
                     

On the probability of independent sets in random graphs

Michael Krivelevich∗ Benny Sudakov † Van H. Vu ‡ Nicholas C. Wormald §

Abstract

Let k be the asymptotic value of the independence number of the random graph G(n, p). We

prove that if the edge probability p(n) satisfies p(n) À n−2/5 ln6/5 n then the probability that

G(n, p) does not contain an independent set of size k − c, for some absolute constant c > 0, is

at most exp{−cn2/(k4p)}. We also show that the obtained exponent is tight up to logarithmic

factors, and apply our result to obtain new bounds on the choice number of random graphs.

We also discuss a general setting where our approach can be applied to provide an exponential

bound on the probability of certain events in product probability spaces.

1 Introduction

Let G(n, p) denote as usual the probability space whose points are graphs on n labeled vertices

{1, . . . , n}, where each pair of vertices forms an edge randomly and independently with probability

p = p(n). We say that the random graph G(n, p) possesses a graph property A asymptotically

almost surely, or a.a.s. for short, if the probability that G(n, p) satisfies A tends to 1 as the number

of vertices n tends to infinity.

Define the following quantity:

k∗ = max

{
k ∈ N :

(
n

k

)
(1− p)(k2) ≥ 1

}
.
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In words, k∗ is the maximum integer k for which the expectation of the number of independent

sets of size k in G(n, p) is still at least 1.

It has been known for a long time ([6], [13]) that for large enough p = p(n) (say, for p(n) ≥ n−ε
for small enough constant ε > 0) a.a.s. in G(n, p) the independence number of G is asymptotically

equal to k∗. In fact, using the so-called second moment method, one can prove that under the

above assumptions the independence number of G(n, p) is concentrated a.a.s. in two consecutive

values, one of them being k∗. Now let us pick an integer k0 slightly less than k∗ (we will be more

precise later) and ask the following: what is the probability that the random graph G(n, p) does

not contain an independent set of size k0? This seemingly somewhat artificial question turns out to

be of extreme importance for many deep problems in the theory of random graphs. An exponential

estimate of the above probability provided a crucial ingredient in the seminal breakthrough of

Bollobás [5], establishing the asymptotic value of the chromatic number of random graphs. Later,

this problem became a fruitful playground for comparing the strength of various large deviation

methods like martingales and the Janson and Talagrand inequalities. The reader may consult the

survey paper of Spencer [15] for further details. More recent applications can be found in [10]

and [11].

The main objective of the current paper is to provide a new, stronger estimate on the probability

defined above. This estimate is obtained by combining hypergraph arguments, somewhat similar to

those used by Bollobás in [5], and recent martingale results. We will prove that in a certain range

of the edge probability p(n), the probability that G(n, p) does not contain an independent set of

size k0, with k∗−k0 ≥ c for some absolute constant c > 0, is at most exp{Ω(−n2/k4
0p)}. The exact

formulation of this result and its proof are presented in Section 2. Somewhat surprisingly it turns

out that the exponent in the estimate cited above is optimal up to a logarithmic factor. The proof

of this is presented in Section 3. Then in Section 4 we demonstrate how our new bound can be used

to extend the scope of the results of [10] and [11] about the asymptotic value of the choice number

of random graphs to smaller values of p(n). Our argument used to get an exponential bound for the

probability defined above can in fact be viewed as an example of a general approach, for obtaining

exponential bounds for probabilities of certain events in product probability spaces. This general

approach, discussed in Section 5, can sometimes compete successfully with the well known Janson

inequality. Section 6, the final section of the paper, is devoted to concluding remarks.

Throughout the paper we will use the standard asymptotic notation. In particular, a(n) ¿
b(n) means a(n) = o(b(n)), Ω(a(n)) denotes a function b(n) such that for some C > 0, for n

sufficiently large b(n) > Ca(n), and Θ(a(n)) denotes a function which is both O(a(n)) and Ω(a(n)).

Also, f(n) ∼ g(n) means limn→∞ f(n)/g(n) = 1. For the sake of clarity of presentation we will

systematically omit floor and ceiling signs at places where the choice of which is used does not

affect the argument.
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2 Independent sets in random graphs

Let k0 = k0(n, p) be defined by

k0 = max

{
k :

(
n

k

)
(1− p)(k2) ≥ n4

}
. (1)

One can show easily that k0 satisfies k0 ∼ 2 logb(np) with b = 1/(1 − p). Also, it follows from

known results on the asymptotic value of the independence number of G(n, p) (see, e.g., [9]) that

a.s. the difference between k0 and the independence number of G(n, p) is bounded by an absolute

constant, as long as p(n) ≥ n−1/2+ε for a positive ε > 0.

Theorem 2.1 Let p(n) satisfy n−2/5 ln6/5 n ¿ p(n) ≤ 1 − ε for an absolute constant 0 < ε < 1.

Then

Pr[α(G(n, p)) < k0] = e
−Ω

(
n2

k4
0p

)

.

Proof. In case p is a constant, the result of the theorem follows easily from Janson’s inequality

(see, e.g. [4], Chapter 10.3). Thus in the rest of the proof we will assume that p = o(1).

Given a graph G on n vertices and an integer k0, a collection C of pairs of vertices of G is called

a cover if every independent set of size k0 in G contains a pair from C. We set X = X(G) to be the

minimum size of a cover in G. For the reader familiar with hypergraph terminology we can define

X(G) as follows. Given G, define a hypergraph H = H(G) whose vertices are pairs of vertices of

G and whose edges are formed by taking all pairs of vertices in every independent set of G of size

k0. Thus H is a
(
k0

2

)
-uniform hypergraph on

(
n
2

)
vertices, whose number of edges is equal to the

number of independent sets of size k0 in G. Then a cover in G corresponds to a vertex cover of the

hypergraph H, and X(G) is equal to the covering number of H.

When G is distributed according to G(n, p), the quantity X(G) becomes a random variable.

Our aim will be first to estimate from below the expectation of X and then to show that X is

concentrated. It may be noted that we use pairs of vertices in the definition of a cover, rather than

single vertices, in order to achieve a better concentration in Lemma 2.6 below, whilst larger sets of

vertices would not be suitable for Proposition 2.5.

Lemma 2.2 E[X] = Ω
(
n2

k2
0

)
.

Proof. Let Y be a random variable counting the number of independent sets of size k0 in G(n, p).

We denote by µ the expectation of Y . Then clearly

µ = E[Y ] =

(
n

k0

)
(1− p)(k0

2 ) ≥ n4

by the definition of k0.
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For a pair u, v ∈ V (G), let Zu,v be a random variable counting the number of k0-subsets of

V that contain u and v and span no edges except possibly the edge (u, v). (The edge (u, v) is

permitted for ease of later analysis.) Thus, if (u, v) 6∈ E(G), then Zu,v is equal to the number of

independent sets of size k0 that contain both u and v. If µ0 = E[Zu,v], then

µ0 =

(
n− 2

k0 − 2

)
(1− p)(k0

2 )−1 .

It is easy to see that, by definition, µ0/µ = Θ(k2
0/n

2). Next, we set

Z+
u,v =

{
Zu,v, Zu,v > 2µ0,

0, otherwise .

We also define Z+ =
∑

u,v Z
+
u,v.

To finish the proof of the lemma, we use three propositions.

Proposition 2.3 For every graph G, X ≥ Y−Z+

2µ0
.

Proof. Let C be an optimal cover in G, |C| = X. Set C0 to be the set of pairs of vertices from

C covering more than 2µ0 independent sets of size k0, and also set C1 = C \ C0. Each pair u, v

covers Zu,v independent sets of size k0. Hence the set C0 covers at most
∑
{u,v}∈C0 Zu,v ≤ Z+ such

independent sets. Then it follows that at least Y −Z+ independent sets are covered by C1 only. As

every pair in C1 participates in at most 2µ0 independent sets of size k0, we get |C1| ≥ (Y −Z+)/(2µ0).

Therefore X ≥ |C1| ≥ (Y − Z+)/(2µ0), as required.

Proposition 2.4 For each u, v ∈ V (G) and all i with 2µ0 ≤ i ≤
(
n−2
k0−2

)
, Pr[Zu,v ≥ i] =

O
(
k4

0pµ
2
0

n2
1

(i−µ0)2

)
.

Proof. Fix a pair u, v ∈ V (G) and let U be the set of vertices in V \ {u, v} not adjacent to either

u or v. By definition the size of U is a binomially distributed random variable with parameters

n−2 and (1−p)2. Therefore by applying standard estimates for binomial distributions (see, e.g. [4,

Theorems A.11 and A.13]) to the size of V − U we obtain that

Pr

[∣∣∣|U | − (1− p)2n
∣∣∣ > np

ln2 n

]
< e
−Ω
(

np

ln4 n

)
.

Denote by z1 the value of the random variable Zu,v conditional on the particular set U of size

n1, (1 − p)2n − np/ ln2 n ≤ n1 ≤ (1 − p)2n + np/ ln2 n. Let S be the family of all subsets of U of

size k0 − 2. For every S ∈ S let ZS be the indicator random variable taking value 1 when S spans

no edges of G, and value 0 otherwise. Clearly, z1 =
∑

S∈S ZS . By definition, the expected value

and the variance of z1 are equal to

µ1 =

(
n1

k0 − 2

)
(1− p)(k0−2

2 ),
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σ2
1 = V AR[

∑

S∈S
ZS ] =

∑

S∈S
V AR[ZS ] +

∑

S 6=S′∈S
COV [ZS , ZS′ ] .

Clearly, if S, S′ ∈ S have no common pairs of vertices, then the events ZS = 1 and ZS′ = 1 are

independent, implying COV [ZS , ZS′ ] = 0. Therefore we need to sum only over those pairs S, S′ ∈ S
for which 2 ≤ |S ∩ S′| ≤ k0 − 3. This implies:

σ2
1 ≤ E[z1] +

(
n1

k0 − 2

) k0−3∑

i=2

(
k0 − 2

i

)(
n1 − k0 + 2

k0 − i− 2

)[
(1− p)2(k0−2

2 )−(i2) − (1− p)2(k0−2
2 )
]

= µ1 + µ2
1

k0−3∑

i=2

(
k0−2
i

)(
n1−k0+2
k0−i−2

)
(
n1

k0−2

)
(

1

(1− p)(i2)
− 1

)
.

Denote the i-th summand of the last sum by g(i), 2 ≤ i ≤ k − 3. One can check (see [4], Chapter

4.5 for a similar computation) that the dominating term is

g(2) =

(
k0−2

2

)(
n1−k0+2
k0−4

)
(
n1

k0−2

)
(

1

1− p − 1

)
= O

(
k4

0p

n2
1

)
.

Hence σ2
1 = O

(
k4

0p

n2
1
µ2

1

)
. Next by applying Chebyshev’s inequality we obtain that

Pr[z1 ≥ i] ≤ Pr[|z − µ1| ≥ i− µ1] ≤ σ2
1

(i− µ1)2
.

Using the fact that n1 = (1− p)2n+ Θ(np/ ln2 n) and k0 = Θ(lnn/p) we obtain

µ1

µ0
=

(
n1

k0−2

)
(1− p)(k0−2

2 )

(
n

k0−2

)
(1− p)(k0

2 )−1
=
n1 · · · (n1 − k0 + 3)

n · · · (n− k0 + 3)

1

(1− p)2k0−4
=

(1 + o(1))

(1− p)2k0−4

(n1

n

)k0−2

= (1 + o(1))

(
n1

(1− p)2n

)k0−2

= (1 + o(1))

(
1 + Θ

(
p

ln2 n

))k0−2

= 1 + o(1).

Now to finish the proof note that

Pr
[
Zu,v ≥ i

]
≤Pr

[
Zu,v ≥ i

∣∣∣|U | = (1− p)2n+ Θ

(
np

ln2 n

)]
+ Pr

[∣∣∣|U | − (1− p)2n
∣∣∣ > Θ

(
np

ln2 n

)]

≤ σ2
1

(i− µ1)2
+ e
−Ω
(

np

ln4 n

)

= O

(
k4

0pµ
2
0

n2

1

(i− µ0)2

)
.

Here we used the estimate for σ2
1 and the facts that n1 = (1+o(1))n and that the maximal possible

value of i2 is
(

n
k0−2

)2
= eo(np/ln

4 n).
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Proposition 2.5 E[Z+] = o(µ).

Proof. We will use the following easily proven statement: If X is an integer random variable with

finitely many values, then for every integer s,

∑

i>s

iPr[X = i] = sPr[X > s] +
∑

i>s

Pr[X ≥ i] . (2)

For every pair (u, v) it now follows from the definition of Zu,v and Proposition 2.4 that

E[Z+
u,v] =

∑

i>2µ0

iPr[Zu,v = i] = 2µ0 Pr[Zu,v > 2µ0] +
∑

i>2µ0

Pr[Zu,v ≥ i]

= 2µ0O

(
k4

0pµ
2
0

n2

1

(2µ0 − µ0)2

)
+
∑

i>2µ0

O

(
k4

0pµ
2
0

n2

1

(i− µ0)2

)

= O

(
k4

0pµ0

n2

)
.

Then we derive from the definition of Z+ and the linearity of expectation that E[Z+] =∑
u,v E[Z+

u,v] = O
(
n2 k

4
0pµ0

n2

)
= O

(
k6

0p
n2 µ

)
. Now applying our assumption on the edge probabil-

ity p(n), we obtain the desired estimate.

We can now complete the proof of Lemma 2.2. Recall that by Proposition 2.3, X ≥ (Y −
Z+)/(2µ0). Therefore, taking into account Proposition 2.5 and the definitions of µ and µ0, we

derive:

E[X] ≥ E[Y ]− E[Z+]

2µ0
=

(1− o(1))µ

2µ0
= Ω

(
n2

k2
0

)
,

as required.

Lemma 2.6 For every n2p > t > 0, Pr[X ≤ E[X]− t] ≤ e−
t2

2n2p .

Proof. Notice that X is an edge Lipschitz random variable, i.e. changing a graph G in one pair

of vertices changes the value of X by at most one. This is due to the fact that if a pair (u, v)

becomes a non-edge, then in the worst case it can be added to an optimal cover to produce a new

cover. When applying the edge exposure martingale to X, the maximal variance in the martingale

is
(
n
2

)
p(1 − p) ≤ n2p/2. Therefore, the desired estimate of the lower tail of X follows from known

results on graph martingales (see, e.g. [4], Th. 7.4.3).

We are now in position to finish the proof of Theorem 2.1. Clearly, a graph G contains an

independent set of size k0 if and only if X > 0. From Lemmas 2.2 and 2.6 we obtain:

Pr[α(G) < k0] = Pr[X = 0] = Pr
[
X ≤ E[X]− E[X]

]
≤ e−

(E[X])2

2n2p = e
−Ω

(
n2

k4
0p

)

.
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3 On the tightness of Theorem 2.1

In this section we show that the exponent in the bound of Theorem 2.1 is tight up to logarithmic

factors.

Theorem 3.1 Let p(n) ≤ 1− ε for an absolute constant ε > 0. Define k0 = k0(n, p) by (1). Then

Pr[α(G(n, p)) < k0] = e
−O
(
n2 ln2 n

k4
0p

)

.

Proof. Set

T =
7n2 lnn

k2
0

,

M0 =

(
n

2

)
p+ T .

Our first goal will be to estimate from above the probability Pr[α(G) ≥ k0||E(G)| = M ], where

M ≥ M0. Since the distribution of G = G(n, p) conditional on the event |E(G)| = M is identical

to the distribution of graph with M random edges, we have

Pr[α(G) ≥ k0||E(G)| = M ] ≤
(
n
k0

)((n2)−(k0
2 )

M

)
((n2)
M

) ≤
(
n

k0

)(
1− M(

n
2

)
)(k0

2 )

≤
(
n

k0

)(
1− p− T(

n
2

)
)(k0

2 )

=

(
n

k0

)
(1− p)(k0

2 )




1− p− T

(n2)

1− p




(k0
2 )

≤
(
n

k0

)
(1− p)(ko2 )

(
1− T(

n
2

)
)(k0

2 )

,

where we used the estimate
(
a−x
b

)(
a
b

)−1 ≤
(
a−b
a

)x
in the second inequality above. Returning to the

definition (1) of k0, we can notice that
(
n
k0

)
(1− p)(k0

2 ) ≤ n6. Therefore:

Pr[α(G) ≥ k0||E(G)| = M ] ≤ n6e
−
T(k0

2 )
(n2) .

Substituting the definition of T , we get Pr[α(G) ≥ k0||E(G)| = M ] = n6n−7+o(1) = o(1). As this

estimate holds for every M ≥M0, it follows that

Pr[α(G) < k0||E(G)| ≥M0] = 1− o(1) .
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Also, due to the standard estimates on the tails of a binomial random variable we have Pr[|E(G)| ≥
M0] = e

−Θ
(
T2

n2p

)
. Combining the two estimates above and substituting the value of T , we thus

obtain:

Pr[α(G) < k0] ≥ Pr[|E(G)| ≥M0]Pr[α(G) < k0||E(G)| ≥M0] ≥ (1− o(1))e
−Θ
(
T2

n2p

)

= e
−Θ

(
n2 ln2 n

k4
0p

)

.

4 Applications to choosability of random graphs

The choice number ch(G) of a graph G is the minimum integer k such that for every assignment

of a set S(v) of k colors to every vertex v of G, there is a proper coloring of G that assigns to each

vertex v a color from S(v). The choice number was introduced by Vizing [16] and independently

by Erdős, Rubin and Taylor [8] and the study of this parameter received a considerable amount of

attention in recent years.

In this section we consider the asymptotic behavior of the choice number of random graphs. In

their original paper, Erdős, Rubin and Taylor [8] conjectured that almost surely ch(G(n, 1/2)) =

o(n). This was proved by Alon in [1]. Kahn proved (see [2]) that almost surely

ch(G(n, 1/2)) = (1 + o(1))χ(G(n, 1/2)) = (1 + o(1))n/(2 log2 n).

His result was extended by Krivelevich [10], who determined the asymptotic value of ch(G(n, p))

when p(n)À n−1/4. At the same time Alon, Krivelevich and Sudakov [3] and independently Vu [17]

showed that for all values of the edge probability p almost surely the choice number of G(n, p) has

order of magnitude Θ(np/ ln(np)) (see also [12] for better constants). Here we combine Theorem

2.1 and the ideas from [10] to prove the following result.

Theorem 4.1 Let 0 < ε < 1/3 be a constant. If the edge probability p(n) satisfies n−1/3+ε ≤
p(n) ≤ 3/4 then almost surely

ch(G(n, p)) = (1 + o(1))χ(G(n, p)) = (1 + o(1))
n

2 logb(np)
,

where b = 1/(1− p).

Sketch of the proof. First note that a.a.s. every subset of vertices of G(n, p) of size at least

m ∼ n/ ln4 n contains an independent set of size k0 = (1 − o(1))2 logb(np), where b = 1/(1 − p).
Indeed, from Theorem 2.1, the fact that k0 = O(lnn/p) and the assumptions on the value of p, it

follows that the probability that there exists a set of m vertices that does not span an independent

set of size k0 is at most (
n

m

)
e
−Ω

(
m2

k4
0p

)

≤ 2ne−n
1+3ε−o(1)

= o(1).
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Next we sketch how, given a typical graph G in G(n, p) and a family of lists S1, . . . , Sn each

of size n/k0 + 3np/ ln2 n, we can color G from these lists. Our coloring procedure consists of two

phases. As long as there exists a color c which appears in the lists of at least n/ ln4 n of yet

uncolored vertices, we do the following. Denote by V0 the set of those uncolored vertices whose

color list contains c. Then |V0| ≥ n/ ln4 n. Then V0 spans an independent set I of size |I| = k0. We

color all vertices of I by c, discard I and delete c from all lists. The total number of deleted colors

from each list S(v) during the first phase cannot exceed n/k0, as each time we remove a subset of

size k0.

Let U denote the set of all vertices that are still uncolored after the first phase has been

completed. The lists of all vertices of U are still quite large, namely, |S(u)| ≥ 3np/ ln2 n for each

u ∈ U . For a color c denote by W (c) the set of all vertices u ∈ U for which c is included in the

corresponding list of colors S(u). We know that |W (c)| ≤ n/ ln4 n for each color c. Thus we expect

that the degree of a vertex u in the spanned subgraph G[W (c)] is about O(np/ ln4 n)¿ |S(u)|. If

this indeed is the case for every color c and every vertex u ∈ U , then each color c ∈ S(u) appears

in the lists of only few neighbors of u. Then we can color the vertices of U simply by picking for

each vertex a random color from its list. Unfortunately the graph G[W (c)] can have a few vertices

of degree much higher than O(np/ ln4 n). We color those vertices first and then treat the rest of U

as indicated above. We omit technical details and some additional ideas required to complete the

argument, and refer the reader to the paper of Krivelevich [10].

Next we consider a different model of random graphs — random regular graphs. For a positive

integer-valued function d = d(n) we define the model Gn,d of random regular graphs consisting of

all regular graphs on n vertices of degree d with the uniform probability distribution. Our aim here

is to provide the asymptotic value of the choice number of Gn,d for d À n4/5. As in the case of

G(n, p) we need the following lemma.

Lemma 4.2 For every constant ε > 0, if n4/5+ε ≤ d ≤ 3/4n, then almost surely every subset

of vertices of Gn,d of size at least m = n/ ln4 n contains an independent set of size k0 = (1 −
o(1))2 logb d, where b = n/(n− d).

Proof. Let p = d/n. We first need a lower bound on the probability that a random graph in G(n, p)

is regular. We use the result of Shamir and Upfal [14, equation (35)] with φ(n) = d, θ = 1
2 + δ for

some δ > 0, choosing w(n)− φ(n) = dw(n)1−δe, to deduce that the number of d-regular graphs on

n vertices is at least ( (n
2

)

nd/2

)
exp

(
−O(nd1/2+2δ)

)
.

(Here there is a condition on d(n); growing faster than log2 n is sufficient.) It follows that for any

fixed δ > 0

Pr[G(n, d/n) is d-regular] ≥ exp(−nd1/2+δ).
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On the other hand as we have already mentioned in the proof of Theorem 4.1, the probability that

the vertex set of G(n, d/n) contains a subset of size m that does not span an independent set of

size k0 = O(n ln d/d) is at most

(
n

m

)
exp

(
−Ω
(m2

k4
0p

))
≤ 2n exp

(
−Ω
(m2

k4
0p

))
= exp

(
−
(d3

n

)1−o(1)
)
.

Comparing the last two exponents and using the assumption d ≥ n4/5+ε, we observe that the

probability that G(n, d/n) is d-regular is much higher asymptotically than the probability that

G(n, d/n) contains a large subset without an independent set of size k0. Therefore, almost surely

if d lies in the range given in the assertion of the lemma, every subset of the vertices of Gn,d of size

at least n/ ln4 n spans an independent set of size k0.

Using this lemma, together with the ideas from [10] and the upper bound on the size of independent

set in Gn,d obtained in [11], one can deduce the following theorem:

Theorem 4.3 For every constant ε > 0, if n4/5+ε ≤ d ≤ 3n/4, then almost surely

ch(Gn,d) = (1 + o(1))χ(Gn,d) = (1 + o(1))
n

2 logb d
,

where b = n/(n− d).

Proof. The proof here is very similar to the proof of Theorem 4.1, and we therefore restrict

ourselves to just a few words about it, leaving technical details to the reader.

To prove the lower bound for ch(Gn,d) observe that obviously ch(G) ≥ χ(G) ≥ |V (G)|/α(G)

for every graph G. Plugging in the estimate α(G) = (2 + o(1)) logb d for almost all graphs G in

Gn,d, provided by Theorem 2.2 of [11], we get the required lower bound.

As for the upper bound, one can prove that almost surely the choice number of Gn,d satisfies

ch(G) ≤ n/k0 + 3d/ ln2 n. The proof proceeds by essentially repeating the proof of Theorem 4.1 for

the edge probability p(n) = d/n. Given a d-regular graph G on n vertices, satisfying the conclusion

of Lemma 4.2 and having some additional properties, which hold almost surely in the probability

space Gn,d, and also given color lists {S(v) : v ∈ V (G)} of cardinality |S(v)| = n/k0 + 3d/ ln2 n,

the coloring procedure starts by finding independent sets of size k0 in frequent colors (i.e. colors

appearing in at least n/ ln4 n lists). Once such a set is found in color c, we color all of its vertices

by c, discard them and delete c from all lists.

After this part of the coloring procedure has finished, no color appears in more than n/ ln4 n

vertices, and each uncolored vertex still has a list of at least 3d/ ln2 n available colors. Moreover, for

most uncolored vertices v ∈ V , most of the colors in the list S(v) appear in the lists of O(d/ ln4 n)

neighbors of v. We first treat few uncolored vertices which do not have the above stated property,

and then color the rest by choosing colors at random from corresponding lists. For more details

the reader is referred to [10].
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5 A general setting

The aim of this section is to show that the approach exhibited in the proof of Theorem 2.1 can be

applied in a much more general setting to obtain exponential bounds for probabilities of certain

events. The bounds obtained can be better than those provided by the celebrated Janson inequality.

Let H = (V,E) be a hypergraph with |V | = m vertices and |E| = k edges. We assume

furthermore that H is r-uniform and D-regular. Form a random subset R ⊆ V by

Pr[v ∈ R] = pv ,

where these events are mutually independent over v ∈ V .

We want to estimate the probability p0 that the random set R does not contain any edge of H.

Such an estimate is required frequently in applications of the probabilistic method. The following

well-known theorem, proved first by Janson (see, e.g., [4], [9, Theorem 2.18]), usually gives an

exponential bound for p0. To present this theorem, let Y be the number of edges of H spanned by

R. We can represent Y as I1 + · · ·+ Ik where Ij are the indicator functions of the edges of H. Let

µ = E[Y ], and write Ii ∼ Ij if the corresponding edges intersect. Set ∆ =
∑

i,j: Ii∼Ij E[IiIj ].

Theorem 5.1 We have

p0 ≤ exp

(
− µ2

µ+ ∆

)
.

For any vertex v of H let Yv denote the number of edges f ∈ E(H) for which v ∈ f and

f \ {v} ⊆ R; set µv = E[Yv]. In many applications (especially those related to random graphs) the

probabilities pv all have the same value p. In this case, µ = kpr and µv = µ0 = Dpr−1 for all v.

Furthermore, it occurs frequently that the sum in ∆ is dominated by the sum of those E[IiIj ] where

the corresponding edges intersect in precisely one vertex. In such a case, ∆ = Θ(rµµ0). Assuming

µ0 ≥ 1, Janson’s inequality gives

p0 ≤ exp

(
−Θ
( µ2

µ+ ∆

))
= exp

(
−Ω
( µ

rµ0

))
. (3)

Our purpose here is to use the approach introduced in Section 2 to show that under a rather

mild additional assumption (see Corollary 5.4), the following holds:

p0 ≤ exp

(
−Ω
( µ

(1− p)rµ0

))
. (4)

Inequality (4) is interesting for two reasons. First, in certain applications p is very close to 1

and therefore the term 1− p in the denominator yields a significant improvement. As we already

saw in previous sections, this is exactly the case for the probability of independent sets in random

graphs. For this problem an additional term 1−p is crucial, and the bound given by inequality (4)
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is almost sharp. Second, our proof is completely different from that of Janson (and also from the

alternative proof by Boppana and Spencer [7]) and the method might therefore be of independent

interest.

From now on we assume that pv = p for all v ∈ V (H). Let X denote the covering number

of the spanned subhypergraph H[R] (where the covering number of a hypergraph is the minimum

number of vertices needed to cover all edges). Set τ = min (E[X],mp(1− p)).

Theorem 5.2 The probability p0 that the hypergraph H[R] has no edges satisfies:

p0 ≤ exp

(
−Ω
( τ2

mp(1− p)

))
.

Proof. Similarly to Lemma 2.6, using Theorem 7.4.3 [4], we have that for every mp(1−p) > t > 0

(the maximum variance in the martingale is mp(1− p)),

Pr[X ≤ E[X]− t] ≤ e−
t2

4mp(1−p) .

Clearly, a hypergraph H[R] contains no edges if and only if X = 0. Therefore

p0 = Pr[X = 0] ≤ Pr[X ≤ E(X)− τ ] ≤ e−Ω
(

τ2

mp(1−p)

)
.

It is well known that in a regular hypergraph, the covering number is at least the ratio between

the number of edges and the degree. On the other hand, the expectation of the number of edges

of H[R] is µ and that of the degree of H[R] is µ0. Thus, it is reasonable to think that E[X] is

Ω(µ/µ0). The following result shows that under an additional assumption, this is indeed the case.

Proposition 5.3 Assume that V AR[Yv] = o
(
µ(µ0 + 1)/m

)
for all v. Then E[X] = Ω

(
µ

µ0+1

)
.

Remark. We need µ0 + 1 instead of µ0 in order to deal with the case µ0 ≤ 1. If µ0 ≥ 1, we can

replace µ0 + 1 by µ0. Notice also that µ/µ0 = kp
D = mp

r .

Now inequality (4) follows immediately from Theorem 5.2, Proposition 5.3 and the above re-

mark. We note that the constant implicit in Ω is independent of p, r and D.

Corollary 5.4 Assume that µ0 ≥ 1, µ/(µ0 + 1) ≤ mp(1− p) and V AR[Yv] = o(µµ0/m) for all v.

Then

p0 ≤ exp

(
−Ω
( µ

(1− p)rµ0

))
.

We finish this section with the sketch of the proof of Proposition 5.3.
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Sketch of the proof. Define Zv = Yv if Yv ≥ 2µ0 + 1 and Zv = 0 otherwise. Similarly to the

proof of Proposition 2.3, by setting Z+ =
∑

v Zv, we obtain

X ≥ Y − Z+

2µ0 + 1
. (5)

Next, using the assumption that V AR[Yv] = o
(
µ(µ0 +1)/m

)
, Chebyshev’s inequality and applying

the same techniques as in the proof of Proposition 2.5, we can show that

E[Z+] = O(
∑

v

V AR[Yv]/µ0) = o(µ).

Now it follows immediately that

τ = E[X] ≥ E[Y ]− E[Z+]

2µ0 + 1
= (1 + o(1))

µ

2µ0 + 1
.

This completes the proof.

6 Concluding remarks

Consider the problem of estimating the probability that a random graph G(n, p) has no cliques of

cardinality t, with t fixed. In the setting of Section 5, define a hypergraph H whose vertices are

the edges of Kn and whose edges are the t-cliques of G(n, p). From Theorem 5.1, the probability

that G(n, p) has no t-cliques is at most exp(−µ2/(µ+∆)) where µ ∼ p(t2)nt/t! and ∆ = Θ(µ2/n2p).

For fixed p with µ0 > 1 (where µ0 = Θ(µ/n2p)), the variance condition in Corollary 5.4 is easy to

verify. Hence, for all such p, Corollary 5.4 gives virtually the same result as Janson’s inequality,

whilst its proof is entirely different. The argument also applies for graphs other than cliques but

we do not elaborate in this direction.

An interesting and important open question is to estimate the probability that G(n, p) does

not contain an independent set of size k = (1 − ε)k0, where k0 is defined in (1), and ε is a small

constant, or even a function of n tending to 0 very slowly as n tends to infinity. We conjecture that

Conjecture.

Pr
[
G(n, p) does not contain an independent set of size k

]
≤ exp

(
− Ω(n2/k2p)

)
.

This conjecture, if it holds, is best possible up to a logarithmic term in the exponent. It would

immediately extend Theorem 4.1 to all p = p(n) = Ω(n−1+ε) and also give a short proof for ÃLuczak’s

result on the chromatic number of G(n, p) (by taking limn→∞ ε(n) = 0).

Based on our method presented in this paper, to prove the above conjecture, it suffices to show

that the expectation of the covering number of the corresponding hypergraph is Ω(n2/k) (instead

of Ω(n2/k2) as shown in the proof of Theorem 2.1). The following speculation might give the reader
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some intuition why this could be the case. Consider the complete hypergraph Hcom consisting of all

possible independent sets of size k. By Turán’s theorem from extremal graph theory, the covering

number of Hcom is Ω(n2/k). As k is much smaller than k0, the expected number of independent sets

of size k in G(n, p) is huge (roughly
(
n
k

)ε
). So, the hypergraph corresponding to these independent

sets looks typically like a fairly dense sub-hypergraph of Hcom and one may hope that such a

hypergraph should have covering number close to that of Hcom, namely Ω(n2/k).
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