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Abstract. The rapid growth in data makes ever more urgent the quest
for highly scalable learning algorithms that can maximize the benefit that
can be derived from the information implicit in big data. Where data are
too big to reside in core, efficient learning requires minimal data access.
Single pass learning accesses each data point once only, providing the
most efficient data access possible without resorting to sampling. The
AnDE family of classifiers are effective single pass learners. We investi-
gate two extensions to A2DE, subsumption resolution and MI-weighting.
Neither of these techniques require additional data access. Both reduce
A2DE’s learning bias, improving its effectiveness for big data. Further-
more, we demonstrate that the techniques are complementary. The re-
sulting combined technique delivers computationally efficient low-bias
learning well suited to learning from big data.

Key words: Averaged n-Dependence Estimators, Subsumption Reso-
lution, Big Data, Naive Bayes, Bias-Variance Trade-off.

1 Introduction

When data are too big to reside in RAM, machine learning has two options. The
first is learn from a sample, thereby potentially losing information implicit in the
data as a whole. The second is to process the data out-of-core. In the latter case,
data access is very expensive, and single-pass learning becomes very desirable.
The Averaged n-Dependence Estimators (AnDE) family of Bayesian learning
algorithms provide efficient single pass learning with accuracy competitive with
the state-of-the-art in-core learning [1]. In addition, AnDE classifiers

– have time complexity linear with respect to the number of training examples,
– directly handle multiple class problems,
– directly handle missing values, and
– do not require parameter tuning.

These features make them strong contenders for application with big data.
Previous research has shown that as n is increased, the bias of the AnDE

algorithms decreases, at the cost of an increase in variance [1]. Variance tends
to decrease as data quantity increases, so for big data low bias algorithms tend
to have an advantage [2]. Hence, for large data, larger n is desirable. Unfortu-
nately, however, large n has high time and space complexity, especially as the
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dimensionality of the data increases. In practice, A2DE has proven effective for
moderate dimensional data.

A number of techniques have demonstrated a capacity to lower the bias
of A1DE with negligible computational cost. Subsumption Resolution (SR) [3]
achieves this with a form of lazy (classification time) feature elimination. Weight-
ily Averaged One-Dependence Estimators (WAODE) [4] achieves it by weighting
the sub-models. While previous studies have demonstrated the independent ef-
fectiveness of each of these algorithms, their interoperability has not previously
been investigated. In this paper we investigate whether they are compatible and
the extent to which applying both together reduces bias relative to applying
each alone. Further, neither of these techniques has been studied in the context
of AnDE with n greater than 1. We herein investigate their effectiveness when
applied to A2DE, both severally and jointly. We reveal that they are indeed
effective at further reducing A2DE’s bias with minimal additional computation.

The rest of this paper is organized as follows. We discuss related work and
our proposed improvements to A2DE in section 2. We will discuss experimental
results in section 3. We conclude in section 4.

2 Semi-naive Bayes Method - AnDE

We seek to estimate P(y | x), where y is a class label and x is a vector of attribute
values x = 〈x1, . . . xm〉. For notational convenience we define

x{i,j,...q} = 〈xi, xj , . . . , xq〉.

For example, x{2,3,5} = 〈x2, x3, x5〉. We use P̂(·) to denote an estimate of P(·).
AnDE aims to estimate P(y | x) using P(y | x) ∝ P(y,x) and hence normaliz-

ing each P̂(y,x) to derive the respective P̂(y | x). The required joint probability
is estimated using

P̂AnDE(y,x) =


∑
s∈(A

n)

δ(xs)P̂(y, xs)

a∏
i=1

P̂(xi | y, xs)/
∑
s∈(A

n)

δ(xs) :
∑
s∈(A

n)

δ(xs) > 0

P̂A(n-1)DE(y,x) : otherwise

(1)
where

(A
n

)
indicates the set of all size-n subsets of {1, . . . a} and δ(xα) is a

function that is 1 if the training data contains an object with the value xα,
otherwise 0.

Note that P(xi | y, xs) = 1 when i ∈ s. Whereas other probability estimates
should be smoothed or regularized, smoothed estimates should not be used in
this case, and in practice these values are not included in the calculation.

Subsumption resolution [3] is an effective technique for rectifying a specific
class of extreme violations of the attribute independence assumption, those
where P(xi | xj) = 1.0. In this case P(y | x) = P(y | x{1...i−1,i+1...m}) and

hence all inaccuracies introduced into P̂(y | x) by this violation of the attribute



Fast and Effective Single Pass Bayesian Learning 3

independence assumption can be avoided by dropping xi from (1). For example,
when the attribute values include female and pregnant only the latter should
be used, when they include male and not-pregnant only the former should be
used, and when they include female and not-pregnant both should be used.
This requires, however, that one infer whether P(xi | y, xs) = 1 for each pair
of attribute values. In the current research we infer that P(xi | xj) = 1.0 if
#(xj) = #(xi, xj) > 100, where #(xj) is the count of the number of times
attribute value xj occurs in the data and #(xi, xj) is the count of the number
of times both xi and xj occur together in the data. To prevent both attribute
values being deleted if they cover exactly the same data, we delete the one with
the higher index if #(xi) = #(xj).

P̂AnDESR(y,x) = P̂AnDE(y, x{i∈x:¬∃j∈x#(xi)=#(xi,xj)>100∧[#(xj)>#(xi)∨j<i]})

Subsumption resolution has been shown to be effective at reducing the bias of
A1DE [5, 3].

Another approach to reducing bias in AnDE that has been shown to be
effective for A1DE [6, 4, 7] is to weight the sub-models, modifying (1) to

P̂WAnDE(y,x) =


∑
s∈(A

n)

δ(xs)wsP̂(y, xs)

a∏
i=1

P̂(xi | y, xs)/
∑
s∈(A

n)

δ(xs) :
∑
s∈(A

n)

δ(xs) > 0

P̂WA(n-1)DE(y,x) : otherwise

WAODE [4] weights A1DE, where s is a single attribute value. It sets ws to
the mutual information of the attribute with the class. WAODE is effective
at reducing the bias of A1DE with minimal computational overhead. We here
generalize that strategy to MI-weighted AnDE, using ws = MI(S, Y ),

MI(s, Y ) =
∑
y∈Y

∑
xs∈Xs

P(xs, y) log
P(xs, y)

P(xs)P(y)
(2)

where Y is the set of class labels and Xs is the cross product of values for
attributes with indices in s.

While subsumption resolution and weighting have each been shown to reduce
the bias of AnDE in isolation, they have not previously been used in conjunction.
To assess the effect of doing so we also evaluate MI-weighted AnDESR,

P̂WAnDESR(y,x) = P̂WAnDE(y, x{i∈x:¬∃j∈x#(xi)=#(xi,xj)>100∧[#(xj)>#(xi)∨j<i]})

2.1 Computational overheads

AnDE has training time complexity of O(t
(
m
n+1

)
) and classification time com-

plexity of O(km
(
m
n

)
) for classifying a single example, where t is the number of

training examples.
Subsumption resolution requires no additional training time and at classifi-

cation time requires
(
m
2

)
comparisons to identify any subsumed attribute values,
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Table 1. Data sets

Domain CaseAttClass Domain CaseAttClass
Abalone 4177 9 3 Liver Disorders (Bupa) 345 7 2
Adult 48842 15 2 Lung Cancer 32 57 3
Annealing 898 39 6 Lymphography 148 19 4
Audiology 226 70 24 MAGIC Gamma Telescope 19020 11 2
Auto Imports 205 26 7 Mushrooms 8124 23 2
Balance Scale 625 5 3 Nettalk(Phoneme) 5438 8 52
Breast Cancer (Wisconsin) 699 10 2 New-Thyroid 215 6 3
Car Evaluation 1728 8 4 Nursery 12960 9 5
Census-Income (KDD) 299285 40 2 Optical Digits 5620 49 10
Connect-4 Opening 67557 43 3 Page Blocks Classification 5473 11 5
Contact-lenses 24 5 3 Pen Digits 10992 17 10
Contraceptive Method Choice 1473 10 3 Pima Indians Diabetes 768 9 2
Covertype 581012 55 7 Postoperative Patient 90 9 3
Credit Screening 690 16 2 Primary Tumor 339 18 22
Echocardiogram 131 7 2 Promoter Gene Sequences 106 58 2
German 1000 21 2 Segment 2310 20 7
Glass Identification 214 10 3 Sick-euthyroid 3772 30 2
Haberman’s Survival 306 4 2 Sign 12546 9 3
Heart Disease (Cleveland) 303 14 2 Sonar Classification 208 61 2
Hepatitis 155 20 2 Splice-junction Gene Sequences 3190 62 3
Horse Colic 368 22 2 Statlog (Shuttle) 58000 10 7
House Votes 84 435 17 2 Syncon 600 61 6
Hungarian 294 14 2 Teaching Assistant Evaluation 151 6 3
Hypothyroid(Garavan) 3772 30 4 Tic-Tac-Toe Endgame 958 10 2
Ionosphere 351 35 2 Vehicle 846 19 4
Iris Classification 150 5 3 Volcanoes 1520 4 4
King-rook-vs-king-pawn 3196 37 2 Vowel 990 14 11
Labor Negotiations 57 17 2 Waveform-5000 5000 41 3
LED 1000 8 10 Wine Recognition 178 14 3
Dermatology 366 35 6 Zoo 101 17 7
Cylinder 540 40 2 Letter Recognition 20000 17 26
Spambase 4601 58 2 Localization 164860 7 3
Wall-following 5456 25 4 Poker-hand 1025010 11 10
yeast 1484 9 10 Thyroid 9169 30 20
Satellite 6435 37 6 Musk1 476 167 2
Chess 551 40 2

and hence does not increase the classification time complexity so long as n > 0.
In practice subsumption resolution can substantially reduce classification time
by reducing the number combinations of attribute values that must be processed.

MI weighted AnDE requires the calculation of the weights at training time,
O(k

(
m
n

)
). In practice this is dominated by the training time complexity of regular

AnDE and hence does not increase the effective complexity and the additional
training time impost is modest. The classification time impact is negligible.

3 Experimental Results

The experiments are conducted in the Weka work-bench (version 3.5.7) on data
sets described in table 1. Each algorithm is tested on each data set using 20
rounds of 2-fold cross validation. Probability estimates were smoothed using
m-estimation [8] with m = 1.

The bias-variance decomposition provides valuable insights into the compo-
nents of the error of learned classifiers. Bias denotes the systematic component
of error, which describes how closely the learner is able to describe the decision
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surfaces for a domain. Variance describes the component of error that stems from
sampling, which reflects the sensitivity of the learner to variations in the training
sample [9, 10]. There are a number of different bias-variance decomposition defi-
nitions. In this research, we use the bias and variance definitions of [9], together
with the repeated cross-validation bias-variance estimation method [10]. When
two algorithms are compared, we count the number of data sets for which one al-
gorithm performs better, equally well or worse than the other on a given measure.
A standard binomial sign test, assuming that wins and losses are equiprobable,
is applied to these records. We assess a difference as significant if the outcome of
a two-tailed binomial sign test is less than 0.05. The base probabilities of each
algorithm are estimated using m-estimation, since in our initial experiments it
leads to more accurate probabilities than Laplace estimation for naive Bayes,
A1DE and A2DE. The data sets are divided into four categories. First, consist-
ing of all 71 data sets. Second, large data sets with number of instances > 10, 000.
Third, medium data sets with number of instances > 1000 and < 10, 000. Fourth,
small data sets with number of instances < 1000. The following techniques are
compared:

– NB, Standard naive Bayes with m-estimates of probabilities.
– A1DE, P̂AnDE(y,x) with n = 1.
– A1DE-S, P̂AnDESR(y,x) with n = 1.
– A1DE-W, P̂WAnDE(y,x) with n = 1.
– A1DE-SW, P̂WAnDESR(y,x) with n = 1.
– A2DE, P̂AnDE(y,x) with n = 2.
– A2DE-S, P̂AnDESR(y,x) with n = 2.
– A2DE-W, P̂WAnDE(y,x) with n = 2.
– A2DE-SW, P̂WAnDESR(y,x) with n = 2.
– RF10, Random Forest with 10 decision trees.

Numeric attributes are discretized using MDL discretization [11] for all compared
techniques except Random Forest. Bias, variance, 0-1 Loss and RMSE results
are reported in the following sections.

3.1 Comparison of Bias and Variance

The WDL bias and variance results are shown in Tables 2 and 3 respectively
with significant (α = 0.05) results shown in bold. We summarize the results as:

– Both weighting and subsumption resolution reduce the bias of both A1DE
and A2DE significantly more often than they increase it.

– Jointly applying both weighting and subsumption resolution to either A1DE
or A2DE reduces bias significantly more often than it increases it relative to
applying either alone.

– Both weighting and subsumption resolution increase the variance of both
A1DE and A2DE more often than they decrease it, although these results
are not always statistically significant.
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Fig. 1. Averaged Bias (left) and Variance (Right) results normalized with respect to
NB. The error-bars are ordered in the same sequence as in the legend.

– Jointly applying both weighting and subsumption resolution to either A1DE
or A2DE increases variance more often than it decrease it relative to applying
either alone, but these differences are also not always statistically significant.

– Random Forest has lower bias and higher variance significantly more often
than the reverse relative to all AnDE variants.

Table 2. Win/Draw/Loss of Bias Comparison, all data sets

NB A1DE A1DE-S A1DE-W A1DE-SW A2DE A2DE-S A2DE-W A2DE-SW

A1DE 56/3/12

A1DE-S 56/2/13 34/33/4

A1DE-W 56/3/12 51/4/16 41/4/26

A1DE-SW 59/2/10 51/6/14 44/5/22 25/41/5

A2DE 57/2/12 53/3/15 47/5/19 44/3/24 41/4/26

A2DE-S 57/2/12 51/3/17 50/4/17 48/3/20 48/3/20 31/35/5

A2DE-W 57/2/12 54/4/13 52/4/15 52/5/14 49/5/17 48/7/16 36/8/27

A2DE-SW 58/2/11 54/4/13 54/4/13 53/4/14 52/4/15 50/6/15 45/7/19 32/32/7

RF10 57/1/13 54/2/15 53/2/16 51/3/17 51/3/17 49/4/18 49/3/19 49/4/18 49/4/18

The average bias and variance results are shown in figure 1. One can see that
RF10 has better bias than any member of the AnDE family but worse variance.

3.2 Comparison of the Accuracy - 0-1 Loss and RMSE

The above results show that subsumption resolution and weighting both reduce
bias at the cost of an increase in variance. These two techniques have synergistic
effect. Used together they further reduce bias at cost of increased variance. If we
accept that as data quantity increases, the bias term will increasingly dominate
error, we should expect these strategies to be most effective at decreasing error
for larger data sets.
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Table 3. Win/Draw/Loss of Variance Comparison, all data sets

NB A1DE A1DE-S A1DE-W A1DE-SW A2DE A2DE-S A2DE-W A2DE-SW

A1DE 23/3/45

A1DE-S 22/2/47 13/33/25

A1DE-W 21/2/48 18/6/47 17/7/47

A1DE-SW 20/2/49 18/6/47 17/7/47 11/43/17

A2DE 22/3/46 28/3/40 25/3/43 38/4/29 37/3/31

A2DE-S 20/2/49 20/2/49 22/5/44 29/3/39 29/2/40 10/35/26

A2DE-W 20/3/48 26/3/42 26/2/43 30/4/37 30/4/37 22/11/38 36/9/26

A2DE-SW 19/3/49 23/2/46 24/2/45 26/5/40 28/4/39 21/7/43 29/9/33 9/33/29

RF10 8/1/62 8/2/61 9/2/60 8/4/59 9/3/59 6/2/63 7/2/62 6/4/61 6/4/61

The WDL 0-1 Loss and RMSE results are shown in Table 4 and 5 respectively.
The significant (α = 0.05) results are shown in bold. We summarize the results
as:

– Subsumption resolution decreases error more often than not relative to both
A1DE and A2DE for both measures of error and for almost all of the different
data collections. The exceptions are A1DE, 0-1 loss, medium data and A2DE,
0-1 loss, small data for which there are draws. However, not all these results
are statistically significant.

– Subsumption resolution with weighting can decrease error for both measures
of error for the first two collections (all and large data sets). As predicted,
the effectiveness reduces as data set sizes reduce and for medium data sets,
subsumption resolution with weighting can have slightly worst performance
relative to weighting in terms of 0-1 loss but better in terms of RMSE.
The results, however, are non-significant. The same pattern can be observed
in smaller data sets with subsumption resolution and weighting not very
effective.

– Subsumption resolution in tandem with weighting can project AnDE to be
competitive to RF10, winning significantly on all data sets in terms of the two
error measures on all and small data sets. On medium data sets, it results in
winning significantly often for A2DE and non-significant often for A1DE over
RF10. On large data sets, both A1DE and A2DE lose to RF10. The results
are, however, not significant. With five wins and seven losses over RF10, we
conjecture, that AnDE with subsumption resolution and weighting, with all
desirable properties of learning from big data, is a strong contender for big
data learning.

To give an indication of the magnitude of the differences in performance,
the average 0-1 Loss results and RMSE results are shown in figures 2 and 3
respectively. It is apparent that A2DE-SW achieves lower average 0-1 loss and
RMSE on all of small, medium and large datasets, although this advantage does
diminish to being very slight for the largest datasets.



8 Nayyar A. Zaidi, Geoffrey I. Webb

Table 4. Win/Draw/Loss of 0-1 Loss Comparison

All Data Sets

NB A1DE A1DE-S A1DE-W A1DE-SW A2DE A2DE-S A2DE-W A2DE-SW

A1DE 53/4/14

A1DE-S 51/4/16 27/31/13

A1DE-W 50/2/19 35/8/28 29/8/34

A1DE-SW 48/3/20 38/6/27 32/10/29 20/42/9

A2DE 54/3/14 50/4/17 48/4/19 45/8/18 41/10/20

A2DE-S 49/3/19 46/3/22 45/4/22 44/5/22 43/5/23 23/34/14

A2DE-W 48/2/21 46/3/22 45/4/22 47/6/18 46/6/19 36/8/27 35/9/27

A2DE-SW 47/2/22 45/2/24 42/3/26 45/7/19 44/6/21 37/9/25 36/11/24 21/34/16

RF10 40/1/30 28/2/41 26/5/40 24/2/45 24/2/45 22/3/46 20/4/47 17/3/51 17/3/51

Large Data Sets

NB A1DE A1DE-S A1DE-W A1DE-SW A2DE A2DE-S A2DE-W A2DE-SW

A1DE 12/0/0

A1DE-S 12/0/0 7/4/1

A1DE-W 12/0/0 9/2/1 7/1/4

A1DE-SW 12/0/0 10/1/1 8/2/2 5/6/1

A2DE 12/0/0 12/0/0 12/0/0 12/0/0 11/0/1

A2DE-S 12/0/0 12/0/0 12/0/0 12/0/0 12/0/0 7/5/0

A2DE-W 12/0/0 12/0/0 12/0/0 12/0/0 12/0/0 9/1/2 5/1/6

A2DE-SW 12/0/0 12/0/0 12/0/0 12/0/0 12/0/0 9/1/2 8/1/3 6/6/0

RF10 12/0/0 9/0/3 9/0/3 9/0/3 9/0/3 7/1/4 6/1/5 5/1/6 5/1/6

Medium Data Sets

NB A1DE A1DE-S A1DE-W A1DE-SW A2DE A2DE-S A2DE-W A2DE-SW

A1DE 18/1/0

A1DE-S 19/0/0 7/5/7

A1DE-W 19/0/0 13/1/5 10/3/6

A1DE-SW 18/1/0 12/1/6 10/4/5 5/8/6

A2DE 19/0/0 17/0/2 15/1/3 11/1/7 11/1/7

A2DE-S 19/0/0 16/0/3 14/1/4 12/1/6 12/1/6 6/9/4

A2DE-W 19/0/0 17/0/2 16/2/1 15/2/2 14/2/3 13/3/3 13/3/3

A2DE-SW 19/0/0 16/0/3 14/1/4 14/2/3 14/2/3 11/4/4 11/5/3 5/7/7

RF10 15/0/4 10/0/9 8/3/8 6/1/12 6/1/12 6/1/12 5/2/12 4/1/14 4/1/14

Small Data Sets

NB A1DE A1DE-S A1DE-W A1DE-SW A2DE A2DE-S A2DE-W A2DE-SW

A1DE 23/3/14

A1DE-S 20/4/16 13/22/5

A1DE-W 19/2/19 13/5/22 12/4/24

A1DE-SW 18/2/20 16/4/20 14/4/22 10/28/2

A2DE 23/3/14 21/4/15 21/3/16 22/7/11 19/9/12

A2DE-S 18/3/19 18/3/19 19/3/18 20/4/16 19/4/17 10/20/10

A2DE-W 17/2/21 17/3/20 17/2/21 20/4/16 20/4/16 14/4/22 17/5/18

A2DE-SW 16/2/22 17/2/21 16/2/22 19/5/16 18/4/18 17/4/19 17/5/18 10/21/9

RF10 13/1/26 9/2/29 9/2/29 9/1/30 9/1/30 9/1/30 9/1/30 8/1/31 8/1/31
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Table 5. Win/Draw/Loss of RMSE Comparison

All Data Sets

NB A1DE A1DE-S A1DE-W A1DE-SW A2DE A2DE-S A2DE-W A2DE-SW

A1DE 59/2/10

A1DE-S 59/2/10 32/32/7

A1DE-W 58/1/12 39/5/27 29/5/37

A1DE-SW 59/1/11 44/4/23 35/4/32 24/42/5

A2DE 59/2/10 49/3/19 41/4/26 50/1/20 47/1/23

A2DE-S 57/2/12 47/1/23 45/2/24 48/3/20 47/3/21 28/30/13

A2DE-W 53/2/16 44/1/26 44/1/26 46/4/21 45/3/23 41/8/22 28/10/33

A2DE-SW 54/1/16 44/1/26 44/1/26 46/3/22 46/3/22 41/6/24 35/11/25 25/34/12

RF10 42/0/29 32/0/39 30/0/41 28/2/41 28/1/42 23/0/48 22/1/48 19/1/51 16/1/54

Large Data Sets

NB A1DE A1DE-S A1DE-W A1DE-SW A2DE A2DE-S A2DE-W A2DE-SW

A1DE 12/0/0

A1DE-S 12/0/0 7/4/1

A1DE-W 12/0/0 8/2/2 6/1/5

A1DE-SW 12/0/0 9/1/2 6/1/5 5/6/1

A2DE 12/0/0 12/0/0 12/0/0 12/0/0 11/0/1

A2DE-S 12/0/0 12/0/0 12/0/0 12/0/0 12/0/0 7/4/1

A2DE-W 12/0/0 12/0/0 12/0/0 12/0/0 12/0/0 9/1/2 4/0/8

A2DE-SW 12/0/0 12/0/0 12/0/0 12/0/0 12/0/0 10/0/2 8/1/3 7/4/1

RF10 12/0/0 9/0/3 9/0/3 9/0/3 9/0/3 6/0/6 6/0/6 6/0/6 5/0/7

Medium Data Sets

NB A1DE A1DE-S A1DE-W A1DE-SW A2DE A2DE-S A2DE-W A2DE-SW

A1DE 18/1/0

A1DE-S 18/1/0 8/7/4

A1DE-W 18/1/0 15/2/2 13/3/3

A1DE-SW 18/1/0 14/2/3 15/2/2 7/10/2

A2DE 18/1/0 15/1/3 13/2/4 10/1/8 10/1/8

A2DE-S 17/2/0 15/1/3 14/2/3 11/1/7 10/1/8 8/7/4

A2DE-W 17/2/0 15/1/3 16/1/2 14/1/4 13/1/5 14/4/1 12/4/3

A2DE-SW 17/1/1 15/1/3 15/1/3 14/1/4 14/1/4 12/4/3 12/4/3 6/9/4

RF10 14/0/5 10/0/9 10/0/9 6/1/12 7/0/12 7/0/12 7/0/12 3/0/16 3/0/16

Small Data Sets

NB A1DE A1DE-S A1DE-W A1DE-SW A2DE A2DE-S A2DE-W A2DE-SW

A1DE 29/1/10

A1DE-S 29/1/10 17/21/2

A1DE-W 28/0/12 16/1/23 10/1/29

A1DE-SW 29/0/11 21/1/18 14/1/25 12/26/2

A2DE 29/1/10 22/2/16 16/2/22 28/0/12 26/0/14

A2DE-S 28/0/12 20/0/20 19/0/21 25/2/13 25/2/13 13/19/8

A2DE-W 24/0/16 17/0/23 16/0/24 20/3/17 20/2/18 18/3/19 12/6/22

A2DE-SW 25/0/15 17/0/23 17/0/23 20/2/18 20/2/18 19/2/19 15/6/19 12/21/7

RF10 16/0/24 13/0/27 11/0/29 13/1/26 12/1/27 10/0/30 9/1/30 10/1/29 8/1/31
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Fig. 2. Average 0-1 Loss results on 4 different collections of data sets normalized with
respect to NB. The error-bars are ordered in the same sequence as in the legend.
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Fig. 3. Average RMSE results on 4 different collections of data sets normalized with
respect to NB. The error-bars are ordered in the same sequence as in the legend.

3.3 Analysis of Classification and Learning Time

The average results of classification and learning time for all the compared tech-
niques are shown in figure 4. One can see that subsumption resolution can greatly
reduce A2DE’s classification time. While A2DE-S and A2DE-SW require only
slightly less training time on average than RF10, the training time complexity
of AnDE and its variants is linear with respect to data quantity while RF10’s is
super-linear, as shown by the difference between training times for all data and
for large data. The training time advantage would substantially increase if RF10
were applied to data that were too large to maintain in RAM. A2DE and its
variants require substantially more classification time than RF10, even with the
decreases introduced by subsumption resolution. However, it can be seen that
the classification time of RF10 is also super-linear with respect to training set
size, whereas AnDE’s is not. This is due to the size of the trees increasing as the
data quantity increases.

3.4 Code

The code of the methods proposed in this work can be obtained from the website,
https://sourceforge.net/projects/averagedndepend/.
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Fig. 4. Averaged Learning and Classification timing results normalized with respect
to NB. The error-bars are ordered in the same sequence as in the legend.

4 Conclusion

AnDE is a strong contender for learning from big data due to its capacity to learn
in a single pass through the training data, and consequent training time com-
plexity that is linear with respect to the number of training examples. Weighting
using mutual information and subsumption resolution have both previously been
demonstrated to be computationally efficient approaches to further reducing the
bias of A1DE. As low bias is desirable when learning from large data, it is im-
portant to assess the extent to which each of these approaches can reduce the
bias of A1DE’s lower bias sibling, A2DE. Further, it is important to assess the
extent to which these two approaches can augment one another.

The experimental evidence is conclusive. We confirm previous findings that
each technique reduces A1DE’s bias. We demonstrate that each technique is just
as effective at reducing A2DE’s bias as it is at reducing A1DE’s. We find further
that there is strong synergy between the two techniques and that they operate
in tandem to reduce the bias of both A1DE and A2DE more effectively than
does either in isolation. As is inevitable, these gains in bias come at a cost in
increased variance. This bias/variance trade-off can be expected to play out in
different error outcomes for different types of data. In particular, for big data,
where variance can be expected to be low, low bias can be expected to result
in low error [2]. Our experiments demonstrate that this expectation is born out
in practice, with both weighting and subsumption resolution reducing error on
the largest datasets significantly more often than not relative to standard A2DE
and with the two in tandem significantly often further reducing the error relative
to MI-weighting alone, and often, but not significantly so, further reducing the
error of subsumption resolution alone.

We compared A2DE with MI-weighting and subsumption resolution against
the state-of-the-art in-core learning algorithm Random Forest. Random Forest
is a lower bias algorithm. However, that bias advantage comes with a consider-
able variance disadvantage. Even for datasets with 10,000+ training examples
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Random Forest achieved lower error slightly less often than higher relative to
A2DE-SW.

Using only single-pass learning, A2DE with MI-weighting and subsumption
resolution achieves accuracy that is very competitive with the state-of-the-art
in in-core learning, making it a desirable algorithm for learning from very large
data.
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