c) +

∑
α∗∈(An)

wc,α∗,xα∗ log P(xα∗ |c)
))
.

(13)



12 Nayyar A. Zaidi et al.

Note that we can compute the likelihood and class-prior probabilities using
either MLE or MAP. Therefore, we can write Equation 22 as:

log PALR(y |x) =wy log πy +
∑
α∈(An)

wy,α,xα log θxα |y−

log
∑
c∈ΩY

exp
(
wc log πc +

∑
α∗∈(An)

wc,α∗,xα∗ log θxα∗ |c

)
. (14)

Assuming a Dirichlet prior, a MAP estimate of P(y) is πy which equals:
#y+m/|Y|

t+m , where #y is the number of instances in the dataset with class y
and t is the total number of instances, and m is the smoothing parameter. We
will set m = 1 in this work. Similarly, a MAP estimate of P(xα |y) is θxα|y

which equals:
#xα,y+m/|xα|

#y+m , where #xα,y is the number of instances in the

dataset with class y and feature values xα.
ALRn computes weights by optimizing CLL. Therefore, one can compute

the gradient of Equation 14 with-respect-to weights and rely on gradient de-
scent based methods to find the optimal value of these weights. Since we do
not want to be stuck in local minimums, a natural question to ask is whether
the resulting objective function is convex [2]. It turns out that the objective
function of ALRn is indeed convex. [27] proved that an objective function of
the form

∑
x∈D log PB(y|x), optimized by any conditional Bayesian network

model is convex if and only if the structure G of the Bayesian network B is
perfect. A directed graph in which all nodes having a common child are con-
nected is called perfect [17]. ALRn is a geometric mean of several sub-models
where each sub-model models b anc interactions each conditioned on the class
feature. Each sub-model has a structure that is perfect. Since, the product of
two convex objective functions leads to a convex function, one can see that
ALRn’s optimization function will also lead to a convex objective function.

Let us first calculate the gradient of Equation 14 with-respect-to weights
associated with πy. We can write:

∂ log P(y |x)

∂wy
= 1y log πy −

π
wy
y log πy

∏
α∈(An) θ

wy,α,xα
xα |y∑

c∈ΩY π
wc
c
∏
α∗∈(An)θ

wc,α∗,xα∗
x∗α |c

= (1y − P(y|x)) log πy, (15)

where 1y denotes an indicator function that is 1 if derivative is taken with-
respect-to class y and 0 otherwise. Computing the gradient with-respect-to
weights associated with θxα|y gives:

∂ log P(y |x)

∂wy,α,xα
= 1y1α log θxα|y −

π
wy
y
∏
α∈(An) θ

wy,α,xα
xα |y 1α log θxα|y∑

c∈ΩY π
wc
c
∏
α∗∈(An)θ

wc,α∗,xα∗
xα∗ |c

= (1y − P(y|x))1α log θxα|y, (16)

where 1α and 1y denotes an indicator function that is 1 if the derivative is
taken with-respect-to feature set α (respectively, class y) and 0 otherwise.
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5.3 Alternative Parameterization

Let us reparameterize ALRn such that:

βy = wy log πy, and βy,α,xα = wy,α,xα log θxα |y. (17)

Now, we can re-write Equation 14 as:

log PLR(y |x) = βy +
∑
α∈(An)

βy,α,xα − log
∑
c∈ΩY

exp
(
βc +

∑
α∗∈(An)

βc,α∗,xα∗

)
.

(18)

It can be seen that this leads to Equation 3. We call this parameterization
LRn.

Like ALRn, LRn also leads to a convex optimization problem, and, there-
fore, its weights can also be optimized by simple gradient decent based al-
gorithms. Let us compute the gradient of objective function in Equation 18
with-respect-to βy. In this case, we can write:

∂ log P(y |x)

∂βy
= (1y − P(y|x)). (19)

Similarly, computing gradient with-respect-to βy,α,xα , we can write:

∂ log P(y |x)

∂βy,α,xα
= (1y − P(y|x))1α. (20)

5.4 Comparative analysis of ALRn and LRn

It can be seen that the two models are actually equivalent and each is a re-
parameterization of the other. However, there are subtle distinctions between
the two. The most important distinction is the utilization of MAP or MLE
probabilities in ALRn. Therefore, ALRn is a two step learning algorithm:

– Step 1 is the optimization of the log-likelihood of the data (log P(y,x)) to
obtain the estimates of the prior and likelihood probabilities. One can view
this step as of generative learning.

– Step 2 is the introduction of weights on these probabilities and learning of
these weights by maximizing CLL (P(y |x)) objective function. This step
can be interpreted as discriminative learning.

ALRn employs generative-discriminative learning as opposed to only discrim-
inative learning by LRn.

One can expect a similar bias-variance profile and a very similar classifica-
tion performance as both models will converge to a similar point in the opti-
mization space, the only difference in the final parameterization being due to
recursive descent being terminated before absolute convergence. However, the
rate of convergence of the two models can be very different. [39] shows that for
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NB, such ALRn style parameterization with generative-discriminative learn-
ing can greatly speed-up convergence relative to only discriminative training.
Note, discriminative training with NB as the graphical model is vanilla LR.
We expect to see the same trend in the convergence performance of ALRn and
LRn.

Another distinction between the two models becomes explicit if a regular-
ization penalty is added to the objective function. One can see that in case of
ALRn, regularizing weights towards 1 will effectively pull parameters back to-
wards the generative training estimates. For smaller datasets, one can expect
to obtain better performance by using a large regularization parameter and
pulling estimates back towards 1. However, one cannot do this for LRn. There-
fore, ALRn models can very elegantly combine generative and discriminative
parameters.

An analysis of the gradient of ALRn in Equation 15 and 16 and that of
LRn in Equation 19 and 20 also reveals an interesting comparison. We can
write ALRn’s gradients in terms of LRn’s gradient as follows:

∂ log P(y |x)

∂wy
=
∂ log P(y |x)

∂βy
log πy,

∂ log P(y |x)

∂wy,α,xα
=
∂ log P(y |x)

∂βy,α,xα
log θxα|y. (21)

It can be seen that ALRn has the effect of re-scaling LRn’s gradient by the
log of the conditional probabilities. We conjecture that such re-scaling has the
effect of pre-conditioning the parameter space and, therefore, will lead to faster
convergence.

6 Related Work

Averaged n-Dependent Estimators (AnDE) is the inspiration for AnJE. An
AnDE model is the arithmetic mean of all Bayesian Network Classifiers in each
of which all features depend on the class and the some n features. A simple
depiction of A1DE in graphical form in shown in Figure 5. There are

(
a
n

)
possible combination of features that can be used as parents, producing

(
a
n

)
sub-models which are combined by averaging.

AnDE and AnJE both use simple generative learning, merely the counting
the relevant sufficient statistics from the data. Both have only one tweaking
parameter: n – that controls the bias-variance trade-off. Higher values of n
leads to low bias and high variance and vice-versa.

It is important not to confuse the equivalence (in terms of the level of
interactions they model) of AnJE and AnDE models. That is, the following
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y

Fig. 5: Sub-models in an AnDE model with n = 2 and with four features.

holds:

f(A2JE) = f(A1DE),

f(A3JE) = f(A2DE),

... =
...

f(AnJE) = f(A(n-1)DE),

where f(.) is a function that returns the number of interactions that the al-
gorithm models. Also, A1JE = A0DE = naive Bayes. Thus, an AnJE model
uses the same core statistics as an A(n-1)DE model. At training time, AnJE
and A(n-1)DE must learn the same information from the data. However, at
classification time, each of these statistics is accessed once by AnJE and n
times by A(n-1)DE, making AnJE more efficient. However, as we will show,
it turns out that AnJE’s use of the geometric mean results in a more biased
estimator than the arithmetic mean used by AnDE. As a result, in practice,
an AnJE model is less accurate than the equivalent AnDE model. However,
due to the use of the arithmetic mean by AnDE, its weighted version would
be much more difficult to optimize than AnJE, as when transformed to log
space it does not admit to a simple linear model.

ALRn has a number of similarities with ELR [12,11] for which the param-
eters associated with a Bayesian network classifier (naive Bayes or TAN) are
learned by optimizing the CLL. ELR performs discriminative learning of the
weights for a model with a Bayesian network structure. As explained in Sec-
tion 5, it is not possible to create a single Bayesian network with the structure
of the ALR model. Further, ELR does not utilize the generative parameters
to precondition the search for discriminative parameters as does ALR. Some
related ideas to ELR are also explored in [25,26,33].

Feature construction has been studied extensively [20]. The goal is to im-
prove the classifier’s accuracy by creating new attributes from existing at-
tributes. The new attributes can be either binary or arithmetic or other com-
binations of existing attributes. One approach that is closely related to the
current work is the formation of Cartesian products of categorical features
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Domain Case Att Class Domain Case Att Class
Kddcup 5209000 41 40 Vowel 990 14 11
Poker-hand 1175067 10 10 Tic-Tac-ToeEndgame 958 10 2
MITFaceSetC 839000 361 2 Annealing 898 39 6
Covertype 581012 55 7 Vehicle 846 19 4
MITFaceSetB 489400 361 2 PimaIndiansDiabetes 768 9 2
MITFaceSetA 474000 361 2 BreastCancer(Wisconsin) 699 10 2
Census-Income(KDD) 299285 40 2 CreditScreening 690 16 2
Localization 164860 7 3 BalanceScale 625 5 3
Connect-4Opening 67557 43 3 Syncon 600 61 6
Statlog(Shuttle) 58000 10 7 Chess 551 40 2
Adult 48842 15 2 Cylinder 540 40 2
LetterRecognition 20000 17 26 Musk1 476 167 2
MAGICGammaTelescope 19020 11 2 HouseVotes84 435 17 2
Nursery 12960 9 5 HorseColic 368 22 2
Sign 12546 9 3 Dermatology 366 35 6
PenDigits 10992 17 10 Ionosphere 351 35 2
Thyroid 9169 30 20 LiverDisorders(Bupa) 345 7 2
Pioneer 9150 37 57 PrimaryTumor 339 18 22
Mushrooms 8124 23 2 Haberman’sSurvival 306 4 2
Musk2 6598 167 2 HeartDisease(Cleveland) 303 14 2
Satellite 6435 37 6 Hungarian 294 14 2
OpticalDigits 5620 49 10 Audiology 226 70 24
PageBlocksClassification 5473 11 5 New-Thyroid 215 6 3
Wall-following 5456 25 4 GlassIdentification 214 10 3
Nettalk(Phoneme) 5438 8 52 SonarClassification 208 61 2
Waveform-5000 5000 41 3 AutoImports 205 26 7
Spambase 4601 58 2 WineRecognition 178 14 3
Abalone 4177 9 3 Hepatitis 155 20 2
Hypothyroid(Garavan) 3772 30 4 TeachingAssistantEvaluation 151 6 3
Sick-euthyroid 3772 30 2 IrisClassification 150 5 3
King-rook-vs-king-pawn 3196 37 2 Lymphography 148 19 4
Splice-junctionGeneSequences 3190 62 3 Echocardiogram 131 7 2
Segment 2310 20 7 PromoterGeneSequences 106 58 2
CarEvaluation 1728 8 4 Zoo 101 17 7
Volcanoes 1520 4 4 PostoperativePatient 90 9 3
Yeast 1484 9 10 LaborNegotiations 57 17 2
ContraceptiveMethodChoice 1473 10 3 LungCancer 32 57 3
German 1000 21 2 Contact-lenses 24 5 3
LED 1000 8 10

Table 1: Details of Datasets

through hill-climbing search [24]. Our work differs in using all Cartesian prod-
ucts of a given order and using discriminative learning of weights to determine
each combinations relative (weighted) contribution to the model.

7 Experiments

In this section, we compare and analyze the performance of our proposed algo-
rithms and related methods on 76 natural domains from the UCI repository of
machine learning datasets [8]. The experiments are conducted on the datasets
described in Table 1. 40 datasets have fewer than 1, 000 instances, 20 datasets
have between 1, 000 and 10, 000 instances and 16 datasets have more than
10, 000 instances. There are 8 datasets with over 100, 000 instances. These
datasets are shown in bold font in Table 1.
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Each algorithm is tested on each dataset using 5 rounds of 2-fold cross
validation3.

We compare four different metrics, i.e., 0-1 Loss, RMSE, Bias and Vari-
ance4. There are a number of different bias-variance decomposition defini-
tions. In this research, we use the bias and variance definitions of [15] together
with the repeated cross-validation bias-variance estimation method proposed
by [35]. Kohavi and Wolpert [15] define bias and variance as follows:

bias2 =
1

2

∑
y∈Y

(
P(y|x)− P̂(y |x)

)
2,

and

variance =
1

2

1−
∑
y∈Y

P̂(y |x)2

.
We report Win-Draw-Loss (W-D-L) results when comparing the 0-1 Loss,

RMSE, bias and variance of two models. A two-tail binomial sign test is used
to determine the significance of the results. Results are considered significant
if p ≤ 0.05 and shown in bold.

The datasets in Table 1 are divided into two categories. We call the
following datasets Big – KDDCup, Poker-hand, USCensus1990, Covertype,

MITFaceSetB, MITFaceSetA, Census-income, Localization. All remain-
ing datasets are denoted as Little in the results.

Due to their size, experiments for most of the Big datasets had to be
performed in a heterogeneous environment (grid computing) for which CPU
wall-clock times are not commensurable. In consequence, when compar-
ing classification and training time, the following 12 datasets constitutes
Big category – Localization, Census-income, Poker-hand, Covtype,

Connect-4, Shuttle, Adult, Letter-recog, Magic, Nursery, Sign,

Pendigits. When comparing average results across Little and Big datasets,
we normalize the results with respect to ALR2 and present a geometric mean.

Numeric features are discretized by using the Minimum Description Length
(MDL) supervised discretization method [6]. Training data is discretized at
training time. The cut-points learned during the discretization procedure
are used to discretize the testing data. However, for kddcup, MITFaceSetA,
MITFaceSetB, MITFaceSetC, for computational efficiency, the entire dataset is
discretized before the training starts. That is the cut-points are learned over
both training and test data. The bias introduced by including test data in

3 Exception is MITFaceSetA, MITFaceSetB, MITFaceSetA and Kddcup where results are re-
ported with 2 rounds of 2-fold cross validation because of the time-constraints on the grid-
computers on which the results were computed

4 As discussed in Section 1, the reason for performing bias/variance estimation is that
it provides insights into how the learning algorithm will perform with varying amounts of
data. We expect low variance algorithms to have relatively low error for small data and low
bias algorithms to have relatively low error for large data [3].
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the discretization process is not an issue here because it is uniform across all
compared classifiers (i.e., AnDE and Random Forest).

A missing value is treated as a separate feature value and taken into account
exactly like other values.

We employed the L-BFGS quasi-Newton method for solving the optimiza-
tion5. Note, that we have used L-BFGS to demonstrate the efficacy of ALRn,
the results generalize well to other optimization routines including Gradient
Descent, Conjugate Gradient and Stochastic Gradient Descent (SGD). In Ap-
pendix A, we also present results with Conjugate Gradient optimization

Random Forest (RF) [4] is considered to be a state of the art classification
scheme. It consist of multiple decision trees, each tree is trained on data se-
lected at random but with replacement from the original data (bagging). For
example, if there are N data points, select N data points at random with re-
placement. If there are a attributes, a number m is specified, such that m < a.
At each node of the decision tree, m attributes are randomly selected out of
a and are evaluated, the best being used to split the node. Note, we used
m = log2(a) + 1, where a is the total number of features. Each tree is grown
to its largest possible size and no pruning is done. An instance is classified by
passing it through each decision tree and selecting the mode of the output of
the decision trees. We used 100 decision trees in this work.

The Internal discretization mechanism of Random Forest is used for all but
the kddcup, MITFaceSetA, MITFaceSetB, MITFaceSetC datasets, where the
entire data is first discretized, as described before.

7.1 ALRn vs. AnJE

A W-D-L comparison of the 0-1 Loss, RMSE, bias and variance of ALRn and
AnJE on Little datasets is shown in Table 2. We compare ALR2 with A2JE
and ALR3 with A3JE only. It can be seen that ALRn has significantly lower
bias but significantly higher variance. The 0-1 Loss and RMSE results are not
in favour of any algorithm. However, on Big datasets, ALRn wins on 7 out of
8 datasets in terms of both RMSE and 0-1 Loss. The results are not significant
since the p value of 0.070 is greater than our set threshold of 0.05. However,
the evidence is consistent with the proposition that ALRn successfully reduces
the bias of AnJE, at the expense of increasing its variance.

Normalized 0-1 Loss and RMSE results for both models are shown in Fig-
ure 6. It can be seen that ALRn has a lower averaged 0-1 Loss and RMSE
than AnJE. This difference is substantial when comparing on Big datasets.
The training and classification time of AnJE is, however, substantially lower
than ALRn as can be seen from Figure 7. This is to be expected as ALRn adds
discriminative training to AnJE and uses twice the number of parameters at
classification time.

5 The original L-BFGS implementation of [5] from http://users.eecs.northwestern.

edu/~nocedal/lbfgsb.html is used.
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ALR2 vs. A2JE ALR3 vs. A3JE

W-D-L p W-D-L p

All Datasets

Bias 62/3/11 <0.001 55/9/12 <0.001

Variance 21/4/51 <0.001 25/2/49 0.007

Little Datasets

0-1 Loss 47/4/25 0.012 39/2/35 0.727

RMSE 39/0/37 0.908 32/0/44 0.206

Big Datasets

0-1 Loss 8/0/0 0.007 7/0/1 0.039

RMSE 8/0/0 0.007 7/0/1 0.039

Table 2: Win-Draw-Loss: ALR2 vs. A2JE and ALR3 vs A3JE. p is two-tail binomial sign
test. Results are significant if p ≤ 0.05.
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Fig. 6: Geometric mean of 0-1 Loss (Left), RMSE (Right) performance of ALR2, A2JE,
ALR3 and A3JE for Little and Big datasets.
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Fig. 7: Geometric mean of Training Time (Left), Classification Time (Right) of ALR2,
A2JE, ALR3 and A3JE for All and Big datasets.

7.2 ALRn vs. AnDE

A W-D-L comparison for 0-1 Loss, RMSE, bias and variance results of the
two ALRn models relative to the corresponding AnDE models are presented
in Table 3. We compare ALR2 with A1DE and ALR3 with A2DE only. It can
be seen that ALRn has significantly lower bias and non-significantly higher
variance than AnDE models. Recently, AnDE models have been proposed as
a fast and effective Bayesian classifiers when learning from large quantities
of data [41]. These bias-variance results make ALRn a suitable alternative to
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ALR2 vs. A1DE ALR3 vs. A2DE

W-D-L p W-D-L p

All Datasets

Bias 60/5/11 <0.001 47/11/18 <0.001

Variance 22/9/45 0.006 26/4/46 0.024

Little Datasets

0-1 Loss 43/3/30 0.159 33/4/39 0.556

RMSE 30/0/46 0.084 24/0/52 0.001

Big Datasets

0-1 Loss 8/0/0 0.007 7/0/1 0.039

RMSE 8/0/0 0.007 7/0/1 0.039

Table 3: Win-Draw-Loss: ALR2 vs. A1DE and ALR3 vs A2DE. p is two-tail binomial sign
test. Results are significant if p ≤ 0.05.
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Fig. 8: Geometric mean of 0-1 Loss (Left) and RMSE (Right) performance of ALR2, A1DE,
ALR3 and A2DE for Little and Big datasets.

AnDE when dealing with big data. The 0-1 Loss results are similar, but AnDE
has better RMSE results than ALRn on Little datasets. On Big datasets, it
can be seen that ALRn wins on majority of datasets.

Normalized 0-1 Loss and RMSE are shown in Figure 8. It can be seen
that the ALRn models have lower 0-1 Loss and RMSE than the corresponding
AnDE models.

A comparison of the training time of ALRn and AnDE is given in Figure 9.
As expected, due to its additional discriminative learning, ALRn requires sub-
stantially more training time than AnDE. However, AnDE does not share such
a consistent advantage with respect to classification time, the relativities de-
pending on the dimensionality of the data. For high-dimensional data the large
number of permutations of features that AnDE must consider at classification
time results in greater computation.

7.3 ALRn vs. LRn

In this section, we compare the two ALRn models with their equivalent LRn

models. As discussed before, we expect to see similar bias-variance profiles and
similar classification performance as the two models are re-parameterizations
of each other.
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Fig. 9: Geometric mean of Training Time (Left), Classification Time (Right) of ALR2,
A1DE, ALR3 and A2DE for All and Big datasets.

We compare the two parameterizations in terms of the scatter of their
0-1 Loss and RMSE values on Little datasets in Figure 10, 12 respectively,
and on Big datasets in Figure 11, 13 respectively. It can be seen that the two
parameterizations (with an exception of a few datasets6) have a similar spread
of 0-1 Loss and RMSE values for both n = 2 and n = 3.

We attribute the difference in the performance of the two parameterizations
in terms of 0-1 Loss due to the numerical instability of the solver. The L-BFGS
library we are using is written in java that internally calls C++ routines which
eventually call a fortran library. There are some non-significant differences
between LRn and ALRn only on the Phoneme, Lung-cancer and Promoters

datasets. These models trained on these datasets are all extremely sparse.
Lung-cancer, for example, has only 32 instances defined over 57 attributes
and 3 classes. LR2 and ALR2 in this case optimize 75246 parameters and LR3

and ALR3 optimize 5465451 parameters. We conjecture that the difference in
the performance (0-1 Loss) is due to over-flowing of the estimated parameters.
It appears that on these datasets, data is linearly separable in spaces spanned
by LR2, ALR2, LR3 and ALR3 – this leads to parameters becoming too large.
For these datasets, ideally, one should regularize the two parameterizations
differently (tuning λ on some validation set) to make sure that the parameter
estimates do not get too low or too high.

The comparative scatter of the number of iterations each parameterization
takes to converge is shown in Figure 14 and 15 for Little and Big datasets
respectively. It can be seen that the number of iterations for ALRn are far
fewer than LRn. It should be noted that the scatter plots are on the log-scale

and the ratio such as: 102.5

103 between ALRn and LRn results in three-times
lesser iterations for ALRn than LRn.

The number of iterations to converge plays a major part in determining
an algorithm’s training time. The training time of the two parameterizations
is shown in Figures 16 and 17 for Little and Big datasets, respectively. It can
be seen that ALRn models are much faster than the equivalent LRn models.

6 LR2 vs. ALR2: two datasets on which the 0-1 Loss of two parameterization is sig-
nificantly different are: Phoneme (0.1935, 0.2814) and Promoters (0.1132, 0.1717). LR3 vs.
ALR3: two datasets on which the 0-1 Loss of two parameterization is significantly different
are: Phoneme (0.2347, 0.4743) and Lung-Cancer (0.6125, 0.5625).
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Fig. 10: Comparative scatter of 0-1 Loss of ALR2 and LR2 (Left) and ALR3 and LR3

(Right) for Little datasets.
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Fig. 11: Comparative scatter of 0-1 Loss of ALR2 and LR2 (Left) and ALR3 and LR3

(Right) for Big datasets.
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Fig. 12: Comparative scatter of RMSE of ALR2 and LR2 (Left) and ALR3 and LR3 (Right)
for Little datasets.

Again, note that the scatter plots are on the log-scale. A simple ratio of 105.6

105.8

between ALRn and LRn is difficult to distinguish as a point over the diagonal
line in favour of ALRn, but actually represents a speed-up of around 1.5 times.

A comparison of the rate of convergence of Negative-Log-Likelihood (NLL)
of ALR2 and LR2 parameterizations on some sample datasets is shown in
Figure 18. It can be seen that, ALR2 has a steeper curve, asymptoting to its
global minimum much quicker. For example, on almost all datasets, one can see
that ALR2 follows a steeper, hence more desirable, path toward convergence.
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Fig. 13: Comparative scatter of RMSE of ALR2 and LR2 (Left) and ALR3 and LR3 (Right)
for Big datasets.
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Fig. 14: Comparative scatter of number of iterations of ALR2 and LR2 (Left) and ALR3

and LR3 (Right) for Little datasets.
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Fig. 15: Comparative scatter of iterations of ALR2 and LR2 (Left) and ALR3 and LR3

(Right) for Big datasets.

This is extremely advantageous when learning from very few iterations (for
example, when learning using Stochastic Gradient Descent based optimization)
and, therefore, is a desirable property for scalable learning. A similar trend
can be seen in Figure 19 for ALR3 and LR3.

Finally, let us present some comparison results about the speed of con-
vergence of ALRn vs. LRn as we increase n. In Figure 20, we compare the
convergence for n = 1, n = 2 and n = 3 on the sample Localization dataset.
It can be seen that the improvement that ALRn provides over LRn gets better
as n becomes larger. Similar behaviour was observed for many datasets and,
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Fig. 16: Comparative scatter of Training time of ALR2 and LR2 (Left) and ALR3 and
LR3 (Right) for Little datasets.
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Fig. 17: Comparative scatter of Training time of ALR2 and LR2 (Left) and ALR3 and
LR3 (Right) for Big datasets.

although studying rates of convergence is a complicated matter and is outside
the scope of this work, we anticipate this phenomenon to be an interesting
area for future research.

7.4 ALRn vs. Random Forest

The two ALRn models are compared in terms of W-D-L of 0-1 Loss, RMSE,
bias and variance with Random Forest in Table 4. It can be seen that ALRn has
slightly lower bias than RF. The variance of ALR3 is significantly higher than
RF, whereas, variance does not differ significantly between ALR2 and RF. On
Little datasets, 0-1 Loss results of ALRn and RF are similar. However, RF has
significantly better RMSE results than ALRn these datasets. On Big datasets,
ALRn has lower 0-1 Loss and RMSE on the majority of datasets.

The averaged 0-1 Loss and RMSE results are given in Figure 21. It can be
seen that ALR2, ALR3 and RF have similar 0-1 Loss and RMSE across Little
datasets. However, on Big datasets, the lower bias of ALRn results in much
lower error than RF in terms of both 0-1 Loss and RMSE. These averaged
results also corroborate with the W-D-L results in Table 4, showing ALRn to
be a less biased model than RF. The comparison of training and classification
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Fig. 18: Comparison of rate of convergence of ALR2 and LR2 on several datasets. The X-
axis (No. of iterations) is on log scale. Vertical lines show the point at which the optimization
is deemed to have converged.

time of ALRn and RF is given in Figure 22. It can be seen that ALRn requires
more learning time than RF but less classification time.
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Fig. 19: Comparison of rate of convergence of ALR3 and LR3 on several datasets. The
X-axis (No. of iterations) is on log scale. Vertical lines show the end of iterations of each
curve.

8 Conclusion and Future Work

In this paper, we studied higher-order Logistic Regression (LRn) and showed
that it is a low-bias classifier that has accuracy that is highly competitive to
state-of-the-art classifiers on large data. We also proposed an accelerated ver-
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Localization dataset. Y-axis is the negative log-likelihood.

ALR2 vs. RF ALR3 vs. RF

W-D-L p W-D-L p

All Datasets

Bias 39/9/28 0.221 35/9/32 0.807

Variance 25/2/49 0.007 21/3/52 < 0.001

Little Datasets

0-1 Loss 26/3/47 0.018 22/1/53 < 0.001

RMSE 26/0/50 0.007 25/0/51 0.003

Big Datasets

0-1 Loss 4/1/3 1.000 5/0/3 0.726

RMSE 4/0/4 1.000 5/0/3 0.726

Table 4: Win-Draw-Loss: ALR2 vs. RF and ALR3 vs RF. p is two-tail binomial sign test.
Results are significant if p ≤ 0.05.
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Fig. 21: Geometric mean of 0-1 Loss (Left) and RMSE (Right) performance of ALR2,
ALR3 and RF for Little and Big datasets.

sion of higher-order Logistic Regression (ALRn) which is based on both gener-
ative and discriminative learned parameters. To obtain the generative parame-
terization, we first developed AnJE, a generative counter-part of higher-order
logistic regression. We showed that ALRn and LRn learn equivalent mod-
els, but that ALRn is able to exploit the information gained generatively to
effectively precondition the optimization process. ALRn converges in fewer it-
erations, leading to its global minimum much more rapidly, resulting in faster
training time. We also compared ALRn with the equivalent AnJE and AnDE
models and showed that ALRn has lower bias than both AnJE and AnDE
models. We compared ALRn with state of the art classifier Random Forest



28 Nayyar A. Zaidi et al.

Little Big
0

1

2

3

4

5

6

7

8
Training Time

ALR
2

ALR
3

RF100

Little Big
0

1

2

3

4

5

6

7

8

9

10
Classification Time

ALR
2

ALR
3

RF100

Fig. 22: Geometric average of Training Time (Left), Classification Time (Right) of ALR2,
ALR3 and RF for Little and Big datasets.

and showed that ALRn models are indeed lower biased than RF and on bigger
datasets ALRn often obtains lower 0-1 loss than RF.

There are a number of promising new directions for future work.

– We have shown that ALRn is a low bias classifier that requires minimal
tuning and has the ability to handle multiple classes. The obvious extension
is to make it out-of-core. We argue that ALRn is well suited for stochastic
gradient descent based methods as it can converge to the global minimum
very quickly.

– It may be desirable to utilize a hierarchical ALR, such that hALRn =
{ALR1 . . .ALRn}, incorporating all the parameters up till order n. This
may be useful for smoothing the parameters. For example, if a certain
interaction does not occur in the training data, at classification time one
can resort to lower values of n.

– In this work, we have constrained the values of n to two and three. Scaling-
up ALRn to higher values of n is highly desirable. One can exploit the fact
that many interactions at higher values of n will not occur in the data and
hence can develop sparse implementations of ALRn models.

– Exploring other objective functions such as Mean-Squared-Error or Hinge
Loss may have desirable properties and has been left as a future work.

– The preliminary version of ALR that we have developed is restricted to
categorical data and hence requires that numeric data be discretized. While
our results show that this is often highly competitive with Random Forests,
which can use local cut-points (built-in discretization scheme), on some
datasets it is not. In consequence, there is much scope for extensions to
ALRn to directly handle numeric data.

9 Code and Datasets

Code with running instructions can be download from https://www.dropbox.

com/sh/gwiah6w0w2suiaa/AAChkLCA6Iht7V6LSOVkXv5xa?dl=0.
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A Results with Conjugate-Gradient Optimization

We present 0-1 Loss, RMSE, Training time and Number of Iterations results for LR2 and
ALR2 in Figure 23 and LR3 and ALR3 in Figure 24 with conjugate-gradient optimization.
We also compare the convergence curves in Figure 25 and 26 for LR2 vs. ALR2 and LR3

vs. ALR3 respectively.
Standard conjugate gradient’s convergence criteria is used to stop convergence. Also,

the maximum number of iterations were set to 10000 except for the case of Adult and
Covtype datasets where maximum number of iterations are set to 200 when comparing LR3

and ALR3. It can be see that both LRn and ALRn have a similar spread of 0-1 Loss and
RMSE, but ALR3 has an advantage of better training time and converges not only in fewer
iterations but asymptote to global minimum much more quickly than LRn.
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Fig. 23: Geometric mean of 0-1 Loss (Top Left), RMSE (Top Right), Training Time (Bot-
tom Left) and No. of Iterations (Bottom Right) performance of ALR2 and LR2 (trained
with Conjugate Gradient) on all datasets.
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Fig. 24: Geometric mean of 0-1 Loss (Top Left), RMSE (Top Right), Training Time (Bot-
tom Left) and No. of Iterations (Bottom Right) performance of ALR3 and LR3 (trained
with Conjugate Gradient) on all datasets.

B On Initialization of weights in ALRn

In Section 5.1, we derived a suitable weighting for AnJE that was equal to γn =
(n−1)!(a−n)!

(a−1)!
.

We discussed how this weight motivates the introduction of a different weight for each sub-
model and for each feature sub-set. In this section, we will study if this weight (i.e., γn) can
be of any help in finding the weights in ALRn by exploring the following two possibilities:

1. Scale the weights learned by ALRn by γn at every iteration of optimization.
2. Initialize ALRn weights by γn and optimize.

Scaling ALRn weights with γn leads to an objective function of the form:

PALR (J)(y |x) = exp
(
wy log P(y) +

∑
α∈

(
A
n

) γnwy,α,xα log P(xα |y)−

log
∑
c∈ΩY

exp
(
wc log P(c) +

∑
α∗∈

(
A
n

)γnwc,α∗,xα∗ log P(xα∗ |c)
))
. (22)

Note, we have denoted this version of ALR by ALR (J). Also, γn will appear in the gradient
of above objective function.

The comparative scatter plots of 0-1 Loss, RMSE, training time and number of iterations
to convergence for each algorithm (i.e., ALR and ALR (J)) are shown in Figure 27 for n = 2
and in Figure 28 for n = 3. It can be seen that with a similar 0-1 Loss and RMSE profile,
training time and number of iterations of ALR (J) is worse than that of ALR. Therefore,
plugging γn in to the ALRn objective function does not result in faster convergence of ALR.

The second option is to initialize wy,α,xα with γn instead of 0 or 1 (that is typical of
gradient-based optimization techniques). We will denote this version of ALR as ALR (init).
The comparative scatter plots of 0-1 Loss, RMSE, training time and number of iterations
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Fig. 25: Comparison of rate of convergence of LR2 and ALR2 (trained with Conjugate
Gradient) on several datasets. The X-axis (No. of iterations) is on log scale.

it takes each algorithm (i.e., ALR and ALR (init)) are shown in Figure 29 for n = 2 and in
Figure 30 for n = 3 respectively. It can be seen that both n = 2 and n = 3 share similar
0-1 Loss and RMSE profiles. However, training time and number of iterations are slightly
better for ALR (init) as compared to ALR. This is intuitive, as γn guides the weights to a
slightly better starting place in the optimization search space that saves some iterations to
reach the global minimum. However, the speed-up is not significant.

We compare the convergence curves of ALR, ALR (J) and ALR (init) on six sam-
ple datasets (Adult, Connect-4, Localization, Covtype, Census-income, Poker-hand)
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Fig. 26: Comparison of rate of convergence of LR3 and ALR3 (trained with Conjugate
Gradient) on several datasets. The X-axis (No. of iterations) is on log scale. Note, that on
Adult and Covtype dataset, maximum number of iterations are set 200.

in Figures 31 and 32 for n = 2 and n = 3 respectively. It can be seen that ALR (init) has
the best convergence rate. It starts from the better (lower) spot (except for census-income)
and then asymptotes in line with the ALR curve. ALR (J), on the hand, has an adverse
effect on the convergence of ALR.
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Fig. 27: (Top Row) Comparative scatter of 0-1 Loss, RMSE, Training Time and number of
Iterations of of ALR2 and ALR2 (J) for Little datasets. (Bottom Row) Comparative scatter
of 0-1 Loss, RMSE, Training Time and No. of Iterations of of ALR2 and ALR2 (J) for Big
datasets.
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Fig. 28: (Top Row) Comparative scatter of 0-1 Loss, RMSE, Training Time and number of
Iterations of of ALR3 and ALR3 (J) for Little datasets. (Bottom Row) Comparative scatter
of 0-1 Loss, RMSE, Training Time and No. of Iterations of of ALR3 and ALR3 (J) for Big
datasets.
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of Iterations of of ALR2 and ALR2 (init) for Little datasets. (Bottom Row) Comparative
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for Big datasets.
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