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Abstract

We introduce a new method of generating random d-regular graphs by repeatedly apply-

ing an operation called pegging. The pegging operation is abstracted from a type of basic

operation applied in a type of peer-to-peer network called the SWAN network. We prove

that for the resulting graphs, the limiting joint distribution of the numbers of short cycles

is independent Poisson. We also use coupling to bound the rate at which the distribution

approaches its limit. The coupling involves two different, though quite similar, Markov chains

that are not time-homogeneous.

1 Introduction

Random regular graphs have recently arisen in a peer-to-peer ad-hoc network, called the SWAN
network, introduced by Bourassa and Holt [2]. In the SWAN network, clients arrive and leave ran-
domly. The network maintains the underlying topology as a d-regular graph by using an operation
called “clothespinning” (for arriving clients), and its reverse (for clients leaving). Clothespinning
consists of deleting two links of the network and joining all four incident nodes to the newly arrived
node, which can also be thought of pictorially as pinning the two links together at their midpoints
using the new node. Occasionally some other adjustments are also required to repair the network
when these operations cannot cope. For instance, when a client leaves and its neighbours already
have many links between them, the reverse of clothespinning might cause multiple links between
two nodes.

After a sequence of such operations applied randomly, the result is a random graph whose
distribution is not fully understood. Bourassa and Holt found experimentally that it has good
connectivity and diameter properties. More recently, Cooper, Dyer and Greenhill [3] defined a
Markov chain on d-regular graphs with randomised size to model (a simplified version of) the SWAN
network. The moves of the Markov chain are by clothespinning or the reverse. They showed that,
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restricted to the times when the network has a certain size, the stationary distribution is uniform,
and they bounded the mixing time of the chain.

In this paper, we introduce the pegging algorithm to generate random d-regular graphs for
constant d. The pegging algorithm simply repeats clothespinning (which we call pegging) operations,
without performing the reverse. We will focus mainly on even d, in which case a pegging operation
can be visualised as binding the middles of d/2 nonadjacent edges together using a new vertex.
Thus the size of the graph increases linearly with the number of operations. This gives an extreme
version of the SWAN network, in which no client ever leaves the network. Since the analysis of [3]
does not apply if the network undergoes net long-term growth, by studying this extreme case we
hope to gain knowledge of which properties of the random SWAN network are not sensitive to
long-term growth.

We will study the joint distribution of short cycle counts in the random d-regular graph generated
by pegging, for any d ≥ 3. This is the most interesting small subgraph feature of most models
of random regular graphs, since they look locally like trees. We will find that the distribution
is quantitatively different from, but qualitatively very similar to, the model of random d-regular
graphs with uniform distribution, for which the short cycle joint distribution is independent Poisson,
first derived independently by Bollobás [1] and the second author [10]. Besides using the method of
moments to obtain the limiting distribution, we use an application of coupling to bound the rate of
convergence to the limiting distribution. Coupling has often been used in combinatorics in a Markov
chain setting, where two copies of the same time-homogeneous Markov chain are coupled. In our
application, we couple two different Markov chains, which has some similarity to the introductory
application of coupling in [5] concerning the Poisson distribution.

The pegging algorithm provides a natural and very efficient way of generating random regular
graphs. How to generate random d-regular graphs with the uniform probability distribution is a
topic that has attracted considerable attention. It is only known how to do this efficiently when d is
fairly small [6]. On the other hand, there are natural algorithmic approaches to generating random
regular graphs, such as the d-process [9], and d-star-process [7, 8]. These do not generate d-regular
graphs uniformly, but asymptotically almost surely terminate with a graph that is d-regular.

The pegging algorithm is defined in general in the next section, and our main results are stated
there. The rest of the paper is mainly devoted to proofs. Some basic results about the moments
of the short cycle counts for the case d = 4 are proved in Section 3, rate of convergence results are
proved in Section 4, and the arguments are generalised to arbitrary d ≥ 3 in Section 5. The final
section has further discussion and a conjecture on the similarity between the graphs obtained by
this model and the uniformly random d-regular graphs.

2 Main Results

In this section we define the pegging algorithm and give our main results. We define the pegging
operation on a d-regular graph, where d is even, as follows.

Pegging Operation for Even d
Input: a d-regular graph G, where d is even.

Choose a set E1 of d/2 pairwise non-adjacent edges in E (G) u.a.r.
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Let {u1, u2, . . . , ud} denote the vertices incident with edges in E1.
V (H) := V (G) ∪ {u}, where u is a new vertex.
E(H) := (E(G) \ E1) ∪ {uu1, uu2, uu3, . . . , uud}.

Output: H .

The newly introduced vertex u is called the peg vertex, and we say that the edges deleted are pegged.
Figure 1 illustrates the pegging operation with d = 4.

Figure 1: Pegging operation when d = 4

It is immediate that the graph outputted by the pegging operation is also d-regular. (There is
some question as to whether the operation is well defined: does every nonempty d-regular graph
have a set of d/2 independent edges when d is even? It is easy to see that the answer is yes, by a
greedy algorithm.)

The pegging algorithm starts from a nonempty d-regular graph G0 (d ≥ 4 and even), for example,
Kd+1, and repeatedly applies pegging operations. For t > 0, Gt is defined inductively to be the
graph resulting when the pegging operation is applied to Gt−1. Clearly, Gt contains nt := n0 + t
vertices. We denote the resulting random graph process (G0, G1, . . .) by P(G0), or P(G0, d) if we
wish to specify the degree d of the vertices of G0.

The SWAN network used in practice has d = 4. For this reason and simplicity of notation, we
treat this case separately. Here, the algorithm starts from a 4-regular graph G0 with n0 vertices.
At each step, it randomly chooses two non-adjacent edges, deletes them, and joins a newly created
vertex to the four end vertices of the deleted edges. Thus Gt contains 2nt edges.

Let Yt,k denote the number of k-cycles in Gt. Note that initially, the number of triangles might
be as big as 2n0. However, as we will show later, in such an extreme case, EYt,3 will decrease
quickly in the early stage of the algorithm.

For k ≥ 3 we define

µk =
3k − 9

2k
. (2.1)

Theorem 2.1 Let G0 and k ≥ 3 be fixed. Then in P(G0, 4),

EYt,k = µk + O
(
n−1

t

)
.

Moreover, in P(G0, 4) the joint distribution of Yt,3, . . . , Yt,k is asymptotically that of independent
Poisson variables with means µ3, . . . , µk.
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Let σ and π be probability distributions on the same countable set (state space) S. The total
variation distance between σ and π is defined as

dTV (σ, π) = max
A⊂S

{σ(A) − π(A)} . (2.2)

Equivalently,

dTV (σ, π) =
1

2

∑

x∈S

| σ(x) − π(x) | .

Let 0 < ǫ < 1. The standard definition of the mixing time τ(ǫ) of a Markov chain with state
space S is the minimum time t, such that after t steps, the total variation distance between P t

x ,
the distribution at time t starting from state x, and the stationary distribution π, is at most ǫ.
Formally,

τ(ǫ) = max
x∈S

min{T : dTV

(
P t

x , π
)
≤ ǫ for all t ≥ T}.

In practice, for mixing time results one chooses ǫ = 1/4 say, and obtains results such as “the
mixing time is O(n log n),” referring to structures of size n and for the fixed value of ǫ. This makes
sense because of the fact that for a fixed time-homogeneous Markov chain, τ(ǫk) is well estimated
by kτ(ǫ). In other words, this sort of Markov chain usually has mixing time as that is logarithmic
in 1/ǫ. So in such cases it is more interesting to study the mixing time as a function of n rather
than as a function of the variable ǫ. Slow mixing, such as exponential mixing time, usually refers
to the mixing time as an exponential function of n, rather than 1/ǫ. However, there are several
differences in our case. Firstly, this random process is not time-homogeneous, since the transition
probability from Yt,k to Yt+1,k depends on the time t. So we might not (and would not expect
to) get logarithmic “mixing time,” as is usual for a finite state Markov chain when the mixing
time is viewed as a function of ǫ. The fact that the size of our structures is growing is a further
complicating factor. Indeed, the random process (Yt,k)t≥0, for some constant k, is not a Markov
chain, since the distribution of Yt,k depends not only on Yt−1,k, but also on the underlying graph
Gt−1, and as a result is not independent of Yt−2,k given Yt−1,k. Instead, we wish to consider the total
variation distance between the distribution of the random variable Yt,k and the limiting distribution
of Yt,k (if it exists). With these considerations in mind, we define ǫ-mixing time in a general way
as follows. Let (σt)t≥0 be a sequence of distributions which converge to the distribution π∗

k. The
ǫ-mixing time of (σt)t≥0 is

τ ∗
ǫ

(
(σt)t≥0

)
= min{T ≥ 0 : dTV (σt, π

∗
k) ≤ ǫ for all t ≥ T }. (2.3)

We now focus on a particular sequence of distributions. For any fixed k, let σt,k denote the joint
distribution of Yt,3, . . . , Yt,k. Our second main result is to show that the ǫ-mixing time of (σt,k)t≥0

is O(1/ǫ).

Theorem 2.2 For fixed G0 and k ≥ 3, the ǫ-mixing time of the sequence of short cycle joint
distributions in P(G0, 4) satisfies

τ ∗
ǫ

(
(σt,k)t≥0

)
= O

(
ǫ−1
)
.

4



We also extend these results to arbitrary integers d ≥ 3. First, the pegging operation for d-
regular graphs was only defined for d even, and we need to extend it to the case of d odd. This is
as follows, illustrated in Figure 2 for d = 3.

Pegging Operation for Odd d
Input: a d-regular graph G, where d is odd.

1. Let c := ⌊d/2⌋ and choose a set E1 = {u1u2, u3u4, . . . , u2c−1u2c}
of c pariwise non-adjacent edges in E(G) u.a.r., and another set
E2 = {u2c+1u2c+2, . . . , u4c−1u4c} of c pairwise non-adjacent edges
in E(G) \ E1 u.a.r.

2. G := (G \ (E1 ∪ E2)) ∪ {u, v} ∪ E3 ∪ {uv}, where u and v are new vertices
added to V (G), and E3 = {uu1, . . . , uu2c, vu2c+1, . . . , vu4c}.

3. Output: G.

Figure 2: Pegging operation when d = 3

The definition of P(G0, d) is now extended to odd integers d in the obvious way. Let Yt,d,k be
the number of k-cycles in Gt ∈ P(G0, d) and σt,d,k be the joint distribution of Yt,d,3, Yt,d,4, . . . , Yt,d,k.
We derive the following generalised result.

Theorem 2.3 For fixed k ≥ 3, any integer d ≥ 3, and fixed initial d-regular graph G0,

EYt,d,k =
(d − 1)k − (d − 1)2

2k
+ O

(
n−1

t

)
.

Moreover

(i) Yt,d,3, Yt,d,4, . . . , Yt,d,k have a limiting joint distribution equal to that of independent Poisson
variables with means µd,3, µd,4, . . . , µd,k, where µd,i = ((d − 1)i − (d − 1)2)/(2i) for any fixed
integer i ≥ 3,

(ii) the ǫ-mixing time satisfies τ ∗
ǫ

(
(σt,d,k)t≥0

)
= O (ǫ−1).

Couplings are often used to estimate the mixing time of a Markov chain, by bounding the
distance between the distribution of the Markov chain with a given initial state, and a copy of the
same chain beginning with the stationary distribution. However, we will need to estimate the total
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variation distance of the distributions derived from two different random processes, not just two
copies of the same Markov chain.

A coupling of two random variables X1 and X2 (not necessarily defined on the same probability
space) is a pair (Y1, Y2) of variables defined on a probability space such that the marginal distribution
of Yi is the distribution of Xi (for i = 1 and 2). With only a slight abuse of notation, this random
pair is sometimes written as (X1, X2), and the coupling can be described as a construction of copies
of X1 and X2 in a common probability space. We require that X1 and X2 have the same state
space (range). Lindvall [5, pp. 9–12] gave a more elaborate definition of coupling that is equivalent
for our purposes, and gave a corresponding general coupling lemma which we may state as follows.

Lemma 2.1 Let (X1, X2) be a coupling and let σi denote the distribution of Xi. Then

dTV (σ1, σ2) ≤ P(X1 6= X2).

If (Xt)t≥0 and (Yt)t≥0 are two random processes in the same state space, a random process
(
(Xt, Yt)

)
t≥0

is a coupling of the two processes if (Xt, Yt) is a coupling of Xt and Yt for all t ≥ 0.

3 Factorial moments of short cycle counts

We begin with a simple technical lemma that will be used several times.

Lemma 3.1 Let (an)n≥1 be a sequence of nonnegative real numbers, and let c > 0, and p 6= c + 1,
be constants. If

an+1 =
(

1 −
c

n
+ O(n−2)

)
an + O(n−p),

then an = O(nδ) for all n ≥ 1, where δ = max{−c,−p + 1}.

Proof. We have
an+1 = exp

(
−

c

n
+ O(n−2)

)
an + O(n−p).

Iterating this gives

an = a1 exp

(
−

n−1∑

i=1

c

i
+ O(i−2)

)
+

n−1∑

i=1

exp

(
−

n−1∑

j=i+1

c

j
+ O(j−2)

)
O(i−p)

= a1 exp (−c log n + O(1)) +

n−1∑

i=1

exp
(
−c log(n/i) + O(i−1)

)
O(i−p)

= O(n−c) +

n−1∑

i=1

(
ic

nc

)
O(i−p)

= O(nδ).

To show that Yt,3, Yt,4, . . . , Yt,k are asymptotically independent Poisson random variables, it
is enough, by the method of moments, to check that their moments are asymptotic to those of
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independent Poisson random variables with fixed means. We will first prove several lemmas, which
give the first and higher moments of Yt,k for any fixed k.

The notations O() occurring in the following lemma and subsequently are defined as follows:
for each occurrence of the notation O(f), where f is a function of t and G0, . . . , Gt, there exists
a constant C, depending only on n0 and k, such that the term denoted O(f) is at most C|f |. In
particular, this is for all t in the following.

Lemma 3.2 For k ≥ 3,
EYt,k = µk + O

(
n−1

t

)
.

Proof. Our analysis is based on the underlying graph Gt produced in step t. For step t + 1, two
non-adjacent edges e1 and e2 are chosen in the pegging operation. There are 2nt choices for e1, and
then 2nt − 7 choices for e2 to be non-adjacent to e1. So the number of ways to choose an ordered
pair (e1, e2) is 2nt (2nt − 7), and hence the total number of ways to do a pegging operation in step
t + 1 is

Nt =
2nt (2nt − 7)

2
= nt (2nt − 7) . (3.1)

We prove by induction that, for k fixed, EYt,k = µk + O(n−1
t ) for all t ≥ 0. Note that in the

inductive hypothesis, the notation O() implicitly contains a constant that depends on k. For the
base case, we consider k = 3.

For this and many similar calculations, to estimate the expected change in a variable counting
copies of some subgraph, we consider the number of copies of the subgraph created in one step,
and separately subtract the number destroyed. In particular, if a subgraph contains either of the
pegged edges, it is destroyed.

We need to consider the creation of a new triangle. Given an edge e of Gt not in a triangle, a new
triangle is created containing e if and only if the two pegged edges e1 and e2 are both adjacent to
e. Of course, in view of the definition of pegging, they must be incident with different end-vertices
of e. Since Gt is 4-regular, the number of ways to choose such e1 and e2 is precisely 9. Note also
that only one edge of a given new triangle was already present in Gt. It follows that the expected
number of new triangles created is at least 9 (2nt − 3Yt,3) /Nt, with Nt given above. An obvious
upper bound is 9 · 2nt/Nt.

To destroy a triangle, either e1 or e2 must lie in the triangle, and there are of course 2nt − 7
choices for another edge to be pegged. So for each triangle in Gt, the probability that it is destroyed
is 3 (2nt − 7) /Nt. Thus, the expected number of existing triangles destroyed is 3Yt,3 (2nt − 7) /Nt =
3Yt,3/nt.

It follows that the expected value of Yt+1,3 − Yt,3, given Gt, satisfies

18

2nt − 7
−

3Yt,3

nt

(
1 +

9

2nt − 7

)
≤ E (Yt+1,3 − Yt,3 | Gt) ≤

18

2nt − 7
−

3Yt,3

nt
.

Thus

E (Yt+1,3 | Gt) =

(
1 −

3 + O(n−1
t )

nt

)
Yt,3 +

9

nt

+ O
(
n−2

t

)
. (3.2)
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Taking expectation of both sides and applying the Tower Property of conditional expectations, we
obtain

E Yt+1,3 =

(
1 −

3 + O(n−1
t )

nt

)
E Yt,3 +

9

nt
+ O

(
n−2

t

)

where the O() terms are to be read as stated prior to the lemma statement, and in particular they
are independent of G0, . . . , Gt. Putting λt,3 = E(Yt,3 − 3) gives

λt+1,3 =

(
1 −

3

nt

)
λt,3 + O

(
1 + λt,3

n2
t

)
.

Applying Lemma 3.1, we have λt,3 = O(n−1
t ) and hence EYt,3 = 3 + O(n−1

t ). This establishes the
base case of the induction, i.e. for k = 3.

Now assume the inductive hypothesis is true of all integers smaller than k. There are two ways
that one pegging operation can create a k-cycle. The first way occurs when two non-adjacent edges
are pegged such that some (k − 1)-cycle contains exactly one of them. The expected number of
k-cycles created in this way is

(k − 1)Yt,k−1(2nt − k − 3)

Nt

.

The second way occurs when the two end edges of a k-path are chosen for pegging. The number of
paths of length k in Gt starting from a fixed vertex v is at most 4 · 3k−1, so the number of k-paths
in Gt is at most 2 · 3k−1nt. This counts all walks of length k that do not immediately retrace a
step, so is an over-count due to repeated vertices in the cases that the walk contains at least one
cycle. There are

∑k
i=1 Yt,i cycles of size at most k in Gt. If we pick an edge in each of those cycles

and exclude all walks containing the selected edges, we have an upper bound on the number of
walks counted that are not paths. The number of selected edges is at most

∑k
i=1 Yt,i, and each edge

is contained in at most k3k−1 walks. So Gt contains at least 2 · 3k−1nt − k3k−1
∑k

i=1 Yt,i different
k-paths. Thus the expected number of k-cycles created in this way, given Gt, is

2 · 3k−1nt + O
(∑k

i=1 Yt,i

)

Nt

.

Note that Nt = 2n2
t (1 +O(n−1

t )) and, by induction, E Yt,i = O(1) for i < k. It thus follows from
the two cases above that the expected number of new k-cycles created in going from Gt to Gt+1 is

3k−1 + (k − 1)EYt,k−1

nt
+ O

(
1 + EYt,k

n2
t

)
.

Similar to the case of k = 3, given Gt, a given k-cycle is destroyed if and only if some edge
contained in the k-cycle is pegged. The probability for that to occur is k(2nt−7)/Nt−k(k−3)/(2Nt),
where k(k−3)/(2Nt) accounts for the over-counting in the first term when both pegged edges are in
the k-cycle. Hence the expected number of k-cycles destroyed is kYt,k/nt + O(Yt,k/n

2
t ). Combining

the creation and destruction cases, we find that

EYt+1,k −EYt,k =
3k−1 + (k − 1)EYt,k−1 − kEYt,k

nt

+ O

(
1 + EYt,k

n2
t

)
(3.3)
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By induction, EYt,k−1 = µk−1 + O(n−1
t ), so

EYt+1,k =

(
1 −

k

nt
+ O(n−2

t )

)
EYt,k +

3k−1

nt
+

(k − 1) EYt,k−1

nt
+ O(n−2

t )

=

(
1 −

k

nt

+ O(n−2
t )

)
EYt,k +

3k−1

nt

+
k − 1

nt

(
3k−1 − 9

2
+ O(n−1

t )

)
+ O(n−2

t )

=

(
1 −

k

nt
+ O(n−2

t )

)
EYt,k +

kµk

nt
+ O(n−2

t ).

Letting λt,k = EYt,k − µk gives

λt+1,k =

(
1 −

k

nt

)
λt,k + O

(
1 + λt,k

n2
t

)
,

and so by Lemma 3.1, we have λt,k = O(n−1
t ), and hence EYt,k = µk + O(n−1

t ) for any constant
k ≥ 3. Lemma 3.2 follows.

Define Ψ(i, r) to be the set of graphs with i vertices, minimum degree at least 2, and excess r,
where the excess of a graph is the number of edges minus the number of vertices. Define Wt,i,r to
be the number of subgraphs of Gt in Ψ(i, r).

For the following lemma the constants implicit in O() depend on i.

Lemma 3.3 For fixed i > 0 and r ≥ 0,

EWt,i,r = O(n−r
t ).

Proof. We prove by induction on r and i. Any graph in Ψ(i, r) contains at least one cycle since
it has minimum degree at least 2. Thus Ψ(i, r) = ∅ for i = 1, 2. The base case is r = 0 and i = 3.
So H ∈ Ψ(3, 0) is a triangle. Hence The base case holds by Lemma 3.2.

Assume Wt,i−1,0 = O(1) for any i ≥ 4. Let H be any graph in Ψ(i, 0). Since the excess of H is
a 0, every component of H is a cycle.

We bound the expected number of subgraphs in Ψ(i, 0) created when going from Gt to Gt+1.
We omit some simple details that are virtually the same as those in the proof of Lemma 3.2. We
also note that for any fixed i, |Ψ(i, 0)| < ∞, namely, there are only finitely many graphs in Ψ(i, r).

As in the proof of Lemma 3.2, by linearity of expectation we can deal separately with the
expected numbers of subgraphs created and destroyed in a single step. Any new subgraph, which
is a union of cycles, in Ψ(i, 0) can be created either by pegging an edge of a short cycle with any
other edge (to make a cycle with length increased by 1), or by pegging together the end edges of a
short path.

Case 1: One edge in a graph H ′ in Ψ(i − 1, 0) is pegged. (Hence one cycle in H ′ get longer.)
Since each H ′ ∈ Ψ(i − 1, 0) contains i − 1 vertices, thus i − 1 edges, there are O(Wt,i−1,0) ways to
choose an edge contained in Ψ(i − 1, 0) and at most 2nt choices for the other edge to be pegged.
The expected number of Ψ(i, 0) arising this way is O(Wt,i−1,0/nt). By the inductive hypothesis
that EWt,i−1,0 = O(1), the total expected number of graphs created in Ψ(i, 0) due to this case is
O(1/nt).
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Case 2: A new cycle of size at most i is created by pegging two edges within distance i, which,
together with a graph in Ψ(i′, 0) for some i′ < i will form a new graph in Ψ(i, 0). There are
O(nt) paths of length at most i. So the expected number of Ψ(i, 0) created this way is at most
O(Wt,i′,0/nt). The number of choices of i′ < i is bounded. So summing over all possible value of i′,
and again by induction, the total contribution from this case is O(1/nt).

Since subgraphs are destroyed if they contain a pegged edge, the expected number of graphs in
Ψ(i, 0) destroyed is at least Wt,i,0/nt.

Putting it all together, we have

EWt+1,i,0 ≤

(
1 −

1

nt

)
EWt,i,0 + O(n−1

t ).

and hence EWt,i,0 = O(1) for by Lemma 3.1. By induction, we obtain EWt,i,0 = O(1) for any i ≥ 3.

Next we fix any r ≥ 1, and i ≥ 3, and assume that EWt,j,r−1 = O(n
−(r−1)
t ) for any j ≥ 3 and

EWt,j,r = O(n−r
t ) for any j ≤ i.

We use the same procedure to prove EWt,i,r = O(n−r
t ). Consider the expected number of

subgraphs in Ψ(i, r) created in going from Gt to Gt+1, treating separate cases for creation as above.

Case 1: Similar to the first case above, a subgraph in Ψ(i, r) arises from a subgraph in Ψ(i− 1, r),

so by induction, we have the total contribution as O(EWt,i−1,r/nt) = O(n
−(r+1)
t ).

Case 2: One subcase is that the end edges of a path of length at most i are pegged, which will
convert some graph in Ψ(i′, r) to one in Ψ(i, r), where i′ < i. The only other case is that the
edges pegged are both within distance i of some graph in Ψ(j′, r − 1), where j′ < i. For any
fixed subgraph of Gt in Ψ(j′, r − 1), there are only finite many choices for two such edges to be
pegged. So the expected increase in this case will be a sum of a finite number of terms of the form
O(Wt,i′,r/nt) + O(Wt,j′,r−1/n

2
t ). By induction, EWt,i′,r = O(n−r

t ) and EWt,j′,r−1 = O(n
−(r−1)
t ), and

again the total contribution from this case is O(n
−(r+1)
t ).

Analogous to the case of Ψ(i, 0), for the expected number of subgraphs in Ψ(i, r) destroyed in
a single step is at least Wt,i,r/nt. Thus

EWt+1,i,r ≤

(
1 −

1

nt

)
EWt,i,r + O(n

−(r+1)
t ).

Hence EWt,i,r = O(n−r
t ) by Lemma 3.1.

In later arguments, we especially need to bound the number of subgraphs consisting of two
distinguished cycles and sharing at least one edge. Of course the number of such subgraphs is
bounded above by

∑2k
i=1 Wt,i,1, where k is length of the longer cycle given. Define W ∗

t,k =
∑2k

i=1 Wt,i,1.

Since EWt,i,1 = O(n−1
t ), and the summation is taken over finitely many values of i, the following

comes immediately from Lemma 3.3.

Corollary 3.1 EW ∗
t,k = O(n−1

t ).

Gearing up for the proof of Theorem 2.1, we next give some simple lemmas bounding some rare
events. Let Y

(l)
t := (Yt,3, Yt,4, . . . , Yt,l). In the following lemmas, the choice of the norm ‖Y

(l)
t ‖ does

not change the strength of the statement, and one may for instance settle on the L∞ norm.
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Lemma 3.4 Fix the graph Gt. For any fixed k ≥ 3, the probability that more than one cycle of
length at most k + 1 in Gt+1 contains the peg vertex is O(‖Y

(2k)
t ‖2/n2

t + W ∗
t,k/nt).

Proof. There are several cases to consider. The first case is that one edge pegged is contained in
more than one cycle of length at most k, so that at least two cycles of length at most k will pass
through the peg vertex. Since the subgraph consisting of two cycles of length at most k sharing
common edges is involved, the probability this happens is at most O(W ∗

t,k/nt). The second case is
that one edge pegged is contained in a cycle of length at most k, and the other edge pegged is of
distance at most k from the first edge. In this case, a new cycle is created using the path joining the
pegged edges. There are at most O(‖Y

(k)
t ‖) ways to choose the first edge, and for each such choice,

there are at most 2dk = O(1) ways to choose the second edge. So the probability that this case

happens is O(‖Y
(k)
t ‖/n2

t ). The third case is that the two edges pegged are both contained in some

cycle of length at most 2k. The probability this happens is O(‖Y
(2k)
t ‖/n2

t ), since there are at most

O(‖Y(2k)
t ‖) ways to choose such two edges. The fourth case is that each of the two edges pegged

is contained in a cycle of length at most k. The probability for this to happen is O(‖Y
(k)
t ‖2/n2

t ).
Then Lemma 3.4 follows.

We will use Lemma 3.4 to show that the only significant things that can happen with respect to
short cycles are (a) an edge of a short cycle is pegged and no other cycles are created or destroyed,
or (b) a short cycle is created by pegging the ends of a short path and no other short cycles are
created or destroyed.

Note that a cycle is destroyed only if at least one of its edges is pegged. So to create or destroy
more than one k-cycle in one step, there must be at least two cycles of length at most k + 1
containing the peg vertex. Hence the following result comes immediately from Lemma 3.4.

Corollary 3.2 P(|Yt+1,k − Yt,k| > 1 | Y
(2k)
t , W ∗

t,k) = O
(
‖Y

(2k)
t ‖2/n2

t + W ∗
t,k/nt

)
.

By taking expectation of both sides of the equation in the statement of Lemma 3.2, and by
Lemma 3.2 and Corollary 3.1, we have the following corollary.

Corollary 3.3 P(|Yt+1,k − Yt,k| > 1) = O (1/n2
t ).

Similarly, we may bound the simultaneous creation and destruction of cycles, except for a special
case. (The following bounds are sufficient for our purposes and can easily be improved by examining
the cases in the proof of Lemma 3.4.)

Corollary 3.4 For any fixed integers l1, l2 ≥ 3, such that l1 6= l2 + 1, the probability of creating a
new l1-cycle and simultaneously destroying an existing l2-cycle in the same step is O(‖Y

(k)
t ‖2/n2

t )+
O(W ∗

t,k/nt), where k = max{l1, l2}.

Proof. The peg vertex is contained in the l1-cycle that is created, and also in at least one of the
edges in the l2-cycle that is destroyed. If only one edge in this l2-cycle is pegged, then a new (l2 +1)-
cycle is created which contains the peg vertex. Since l1 6= l2 +1, the peg vertex is contained in both
the l1-cycle and the (l2 + 1)-cycle. By Lemma 3.4, this happens with probability O(‖Y

(k)
t ‖2/n2

t ) +
O(W ∗

t,k/nt). If two edges in this l2-cycle are pegged, then two short cycles containing the peg vertex
and the rest of the edges of this l2-cycle are created. By Lemma 3.4, this happens with probability
O(‖Y

(k)
t ‖2/n2

t ) + O(W ∗
t,k/nt). Thus Corollary 3.4 follows.
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Next we check the moments E[Yt,3]j of Yt,3, for any fixed j ≥ 0. We set Yt,2 = 0 for any t, since
the random graph generated is simple.

Lemma 3.5 For any fixed nonnegative integer j,

lim
t→∞

E([Yt,3]j) = 3j .

Proof. The proof is by induction on j. Lemma 3.2 shows that lim
t→∞

E([Yt,3]1) = 3. So we may

assume that j ≥ 2 and E([Yt,3]j−1) → 3j−1.
Instead of calculating [Yt,3]j directly, we will calculate [Yt,3]j/j!, which is the number of j-sets

of distinct i-cycles. We first consider the creation of a new j-set of triangles in moving from Gt

to Gt+1, beginning with the j-sets that use an existing (j − 1)-set of triangles, together with one
newly created triangle.

We know that the expected number of triangles created at step t is 9/nt + O(Yt,3)/n
2
t . Each

such new triangle creates a new j-set with each (j − 1)-set of existing triangles except for those
that simultaneously have one of their triangles destroyed. So the expected number of new j-sets
created this way is

(
9 + O(Yt,3/nt)

nt

)
[Yt,3]j−1

(j − 1)!
+ O

(
Y 2

t,3

n2
t

+
W ∗

t,3

nt

)
[Yt,3]j−1

(j − 1)!
.

Here, the first term arises from the assumption that no existing triangles in the (j − 1)-set are
destroyed when the new triangle is created. The second, purely error term bounds the expected
number of j-sets counted in the main term that should be discounted because, simultaneously with
the new triangle being created, one of the triangles in the existing (j − 1)-set is destroyed. The
factor O(Y 2

t,3/n
2
t + W ∗

t,3/nt) comes from Corollary 3.4 for the probability of simultaneously creating
and destroying triangles, and is multiplied by a bound on how many (j−1)-sets of existing triangles
can contain one of the (bounded number of) triangles destroyed.

There are also j-sets that include more than one newly created triangle. It is straightforward
to check that in one step it is possible to create at most four triangles, and destroy at most six. By
Corollary 3.2, the probability of creating more than one triangle in one step, given Yt,3 and Yt,4, is

O(‖Y
(4)
t ‖2/n2

t + W ∗
t,3/nt). Hence, the expected number of new j-sets created this way is at most

O

(
‖Y

(4)
t ‖2

n2
t

+
W ∗

t,3

nt

)
6∑

i=2

[Yt,3]j−i

(j − i)!
.

Note that W ∗
t,3[Yt,3]j−i is bounded above by Wt,3(j−i)+4,1 (representing the structures that come

from the union of a structure in a Ψ(3(j − i) + 4, 1) ). By Lemma 3.3 the expected number of such
complex structures of bounded size is O(n−1

t ). Thus, using also the first part of Lemma 3.3,

E

((
Y 2

t,3

n2
t

+
W ∗

t,3

nt

)
[Yt,3]j−2

)
= O(n−2

t ),

E

(
O

(
‖Y(4)

t ‖2

n2
t

+
W ∗

t,3

nt

)
6∑

i=2

[Yt,3]j−i/(j − i)!

)
= O(n−2

t ).
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Now consider destroying an existing j-set. Firstly, assuming the j triangles are disjoint, then
pegging any edge contained in those edges with any other non-adjacent edge will destroy the j-set.
It follows that the expected number of j-sets being destroyed, given Yt,3, is

3j[Yt,3]j/j!

nt
+
∑

i′≤3j

O(Wt,i′,1)

nt
.

The error term O(Wt,i′,1/nt) accounts for the case that the j-set of triangles share some common
edges. So by Lemma 3.3

E

(
∑

i′≤3j

O(Wt,i′,1)

nt

)
= O(n−2

t ).

Thus

E([Yt+1,3]j/j!) − E([Yt,3]j/j!) =

(
9 + O(n−1

t )

nt

)
E([Yt,3]j−1/(j − 1)!)

−
3jE([Yt,3]j/j!) + O(n−1

t )

nt
+ O(n−2

t ).

By the inductive assumption, we have E([Yt,3]i) → 3i for any i ≤ j − 1. We use once again the
argument as in the proof of Lemma 3.2. This calls for setting

E([Yt+1,3]j/j!) − E([Yt,3]j/j!) = 0

and then produces

E([Yt,3]j/j!) →
9 · 3j−1/(j − 1)!

3j
.

Simplifying this gives

E([Yt,3]j/j!) →
3j

j!
.

So E([Yt,3]j) → 3j, as required.

Proof of Theorem 2.1. It is enough to show that, for any fixed constant k ≥ 3, and a given
sequence of nonnegative integers (j3, j4, . . . , jk),

lim
t→∞

E([Yt,3]j3[Yt,4]j4 · · · [Yt,k]jk
) =

k∏

i=3

uji

i .

We prove this by induction on the sequence of (j3, j4, . . . , jk). The base case is (j3, 0, . . . , 0), for
any nonnegative integer j3. Lemma 3.2 shows that E(Yt,j3) → µj3

3 .
Let S(j3, j4, . . . , jk) denote the family of all collections (in whatever graph is under consideration)

consisting a j3-set of distinct 3-cycles, a j4-set of distinct 4-cycles,..., and a jk-set of distinct k-cycles.
Let #(t, j3, j4, . . . , jk) be the number of elements of S(j3, j4, . . . , jk) in Gt. Note that

#(t, j3, j4, . . . , jk) =

k∏

i=3

[Yt,i]ji

ji!
.
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We will estimate

∆ := E

(
k∏

i=3

[Yt+1,i]ji

ji!

)
− E

(
k∏

i=3

[Yt,i]ji

ji!

)
= E#(t + 1, j3, j4, . . . , jk) − E#(t, j3, j4, . . . , jk).

Case 1: Analogous to the creation of new triangles considered in the proof of Lemma 3.5, if
a new i-cycle is created by pegging together the end edges of an i-path, then a new element of
S(j3, j4, . . . , jk) can be created from an existing element of S(j3, . . . , ji − 1, . . . , jk) together with
the new i-cycle. The argument is similar to the proof of Lemma 3.5, and we omit the precise error
terms since they have a similar nature and can be bounded in the same way. Instead we find that
the contribution to ∆ is

k∑

i=3

3i−1

nt
E (#(t, j3, . . . , ji − 1, . . . , jk)) + O(n−2

t ).

Here we use the convention that [x]−1 = 0 for all x.

Case 2: If an edge of an (i−1)-cycle is pegged, for i ≤ k, then a new element of S(j3, j4, . . . , jk) can
be created in several ways. The typical way is from an element of S(j3, . . . , ji−1 + 1, ji − 1, . . . , jk),
for some 4 ≤ i ≤ k, that contains the (i − 1)-cycle pegged. The expected number of elements of
S(j3, j4, . . . , jk) created in this way is

k∑

i=4

(i − 1)(ji−1 + 1) + O(n−1
t )

nt
#(t, j3, . . . , ji−1 + 1, ji − 1, . . . , jk)

+O
(∑

Wt,i′,0/n
2
t +

∑
Wt,i′,1/nt

)
.

The error term O(n−2) accounts for the approximation for the number of possible peggings as before.
The event that the two edges pegged are both in short cycles is accounted for by O

(∑
Wt,i′,0/n

2
t

)
.

This also accounts for the case that a new short cycle is created as in Case 1 at the same time
that an edge of a short cycle is pegged. The final error term accounts for the case that cycles
in an element of S(j3, . . . , ji−1 + 1, ji − 1, . . . , jk) share common edges, one of which is pegged;
these cases should be discounted. It also accounts for other atypical ways to produce an element
of S(j3, . . . , jk), where an edge in two or more short cycles is pegged. These sums are taken over
finitely many possible i′. By Lemma 3.3, the expected value of the error terms is O(n−2

t ).
An existing S(j3, j4, . . . , jk) can be destroyed by pegging any of its edges. Arguing as in the

proof of Lemma 3.5, the contribution to ∆ from destroying these configurations is

−

(
k∑

i=3

iji

)
1

nt
E (#(t, j3, j4, . . . , jk)) + O(n−2

t ).
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So we get

∆ =
k∑

i=3

3i−1

nt

E (#(t, j3, . . . , ji − 1, . . . , jk))

+
k∑

i=4

(i − 1)(ji−1 + 1)

nt

E (#(t, j3, . . . , ji−1 + 1, ji − 1, . . . , jk))

−

(
k∑

i=3

iji

)
1

nt

E (#(t, j3, j4, . . . , jk)) + O(n−2
t ).

By induction,

E (#(t, j3, . . . , ji − 1, . . . , jk)) →
uj3

3

j3!
· · ·

uji−1
i

(ji − 1)!
· · ·

ujk

k

jk!
for all 3 ≤ i ≤ k.

E (#(t, j3, . . . , ji−1 + 1, ji − 1, . . . , jk)) →
uj3

3

j3!
· · ·

u
ji−1+1
i−1

(ji−1 + 1)!

uji−1
i

(ji − 1)!
· · ·

ujk

k

jk!

for all 4 ≤ i ≤ k. So arguing as in the proof of Lemma 3.2, we set ∆ = 0 and obtain

E (#(t, j3, j4, . . . , jk)) →

(
1

∑k
i=3 iji

)( k∑

i=3

3i−1uj3
3

j3!
· · ·

uji−1
i

(ji − 1)!
· · ·

ujk

k

jk!

+

k∑

i=4

(i − 1)(ji−1 + 1)
uj3

3

j3!
· · ·

u
ji−1+1
i−1

(ji−1 + 1)!

uji−1
i

(ji − 1)!
· · ·

ujk

k

jk!

)

=

k∏

i=3

uji

i

ji!

(
1

∑k
i=3 iji

)(
k∑

i=3

3i−1 ji

µi
+

k∑

i=4

(i − 1)(ji−1 + 1)
µi−1

ji−1 + 1

ji

µi

)
.

We only need to prove that

k∑

i=3

3i−1 ji

µi
+

k∑

i=4

(i − 1)(ji−1 + 1)
µi−1

ji−1 + 1

ji

µi
=

k∑

i=3

iji.

By calculating the left hand side, we get

k∑

i=3

3i−1 ji

µi
+

k∑

i=4

(i − 1)(ji−1 + 1)
µi−1

ji−1 + 1

ji

µi

=

k∑

i=3

2iji

3i − 9
3i−1 +

k∑

i=4

(i − 1)ji
3i−1 − 9

2(i− 1)

2i

3i − 9

=

k∑

i=3

2iji

3i − 9
3i−1 +

k∑

i=4

2iji

3i − 9

3i−1 − 9

2

=

k∑

i=3

iji.
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So we have shown that

E

(
k∏

i=3

[Yt,i]ji

ji!

)
→

k∏

i=3

µji

i

ji!
,

and hence

E

(
k∏

i=3

[Yt,i]ji

)
→

k∏

i=3

µji

i .

Theorem 2.1 then follows.

4 Rate of convergence

In this section we prove Theorem 2.2. Because of the complexities of the proof, we treat the case
k = 3 first in detail. For simplicity, we simply use the notation Yt in this proof to denote Yt,3 in the
case of k = 3. With the aim of approximating Yt, we define a Markov chain (Xt)t≥0, a random walk
on the nonnegative integers. To define this walk, we observe from the proof of Lemma 3.2 that the
expected numbers of triangles created or destroyed in one step are approximately 9/nt and 3Yt/nt

respecively. Corollaries 3.2 and 3.4 show that typically creation and destruction of triangles occur
disjointly, and no other events of significance occur. Hence, these two quantities give the significant
transition probabilities for Yt.

With this in mind, we define the transition probabilities for (Xt)t≥0 as fallows. First, we define
Bt := {i ∈ Z+ : (9 + 3i)/nt ≤ 1}, and the boundary of Bt to be ∂Bt := {i ∈ Bt : i + 1 /∈ Bt}. Also
w.p. denotes “with probability.”

For Xt ∈ Bt \ ∂Bt,

Xt+1 =





Xt − 1 w.p. 3Xt/nt

Xt w.p. 1 − 3Xt/nt − 9/nt

Xt + 1 w.p. 9/nt.
(4.1)

For Xt ∈ ∂Bt,

Xt+1 =

{
Xt − 1 w.p. 3Xt/nt

Xt w.p. 1 − 3Xt/nt.
(4.2)

For Xt /∈ Bt,
Xt+1 = Xt w.p. 1. (4.3)

We first show that Po(3), the Poisson distribution with mean 3, is a stationary distribution of the
Markov chain (Xt)t≥0. Assuming Xt has distribution Po(3), we have

P(Xt = i) = e−3 3i

i!
for all i ∈ Z+

where Z+ denotes the set of nonnegative integers. Let Pij = P(Xt+1 = j | Xt = i). For j ∈ Bt\∂Bt,
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we have

P(Xt+1 = j) =
∑

i∈Z+

P(Xt = i)Pij

= e−3 3j−1

(j − 1)!

9

nt

+ e−3 3j

j!

(
1 −

9

nt

−
3j

nt

)
+ e−3 3j+1

(j + 1)!

3 (j + 1)

nt

= e−3 3j

j!
.

For j ∈ Z+, such that j ∈ ∂Bt, we have

P(Xt+1 = j) =
∑

i∈Z+

P(Xt = i)Pij

= e−3 3j−1

(j − 1)!

9

nt
+ e−3 3j

j!

(
1 −

3j

nt

)

= e−3 3j

j!
.

For j ∈ Z+, such that j /∈ Bt, we have

P(Xt+1 = j) =
∑

i∈Z+

P(Xt = i)Pij = e−3 3j

j!
.

Thus Po(3) is invariant, so by definition it is a stationary distribution.
Let (Xt)t≥0 have its stationary distribution Po(3) at t = 0. Then its distribution remains Po(3)

for all t > 0. We aim to couple (Xt)t≥0 with a process related to (Yt)t≥0. The specification of the
transition probabilities in the coupled process is rather complicated because they are given in terms
of some probabilities that are not known explicitly.

Define the following events for positive integers i:

Li,t : Yt+1 = Yt − i,

Ri,t : Yt+1 = Yt + i,

St : Yt+1 = Yt,

L̃t : Xt+1 = Xt − 1,

R̃t : Xt+1 = Xt + 1,

S̃t : Xt+1 = Xt.

(L, R and S stand for left, right and stay). The probabilities of the events Li,t, Ri,t and so on are
determined by the values of t, Yt and Xt and the dynamics of the Markov chain (Xt)t≥0 and the
process (Yt)t≥0. As we will see later, the probability of Li,t and Ri,t for i ≥ 2 is very small and
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finally determines only the size of the error terms. The following functions of Xt, Yt and t are well
defined:

p1(t, j, m) = P(S̃t | Xt = m) + P(St | Yt = j) − 1,

āt(j) = max{0, 9/nt − P(R1,t | Yt = j)},

b̄t(j) = max{0, 3j/nt −P(L1,t | Yt = j)},

p2(t, j) = P(St | Yt = j) − āt(j) − b̄t(j).

We will show later that, though āt(Yt) and b̄t(Yt) are involved in the analysis, their final contribution
is only to the final error term.

We next define a coupling of (Xt)t≥0 with a process (Zt)t≥0 such that Zt has exactly the same
distribution as Yt for all t ≥ 0. However the process (Zt)t≥0 is different from (Yt)t≥0, for (Zt)t≥0 is
in fact a Markov chain (though not a time-homogeneous one), whereas (Yt)t≥0 is not. To make the
definition, we define the initial distribution of (Z0, X0) and the transition probabilities for obtaining
(Zt+1, Xt+1) from (Zt, Xt) as a Markov chain, and then check that the (marginal) distributions of
Zt and Xt agree with those of Yt and the above definition of Xt.

For the distribution of (Z0, X0), we merely specify that X0 and Z0 are independent. We use the
functions above in the definition of the transition probability of (Zt, Xt) to (Zt+1, Xt+1). To ensure
that p1 ≥ 0, we make a special case of the following event:

Ct := {(Zt, Xt) : 9 + 3Xt >
1

2
nt or Zt ∈ At} (4.4)

where
At = {m : P(St | Yt = m) < 1/2}.

We show below that this event is unlikely. If it holds, we define Zt+1 and Xt+1 by letting the two
processes each take one step independently of each other; that is for all i and j, conditional upon
(Zt, Xt),

P
(
(Zt+1, Xt+1) = (Zt + i, Xt + j)

)
= P(Yt+1 = Zt + i | Yt = Zt)P(Xt+1 = Xt + j).

Now consider the other cases when Ct in (4.4) does not hold. Then 9 + 3Xt ≤ nt/2, which

implies that Xt ∈ Bt \ ∂Bt. Hence P(S̃t | Xt) = 1 − (9 + 3Xt)/nt. As mentioned in the proof of
Lemma 3.4, each step creates at most four and destroys at most six triangles, and thus

P(St | Yt = j) = 1 −
6∑

i=1

P(Li,t | Yt = j) −
4∑

i=1

P(Ri,t | Yt = j), (4.5)

and hence

p1(t, Yt, Xt) = 1 − 9/nt − 3Xt/nt −
6∑

i=1

P(Li,t | Yt) −
4∑

i=1

P(Ri,t | Yt),

p2(t, Yt) = 1 − āt(Yt) − b̄t(Yt) −
6∑

i=1

P(Li,t | Yt) −
4∑

i=1

P(Ri,t | Yt).
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The assumption (Zt, Xt) /∈ Ct guarantees p1 ≥ 0 and p2 ≥ 0. To define the transitions in this
case, we use two tables. Table 1 gives the transition probability when Xt 6= Zt and Ct is false. For
example, the entry in the row labelled j − i and column labelled m shows that

P
(
(Zt+1, Xt+1) = (j − i, m) | (Zt, Xt) = (j, m)

)
= P(Li,t | Yt = j)

for 2 ≤ i ≤ 6, where ā and b̄ are defined above. We emphasise that this probability is a number
whose value we do not know explicitly, but is nevertheless a well defined function of t and j. Table 2
applies when Xt = Zt and Ct is false, and uses ā and b̄ as defined above.

m − 1 m m + 1

j − i (2 ≤ i ≤ 6) 0 P(Li,t | Yt = j) 0

j − 1 0 P(L1,t | Yt = j) 0

j 3m/nt p1(t, j, m) 9/nt

j + 1 0 P(R1,t | Yt = j) 0

j + i (2 ≤ i ≤ 4) 0 P(Ri,t | Yt = j) 0

Table 1: Transition probabilities for (Zt, Xt) when Ct is false — the case j = Zt 6= Xt = m.

j − 1 j j + 1

j − i (2 ≤ i ≤ 6) 0 P(Li,t | Yt = j) 0

j − 1 3j/nt − b̄t(j) P(L1,t | Yt = j) − 3j/nt + b̄t(j) 0

j b̄t(j) p2(t, j) āt(j)

j + 1 0 P(R1,t | Yt = j) − 9/nt + āt(j) 9/nt − āt(j)

j + i (2 ≤ i ≤ 4) 0 P(Ri,t | Yt = j) 0

Table 2: The case j = Zt = Xt

It is trivial to check that, for each table, the transition probabilities from Xt to Xt+1 satisfy (4.1).
Note for instance that in Table 2 the first column sums to 3j/nt, and in this table Xt = j. The
same is clearly true when Ct holds. Hence, by induction, the marginal distribution of Xt is precisely
that required to correctly call it Xt as defined in (4.1) etc.

Similarly, by definition of p1 and p2 and (4.5), the transition probabilities from Zt to Zt+1 are
exactly the same as those for going from Yt to Yt+1. This implies inductively that for all t ≥ 0 the
marginal distribution σ̂t,3 of Zt satisfies

σ̂t,3 = σt,3 (4.6)
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(recalling that σt,3 is the distribution of Yt). Hence, to prove the theorem, it is enough to bound
the total variation distance between the marginal distributions of Xt and Zt. This is what occupies
the remainder of the proof.

Before proceeding we need to bound P(Ct). In the derivation of (3.2), we saw that the expected
number of triangles created in step t is 9/nt +O((1+Yt)/n

2
t ), and the expected number destroyed is

3Yt/nt +O((1+Yt)/n
2
t ). By Corollary 3.4, the probability of simultaneously creating and destroying

triangles in step t is O(Y 2
t /n2

t +W ∗
t,3/nt). Define ξ(Yt) = E(W ∗

t,3 | Yt), and by Lemma 3.3, Eξ(Yt) =

O(n−1
t ). Therefore

6∑

i=1

iP(Li,t | Yt) =
3Yt

nt
+ O

(
1 + Y 2

t

n2
t

+
ξ(Yt)

nt

)

4∑

i=1

iP(Ri,t | Yt) =
9

nt
+ O

(
1 + Y 2

t

n2
t

+
ξ(Yt)

nt

)
. (4.7)

Note that we will use (4.7) to estimate E(āt(Zt) | ·) and E(b̄t(Zt) | ·) and show that their
final contribution is negligible. We have Eξ(Yt) = O(n−1

t ), so P(ξ(Yt)/nt ≥ a) = O(n−2
t ) for any

constant a, by Markov’s inequality. We also have EYt = O(1) and EY 2
t = O(1) from Lemma 3.5.

Hence the variance of Yt is O(1), and so P(3Yt/nt ≥ b) ≤ O(n−2
t ) for any constant b, by Chebyshev’s

inequality. Thus we have

P

( 6∑

i=1

(
iP(Li,t | Yt) + iP(Ri,t | Yt)

)
≥

1

2

)
= O(n−2

t ).

Hence

P(Yt ∈ At) = P
(
P(St | Yt) < 1/2

)

= P

( 6∑

i=1

(
P(Li,t | Yt) + P(Ri,t | Yt)

)
≥

1

2

)

= O(n−2
t ).

Similarly, since EXt = 3, and σ2(Xt) = 3, we have P(9+3Xt ≥ nt/2) = O(n−2
t ). Thus, referring

to (4.4),
P(Ct) = O(n−2

t ). (4.8)

We use Ct for the complement of Ct. We need to estimate the expected value ā and b̄ in Table 2,
given that the Table is applicable, i.e. given that Zt = Xt and Ct is false. Many expectations and
probabilities concerning Zt and Xt will be conditional upon the event Ct. To simplify notation we
denote E(· | Ct) by Ê(·) and P(· | Ct) by P̂(·).

At this point, we extend the definition of Li,t etc. to Zt. Since the marginal distribution of
(Zt)t≥0 has the same transition probabilities as (Yt)t≥0 we have for all j

P(Li,t | Yt = j) = P(Li,t | Zt = j) (4.9)
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and similarly for Ri,t. From (4.7), we thus have

9

nt
−P(R1,t | Zt) =

4∑

i=2

iP(Ri,t | Zt) + O((1 + Z2
t )/n2

t + ξ(Zt)/nt).

By definition, āt(Zt) is the maximum of this quantity and 0, and P(Ri,t | Zt) = O((1 + Z2
t )/n2

t +
ξ(Zt)/nt) if 9/nt − P(R1,t | Zt) < 0. Taking expectations of the equation above in the restricted
space of appropriate (Zt, Xt), we obtain the following bound to be used for ā (using a similar
argument for b̄):

Ê (āt(Zt) | Zt = Xt) = Ê

( 4∑

i=2

iP(Ri,t | Zt = Xt)

)
+ O (E)

=
4∑

i=2

iP̂(Ri,t | Zt = Xt) + O (E) ,

Ê(b̄t(Zt) | Zt = Xt) =

6∑

i=2

iP̂(Li,t | Zt = Xt) + O (E) , (4.10)

where

E =
1 + Ê(Z2

t | Zt = Xt)

n2
t

+
Ê(ξ(Zt) | Zt = Xt)

nt
.

Now we are ready to bound the difference between the distributions of Zt and Xt (conditional
upon Ct). We define

Dt = |Zt − Xt|. (4.11)

Restricting to the event Zt > Xt, we see from Table 1 that Dt+1−Dt increases by 1 if Xt+1 = Xt−1,
decreases by 1 if Xt+1 = Xt + 1 or Zt+1 = Zt − 1, and increases by at most |Zt+1 − Zt| otherwise.
Thus

Ê(Dt+1 − Dt | Zt, Xt, Zt > Xt) ≤
3Xt

nt
− P(L1,t | Zt) +

6∑

i=2

iP(Li,t | Zt) +
4∑

i=1

iP(Ri,t | Zt) −
9

nt

=
3Xt

nt
−

3Zt

nt
+ 2

6∑

i=2

iP(Li,t | Zt) + O

(
1 + Z2

t

n2
t

+
ξ(Zt)

nt

)
(4.12)

by (4.7) and (4.9). (In particular, note that these equations are applicable when conditioning upon
Ct.)

Noting that Dt = Zt − Xt when Zt > Xt, we have by the Tower Property

Ê(Dt+1 − Dt | Zt > Xt)

= Ê(Ê(Dt+1 − Dt | Xt, Zt, Zt > Xt) | Zt > Xt)

≤ −
3

nt
Ê(Dt | Zt > Xt) + 2

6∑

i=2

iP̂(Li,t | Zt > Xt)

+O

(
1 + Ê(Z2

t | Zt > Xt)

n2
t

+
Ê(ξ(Zt) | Zt > Xt)

nt

)
. (4.13)
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A similar calculation, for the case Zt < Xt, gives

Ê(Dt+1 − Dt | Zt < Xt) ≤ −
3

nt
Ê(Dt | Zt < Xt) + 2

4∑

i=2

iP̂(Ri,t | Zt < Xt)

+O

(
1 + Ê(Zt | Zt < Xt)

n2
t

+
Ê(ξ(Zt) | Zt < Xt)

nt

)
. (4.14)

If Zt = Xt then Dt = 0, and from Table 2 we get

Ê(Dt+1 − Dt | Zt, Zt = Xt) = P(L1,t | Zt) −
3Zt

nt
+ 2b̄t(Zt) + P(R1,t | Zt) −

9

nt
+ 2āt(Zt)

+

6∑

i=2

iP(Li,t | Zt) +

4∑

i=2

iP(Ri,t | Zt)

= 2b̄t(Zt) + 2āt(Zt) + O

(
1 + Z2

t

n2
t

+
ξ(Zt)

nt

)
(4.15)

by (4.7) and (4.9) and the analogous equations concerning Li,t. Applying the Tower Property as in
the previous cases, and using (4.10), we obtain

Ê(Dt+1 − Dt | Zt = Xt) = O

(
1 + Ê(Z2

t | Zt = Xt)

n2
t

+
Ê(ξ(Zt) | Zt = Xt)

nt

)

+

6∑

i=2

iP̂(Li,t | Zt = Xt) +

4∑

i=2

iP̂(Ri,t | Zt = Xt). (4.16)

Combining the three cases, and adding extra nonnegative terms iP̂(Li,t | Zt = Xt) and iP̂(Ri,t |
Zt = Xt) to the upper bounds where convenient,

Ê (Dt+1 − Dt) = Ê (Dt+1 − Dt | Zt > Xt) P̂(Zt > Xt) + Ê (Dt+1 − Dt | Zt = Xt) P̂(Zt = Xt)

+Ê (Dt+1 − Dt | Zt < Xt) P̂(Zt < Xt)

≤ −
3

nt
Ê (Dt | Zt > Xt) P̂(Zt > Xt) −

3

nt
Ê (Dt | Zt = Xt) P̂(Zt = Xt)

−
3

nt

Ê (Dt | Zt < Xt) P̂(Zt < Xt) + O

(
1 + ÊZ2

t

n2
t

+
Êξ(Zt)

nt

)

+
6∑

2

iP̂(Li,t) +
4∑

2

iP̂(Ri,t)

= −
3

nt

ÊDt +
6∑

2

iP̂(Li,t) +
4∑

2

iP̂(Ri,t) + O

(
1 + ÊZ2

t

n2
t

+
Êξ(Zt)

nt

)
. (4.17)

By (4.8), P(Ct) = 1 + O(n−2
t ). Hence using Lemma 3.2 and (4.6), we have ÊZ2

t = E(Z2
t | Ct) ≤

E(Z2
t )/P(Ct) = O(1), Êξ(Zt) ≤ Eξ(Zt)/P(Ct) = O(n−1

t ). Similarly by Corollary 3.2 and recall-
ing (4.9), we know that for all i with 2 ≤ i ≤ 6,

P̂(Li,t) = P(Li,t | Ct) = O(n−2
t )
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and the analogue for Ri,t. Thus we now have

Ê(Dt+1 − Dt) = −
3

nt
ÊDt + O(n−2

t ). (4.18)

Since |Dt+1 − Dt| = O(1) always, (4.8) tells us that E(Dt+1 − Dt | Ct)P(Ct) = O(n−2
t ). Hence

E(Dt+1 − Dt) = Ê(Dt+1 − Dt)P(Ct) + E(Dt+1 − Dt | Ct)P(Ct)

=

(
−

3

nt
ÊDt + O(n−2

t )

)
(1 + O(n−2

t )) + O(n−2
t )

= −
3

nt

ÊDt + O(n−2
t ). (4.19)

Since
EDt = ÊDtP(Ct) + E(Dt | Ct)P(Ct),

and E(Dt | Ct) = O(nt) as Dt = O(nt), we have

ÊDt = EDt(1 + O(n−2
t )) + O(n−1

t ),

and this, together with (4.19), gives

EDt+1 =

(
1 −

3

nt
+ O(n−3

t )

)
EDt + O(n−2

t ). (4.20)

By Lemma 3.1, this gives EDt = O(1/nt). Since P (Zt 6= Xt) ≤ EDt, Lemma 2.1 now implies

dTV (σ̂t,3,Po(3)) = O(1/nt)

and (4.6) now implies that τ ∗
ǫ

(
(σt,3)t≥0

)
= O(1/ǫ). This proves the upper bound on the ǫ-mixing

time for k = 3.

Note that the error terms above can be simplified. The probability of simultaneously creating
and destroying triangles in one step is actually O(Yt/n

2
t ), rather than O(Y 2

t /n2
t + W ∗

t,3/nt). Since
triangles are only created by pegging the end edges of paths of length 3, we only need to consider
the second case in Lemma 3.4. Thus, the error term in (4.7) will be O((1 + Yt)/n

2
t ). However, we

retain the extra error terms, to make it clearer how to extend the result to arbitrary k-cycles. Also
note that, by (4.6), the coupling of the processes (Zt)t≥0 with (Xt)t≥0 is also a coupling of (Yt)t≥0

with (Xt)t≥0.

Now consider k ≥ 4. Let Y
(k)
t denote (Yt,3, Yt,4, . . . , Yt,k), where as before Yt,i is the number

of i-cycles in Gt. Also let ei denote the elementary vector with 1 in the coordinate referring to
Yt,i (i.e. the (i − 2)th coordinate) and 0 elsewhere. We use the same convention for a vector

X
(k)
t = (Xt,3, Xt,4, . . . , Xt,k), and such vectors will be written as Yt etc. as long as the dependence

on k does not need to be emphasised. We will extend the argument used for k = 3 to couple the
sequence of vectors (Yt)t≥0 with (Xt)t≥0 for any k ≥ 3, where (Xt)t≥0 is a Markov Chain with the
stationary distribution as that of independent Poisson variables.
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We have shown in the proof of Lemma 3.2, that the expected number of i-cycles created in
going from Gt to Gt+1 by pegging the end edges of i-paths is

3i−1

nt
+ O

(
1 + ‖Y

(i)
t ‖

n2
t

)
. (4.21)

We also saw that the expected number of i-cycles created from pegging an edge in a (i−1)-cycle is

(i − 1)Yt,i−1

nt
+ O

(
Yt,i−1

n2
t

)
, (4.22)

where the error term comes from the case that two edges in the same cycle are pegged together
(which could not happen in the case i = 3). When an edge in an (i− 1)-cycle is pegged, it usually
results in one more i-cycle but one less (i−1)-cycle, and so we expect Yt+1 to equal Yt +ei −ei−1.
In fact, a decrease in Yt,i−1 will normally force an increase Yt,i.

Let n := {n3, n4, . . . , nk} be a vector of integers, and let Tn,t denote the event that the number
of i-cycles changes by ni from Gt to Gt+1 for any 3 ≤ i ≤ k. The integers ni can be positive,
negative or 0, indicating increasing, decreasing or no change.

As we have seen earlier, the event that more than one i-cycle is created or destroyed is rare,
and simultaneous creation and destruction is rare (except for the transition Tei−ei−1,t mentioned
above). More precisely, by (4.21), (4.22), Corollary 3.2, and Corollary 3.4,

P(Tei,t | Yt) = 3i−1/nt + E(b(ei, t, Gt) | Yt) (3 ≤ i ≤ k),

P(Tei+1−ei,t | Yt) = iYt,i/nt + E(b(ei+1 − ei, t, Gt) | Yt) (3 ≤ i ≤ k − 1),

P(T−ek,t | Yt) = kYt,k/nt + E(b(−ek, t, Gt) | Yt),

P(Tn,t | Yt) = E(b(n, t, Gt) | Yt) (for all other non-zero values of n)

P(T0,t | Yt) = 1 −
k∑

i=3

(
3i−1/nt + iYt,i/nt

)
−
∑

n6=0

E(b(n, t, Gt) | Yt)

where the values of the (error) terms satisfy b(n, t, Gt) = O
(
(1 + ‖Y

(2k)
t (Gt)‖

2)/n2
t + W ∗

t,k(Gt)/nt

)

for all n 6= 0.
It is now clear that the significant transitions of the random vector process (Yt)t≥0 = (Y

(k)
t )t≥0

are
Tei,t, Tei+1−ei,t, T−ek ,t, T0,t.

We call these transitions the main transitions for the process (Yt)t≥0.
For convenience, let a(n, t,Yt) = E(b(n, t, Gt) | Yt), and define

ā(n, t,Yt) =

{
max{0,−a(n, t,Yt)} if n ∈ {ei, ei+1 − ei,−ek}
a(n, t,Yt) for all other values of n, such that n 6= 0.

(4.23)

Note that ā(n, t,Yt) ≥ 0, and is an extension of the functions āt(j) and b̄t(j) in the case k = 3.

Since E‖Y
(2k)
t ‖2 = O(1) and EW ∗

t,k = O(n−1
t ) from Lemma 3.2 and Corollary 3.1, we have

E a(n, t,Yt) = E b(n, t, Gt) = O(n−2
t ) for all n 6= 0. (4.24)
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This indicates that the final contribution of ā(n, t,Yt) will be O(n−2
t ) and hence negligible for our

argument. The proof of this is basically the same as the analogous statement regarding āt(j) and
b̄t(j) in the case k = 3.

Similar to the case of k = 3, we define

Bt,k := {x = (x3, x4, . . . , xk) ∈ Zk−2
+ :

k∑

i=3

3i−1 + k
k∑

i=3

xi ≤ nt},

∂Bt,k := {x = (x3, x4, . . . , xk) ∈ Bt,k : ∃i, 3 ≤ i ≤ k, x + ei /∈ Bt,k}.

It is immediate by definition that for any x ∈ Bt,k, we have

1

nt

k∑

i=3

(
3i−1 + ixi

)
≤ 1.

We define the random walk (Xt)t≥0 as follows. For Xt ∈ Bt,k \ ∂Bt,k,

Xt+1 =





Xt + ei w.p. 3i−1/nt (3 ≤ i ≤ k),
Xt − ei + ei+1 w.p. iXt,i/nt (3 ≤ i ≤ k − 1),
Xt − ek w.p. kXt,k/nt,

Xt w.p. 1 −
∑k

i=3 (3i−1 + iXt,i) /nt.

(4.25)

For Xt ∈ ∂Bt,k,

Xt+1 =





Xt − ei + ei+1 w.p. iXt,i/nt (3 ≤ i ≤ k − 1),
Xt − ek w.p. kXt,k/nt,

Xt w.p. 1 −
∑k

i=3 iXt,i/nt.

(4.26)

For Xt /∈ Bt,k,
Xt+1 = Xt (w.p. 1). (4.27)

We declare the initial distribution of X0 to be that of independent Poisson variables with means
µ3, . . . , µk respectively, where µi = (3i − 9)/2i, for all 3 ≤ i ≤ k. That is,

P
(
X0 = (x3, . . . , xk)

)
= exp

(
−

k∑

i=3

µi

)
k∏

i=3

µxi

i

xi!
. (4.28)

We next verify that the independent Poisson distribution is invariant in one step of the Markov
chain. Assuming the distribution holds at time t, for x ∈ Bt,k\∂Bt,k, the (unconditional) probability
that the random walk moves from x elsewhere in the next step is equal to the probability of moving
from elsewhere to x (the details of this are straightforward and so omitted). See Figure 3, which
illustrates the case k = 4. Here, the numbers shown on the arrows should be divided by nt to
obtain probabilities. The probability of making a transition from x to a state with a larger value
of
∑

xi (i.e. the grey region in the figure) is

1

nt

k∑

i=3

3i−1P(Xt = x).
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Figure 3: When (X3, X4) ∈ ∂Bt,4, the shaded region is outside Bt,4.

On the other hand, the probability of moving from one of these states to x is, assuming Xt has the
same independent Poisson distribution as X0 in (4.28),

1

nt

k(xk + 1)P(Xt = x + ek) =
1

nt

k
3k − 9

2k
P(Xt = x)

which works out to be the same. For x ∈ ∂Bt,k, exactly these transitions to and from x are
prevented, and hence these states maintain the Poisson distribution as well. Finally, for x /∈ Bt,k,
the probability of changing state is 0, thus the required relation holds for such x. Hence, the joint
distribution of Xt remains the same as that of X0 for all t ≥ 0.

The coupling definition is similar to the case k = 3. In order to present the proof in a less
cluttered fashion, we will first give a coupling between Xt and Zt for all t ≥ 0, where (Xt)t≥0 has
initial distribution equal to its stationary distribution, and (Zt)t≥0 is an independent copy of the
same Markov chain, but with an arbitrary initial distribution. Then only the main transitions will
occur with nonzero probability. Later, we will define a modified version of (Zt)t≥0 that is a Markov
chain in which Zt has the same distribution as Yt.
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For convenience, let the notation TX

n,t denote the event that X takes the transition Tn,t, and
similarly for Z. Define

Ct = {(Zt,Xt) : Zt ∈ Bt or Xt ∈ Bt}, (4.29)

where

Bt = {j /∈ Bt,k, or j ∈ Bt,k : P(Xt+1 = Xt | Xt = j) <
1

2
}.

If (Zt,Xt) ∈ Ct, the coupling of Zt and Xt is defined by letting the two Markov chains take an
independent step. Namely,

P
(
(Zt+1,Xt+1) = (Zt + i,Xt + j) | (Zt,Xt)

)
= P(Zt+1 = Zt + i | Zt)P(Xt+1 = Xt + j | Xt).

Now we consider (Zt,Xt) such that (Zt,Xt) /∈ Ct. If Xt = Zt, then Xt and Zt take any of the
main transitions simultaneously with probability P(TX

n,t | Xt) = P(TZ

n,t | Zt).
If Xt 6= Zt, let M be the smallest number such that Xt,M 6= Zt,M . For 3 ≤ i ≤ M − 1, let

(TX

n,t, T
Z

n,t) have probability P(TX

n,t | Xt) = P(TZ

n,t | Zt). For i > M , let (TX

n,t, T
Z

0,t) have probability
P(TX

n,t | Xt), and (TX

0,t, T
Z

n,t) have probability P(TZ

n,t | Zt), when n ∈ {ei, ei+1 − ei} (if i < k), or
n ∈ {ek,−ek} (if i = k). Namely, we let either Xt take one of its main transitions and Zt stay
unchanged, or vice versa. The only transitions of (Xt,Zt) left to be defined are those concerning the
M-th coordinate of Xt and Zt, namely, TeM−eM−1,t, TeM ,t and TeM+1−e

M
,t (or T−ek ,t when M = k).

Let
(TX

eM−eM−1,t, T
Z

eM−eM−1,t) have probability P(TX

eM−eM−1,t | Xt),

which is equal to P(TZ

eM−eM−1,t | Zt) because XM−1 = ZM−1, and let

(TX

eM ,t, T
Z

0,t) and (TX

0,t, T
Z

eM ,t) each have probability P(TX

eM ,t | Xt),

which is equal to P(TZ

eM ,t | Zt) by the first line of (4.25).
On the other hand, since Xt,M 6= Zt,M , for n = eM+1 − eM (when M < k) or n = −ek (when

M = k), let the transitions

(TX

n,t, T
Z

0,t) and (TX

0,t, T
Z

n,t) have probabilities P(TX

n,t | Xt) and P(TZ

n,t | Zt),

respectively.
The remaining probability is assigned to the transition (TX

0,t, T
Z

0,t). These probabilities are well
defined, and in particular the last one is nonnegative, because (Zt,Xt) /∈ Ct.

At this point it should be clear that the marginal transition probabilities from Xt to Xt+1

satisfy (4.25). Also Zt obeys the same rules. Hence the marginal distributions are the same for Zt

and Xt.
We now make an adjustment to the definition of Zt. Let Z0 = Y0, and for t ≥ 0, define a

Markov chain in which

P(Zt+1 = j | Zt = i) = E(P(Yt+1 = j | Gt) | Yt = i).

Then Zt has the same distribution as Yt.
Now redefine

Ct = {(Zt,Xt) : Zt ∈ At or Xt ∈ Bt}, (4.30)
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where

At =

{
i : P(Yt+1 = Yt | Yt = i) <

1

2

}
,

Bt =

{
j /∈ Bt,k, or j ∈ Bt,k : P(Xt+1 = Xt | Xt = j) <

1

2

}
.

An argument similar to the case k = 3 shows that P(Ct) = O(n−2
t ).

We now define the coupling of Xt and this new Zt. For (Zt,Xt) such that (Zt,Xt) ∈ Ct, again
let the two Markov chains take an independent step. For (Zt,Xt) such that (Zt,Xt) /∈ Ct, the same
type of adjustment of transition probabilities can be made as in the case of k = 3, by adding and
subtracting various a and ā terms. We omit most of the details, but include discussion of the case
Xt = Zt. Here, we define Xt and Zt to take the main nonzero transitions simultaneously with
probability min{P(TX

n,t | Xt),P(TZ

n,t | Zt)}. For n ∈ {ei, ei+1 − ei,−ek},

min{P(TX

n,t | Xt),P(TZ

n,t | Zt)} =

{
P(TX

n,t | Xt) if a(n, t,Zt) ≥ 0
P(TX

n,t | Xt) + a(n, t,Zt) if a(n, t,Zt) < 0,
(4.31)

by the definition of b(n, t, Gt) and a(n, t,Zt), which occur just before (4.23), and

ā(n, t,Zt) =

{
0 if a(n, t,Zt) ≥ 0
−a(n, t,Zt) if a(n, t,Zt) < 0,

(4.32)

by the definition of ā(n, t,Zt) in (4.23). Assign probability ā(n, t,Zt) to the transition (TX

n,t, T
Z

0,t),
and probability a(n, t,Zt) + ā(n, t,Zt) to the transition (TX

0,t, T
Z

n,t), when n ∈ {ei, ei+1 − ei,−ek}.
Note this is simply an adjustment of probabilities so that the marginals of Xt and Zt are satisfied.

In the remainder of the proof, we show that for fixed k,

P(X
(k)
t 6= Z

(k)
t ) = O(n−1

t ), (4.33)

by induction on k. We have already shown that it is true for k = 3. Now assume it is true for k−1
where k ≥ 4.

For any τ > 0 and τ ≤ j ≤ 2τ , let Hj = Hj(τ) be the event that Z
(k−1)
t = X

(k−1)
t for all τ ≤ t ≤ j.

In the following, for any statements about Hi we assume τ ≤ i ≤ 2τ , sometimes implicitly. Clearly
Hj+1 ⊂ Hj for all relevant j. Let Dt,i = |Xt,i − Zt,i|, for 3 ≤ i ≤ k, and D

(j)
t =

∑j
i=3 Dt,i, a

simple extension of Dt. Of course, Ht implies Z
(k−1)
t = X

(k−1)
t . By the definition of the coupling of

(Z
(k)
t ,X

(k)
t ) above, conditional on Z

(k)
t (actually Z

(k−1)
t is enough) and Ht, Z

(k−1)
t and X

(k−1)
t take

transitions simultaneously in going from Gt to Gt+1, except for adjustments of probabilities of the
form ā(·, t,Zt), or a(·, t,Zt) + ā(·, t,Zt). Hence, this situation is analogous the the case Zt = Xt for
k = 3, with Ht playing the role of the event Zt = Xt in this case.

Let Tτ be chosen such that P(HTτ
) > 1/2. Then

P(H̄t) <
1

2
(τ ≤ t ≤ Tτ ). (4.34)

Define Ê(·) = E(· | C̄t). As in the case k = 3, if Ut is some bounded random variable, then

E(Ut) and Ê(Ut) differ only by O(n−2
t ), for the reason that P(C) = O(n−2

t ). It is straightforward
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to obtain Ê(Dt+1 − Dt | Zt, Ht) in a form analogous to (4.15), with Li,t and Ri,t being replaced
by the more general Tn, and āt(Zt), b̄t(Zt) being replaced by ā(n, t,Zt) or a(n, t,Zt) + ā(n, t,Zt).
This argument uses Corollary 3.2, and Corollary 3.4 to bound the effect of the transitions of Zt

that do not occur for Xt. Then, taking expectation conditional on Ht (only), we obtain analogous
to (4.16),

Ê(Dt+1 −Dt | Ht) = O

(
1 + Ê(‖Zt‖

2 | Ht)

n2
t

+
Ê(ξ(Zt) | Ht)

nt

)
+ O

(∑
P(TZ

n,t | Ht)
)

,

where ξ(Zt) = E(W ∗
t,k | Zt) (analogous to ξ(Yt) in the case k = 3), and the sum in the last term is

taken over all n such that Tn,t is not a main transition.
Note that E(‖Zt‖

2) = O(1) by Theorem 2.1, E(ξ(Zt)) = O(n−1
t ) by Lemma 3.3, and P(TZ

n,t) =

E ā(n, t,Zt) (or Ea(n, t,Zt)) = O(n−2
t ) by (4.24), for any non-main transition Tnt

. These also

hold for the conditional expectation Ê(·) by an argument analogous to the comments after (4.17),

recalling the bound on P(C) and also (4.34). That is, Ê(‖Zt‖
2 | Ht) = O(n−2

t ) and so on (with the
constant implicit in O() independent of t ≤ 2τ). Thus

E(Dt+1 − Dt | Ht) = O(n−2
t ), (4.35)

and thus, since P(H̄t+1 | Ht) ≤ E(Dt+1 − Dt | Ht), we have

P(H̄t+1 | Ht) = O(n−2
t ). (4.36)

We now have
P(H̄t+1) ≤ P(H̄t+1 | Ht) + P(H̄t) ≤ O(n−2

t ) + P(H̄t)

where of course the constant implicit in O() is absolute. Iterating this, beginning with (4.33), we
obtain P(H̄t+1) = O((t − τ)n−2

τ ) = O(n−1
τ ) for all t ≤ min{2τ, Tτ}. For τ sufficiently large, this is

at most 1/2, and so Tτ can be chosen as 2τ . Thus

P(H̄t) = O(n−1
τ ) (τ ≤ t ≤ 2τ), (4.37)

and (4.36) is valid for the same range of t. Hence

P(X
(k)
t 6= Z

(k)
t ) ≤ P(X

(k−1)
t 6= Z

(k−1)
t ) + P(Xt,k 6= Zt,k)

≤ P(H̄t) + P(Xt,k 6= Zt,k | Ht) + P(H̄t)

≤ E(Dt,k | Ht) + O(n−1
τ ).

We will shortly show that
E(Dt,k | Ht) = O((t − τ)−1). (4.38)

It then follows that for all t between say 3τ/2 and 2τ , P(X
(k)
t 6= Z

(k)
t ) = O(n−1

τ ). For sufficiently
large t, suitable τ can be chosen, and nτ will be arbitrarily large. This establishes the inductive
step (4.33), and the theorem follows.

It only remains to show (4.38). We first consider Ê(Dt+1,k − Dt,k | Ht), focussing on the
transitions of (Zt,k, Xt,k) induced by the transitions of (Zt,Xt). If Zt,k 6= Xt,k, the transition

29



probabilities in the coupling definition cause (Zt,k, Xt,k) to have transition probabilities very similar
to what is shown in Table 1 for k = 3, but with an extra entry in the (j + 1, m + 1) position due
to the transition (TZ

ek−ek−1,t, T
X

ek−ek−1,t). The other significant effects for (Zt,k, Xt,k) arise from the
transitions

(TX

ek,t, T
Z

0,t), (TX

0,t, T
Z

ek ,t), (TX

−ek,t, T
Z

0,t), (TX

0,t, T
Z

−ek,t), (TX

0,t, T
Z

0,t)

for (Zt,Xt).
Instead of the factors P(Li,t | Yt) and P(Ri,t | Yt) that occurred in the case k = 3, we now

have P(Tn,t | Zt) involved. Analogous to the argument concerning the equations (4.12), (4.14)
and (4.16), apart from a or ā terms, P(Tek,t | Zt,k) cancels P(Xt+1,k = Xt,k + ek) = 3k−1/nt by the
definition of the coupling of (Xt,Zt). Similarly, the difference between P(T−ek,t | Zt,k) and kXt,k/nt

gives essential contribution (−k/nt)ÊDt,k to Ê(Dt+1,k − Dt,k | Ht). On the other hand, the (new)
transition (TZ

ek−ek−1,t, T
X

ek−ek−1,t) causes Zt,k and Xt,k to move in the same direction, thus giving no
contribution.

The non-main transitions Tn,t with nk 6= 0 contribute at most ā(n, t,Zt) or a(n, t,Zt)+ā(n, t,Zt),
as with P(Li,t) and P(Ri,t) for i > 1 in the case of k = 3.

In view of the bounds on a and ā terms implied by (4.24), an argument very similar to that
leading to (4.18) now gives

Ê(Dt+1,k − Dt,k | Ht) = −
k

nt
Ê(Dt,k | Ht) + O(n−2

t ).

Then, similar to the steps leading to (4.35) (see also (4.19) to (4.20)), we obtain

E(Dt+1,k | Ht) =

(
1 −

k

nt

)
E(Dt,k | Ht) + O(n−2

t ). (4.39)

In order to get a recursive equation, we would like E(Dt+1,k | Ht+1) to appear in the left hand side
of this equation. However, we have

E(Dt+1,k | Ht+1) =
E(Dt+1,kIHt+1

)

P(Ht+1)

=
E(Dt+1,kIHt

) −E(Dt+1,kIHt\Ht+1
)

P(Ht) − P(Ht \ Ht+1)

≤
E(Dt+1,kIHt

)

P(Ht) − P(Ht \ Ht+1)

because Dt+1,k ≥ 0. By (4.37) and (4.36), this gives

E(Dt+1,k | Ht+1) ≤ (1 + O(n−2
t ))E(Dt+1,k | Ht).

So from (4.39) we obtain

E(Dt+1,k | Ht+1) =

(
1 −

k

nt
+ O(n−2

t )

)
E(Dt,k | Ht) + O(n−2

t ) for all τ ≤ t ≤ 2τ .

Note from (4.37) and the fact that the expected values of X
(k)
t and Z

(k)
t are bounded, E(Dτ,k |

Hτ ) = O(1). Hence we obtain (4.38) by Lemma 3.1, as required.
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5 Arbitrary d ≥ 3

In this section we prove Theorem 2.3.
We begin with the case that d is even. This is a natural generalisation of the case d = 4.

The strategy used in Theorem 2.1 and 2.2 to estimate the creation and destruction of short cycles
applies in exactly the same way for the more general case. So we sketch here only the main steps
of the first moment calculation generalising Lemma 3.2, and error terms that are eventually seen
to be negligible will be ignored.

Let Gt be a random d-regular graph generated by pegging operations, for even d. Then Gt

contains nt = n0 + t vertices, and mt = dnt/2 edges. The number, Nt, of ways to do a pegging
operation, i.e. the number of ways to choose d/2 non-adjacent edges, is asymptotically

(
dnt/2
d/2

)
. For

any fixed k ≥ 3, there are two ways a k-cycle can be created in a pegging operation. One occurs if
two of the d/2 edges that are pegged are the end edges of a k-path. The other occurs if one of the
pegged edges is contained in a (k − 1)-cycle.

The number of k-paths in Gt is asymptotically d(d− 1)k−1nt/2, so the number of ways to form
a k-cycle in the first way is asymptotically

d(d − 1)k−1nt

2

( dn
2

d
2
− 2

)
∼

d(d − 1)k−1nt(dnt/2)d/2−2

2(d/2 − 2)!

and clearly for the second way it is asymptotically

(k − 1)Yt,d,k−1

( dnt

2
d
2
− 1

)
∼

(k − 1)Yt,d,k−1(dnt/2)d/2−1

(d/2 − 1)!

where Yt,d,i is the number of i-cycles in Gt. (Note that we let Yt,d,2 = 0.) To destroy an existing k-
cycle, the algorithm pegs an edge contained in a k-cycle, together with another d/2−1 non-adjacent
edges. The number of ways to destroy an existing k-cycle is thus asymptotically

kYt,d,k

( dnt

2
d
2
− 1

)
∼

kYt,d,k(dnt/2)d/2−1

(d/2 − 1)!
.

Thus

E(Yt+1,d,k−Yt,d,k | Yt,d,k) =
d(d − 1)k−1nt(dn/2)d/2−2

2(d/2 − 2)!Nt
+

(k − 1)Yt,d,k−1(dnt/2)d/2−1

(d/2 − 1)!Nt
−

kYt,d,k(dnt/2)d/2−1

(d/2 − 1)!Nt
.

Taking expectation of both sides,

E(Yt+1,d,k − Yt,d,k)

∼
d(d − 1)k−1nt(dn/2)d/2−2

2(d/2 − 2)!Nt
+

(k − 1)EYt,d,k−1(dnt/2)d/2−1

(d/2 − 1)!Nt
−

kEYt,d,k(dnt/2)d/2−1

(d/2 − 1)!Nt

=
(dnt/2)d/2−2dnt

(d/2 − 2)!Nt

(
(d − 1)k−1

2
+

(k − 1)EYt,d,k−1

d − 2
−

kEYt,d,k

d − 2

)

∼
d − 2

nt

(
(d − 1)k−1

2
+

(k − 1)EYt,d,k−1

d − 2
−

kEYt,d,k

d − 2

)

=
(d − 2)(d − 1)k−1

2nt
+

(k − 1)EYt,d,k−1

nt
−

kEYt,d,k

nt
.
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Similar to the calculations in Lemma 3.2, we obtain by induction on k, starting with EYt,d,2 = 0,
that

EYt,d,k =
(d − 1)k − (d − 1)2

2k
+ O

(
1

nt

)
.

The joint moments as in Theorem 2.1 and ǫ-mixing time as in Theorem 2.2 can also be estimated
in a similar fashion to complete the proof of Theorem 2.3 for d even.

For d odd, the proof is again quite analogous, so here we only point out the salient features of
computing the first moment of Yt,d,k, ignoring the error terms as in the proof for arbitrary even d.

It is easy to see that nt = n0 + 2t, and mt = dnt/2. There are asymptotically
(

mt

(d−1)/2

)
ways to

choose the non-adjacent edges in E1 in the first step of the algorithm, which determine neighbours
of the new vertex u, and then a similar number of ways to choose the edges in E2. Hence, the total
number of ways to perform a pegging on Gt is

Nt ∼

(
mt

(d − 1)/2

)(
mt

(d − 1)/2

)
/2,

where the factor 1/2 accounts for the double counting caused by the symmetry resulting from
interchanging u and v together with E1 and E2.

There are three ways to create a new k-cycle:
Case 1: Two of the pegged edges (one from E1, say e1, and the other from E2, say e2, in the
algorithm respectively) are end edges of a (k − 1)-path. The expected number of k-cycles created
of this type is

(
d(d − 1)k−2nt/2

)( mt

(d − 1)/2 − 1

)(
mt

(d − 1)/2 − 1

)/
Nt.

Case 2: Two of the edges e1 and e2 (both from E1 or both from E2) chosen are end edges of a
k-path. This is like the even degree case, so only one new vertex is contained in the new cycle that
is created. The number of ways to choose such two edges is asymptotically d · (d − 1)k−1nt/2, and
the expected number of k-cycles created of this type is

(
d(d − 1)k−1nt/2

)( mt

(d − 1)/2 − 2

)(
mt

(d − 1)/2

)/
Nt.

Case 3: A new k-cycle is created by pegging an edge in a (k − 1)-cycle. Clearly, the contribution
from this case is

(k − 1)Yt,d,k−1

(
mt

(d − 1)/2 − 1

)(
mt

(d − 1)/2

)/
Nt.

The expected number of k-cycles destroyed in one step is asymptotically

kYt,d,k

(
dnt/2

(d − 1)/2 − 1

)(
dnt/2

(d − 1)/2

)/
Nt.
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So

E(Yt+1,d,k − Yt,k | Yt,d,k, Yt,d,k−1)

∼

{
d · (d − 1)k−2nt

2

(
dnt/2

(d − 1)/2 − 1

)(
dnt/2

(d − 1)/2 − 1

)

+
d · (d − 1)k−1nt

2

(
dnt/2

(d − 1)/2 − 2

)(
dnt/2

(d − 1)/2

)

+(k − 1)Yt,d,k−1

(
dnt/2

(d − 1)/2 − 1

)(
dnt/2

(d − 1)/2

)
− kYt,d,k

(
dnt/2

(d − 1)/2 − 1

)(
dnt/2

(d − 1)/2

)}
1

Nt
.

It is now easy to obtain

EYt,d,k →
(d − 1)k − (d − 1)2

2k
.

by applying induction on the value of k, and using Lemma 3.1.

6 Concluding remarks

We believe that the upper bound on ǫ-mixing time in Theorem 2.2 is essentially tight, that is, there
is a matching lower bound of the form τ ∗

ǫ

(
(σt)t≥0

)
≥ c/nt. We will pursue this issue elsewhere.

Theorem 2.3 implies that the random d-regular graphs generated by the pegging algorithm are
not uniformly distributed, since, in the uniform distribution, the expected number of k-cycles is
asymptotic to (d − 1)k/2k. Nonetheless, the theorem indicates the possibility that the pegging
model and the uniform model might be close in the sense of contiguity. Let PG(G0, t, d) be the
probability space of all random d-regular graphs generated by pegging algorithm at time t, starting
with graph G0. Let Gn,d be the probability space of all random d-regular graphs with uniform

distribution. Let n = n0 + t, and Ĝ be an arbitrary d-regular graph from Gn,d. Let Yt(Ĝ) be

the number of ways that Ĝ could be obtained in the pegging algorithm, i.e. Yt(Ĝ) is the total
probability of all sequences (G0, G1, . . . , Gt) ∈ P(G0, d) such that Gt = Ĝ. If we can show that
Yt/EYt converges in distribution to some random variable W as t → ∞, and W > 0 a.s., it follows
that PG(G0, t, d) is contiguous with Gn,d, where n = n0 + t (see Janson,  Luczak and Rucinński [4,
P. 266] for a discussion of this). This relationship is denoted by PG(G0, t, d) ≈ Gn,d. If true, it
means that properties a.a.s. true in one model are also true in the other model.

The small subgraph conditioning method of Robinson and Wormald gives a way of proving
the convergence of Yt/EYt (see [11] for example). It is well known that for any integer m ≥ 3,
X3, X4, . . . , Xm are independent Poisson random variables with means λi = (d−1)i/(2i), where Xi

is the number of i-cycles in a graph G ∈ Gn,d. Theorem 2.3 shows that for any integer d ≥ 3, the
number of cycles in random d-regular graphs generated by pegging are asymptotically independent
Poisson random variables with means µi = ((d − 1)i − (d − 1)2)/(2i). To use the small subgraph
conditioning method, one computes

δi =
µi

λi
− 1 = −

(d − 1)2

(d − 1)i
,
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and then it is easy to check that
k∑

i=3

λiδ
2
i < ∞.

It then becomes conceivable that the variation in probabilities in the pegging model is strongly
associated with the varying numbers of short cycles (see [10] and [4]). According to the method,

this would be proved if we could show that EY 2
t /(EYt)

2 → exp
(∑k

i=3 λiδ
2
i

)
. Since Yt(G) is a

probability, its expected value is the reciprocal of the number of d-regular graphs on n vertices,
a well understood quantity. However, the estimation of EY 2

t seems to be out of reach at present.
Nevertheless, the finiteness of the above summation seems too lucky to happen by chance, and we
make the following conjecture.

Conjecture 6.1 For all fixed d ≥ 3 and every fixed d-regular graph G0, PG(G0, t, d) ≈ Gn,d, where
t = n − n0.
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