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Abstract

We improve  Luczak’s upper bounds on the length of the longest cycle in the random
graph G(n, M) in the “supercritical phase” where M = n/2 + s and s = o(n) but
n2/3 = o(s). The new upper bound is (6.958 + o(1))s2/n with probability 1 − o(1) as
n→∞. Letting c = 1 + 2s/n, the equivalence between G(n, p) and G(n, M) implies the
same result for G(n, p) where p = c/n, c→ 1, c− 1 = ω(n−1/3).

1 Introduction

The probability space G(n,M) of all n-vertex graphs with M edges under the uniform distri-
bution is also known as the uniform random graph model. It is one of the earliest models of
random graphs, originating in a simple model introduced by Erdős [9]. We say that G(n,M)
has a property asymptotically almost surely (abbreviated a.a.s.) if the probability of this
event is 1 − o(1) as n → ∞. Much of the interest in this model comes from the study of
its its asymptotically almost sure (also abbreviated a.a.s.) properties as the dependence of
M upon n is varied. This change from a sparse graph to a dense graph, as M increases
more quickly with n, is called the evolution of the random graph. One important property
is the number L of vertices in the largest component of G(n,M). (If there is more than one
component with the maximum number of vertices, we use the lexicographically first among
largest components.) When M = cn/2 for constant c, Erdős and Rényi [3] showed that the
number of vertices in the largest component of G(n,M) is a.a.s. O(log n), Θ(n2/3), or Θ(n)
according to whether c < 1, c = 1, or c > 1, respectively.

Because of this dramatic change in the structure of G(n,M), we often call M = n/2 a
“phase transition”. Further research showed that the phase transition extends throughout
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the period M = n/2 + cn2/3 for constant c in the sense that, for this range of M , L = c′n2/3

with a distribution over the constant c′. As a result, this range of M is known as the critical
period. For s = s(n) satisfying n2/3 = o(s) but s = o(n), the range M = n/2− s is known as
the subcritical phase while the range M = n/2 + s is known as the supercritical phase. For
M in the supercritical phase, G(n,M) a.a.s. has a unique largest component on (4 + o(1))s
vertices and every other component has fewer than n2/3 vertices. A “giant component” has
emerged.

Another well-studied graph property is its circumference, the length of its longest cycle.
The circumference l of G(n,M) also changes dramatically during the phase transition, but
the way it changes is not entirely understood. Let ω = ω(n)→∞. When M = cn/2 for fixed
c < 1, the circumference of G(n,M) is a.a.s. at most ω ([6], Corollary 5.8). In the subcritical
phase, the circumference l a.a.s. satisfies l/ω < n/s < lω ([12], Section 5.4). During the
critical period M = n/2 + O(n2/3) it a.a.s. satisfies l/ω < n1/3 < lω ([12], Section 5.5).
But for larger M there are not such good estimates for the circumference. (Of course, when
M = n(log n + log log n + ω)/2 the circumference is a.a.s. equal to n as the graph is a.a.s.
Hamiltonian [15].) When M = cn/2 for fixed c > 1, there are several known a.a.s. lower
bounds on the circumference of the form (f(c) + o(1))n [10, 7, 11]. One of the earliest and
most significant breakthroughs was given by Ajtai, Komlós and Szemerédi [1], who also showed
an equivalence between the problems of finding paths of length (f(c) + o(1))n and finding
cycles of length (f(c) + o(1))n.  Luczak [17] has shown that the circumference of G(n,M) is
a.a.s. between (16/3 + o(1))s2/n and (7.496 + o(1))s2/n when M = n/2 + s for s = o(n)
and n2/3 = o(s). Kim and the second author [14] have improved  Luczak’s lower bound to
(6 + o(1))s2/n.

In this paper we improve upon  Luczak’s upper bound as follows.

Theorem 1 Let M = n/2 + s with n2/3 = o(s) and s = o(n). The circumference of G(n,M)
is a.a.s. at most (6.958 + o(1))s2/n.

In proving his result,  Luczak focused on the core and kernel of G(n,M). The core of
a graph is its maximal subgraph of minimum degree at least 2. The prekernel of a graph
is obtained from the core by throwing away any cycle components. The kernel of a graph
is obtained from the prekernel by replacing each maximal path of degree-2 vertices by a
single edge. We say that a graph is a prekernel (respectively, a kernel) if it is the prekernel
(respectively, kernel) of some graph.

 Luczak’s main insight was that, for this range of M , the kernel is much like a random
3-regular graph, and the core is much like the graph formed from the kernel by randomly
subdividing its edges about (8 + o(1))s2/n times. A random 3-regular graph a.a.s. contains
a Hamilton cycle. This gives a cycle in G(n,M) containing about (2/3) × (8 + o(1))s2/n =
(16/3 + o(1))s2/n vertices of the core. This was  Luczak’s lower bound on the circumference.
His upper bound came from viewing the core as constructed from the kernel together with
a sequence of numbers, summing to (8 + o(1))s2/n, describing how many degree-2 vertices
belong on each edge of the kernel. From probability theory, the sum of the largest two-thirds
of the terms of such a random sequence is at most (7.496 + o(1))s2/n.

We obtain our result by a different, more detailed study of how a cycle can pass through
such a structure. Our main tool is the kernel configuration model, introduced in [19] to
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facilitate arguments like  Luczak’s. Our method may be of independent interest because
it provides a quite general framework for studying properties of the giant component for
s = O(n). Ding et al.[8] recently announced another model which may be used for s = o(n).

Following  Luczak’s example, it is helpful to put weights on the edges of the kernel; the
weight of an edge tells us how many times the edge should be subdivided to recover the
core. These weights form a random sequence whose asymptotic properties we investigate in
Section 2. In particular, we show that any bounded number of terms in such a sequence
behave like independent random variables with exponential distribution. We also show that
when a function of a bounded number of these terms is summed over many sets of such terms,
the result is concentrated about its expected value. These properties are needed in Section 3
where we establish an a.a.s. upper bound on the weight of the heaviest cycle in a pseudograph
with random edge weights. The upper bound is expressed in terms of a family of constants,
some of which we explicitly calculate in Section 4. In Section 5 we prove an a.a.s. upper bound
on the circumference of a random prekernel with a degree sequence that resembles a random
3-regular graph with subdivided edges. In Section 8 we use this result to prove Theorem 1
after, in Sections 6 and 7, establishing that the degree sequence of the prekernel of G(n,M)
indeed shows the required resemblance.

2 Random sequences

Let Ω be the probability space, equipped with the uniform distribution, of all sequences of m
positive integers (X1, X2, . . . , Xm) summing to N . We are interested in the asymptotic value
of certain functions of these random variables. Letting ω = ω(N)→∞, our asymptotics are
in terms of N →∞, uniformly over all m satisfying ω < m < N/ω. For the rest of the paper
we write µ = N/m.

In this section we prove two main results. The first is a lemma that tells us the expected
value of certain functions of X1, X2, . . . , Xj for j bounded.

Lemma 2 Let g be a nonnegative integrable function of a bounded number j of nonnegative
variables. Suppose that for some C and d, g(x1, . . . , xj) ≤ C(x1 + · · ·+xj)

d for all x1, . . . , xj.
Then,

E

[
g

(
X1

µ
, . . . ,

Xj

µ

)]
=

∫ ∞
0

· · ·
∫ ∞

0

g(x1, . . . , xj)e
−x1−x2−···−xjdx1 · · · dxj + o(1).

Since the Xi are identically distributed, the above theorem also holds when (X1, . . . , Xj) is
replaced by (Xσ(1), . . . , Xσ(j)) for any j distinct σ(1), . . . , σ(j) in {1, 2, . . . ,m}. Furthermore,
the error represented by o(1) is independent of σ.

The second result that we will prove states that when such a function is summed over σ in
a sufficiently rich family, the sum is asymptotically almost surely (a.a.s.) concentrated about
its expected value.
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Lemma 3 Let f be a nonnegative integrable function of a bounded number k of nonnegative
variables. Suppose that for some C and d, f(x1, . . . , xk) ≤ C(x1 + · · ·+xk)

d for all x1, . . . , xk.
Define the constant

E∗ :=

∫ ∞
0

· · ·
∫ ∞

0

f(x1, . . . , xk)e
−x1−x2−···−xkdx1 · · · dxk.

and assume E∗ > 0. Let S be a set of k-tuples with entries from {1, 2, . . . ,m}, with each k-
tuple having distinct components. Let I = I(S) ∈ S×S be the pairs of tuples which intersect;
that is,

I = {(σ, τ) ∈ S × S | {σ(1), . . . , σ(k)} ∩ {τ(1), . . . , τ(k)} 6= ∅}.
If |I| = o(|S|2) then ∑

σ∈S

f

(
Xσ(1)

µ
, . . . ,

Xσ(k)

µ

)
= (E∗ + o(1))|S|

a.a.s.; that is, with probability 1 − o(1). Furthermore, the o(1) terms may be bounded inde-
pendently of S.

These types of concentration results are often proved using martingales or inequalities like
Talagrand’s; however, because we are aiming for such a coarse result, a simple application of
Chebyshev’s inequality will suffice for the proof.

2.1 Distribution of terms

In this section we establish some preliminary results about the distribution of the positive
termsX1, X2, . . . , Xj for bounded j. It is an exercise in basic counting to show that the number
of sequences in Ω is

(
N−1
m−1

)
. It immediately follows that for positive integers t1, t2, . . . , tj, the

number of sequences in Ω with X1 = t1, X2 = t2, . . ., Xj = tj is

B(t) :=

(
N − 1− t
m− j − 1

)
where t = t1 + t2 + · · ·+ tj.

Proposition 4 Let x satisfy x <
√
m/ω and x < µ/ω. For positive integers t ≤ xµ we have

B(t)

|Ω|
= (1 +O(ω−1))µ−je−t/µ.

Proof.

B(t)

|Ω|
=

(
N − 1− t
m− j − 1

)(
N − 1

m− 1

)−1

=

(m−1∏
i=1

N − t− i
N − i

)( j∏
i=1

m− i
N − t−m+ i

)

=

(m−1∏
i=1

(
1− t

N − i

))
µ−j
(
1 +O(m−1) +O(t/N) +O(m/N)

)
.
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Since m > ω, x < m/ω and m < N/ω, the error term is O(1/ω). Also

1− t

N − i
= 1− t

N

(
1 +O

(
i

N

))
= 1− t

N
(1 +O(µ−1));

m−1∏
i=1

(
1− t

N − i

)
= e−t/µ

(
1 +O(tm2/N2 +mt2/N2)

)
= e−t/µ

(
1−O(ω−1)

)
.

Corollary 5 Let x > 0 be fixed. For any positive integers t1, t2, . . . , tj summing to t ≤ xµ we
have

P[X1 = t1, X2 = t2, . . . , Xj = tj] = (1 +O(ω−1))µ−je−t/µ.

Next we bound the probability of larger terms.

Lemma 6 Let x > 0 be fixed. For positive integers t1, t2, . . . , tj summing to t ≥ xµ we have

P[X1 = t1, X2 = t2, . . . , Xj = tj] < 2µ−je−x
(

1− 1

2µ

)t−xµ
when N is sufficiently large.

Proof. If B(t) = 0 then the required probability is zero and we are done. Otherwise, B(i) is
nonzero for all positive integers i ≤ t and the probability which we must estimate is

B(t)

|Ω|
= |Ω|−1B(bxµc)

t∏
i=bxµc+1

B(i)

B(i− 1)
.

By Proposition 4, the product of the first two terms is (1 + O(ω−1))µ−je−bxµc/µ. This is less
than 2µ−je−x when N is sufficiently large. To bound the remaining product, we estimate the
ratio

B(i)

B(i− 1)
=
N − i−m+ j + 1

N − i
< 1− m/2

N

where the inequality holds for N sufficiently large. So, for N sufficiently large,

t∏
i=bxµc+1

B(i)

B(i− 1)
<

(
1− 1

2µ

)t−bxµc
≤
(

1− 1

2µ

)t−xµ
.

The result follows.
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2.2 Proof of Lemma 2

By the definition of expected value, we have

E

[
g

(
X1

µ
, . . . ,

Xj

µ

)]
=
∑

g

(
t1
µ
, . . . ,

tj
µ

)
P[X1 = t1, X2 = t2, . . . , Xj = tj]

where the sum is over all positive integer j-tuples t1, t2, . . . , tj.
Fix x > 0. Let us split the sum into two parts, S1(x) being the sum over j-tuples where

each ti < xµ, and S2(x) being the remainder. We will show that, as N →∞,

S1(x)→
∫ x

0

· · ·
∫ x

0

g(x1, . . . , xj)e
−x1−x2−···−xjdx1 · · · dxj,

while
|S2(x)| < Ke−x/2

for some constant K. As x grows, |S2(x)| approaches 0 and S1(x) is nonnegative and nonde-
creasing since g is nonnegative. So, taking x→∞ proves the lemma.

We begin by estimating S1(x). These terms have each ti ≤ xµ so by Corollary 5,

S1(x) = (1 +O(ω−1))
∑
t1<M

· · ·
∑
tj<M

g
(
t1
x

M
, . . . , tj

x

M

)
e−(t1+···+tj)x/M

( x
M

)j
where M = xµ. As N → ∞ we have M → ∞ and this expression becomes the required
Riemann integral.

The terms of the sum S2(x) are indexed by j-tuples t1, t2, . . . , tj with at least one ti ≥ xµ.
Consider such a term, and let t = t1 + t2 + · · · + tj. For N sufficiently large, the absolute
value of the term is

g

(
t1
µ
, . . . ,

tj
µ

)
P[X1 = t1, X2 = t2, . . . , Xj = tj] < C

(
t

µ

)d
2µ−je−x

(
1− 1

2µ

)t−xµ
by the hypotheses about g and Lemma 6. The number of terms in S2(x) indexed by j-tuples
summing to t is at most

(
t−1
j−1

)
≤ (t + j)j−1 ≤ (2t)j−1 for N (and hence t) sufficiently large.

Thus, for N large, we have

|S2(x)| <
∑
t≥xµ

(2t)j−1C

(
t

µ

)d
2µ−je−x

(
1− 1

2µ

)t−xµ
= 2e−x

C2j−1

µj+d

(
1− 1

2µ

)−xµ∑
t≥xµ

tj+d−1

(
1− 1

2µ

)t
.

The factor (1− 1/(2µ))−xµ approaches ex/2 as N →∞. The remaining sum is∑
t≥xµ

tj+d−1

(
1− 1

2µ

)t
≤

∑
t≥0

(t+ 1)(t+ 2) · · · (t+ j + d− 1)

(
1− 1

2µ

)t
= (j + d− 1)!(2µ)j+d

using the Maclaurin series expansion k!(1−x)−k−1 =
∑

t≥0(t+1)(t+2) · · · (t+k)xt. Combining
this with the previous results, we get the desired estimate. This proves the lemma.
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2.3 Proof of Lemma 3

For each σ in S, define the random variable Yσ := f(Xσ(1)/µ, . . . , Xσ(k)/µ). As we remarked
after Lemma 2, each of these variables has the same distribution as the random variable Y1 :=
f(X1/µ, . . . , Xk/µ). In particular, the expected value is the constant E∗, up to an additive
error of o(1). We will establish the concentration of the random variable Z :=

∑
σ∈S Yσ

by showing that the variance of Z is o((EZ)2). The lemma then follows by Chebyshev’s
inequality.

We begin by estimating

(EZ)2 =
∑

(σ,τ)∈S×S

EYσEYτ =
∑

(σ,τ)∈S×S

(E∗ + o(1))(E∗ + o(1)) = Θ(|S|2)

(using the lower bound assumed on E∗ in the lemma). We can write the variance in terms of
two sums

E[Z2]− (EZ)2 =
∑

(σ,τ)∈I

(E[YσYτ ]− EYσEYτ ) +
∑

(σ,τ)∈(S×S)\I

(E[YσYτ ]− EYσEYτ ).

To study the terms of the second sum, let (σ, τ) ∈ (S × S) \ I. By Lemma 2, we have

E[YσYτ ]

= E

[
f

(
Xσ(1)

µ
, . . . ,

Xσ(k)

µ

)
f

(
Xτ(1)

µ
, . . . ,

Xτ(k)

µ

)]
=

∫ ∞
0

· · ·
∫ ∞

0

f(x1, . . . , xk)f(xk+1, . . . , x2k)e
−x1−···−x2kdx1 · · · dx2k + o(1)

=

(∫ ∞
0

· · ·
∫ ∞

0

f(x1, . . . , xk)e
−x1−x2−···−xkdx1 · · · dxk

)2

+ o(1)

= EYσEYτ + o(1)

where o(1) is independent of σ and τ . So the second sum is o(|S|2). To study the terms of
the first sum, we can be more crude. By Lemma 2 and the remark following it, we know that
each E[YσYτ ] and EYσEYτ depends only on the tuple positions where σ and τ intersect, and
each value is O(1). So the first sum is O(|I|), which is o(|S|2) by hypothesis. Combining the
two sums, we see that the variance of Z is o(|S|2), which is o((EZ)2), as required.

3 Heavy cycles in a weighted pseudograph

In the introduction we saw that the problem of bounding the circumference of G(n,M) is
connected to the problem of bounding the weight of the heaviest cycle in a certain edge-
weighted graph. In this section we study a graph, technically a pseudograph since it may
have loops and/or multiple edges, whose m edges are randomly weighted by positive integers
summing to N . The sequence of weights is chosen uniformly at random from among all
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such sequences. Equivalently, we can think of the weights as being generated by the following
random process applied to make a sequence of pseudographs, beginning with the given one. At
each step, choose an edge uniformly at random from the current pseudograph and subdivide
the edge into two edges. Repeat the procedure until the resulting pseudograph has exactly
N edges. For each edge in the original pseudograph, define its weight to be the number
of edges into which it has been subdivided. These weights form a sequence of m positive
integers summing to N . There are exactly (N −m)! ways that the process can form a given
sequence, so the sequence is chosen uniformly at random from among all such sequences.
Another random process for generating the weights initially gives a weight of 1 to each edge,
then selects an edge at random with probability proportional to the weight of the edge and
increments the weight of the selected edge by 1. The selection and incrementing is repeated
until the total weight is N . It is easy to see that this process is equivalent to the previous
one.

Given a subgraph of an edge-weighted pseudograph, we define the weight of the subgraph
to be the sum of the weights on its edges. To establish an upper bound for the weight of a cycle
in a large pseudograph, we will consider the intersection of the cycle with small trees in the
pseudograph. The intersection of the cycle and the small tree will form a set of vertex-disjoint
paths which begin and end at leaf vertices of the tree. We will use the maximum-weight set
of such vertex-disjoint paths to bound the weight of the intersection. This motivates the
following definitions.

Fix an integer k ≥ 2. A biased tree T on k edges is a tree on k edges with each non-leaf
vertex having degree 3 and each edge ei having a nonnegative number bi called its bias. We
may assume that the sum of the biases b = (b1, b2, . . . , bk) is 1.

Let P be the set of all maximal subgraphs of T which are a union of vertex-disjoint paths
which begin and end at leaf vertices. Define the function

fT (x1, x2, . . . , xk) = max
P∈P

∑
i:ei∈E(P )

bixi

and the constant

ET =

∫ ∞
0

∫ ∞
0

· · ·
∫ ∞

0

fT (x1, x2, . . . , xk)e
−x1−x2−···−xkdx1dx2 · · · dxk. (3.1)

If x1, x2, . . . , xk are weights on the edges of T , we can think of f as the maximum “biased
weight” of any graph in P .

We say that the positive constant c∗ is k-admissible if ET < c∗ for some biased tree T on
k edges.

Lemma 7 Fix an integer k ≥ 2. Let the positive number c∗ be k-admissible. Let G =
G(n) be a pseudograph on v = v(n) → ∞ (as n → ∞) vertices and m = m(n) edges with
minimum degree at least 3. Suppose the subgraph B of G induced by cycles of length at most
k (including loops and parallel edges) and edges incident to vertices of degree greater than 3
satisfies |E(B)| = o(v). Let N = N(n) be a positive integer satisfying m = o(N). On the
edges of G put weights, a sequence chosen uniformly at random from among all sequences of
m positive integers summing to N . Then, the heaviest cycle in G has weight a.a.s. at most
c∗N .
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Proof. Denote the edges ofG by w1, w2, . . . , wm and their random weights byX1, X2, . . . , Xm.
We estimate m by recalling that in any graph the sum of the vertex degrees equals twice the
number of edges. Since G has minimum degree at least 3, we have 2m ≥ 3v. Since G has
only o(v) edges incident to vertices of degree greater than 3, we have 2m ≤ 3v + o(v). Thus
m ∼ 3v/2.

For a subgraph S of G, define its k-neighbourhood Γ(S) to be the subgraph of G reachable
from S by paths of length at most k. Recalling that the subgraph B of G contains all edges
incident with vertices of degree greater than 3, its k-neighbourhood satisfies |E(Γ(B))| ≤
2k|E(B)| = o(v).

Let C be a cycle in G. Its weight wt(C) is

wt(C) :=
m∑
j=1

XjI(wj ∈ E(C))

=
∑

j:wj∈E(Γ(B))

XjI(wj ∈ E(C)) +
∑

j:wj 6∈E(Γ(B))

XjI(wj ∈ E(C))

where I(α) is the indicator function equal to 1 if α is true and 0 otherwise. The expected
value of each Xj is µ = N/m, so the first sum has expected value at most |E(Γ(B))|N/m =
o(vN/m) = o(N) since m ∼ 3v/2. It follows by Markov’s inequality that the first sum is
a.a.s. o(N). Thus a.a.s.,

wt(C) = o(N) +
∑

j:wj 6∈E(Γ(B))

XjI(wj ∈ E(C)). (3.2)

Since c∗ is k-admissible, there is a biased tree T on k edges with ET < c∗. We will study
the copies of T in the graph G \B. Let S be the set of 1-1 homomorphisms σ mapping T to
G \ B. Since k ≥ 2, each σ is uniquely defined by the mapping it induces between the edge
sets. We write σ = (σ(1), σ(2), . . . , σ(k)) and interpret σ(i) = j to mean that σ maps edge ei
of T to edge wj of G.

Consider the random variable

Z =
∑
σ∈S

k∑
i=1

biXσ(i)I(wσ(i) ∈ E(C)).

Expressing Z in terms of the edges of G we may write

Z =
m∑
j=1

∑
σ∈S

k∑
i=1

biXjI(wj ∈ E(C))I(σ(i) = j)

=
m∑
j=1

k∑
i=1

biXjI(wj ∈ E(C))|{σ ∈ S | σ(i) = j}|.

For each edge wj of G not in E(Γ(B)) the k-neighbourhood of wj is the depth-k tree with
internal vertices of degree 3. Thus, |{σ ∈ S | σ(i) = j}| equals some constant independent
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of j. In fact, this constant is a number a, independent of i, because any σ in this set is
determined by choosing one of the 2 ways to embed ei onto wj and then, moving outward
from ei, making one binary choice for each non-leaf vertex of T . On the other hand, for an
edge wj ∈ E(Γ(B)), |{σ ∈ S | σ(i) = j}| is at most a (by the same argument, recalling that
some choices are impossible because σ maps into G \B), so we have

Z =
∑

j:wj∈E(Γ(B))

O(Xj) +
∑

j:wj 6∈E(Γ(B))

k∑
i=1

abiXjI(wj ∈ E(C))

=
∑

j:wj∈E(Γ(B))

O(Xj) +
∑

j:wj 6∈E(Γ(B))

aXjI(wj ∈ E(C))

since
∑k

i=1 bi = 1. The first sum has o(v) terms, each having expected value O(N/m), so the
sum is a.a.s. o(vN/m) = o(N) by Markov’s inequality. We now have a.a.s.

Z = o(N) + a
∑

j 6∈E(Γ(B))

XjI(wj ∈ E(C)).

Combining this result with (3.2) we get a.a.s.

wt(C) =
1

a
Z + o(N). (3.3)

Returning to the definition of Z, we notice that the inner sum is the “biased weight” of the
edges of C passing through the copy of T given by σ. These edges must form vertex-disjoint
paths beginning and ending at leaves of the copy of T given by σ, so this sum is at most
fT (Xσ(1), Xσ(2), . . . , Xσ(k)). So

Z ≤
∑
σ∈S

fT (Xσ(1), Xσ(2), . . . , Xσ(k)).

We will estimate this sum by applying Lemma 3 to

1

µ

∑
σ∈S

fT (Xσ(1), Xσ(2), . . . , Xσ(k)) =
∑
σ∈S

fT

(
Xσ(1)

µ
,
Xσ(2)

µ
, . . . ,

Xσ(k)

µ

)
.

To verify the hypotheses of Lemma 3 we first note that fT (x1, x2, . . . , xk) is nonnegative,
piecewise linear (and hence integrable), and bounded above by x1 +x2 + · · ·+xk. We estimate
|S| by

|S| =
∑

j:wj∈E(G)

|{σ ∈ S | σ(1) = j}|

=
∑

j:wj∈E(Γ(B))

|{σ ∈ S | σ(1) = j}|+
∑

j:wj 6∈E(Γ(B))

|{σ ∈ S | σ(1) = j}|

= o(v) +
∑

wj 6∈E(Γ(B))

a

= o(v) + (1 + o(1))ma

∼ ma

10



using o(v) = o(m). To estimate the cardinality of the set I of pairs (σ, τ) ∈ S × S for
which σ and τ represent intersecting copies of T , consider any edge f in G \ B. As we have
seen previously, there are at most a copies of T using f . So, a crude upper bound for |I| is
a2|E(G \ B)| ≤ a2m, giving us |I| = o(|S|2) as required. Recalling the definition of ET from
(3.1) we may apply Lemma 3 and conclude a.a.s.

1

µ
Z ≤ (ET + o(1))|S| = (ET + o(1))am.

Combining this with Equation (3.3) we get a.a.s.

wt(C) ≤ 1

a
µ(ET + o(1))am+ o(N) = (ET + o(1))N + o(N) < c∗N

as required.

Remark 1. A random 3-regular graph a.a.s. satisfies all of the hypotheses of Lemma 7.
The lemma thus gives an upper bound which holds a.a.s. on the weight of the heaviest cycle
in a randomly-weighted random 3-regular graph.

Remark 2. There are essentially two ingredients in the proof of Lemma 7. The first
ingredient is a method for bounding the weight of a cycle in a large edge-weighted 3-regular
subgraph. The second ingredient is the argument that the weight of the heaviest cycle does not
change much when the remainder of the graph is included. This second ingredient is implicit
in  Luczak’s proof of his upper bound on the circumference of G(n,M) in the supercritical
phase [17]. It is the first ingredient that is the new contribution.

Remark 3. For the task of bounding the weight of a cycle in a large edge-weighted
3-regular subgraph, one might suggest investigating the weight of the least-weight matching.
Certainly the complement of a Hamilton cycle in a 3-regular graph forms a perfect matching.
But, in general, the maximum-weight cycle is not necessarily Hamiltonian. Thus, its removal
from the graph does not always form a perfect matching.

4 Computing ET

Recall the definitions of fT (x) = fT (x1, x2, . . . , xk) and ET from (3.1). In the previous section
we saw that the weight of the heaviest cycle in a certain edge-weighted pseudograph can be
bounded in terms of ET for any biased tree T . In this section we compute the value of ET
for a few specific biased trees T . For some trees T we also state the biases b which make ET
as small as possible.

Proposition 8 Let T be the biased tree on two degree-3 vertices and four leaf vertices with
bias b on the edges incident to leaves and bias 1 − 4b on the remaining edge, where b is the
unique zero of 105b3 − 90b2 + 24b− 2 on 0 < b < 1/4. Then

ET =
4(1− 3b)(5b2 − 5b+ 1)

(7b− 2)2

which lies in (0.8797, 0.8798) and hence c∗ = 0.8798 is k-admissible for k = 5.

11



It can be shown that, for this tree, no other choice of biases b yields a lower value of ET .
See [13] for details.
Proof. We begin by letting v and w denote the two non-leaf vertices of T . Let e1 and e2

denote the two edges which are each incident to v and a leaf. Denote by e3 the edge joining
v to w, and christen the other two edges as e4 and e5. Under this ordering the biases are
b = (b, b, 1− 4b, b, b).

To evaluate the integral ET we exploit some of its symmetry. It suffices to integrate over
only nonnegative x1, x2, x3, x4, x5 satisfying x1 ≤ x2 and x4 ≤ x5 and multiply the final result
by 4. For such points, only two of the P ∈ P can attain the maximum in the definition of
fT , giving us

fT (x) = fT (x1, x2, x3, x4, x5) = max{bx1 + bx2 + bx4 + bx5, bx2 + (1− 4b)x3 + bx5}.

We split the region of integration into two parts, according to whether

bx1 + bx2 + bx4 + bx5 ≥ bx2 + (1− 4b)x3 + bx5,

i.e. b(x1 + x4)/(1− 4b) ≥ x3. The integrals are∫ ∞
x2=0

∫ ∞
x5=0

∫ x2

x1=0

∫ x5

x4=0

∫ b(x1+x4)
1−4b

x3=0

b(x1 + x2 + x4 + x5)e−x1−x2−x3−x4−x5dx1dx2 · · · dx5

and ∫ ∞
x2=0

∫ ∞
x5=0

∫ x2

x1=0

∫ x5

x4=0

∫ ∞
x3=

b(x1+x4)
1−4b

(bx2 + (1− 4b)x3 + bx5)e−x1−x2−x3−x4−x5dx

which, when evaluated, added together, and multiplied by 4, give us

ET =
4(1− 3b)(5b2 − 5b+ 1)

(7b− 2)2
.

The result follows by simple computations.

Proposition 9 Let T be the biased tree on three degree-3 vertices and five leaf vertices with
bias b on edges incident to leaves and bias (1−5b)/2 on the other edges, where b is the unique
zero of −3993b4 + 2765b3 + 1452b5 − 804b2 + 105b− 5 on 0 < b < 1/5. Then

ET =
726b4 − 601b3 + 245b2 − 55b+ 5

5(1− b)(4b− 1)2

which lies in (0.8741, 0.8742) and hence c∗ = 0.8742 is k-admissible for k = 7.

For the tree in the above proposition, it can be shown [13] that no other choice of biases b
yields a lower value of ET .
Proof. We may view T as the complete binary tree on six edges with one additional edge
e1 joining the root to an additional vertex. Denote by e2 and e3 the other edges incident to

12



the root. Denote by e4 and e5 the edges incident with e2. Denote by e6 and e7 the two edges
incident with e3. Under this ordering, the biases are

b =

(
b,

1− 5b

2
,
1− 5b

2
, b, b, b, b

)
.

By symmetry we may compute ET by integrating over only x4 ≤ x5 and x6 ≤ x7 and
multiplying the final result by 4. In this range, fT is the maximum of four expressions,

1. b(x4 + x5 + x6 + x7),

2. bx1 + (1− 5b)x2/2 + b(x5 + x6 + x7),

3. (1− 5b)(x2 + x3)/2 + b(x5 + x7), and

4. bx1 + (1− 5b)x3/2 + b(x4 + x5 + x7).

To compute the integral, the region of integration is divided into four parts, according to
which of the above expressions gives the maximum. We present the details for the first part
only.

The first expression exceeds the other three if and only if bx4 > bx1 + (1 − 5b)x2/2 and
bx6 > bx1 + (1 − 5b)x3/2. To express the integral over this part as an iterated integral, we
divide the part into two regions, according to whether x4 > x6 or not. The region on which
x4 > x6 gives the integral∫ ∞

x4=0

∫ x4

x6=0

∫ x6

x1=0

∫ 2b(x4−x1)
1−5b

x2=0

∫ 2b(x6−x1)
1−5b

x3=0

∫ ∞
x5=x4

∫ ∞
x7=x6

Idx1dx2dx3dx4dx5dx6dx7

with integrand I = b(x4 + x5 + x6 + x7)e−x1−x2−x3−x4−x5−x6−x7 . The integral evaluates to

1

100

(73b− 17)b3

(4b− 1)3
.

The region on which x6 > x4 gives

1

100

(73b− 17)b3

(4b− 1)(16b2 − 8b+ 1)
.

The other three parts can be expressed and evaluated similarly, giving a final result of

ET =
726b4 − 601b3 + 245b2 − 55b+ 5

5(1− b)(4b− 1)2
.

The result follows by simple computations.

Our final computation is for a nine-edge tree. Its lengthy proof uses the same method
that we used in the previous computations, so we omit it.
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Proposition 10 Let T be the biased tree on four degree-3 vertices and six leaf vertices with
bias b on edges incident to leaves and bias (1−6b)/4 on the other edges, where b is the unique
zero of

2372895b6 − 3013200b5 + 1501416b4 − 389232b3 + 56016b2 − 4224b+ 128

on 0 < b < 1/6. Then

ET =
−2(−128 + 2448b− 17856b2 + 60372b3 − 88938b4 + 37665b5)

9(32− 600b+ 4212b2 − 13122b3 + 15309b4)

which lies in (0.8696, 0.8697) and hence c∗ = 0.8697 is k-admissible for k = 9.

Computer simulations suggest that the value of c∗ decreases only slightly as k is increased
further so we do not pursue this here.

5 Circumference of a random prekernel with given de-

gree sequence

In the previous sections we have established Lemma 7, an a.a.s. upper bound on the weight
of the heaviest cycle in certain randomly-edge-weighted pseudographs. In this section we use
that lemma to establish an upper bound on the circumference of a random prekernel whose
degree sequence satisfies certain conditions. In later sections we will see that the degree
sequence of the prekernel of G(n,M) a.a.s. satisfies these conditions, allowing us to use this
result to establish an a.a.s. upper bound on the circumference of the prekernel of G(n,M).

One of the challenges in this section arises because Lemma 7 is a statement about non-
random pseudographs with random edge weightings, while we are proving a statement about
random prekernels. The kernel configuration model of Pittel and Wormald, described below,
allows us to rigorously make this transition. It combines a pairing model, for generating the
kernel, with a random sequence of weights on the kernel edges.

Another challenge in this section is to show that the conditions on the degree sequence
imply that the hypotheses of Lemma 7 are satisfied. One hypothesis requires that there are
few edges incident with vertices whose degree exceeds 3. Another hypothesis requires that
the number of short cycles in the kernel be small. In  Luczak’s proof of his upper bound for
the circumference of G(n,M) in the supercritical phase, he established the first hypothesis by
direct enumeration over degree sequences. (See the proof of Theorem 10 in [17].) However,
 Luczak does not require the second hypothesis, so we will need to prove it here. We will
see that, without much extra effort, our proof of the second hypothesis gives an alternative
derivation of the first hypothesis. In [5] and [20] there are results about short cycles arising in
this pairing model. However, these results apply only when the maximum degree is bounded,
so they cannot be used for our application.

We are interested in studying prekernels with a given degree sequence d = (di). We say
that d is a prekernel degree sequence if its number of terms v = v(d) is finite, each term is a
positive integer at least 2, and r = r(d) =

∑
i(di − 2) is even. For j = 2, 3, . . . we define

Dj = Dj(d) = |{i : di = j}|. (5.1)

14



The kernel configuration model H(d) is used to generate prekernels with degree sequence
d. It has been used successfully to calculate improved estimates for the size of the core,
excess, and tree mantle [19]. We describe the model next.

For each i with di ≥ 3 create a set Si of di points. Let P be the set of perfect matchings
on the union of these sets of points and choose P ∈ P uniformly at random. Then, assign
the remaining numbers {i : di = 2} to the edges of the perfect matching and, for each edge,
choose a linear order for these numbers. The assignments and the linear ordering, denoted
by f , are chosen uniformly at random. The pair (P, f) defines a random configuration in the
model H(d).

Each configuration (P, f) corresponds to a prekernel G(P, f) by collapsing each set Si to a
vertex (producing a kernel K(P )) and placing the degree-2 vertices on the edges of the kernel
according to the assignment and linear orderings.

Lemma 11 Let d = d(n) be a prekernel degree sequence satisfying v = v(d) → ∞, r =
r(d)→∞, r = o(v), D3 = D3(d) ∼ r, and∑

i:di≥3

(
di
2

)
< 4r.

Fix a positive integer k ≥ 2 and suppose that the positive constant c∗ is k-admissible. For a
random configuration (P, f) in H(d), the longest cycle in G(P, f) has length a.a.s. at most
c∗v as n→∞.

Proof. Define P∗ to be the set of P ∈ P for which K(P ) has at most
√
r edges in cycles of

length at most k. We will show that a random configuration (P, f) a.a.s. has P ∈ P∗. Recall
that P is a random perfect matching on the points in the union of the Si. For j ∈ {1, 2, . . . , k},
the number of ways of choosing j pairs of points to form a cycle is at most

1

2j

(∑
i:di≥3

2

(
di
2

))j

= O
(
rj
)
.

The probability that j given pairs of points appear in the pairing P is asymptotic to

(
∑
i:di≥3

di)
−j

since j is bounded. Now ∑
i:di≥3

di >
∑
i:di≥3

(di − 2)

=
∑
i

(di − 2)

= r

so the expected number of cycles of length j is O(rjr−j) = O(1). Since k is fixed, the expected
number of edges in such cycles is also O(1). By Markov’s inequality, the number of edges
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in cycles of length j is a.a.s. bounded above by any function ω = ω(n) → ∞, in particular√
r/k. Thus, a.a.s. P ∈ P∗.

Let (P, f) be a random configuration from H(d). Define G′(P, f) to be the edge-weighted
pseudograph whose underlying pseudograph is K(P ) and whose edge-weight on e, for each
edge e, is one more than the number of vertices assigned to e by f . Let A be the event that the
heaviest cycle in G′(P, f) has weight at most c∗v. Let P0 be the P ∗ minimizing P[A | P = P ∗]
over P ∗ ∈ P∗. The minimum exists because P∗ is finite. Next we verify that, conditioned on
P = P0, G′(P, f) satisfies the hypotheses of Lemma 7. The number of vertices v′ of G′(P, f)
is at least D3 ∼ r →∞. The minimum degree is at least 3 because it is a kernel. The number
of edges incident to cycles of length at most k (including loops and parallel edges) is at most√
r = o(r) = o(v′) since P0 ∈ P∗. The number of edges incident to vertices of degree greater

than 3 is at most ∑
j:dj≥4

dj ≤ 2
∑
j:dj≥4

(dj − 2)

= 2
∑
j

(dj − 2)− 2D3

= 2r − 2D3

= o(r)

which is o(v′). The number of edges m′ satisfies

2m′ =
∑
j:dj≥3

dj

= 3D3 + o(r)

by the previous calculation, so m′ = O(D3) = O(r) = o(v). To see that m′ is little-oh of
the sum N of the edge-weights, observe that N is the number of edges of G(P, f), which is∑

j dj/2 ≥ v. Next observe that the edge weights form a sequence of positive integers that is
determined by the assignment f in the random configuration. There are exactly |{i : di = 2}|!
choices for f that produce any given sequence, so the sequence is chosen uniformly at random.
We have shown that the hypotheses of Lemma 7 hold for G′(P, f) conditioned on P = P0, so
we have P[A | P = P0] = 1− o(1). Now

P[A] ≥
∑
P ∗∈P∗

P[A | P = P ∗]P[P = P ∗]

≥ P[A | P = P0]
∑
P ∗∈P∗

P[P = P ∗]

by the choice of P0. Since we showed P ∈ P∗ a.a.s. we get P[A] = 1 − o(1); that is, the
heaviest cycle in G′(P, f) a.a.s. has weight at most c∗v. But if C is a cycle in G(P, f) of some
length l, C corresponds naturally to a cycle in G′(P, f) of weight l. So the longest cycle in
G(P, f) a.a.s. has length at most c∗v.
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Corollary 12 Let d = d(n) be a prekernel degree sequence satisfying v = v(d) → ∞, r =
r(d)→∞, r = o(v), D3 = D3(d) ∼ r, and∑

i:di≥3

(
di
2

)
< 4r.

Fix k ≥ 2 and suppose that the positive constant c∗ is k-admissible. Let G be chosen uniformly
at random from all prekernels with degree sequence d. The longest cycle in G has length a.a.s.
at most c∗v as n→∞.

Proof. The probability space H(d), conditioned on the event that G(P, f) is a simple graph,
is a uniform probability space on the prekernels with degree sequence d ([19], Lemma 3). By
Lemma 5 in [19], G(P, f) is a.a.s. a simple graph. (In fact, Lemma 5 in [19] is stated with
an additional hypothesis on max di, but this hypothesis is not used in the proof.) The result
now follows from Lemma 11.

6 Truncated multinomial distribution

In order to apply Corollary 12 to the prekernel of G(n,M), we must verify the hypotheses
about properties of the degree sequence. We give a new derivation of these properties, which
will require some facts about the following distribution.

Let v and t be positive integers. The probability space Multi(v, t) consists of vectors
(d1, d2, . . . , dv) with distribution

P[d1 = j1, d2 = j2, . . . , dv = jv] =
t!

vtj1!j2! · · · jv!
for any vector (j1, j2, . . . , jv) of nonnegative integers summing to t. This is the well-known
multinomial distribution, modelling the number of balls in each bin when each of t balls is
tossed into one of v bins, independently and uniformly at random. The space Multi(v, t)|≥2

is obtained from Multi(v, t) by conditioning on the event that each di ≥ 2.

Lemma 13 Let v = v(n) and r = r(n) satisfy v →∞, r →∞ and r = o(v). If the random
vector d is distributed as Multi(v, 2v + r)|≥2 then a.a.s. D3(d) ∼ r and∑

i:di≥3

(
di
2

)
< 4r.

Proof. Define the positive number λ by

λ(eλ − 1)

eλ − 1− λ
= 2 +

r

v
.

In [4], the authors show that λ exists and they use it to define a vector of independent
truncated Poisson random variables which approximate Multi(v, 2v+r)|≥2 as follows. Define
the random variable Y taking values j = 2, 3, . . . according to the distribution

P[Y = j] = pj =
λj

j!(eλ − 1− λ)
.
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Consider the probability space formed by vectors Y = (Y1, Y2, . . . , Yv) of v independent copies
of Y and let Σ be the event that their sum satisfies

∑
i Yi = 2v + r. For nonnegative integers

j1, j2, . . . , jv summing to 2v + r with each ji ≥ 2 we have

P[Y1 = j1, . . . , Yv = jv] =
λ2v+r

(eλ − 1− λ)v

v∏
i=1

1

ji!

so this probability space, conditioned on Σ, is identical to Multi(v, 2v+r)|≥2. Equation (5.7)
in [19] says that

P

[
max
i
Yi < log v or

∑
i:Yi≥3

(
Yi
2

)
≥ 4r | Σ

]
= O(r−1 + rv−1).

The second claim in the lemma follows. Theorem 4(a) in [18] states that for r →∞,

P[Σ] =
1 +O(r−1)√

2πvc(1 + η̄ − c)
where c(1 + η̄ − c) ∼ c− k = r/v by Equation (20) in [18]. It follows that

P[Σ]−1 = O(
√
r). (6.1)

To establish the first claim in the lemma, we observe that D3(Y) is distributed as a binomial
random variable with v trials and p3 probability of success. By Chernoff’s bound,

P [|D3(Y)− vp3| > a] < 2 exp(−a2/(3vp3))

for 0 < a ≤ vp3. Recalling (6.1), in Multi(v, 2v + r)|≥2 we have

P [|D3(d)− vp3| > a] = O(
√
r) exp(−a2/(3vp3)).

Setting a =
√
vp3 log r (which satisfies a ≤ vp3, as we will see shortly) we get D3(d) =

vp3+O(
√
vp3 log r) with probability 1−O(exp(−(log r)2/3)). Now λ ∼ 3rv−1 by Theorem 1(a)

in [18], so

vp3 = v
λ3

3!(eλ − 1− λ)
= v

λ3

3!(λ2/2 +O(λ3))
=

1

3
vλ(1 +O(λ)) = r(1 +O(rv−1))

giving us D3(d) ∼ r a.a.s. as required.

7 Properties of vertex degrees in G(n,M)

Now we proceed to establish the properties of the degree sequence of the prekernel of G(n,M)
that are required to apply Corollary 12. Recall that we are assuming M = M(n) = n/2 + s
for some s = s(n) satisfying s = o(n) and n2/3 = o(s). For this range of M , it is well-known
that G(n,M) a.a.s. has a unique component with maximum number of vertices [2], which we
call the largest component.

We begin by showing a.a.s. there are few vertices in the core that lie outside the largest
component. The next result is part of the proof of Theorem 4 of [17]. Here we present a
slightly more thorough proof.
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Lemma 14 Let M = M(n) = n/2+s for some s = s(n) satisfying s = o(n) and n2/3 = o(s).
The number of vertices in cycles of G(n,M) not in the largest component is a.a.s. at most
ωn/s for any ω = ω(n)→∞.

Proof. Let Ḡ be the graph formed from G(n,M) by removing its (lexicographically first)
largest component. Let n(Ḡ) and M(Ḡ) represent its number of vertices and edges, respec-
tively. Let ε > 0 and define S to be the set of ordered pairs (n̄, M̄) satisfying

1. (1− ε)4s ≤ n− n̄ ≤ (1 + ε)4s,

2. (1− ε)4s ≤M − M̄ ≤ (1 + ε)4s, and

3. P[n(Ḡ) = n̄,M(Ḡ) = M̄ ] > 0.

It is known that the largest component of G(n,M) has a.a.s. 4s(1 + o(1)) vertices and 4s(1 +
o(1)) edges [2, 16]. So a.a.s. (n(Ḡ),M(Ḡ)) ∈ S. For (n̄, M̄) ∈ S we have M̄ ≤M−4s(1−ε) =
n/2 + s− 4s(1− ε) and n ≤ n̄+ 4s(1 + ε), giving us

M̄ ≤ n̄/2− s(1− 6ε). (7.1)

To estimate the number X of vertices in cycles in Ḡ we let (n̄, M̄) ∈ S and condition on the
non-empty event n(Ḡ) = n̄,M(Ḡ) = M̄ . In the conditioned space, Ḡ is equally likely to be
any graph on n̄ vertices and M̄ edges. For 3 ≤ k ≤ n̄ the number of such graphs having a
cycle of length k is at most (

n̄

k

)
k!

2k

( (
n̄
2

)
M̄ − k

)
so the expected value of X in this conditioned space is

E[X | n(Ḡ) = n̄,M(Ḡ) = M̄ ] ≤
n̄∑
k=3

k

(
n̄

k

)
k!

2k

( (
n̄
2

)
M̄ − k

)((n̄
2

)
M̄

)−1

<
1

2

n̄∑
k=3

n̄kM̄k

(
(
n̄
2

)
− n̄)k

.

Using (7.1) this becomes

E[X | n(Ḡ) = n̄,M(Ḡ) = M̄ ] <
1

2

n̄∑
k=3

( n̄
2
− s(1− 6ε)
n̄−1

2
− 1

)k
<

1

2

n̄∑
k=3

(
1− s(1− 6ε)

n̄− 3

)k
<

1

2

∞∑
k=3

(
1− s(1− 6ε)

n̄− 3

)k
=

1

2
× n̄− 3

s(1− 6ε)

which is at most n/s for n sufficiently large. By Markov’s inequality,

P[X ≥ ωn/s | n(Ḡ) = n̄,M(Ḡ) = M̄ ] ≤ E[X | n(Ḡ) = n̄,M(Ḡ) = M̄ ]

ωn/s
<

1

ω
.
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So

P[X < ωn/s] ≥ P[X < ωn/s, (n(Ḡ),M(Ḡ)) ∈ S]

=
∑

(n̄,M̄)∈S

(
P[X < ωn/s | n(Ḡ) = n̄,M(Ḡ) = M̄ ]

×P[n(Ḡ) = n̄,M(Ḡ) = M̄ ]
)

≥
(

1− 1

ω

)
P[(n(Ḡ),M(Ḡ)) ∈ S]

=

(
1− 1

ω

)
(1− o(1))

since a.a.s. (n(Ḡ),M(Ḡ)) ∈ S. Therefore a.a.s. X < ωn/s.

Instead of proving results about the degree sequence of the prekernel of G(n,M) directly,
we will actually prove results about the degree sequence of the core. The next result will
allow us to transfer results about the core to the prekernel.

Lemma 15 Let M = M(n) = n/2+s for some s = s(n) satisfying s = o(n) and n2/3 = o(s).
The core of the largest component of G(n,M) is a.a.s. formed from the core of G(n,M) by
removing o(s2/n) vertices of degree 2. Also, the prekernel of G(n,M) is a.a.s. formed from
the core of G(n,M) by removing o(s2/n) vertices of degree 2.

Proof. It is well-known that the largest component of G(n,M) is a.a.s. the only compo-
nent that has more than one cycle. (See Theorem 5.12 in [12].) So, the core of G(n,M)
is a.a.s. composed of the core of the largest component together with some cycle compo-
nents. By Lemma 14 the number of vertices in the cycle components is a.a.s. at most
ωn/s = (s/n2/3)(n/s) = n1/3 = (n2/3)2/n = o(s2/n), since we may take ω = s/n2/3. Be-
cause the largest component of G(n,M) a.a.s. contains more than one cycle, it follows that
these cycle components are a.a.s. all of the cycle components in the core of G(n,M), making
the prekernel a.a.s. equal to the core of the largest component.

Now we establish the required properties of the degree sequence of the prekernel of G(n,M).
Recall the definitions of Dj(d), v(d), r(d) from (5.1). The results about r(d), v(d), and D3(d)
in the following lemma were used by  Luczak [17]. He used the estimate of r(d) from [16] to
establish estimates for Dj(d) and v(d) by direct enumeration over degree sequences. Instead
of studying the prekernel directly, he studied the core of the largest component. Our proof
method is different, using the known estimates of v(d) and r(d) to establish results about the
degree sequence of the core.

Lemma 16 Let M = M(n) = n/2+s for some s = s(n) satisfying s = o(n) and n2/3 = o(s).
Let d be the degree sequence of the prekernel of G(n,M). Then, a.a.s. v(d) ∼ 8s2/n, r(d) ∼
D3(d) ∼ 32s3/(3n2), and ∑

i:di≥3

2

(
di
2

)
< 4r(d).
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Proof. By Lemma 15 the prekernel differs from the core a.a.s. by o(s2/n) vertices of degree
2. Thus, it suffices to prove the lemma for the degree sequence d of the core. Appealing to
Lemma 15 again, the core differs from the core of the largest component a.a.s. by o(s2/n)
vertices of degree 2. It is known [19] that the degree sequence d′ of the core of the largest
component a.a.s. has v(d′) ∼ 8s2/n and r(d′) ∼ 32s3/(3n2), so we must have a.a.s. v(d) ∼
8s2/n and r(d) ∼ 32s3/(3n2) also. Letting ε > 0, this means d ∈ S a.a.s. where S is the set
of ordered pairs (v̄, r̄) satisfying

1. (1− ε)8s2/n ≤ v̄ ≤ (1 + ε)8s2/n,

2. (1− ε)32s3/(3n2) ≤ r̄ ≤ (1 + ε)32s3/(3n2), and

3. P[v(d) = v̄, r(d) = r̄] > 0.

We note that for (v̄, r̄) ∈ S we have r̄ = o(v̄) since (s3/n2)/(s2/n) = s/n = o(1) and both
v̄ →∞ and r̄ →∞ since n2/3 = o(s).

To establish the remaining properties of the degree sequence of the core of G(n,M) we use
Theorem 2 of [4], which proves the existence of a probability space of ordered pairs (G, I) in
which

1. G, conditioned on the event I = 1, is distributed as the core of G(n,M),

2. P[I = 1] = Ω(1), and

3. the degree sequence d(G) of G, conditioned on v(d(G)) = v̄ and r(d(G)) = r̄, is
distributed as Multi(v̄, 2v̄ + r̄)|≥2.

(The statement of Theorem 2 of [4] actually includes the hypothesis M ≥ n which is not
satisfied here; however, that hypothesis is not needed for their proof.)

Write v = v(d(G)), r = r(d(G)) and let A be the event that

1. (1− ε)32s3/(3n2) ≤ D3(d(G)) ≤ (1 + ε)32s3/(3n2), and

2.
∑

i:di(G)≥3 2
(
di(G)

2

)
< 4r.

To prove the lemma, we must show P[A | I = 1] = 1 + o(1) or equivalently P[AC | I = 1] =
o(1), where XC denotes the complement of event X. We begin by writing

P[AC | I = 1] = P[AC , (v, r) ∈ S | I = 1] + P[AC , (v, r) 6∈ S | I = 1].

The second term is at most P[(v, r) 6∈ S | I = 1] which is o(1) because d(G), conditioned on
I = 1, is distributed like the degree sequence of the core of G(n,M). We estimate the first
term by

P[AC , (v, r) ∈ S | I = 1] ≤ P[I = 1]−1P[AC , (v, r) ∈ S]

≤ P[I = 1]−1P[AC | v = v̂, r = r̂]P[(v, r) ∈ S]

where (v̂, r̂) is the ordered pair maximizing P[AC | v = v̄, r = r̄] over all (v̄, r̄) ∈ S. (The
maximum exists because S is finite.) We now use the properties of the distribution of (G, I)
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to estimate each of P[I = 1]−1, P[AC | v = v̂, r = r̂], and P[(v, r) ∈ S]. We have already
noted that P[I = 1] = Ω(1), so we have P[I = 1]−1 = O(1). Since (v̂, r̂) ∈ S we have
v̂ → ∞, r̂ → ∞, and r̂ = o(v̂). We know that, conditioned on v = v̂ and r = r̂, the degree
sequence of G is distributed as Multi(v̂, 2v̂ + r̂)|≥2. Lemma 13 tells us that event A occurs
a.a.s. in this model so we have P[AC | v = v̂, r = r̂] = o(1). Finally, we may crudely estimate
P[(v, r) ∈ S] = O(1). Combining these estimates we get P[AC | I = 1] = o(1) as required.

8 Circumference of G(n,M)

Lemma 17 Let M = M(n) = n/2+s for some s = s(n) satisfying s = o(n) and n2/3 = o(s).
Fix k and suppose that the positive constant c∗ is k-admissible. The circumference of G(n,M)
is a.a.s. at most (8c∗ + o(1))s2/n.

Proof. Every cycle in a graph lies in the graph’s core. By Lemma 15 the prekernel G
of G(n,M) is formed from the core of G(n,M) by removing o(s2/n) vertices of degree 2.
So, to prove the lemma, it suffices to show that the circumference of G is a.a.s. at most
(8c∗ + o(1))s2/n.

By Lemma 16 there exists ω = ω(n)→∞ such that the degree sequence d(G) of G a.a.s.
lies in the set D of prekernel degree sequences d satisfying

1. ∑
i:di≥3

2

(
di
2

)
< 4r(d),

2. (1− ω−1)8s2/n ≤ v(d) ≤ (1 + ω−1)8s2/n,

3. (1− ω−1)32s3/(3n2) ≤ r(d) ≤ (1 + ω−1)32s3/(3n2),

4. (1− ω−1)32s3/(3n2) ≤ D3(d) ≤ (1 + ω−1)32s3/(3n2), and

5. P[d(G) = d] > 0.

Define A to be the event that the circumference of G is at most c∗v(d(G)). We have

P[A] ≥
∑
d∈D

P[A | d(G) = d]P[d(G) = d].

Suppose that P[A | d(G) = d] is minimized over d ∈ D by d = d∗. (The minimum exists
since D is finite.) Then

P[A] ≥ P[A | d(G) = d∗]
∑
d∈D

P[d(G) = d]

= P[A | d(G) = d∗](1 + o(1))

since a.a.s. d ∈ D.
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In general, the number of graphs on n vertices and M edges that have a given graph as
their prekernel depends only on the number of vertices and edges of the given prekernel. So,
conditioning on the event d(G) = d∗, G is equally likely to be each prekernel with degree
sequence d∗. The probability P [A | d(G) = d∗] is thus the probability that a graph, chosen
uniformly at random from all prekernels of degree sequence d∗, has circumference a.a.s. at
most c∗v. Since d∗ ∈ D, we may apply Corollary 12 to conclude that this probability is
1 + o(1). Thus P[A] = 1 + o(1). In other words, the circumference of G is a.a.s. at most
c∗v(d(G)). But we have seen v(d(G)) ∼ 8s2/n a.a.s. so the circumference is a.a.s. at most
(8c∗ + o(1))s2/n, as required.

Proof of Theorem 1. Proposition 10 tells us that c∗ = 0.8697 is k-admissible for
k = 9. By Lemma 17 the circumference of G(n,M) is a.a.s. at most (8c∗ + o(1))s2/n <
(6.958 + o(1))s2/n.
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