
 1

Optimisation in the design of underground mine access 
 

M Brazil, D Lee, J H Rubinstein, D A Thomas, J F Weng and N C Wormald 
 
 
 

Submitted to:  
 
“Uncertainty and Risk Management in Orebody Modelling and Strategic Mine Planning”  
 
 
Contact author: 
 
J Hyam Rubinstein, 
Department of Mathematics and Statistics,  
The University of Melbourne, 
VIC 3010, 
Australia 
 
Phone: 61 3 8344 7887 
Fax: 61 3 8344 4599 
Email: H.Rubinstein@ms.unimelb.edu.au 



 2

Optimisation in the design of underground mine access 
 

M Brazil, 
ARC Special Research Centre for Ultra-Broadband Information Networks (CUBIN)*, 
Department of Electrical and Electronic Engineering,  
The University of Melbourne,  
Victoria 3010 
Australia 
 
D H Lee, 
Department of Mathematics and Statistics,  
TheUniversity of Melbourne,  
Victoria 3010 
Australia 
 
J H Rubinstein, 
Department of Mathematics and Statistics,  
TheUniversity of Melbourne,  
Victoria 3010 
Australia 
 
D A Thomas, 
ARC Special Research Centre for Ultra-Broadband Information Networks (CUBIN)*, 
Department of Electrical and Electronic Engineering,  
The University of Melbourne,  
Victoria 3010 
Australia 
 
J F Weng, 
ARC Special Research Centre for Ultra-Broadband Information Networks (CUBIN)*, 
Department of Electrical and Electronic Engineering,  
The University of Melbourne,  
Victoria 3010 
Australia 
 
N C Wormald, 
Department of Combinatorics and Optimisation,  
University of Waterloo,  
Waterloo ON N2L 3G1,  
Canada 

 

 

*  CUBIN is an affiliated program of National ICT Australia



 3

Optimisation in the design of underground mine access 

 

M. Brazil, D. Lee, J. H. Rubinstein, D.A. Thomas, J.F. Weng, and N.C. Wormald 

 

ABSTRACT 

 

Efficient methods to model and optimise the design of open cut mines have been known 

for many years. The design of the infrastructure of underground mines has a similar 

potential for optimisation and strategic planning.  

 

Our group has developed two pieces of software to tackle this problem - UNO 

(underground network optimiser) and DOT (decline optimisation tool) over the last 5 

years. The idea is to connect up a system of declines, ramps, drives and possibly shafts, to 

minimize capital development and haulage costs over the lifetime of a mine. Constraints 

which can be handled by the software include: gradient bounds (typically 1:7), turning 

circle restrictions for navigability, and obstacle avoidance. The latter constraint keeps 

development at stand off distances from ore bodies and ensures that it avoids regions 

which involve high cost, such as faults, voids and other geological features.  

 

The software is not limited to only interconnecting fixed points. It has the useful feature 

that a group of points can be specified such that the development is required to connect to 

one member of the group. So for example, if an existing ventilation rise must be accessed 

at some level, then a group of points along the rise can be selected. Similarly this gives 

the opportunity to use variable length crosscuts from a decline to an ore body. The latter 

gives important flexibility and can significantly reduce the development and haulage cost 

of a design.  

 

Finally the goals for the next phase of development of this project will be discussed, 

including speeding up the algorithms and allowing for heterogeneous materials, such as 

aquifers and faults, as additional costs rather than obstacles.  
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INTRODUCTION 

 

There are several different basic forms for the layout of an underground mine. An 

underground mine can be viewed as a collection of ramps and drives connecting various 

points of access at each required level of the ore bodies to a surface portal. From this 

viewpoint the mine can be modelled as a mathematical network in which the nodes 

correspond to the access points, the junctions and the surface portal and each link 

corresponds to the centre-line of  a ramp or drive. A mine containing a shaft together with 

ramps and drives for access and haulage can be modelled in a similar way. Other 

operational elements such as ore passes fit readily into such a description. If existing 

mine workings are to be extended to new ore deposits, a similar network can be 

constructed, connecting into the given structure at a convenient breakout point (or 

points). In all cases a major challenge for the mine designer is to construct a lowest cost 

feasible solution incorporating all operational constraints.  

 

Key navigability constraints for mining equipment and haulage trucks include a gradient 

bound, m, where m is usually between 1/9 and 1/7 for declines and ramps. Also a 

minimum turning circle for curved ramps needs to be specified. Typically it will be in the 

range of 15m to 30m, again depending on the equipment to be used in the mine.  

 

In addition,  the design  should take into account `no-go' regions that must not be 

intersected by the  ramps or drives. These would usually include a stand-off region 

around the ore body (to avoid sterilization of the ore body) and regions of severe faulting 

or other operational or geological anomalies.  

 

Moreover, future access to prospective new ore-zones may be included in the design. As 

more information becomes available, for example through in-fill drilling, designs may 

need to be modified. Having efficient software tools makes such updates much simpler 

and faster than previous approaches.  
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The Network Research Group, based at The University of Melbourne, has been 

developing techniques to find solutions to these design problems using new mathematical 

algorithms and software. In this paper, we will summarise our current methods and 

outline future plans to deal with extra geological features which are often encountered 

and to make the software faster and more flexible.  

 

UNO - UNDERGROUND NETWORK OPTIMISER  

 

Our first project involved optimising mine costs by developing a mathematical network 

model of an underground mine layout where the links of the network correspond to the 

basic mine components such as ramps, drives, ore passes and shafts. Although a ramp or 

drive is generally curved, if it has constant gradient which is as steep as possible without 

violating the gradient bound then its length can be computed from the coordinates of its 

endpoints alone. This means that in the network model we can assume each link is a 

straight-line segment whose length is computed via a suitably defined metric, known as 

the gradient metric. If the link has gradient no greater than the specified maximum value 

m, then the standard Euclidean length L is used; however if the link is a straight segment 

with gradient greater than m, then the standard Euclidean length is replaced by the 

expression  

2

1
1L z

m
= +  

where z is the vertical displacement between the two ends of the link. It can be shown 

that any feasible path between such endpoints with constant gradient m will have length 

given by this expression.  

 

The variable (that is, length-dependent) cost C associated with a ramp or drive of length L 

in metres, is given by a function of the form  

1 2( )C D H T H gT L= + +  

where D, 1H  and 2H  are operational constants, g is the gradient of the ramp or drive, and 

T is the total tonnage of ore to be transported along this section of the mine over the life 

of the mine. We can view the first term DL as the development cost for this component, 
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the second term 1H TL  as the haulage cost if we assumed the section of the mine was 

horizontal, and  the final term 2H gTL  as the haulage penalty associated with the 

gradient. In the case where the ramp or drive has maximum gradient m the cost function 

becomes  

2

1 2( ) 1C D H T H Tm z m−= + + + , 

where z is the vertical displacement between the two endpoints. 

 

A shaft with fixed surface portal (for simplicity), can be treated in the network model as a 

variable length vertical line segment with variable cost of the form 

( )S S SC D H T L= +  

where the constant SD  is the per metre cost of the shaft of variable length L, SH  is an 

operational constant associated with the haulage costs and T is again  the total  tonnage to 

be  hauled up the shaft over the life of the mine. We are also able to deal with cases 

where there is a choice of locations for the surface portal. 

 

The only significant variable costs associated with ore passes are their development costs 

which can be assumed to be proportional to length. 

 

Our mathematical algorithm  proceeds to find the least cost connected network of such 

components, where the cost of the network is the sum of the costs associated with the 

links of the network, as described above. This is implemented in a software product 

called UNO - Underground Network Optimizer. Note that the network has to join up the 

given access points on the ore body to the surface portal. Alternatively, for an extension 

of an existing mine, the new development may join to one member of a set of possible 

breakout points in the existing decline system.  

 

Mathematically, there are a number of key issues which need to be resolved to find an 

efficient algorithm to locate the least cost network. The topology of a network is the 

choice of segments of the network at the different junctions. In terms of the mathematical 

network, this specifies the pattern of connections in the network, or, equivalently,  the 
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network’s underlying graph structure. Classically,  such networks are called Steiner trees 

(see Hwang, Richards and Winter (1992) for a good general introduction to this topic). In 

the network, all access points of the ore-zones, and the surface portal or breakout point, 

are called terminals, and all additional junctions are referred to as Steiner points. At 

Steiner points there are three incident segments. Links with apparent gradient more than 

m are realized, in graphical representations of the network, as bent links (zigzags) with 

each straight line section in the zigzag at maximum gradient m. In the actual mine a bent 

link will correspond to a curved, possibly helical, drive with constant gradient m. For 

more details, see Brazil et al (2001a). 

 

A primary mathematical difficulty in constructing the optimal network is that the number 

of possible topologies grows extremely quickly with the number of terminals. So it is 

essential to have a very efficient method to find the least cost network for a given 

topology. We then use simulated annealing and genetic algorithm methods to 

systematically search through the huge number of possible networks.  

 

To find the least cost network with a fixed topology on the links, the idea is to use a 

descent method, perturbing the locations of the Steiner points. This is not straightforward 

since the gradient metric places considerable restrictions on  the ways in which Steiner 

points can move so that the length of the network is reduced. For example, if a link 

initially has gradient less than m, and after moving the Steiner points at its ends, the link 

has gradient more than m, then the cost function for the link changes. Making this 

problem tractable relies on a deep understanding of the geometric structure possible in a 

minimum Steiner Tree (Brazil et al, 2001a). Note that, for a large range of cost functions, 

the total cost of the network, with fixed topology, is a convex function of the positions of 

the Steiner vertices. See Brazil et al (in press). 

 

The development of UNO was inspired by a case study provided by WMC Ltd based on 

Olympic Dam (see Brazil et al, 2001b). An example of an application of UNO to another 

recent case study is shown in Figure 1. 
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INSERT FIGURE 1 HERE 

 

DOT - DECLINE OPTIMISATION TOOL 

 

More recently, in work done based on case studies with Normandy and Newmont 

Australia Limited, we have developed a Decline Optimisation Tool, DOT, described in 

Brazil et al (2003). We give a quick summary of the key features of DOT.  

 

The mathematical model consists of a surface portal or breakout point and a decline, 

which is modelled as a concatenation of straight and curved ramps, with variable length 

crosscuts attached at points which we again call Steiner vertices. We often assume that 

the crosscuts are perpendicular to the decline, although this condition can be varied. 

Moreover the crosscuts can access the orebody at a variable or fixed point on a given 

level. This extra flexibility can produce considerable savings in tightly constrained 

designs. 

 

The cost functions associated with the different components of the network are very 

similar to those given previously. The important constraints are curvature (turning circle) 

and gradient constraints. The latter are exactly as before; the minimum turning circle 

(radius of the helical or circular segments) is typically in the range 15m to 30m, 

depending on the haulage equipment to be used in the mine.  

 

Designing such a network so that it has optimal cost is an extremely difficult problem. In 

order to make the problem tractable, the algorithm focuses sequentially on each section 

between Steiner points where the initial and final directions of the path are determined in 

advance. Once a solution method has been developed for this modified problem, one can 

proceed with a dynamic programming methodology to solve the original problem, 

visiting the specified points and amalgamating the path entering a point and the one 

leaving it provided they have the same start and finish directions.  
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An abstract solution to the problem of finding minimal paths in three-dimensional space 

with given start and finish directions and a given minimal turning circle (but no gradient 

constraint) has been described in Sussman (1995). This solution, however, has the 

disadvantage of a continually varying gradient, which is an undesirable characteristic. It 

can be shown that if the additional constraint of an unchanging gradient is put on such a 

curve, then the shortest possibility is simply a segment of a circular helix. However if the 

gradient is both bounded and unchanging, then the shortest path consists of several 

helical and straight segments joined together smoothly. 

 

The program DOT has several features which produce a good heuristic algorithm for 

finding low cost feasible designs. DOT is able to combine several helical segments 

together with some inclined straight segments or flat circular arcs, where the joins are 

smooth. By this we mean that at the junction between two curves, the incoming direction 

of the first matches the outgoing direction of the second. DOT then searches amongst 

such combinations to try to reduce costs. 

 

DOT generates a three-dimensional image of the optimal decline’s centerline and strings 

of co-ordinates which may be loaded into standard mine graphics systems. 

 

 

OBSTACLES AND HIGH COST REGIONS 

 

Obstacle avoidance is implemented by cutting off solutions which pass through barriers 

and recomputing using additional prescribed points on the decline where such 

intersections arise. Standard methods of dynamic programming then enable a sequence of 

efficient feasible solutions to be joined smoothly at such points and the shortening device 

in the previous section applied to check if any cost reduction is possible.  

 

At present, highly faulted zones can only be treated as obstacles by our software. In the 

next phase of the project, to be conducted in conjunction with Newmont Australia 

Limited, our plan is to treat these regions as feasible regions but ones inducing extra 
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costs. Three different cases are highly fractured material, laminations and aquifers. In the 

first case, a law of cosines, similar to that for diffraction of light through materials of 

different density, gives a good method of treating the cost differential for extra 

reinforcement.  

 

In the second case of laminations, the preferred direction for drives is perpendicular to 

the planes of faulting. So a cost function needs to be chosen which is direction sensitive. 

In the final case of aquifers, there is an initial cost to incorporate a pumping facility for 

each crossing. In all cases, these additional costs need to be incorporated into the 

software algorithms DOT and UNO. 

 

SPEEDING UP DOT 

 

Ultimately our plan is to incorporate some features of UNO in DOT, so that simple tree 

networks with multiple branches can be analysed. A major problem to be overcome in 

this project, is to speed up DOT since such a program would involve a large number of 

computations of low cost declines. To completely integrate UNO and DOT may be 

impractical, due to the huge number of steps required in such a program. However using 

UNO to determine the overall structure of a low cost network and then using DOT to 

design segments of the network, should work very well for even the most complex design 

problems.  

 

 

Currently we have been studying how to construct paths which are several segments of 

helices, flat circular arcs or inclined straight lines, smoothly joined together. Our aim is to 

completely describe algorithms to find all least cost paths of this type, joining fixed initial 

and final terminals, with the initial and final directions also fixed. Then this can be 

inserted as a subroutine in DOT.  

 

Note that the least cost solutions for the corresponding problem in the plane (related to 

vehicle navigation) have been determined in a classical paper of Dubins (1957). 
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AN APPLICATION OF DOT 

 

This section illustrates the application of DOT to a small design example. The data  is 

based on a recent Newmont investigation into an extension of a gold mine. It describes a 

mine extension on 9 levels with vertical separations between different levels varying 

between 10 and 14metres.  

 

Two snapshots of the DOT generated decline centerline are shown in Figures 2 and 3. 

These figures show, respectively, a side view and plan view for the same design. The dots 

in the figures indicate the access points, at which the decline must meet the crosscuts. At 

two of the levels there are alternative access points nominated.  

 

 

INSERT FIGURE 2 HERE 

 

 

INSERT FIGURE 3 HERE 

 

 

An important capability of DOT is the facility to perform ‘what-if’ testing of alternative 

designs. While not part of the original Newmont exercise, the following table indicates 

the cost variation of this design as the turning radius is varied from the original 25metres 

to span the range 20m to 30m over 2.5m intervals. These values were simply generated 

by a single parameter change at run time. The cost referred to is the sum of development 

plus haulage through this segment of the decline 

 

Min. turning radius 20 22.5 25 27.5 30 

Cost (A$million) 3.32 3.75 3.93 4.35 4.60 
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The table illustrates the design is fairly sensitive to the nominated minimum turning 

radius and the changes are not linear – there may well be mine regimes where there is 

little change in cost for a larger radius and on the other hand very significant changes 

near certain critical values. DOT provides a means of testing designs for this sensitivity. 

Figure 4 below illustrates (in plan view) the design corresponding to a 30m turning 

radius; it is qualitatively similar to the 25m radius design in Figure 3 but significantly 

more expensive. 

 

INSERT FIGURE 4 HERE 

 

 

The versatility of DOT has been further demonstrated by Carter, Lee and Baarsma 

(2004), who apply the program to design and cost the infrastructure to serve a nominated 

tabular ore-body mined by the Open Stope method. 
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FIGURES 
 
 
 
 

Figure 1: This figure, from a live case study, illustrates the capacity of UNO to 
design an optimal network extending an existing mine and accessing new 

orebodies. 

 Existing 
decline 

Optimised new development 
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Figure 2 
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Figure 2  Figure 3 
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Figure 3  Figure 4 


