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Abstract

We determine an asymptotic formula for the number of labelled 2-connected (simple)
graphs on n vertices and m edges, provided that m−n→∞ and m = O(n logn) as n→∞.
This is the entire range of m not covered by previous results. The proof involves determining
properties of the core and kernel of random graphs with minimum degree at least 2. The
case of 2-edge-connectedness is treated similarly. We also obtain formulae for the number
of 2-connected graphs with given degree sequence for most (‘typical’) sequences. Our main
result solves a problem of Wright from 1983 and determines his (mysterious) constant a to
be 1/(2eπ).

1 Introduction

Counting graphs with a given property is a fundamental and often difficult problem. G.E. Uh-
lenbeck, in the Gibbs Lecture at an American Mathematical Society meeting in 1950, cited the
enumeration of 2-connected graphs as one of the unsolved problems in statistical mechanics. In
the ensuing years, ways were found to efficiently calculate the number of such graphs with a given
number of vertices, or vertices and edges (see Harary and Palmer [HP73] for example). However,
no very simple formula was found, which brings up the question of asymptotic formulae. In the
two-parameter case, there are some ranges of the parameters for which such a formula is unknown.
This is the subject of the present paper.

Call a (simple) graph on the vertex set [n] = {1, . . . , n} with m edges an (n,m)-graph. (Thus,
we are concerned with labelled graphs.) A well-studied problem is to count (n,m)-graphs with
minimum degree at least some fixed number, k. Korshunov [Kor94], and Bender, Canfield and
McKay [BMC97] provided asymptotic formulae for the case k = 1, that is, graphs with no isolated
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vertices. The case k = 2, which is relevant for 2-connected graphs, was studied by Wright [Wri78]
and others such as Ravelomanana and Thimonier [RT04]. Later, Pittel and Wormald [PW03]
found asymptotic formulae for the case k ≥ 2.

A number of authors have addressed the problem of counting connected (n,m)-graphs. After
results by various authors for various ranges of m with various degrees of approximation, Bender,
Canfield and McKay [BMC90] provided an asymptotic formula for the number whenever m−n→
∞ as n → ∞. They obtained this formula by studying a differential equation related to a
recurrence relation for the number of connected graphs. Pittel and Wormald [PW05] provided a
somewhat simpler proof for this formula, with an improved error term for some ranges of m.

A natural next step would be to count k-connected (n,m)-graphs. This problems turns out to
be essentially already solved for k ≥ 3.  Luczak [ Luc92] showed that a random graph with given
degree sequence, all degrees between 3 and d, a.a.s. has connectivity equal to minimum degree.
As observed in the introduction of [PW03], this implies that, for m = O(n log n), a random
(n,m)-graph with minimum degree k ≥ 3 is a.a.s. k-connected. (To deduce this, one needs to
know that such a random (n,m)-graph has no large degree vertices, which can be deduced from
the results of [PW03], or alternatively by a more direct argument if m/n is bounded.) Thus,
using the above-mentioned result from [PW03], one immediately obtains an asymptotic formula
for k-connected (n,m)-graphs. However, this argument does not apply for 2-connected graphs.

In this article, we derive an asymptotic formula for the number of 2-connected (n,m)-graphs
when m− n→∞ with m = O(n log n). Above this range, for any fixed k, it is well known that
almost all graphs are k-connected. This follows by the classic result of Erdős and Rényi [ER61],
that for fixed k ≥ 0 and m = m(n) = 1

2n(log n+ k log log n+ x+ o(1)),

P(G(n,m) is k-connected)→ 1− e−e
−x/k!,

where G(n,m) denotes an (n,m)-graph chosen uniformly at random. Wright [Wri83] found an
asymptotic formula for the case m − n = o(

√
n) with m − n → ∞, and it was noted that the

problem of finding a formula for m − n growing faster than
√
n seems difficult. We solve this

problem here, and we also determine the precise value of a constant in Wright’s formula which
he only determined by approximate computation.

Regarding exact enumeration, Temperley [Tem59] proved a recurrence relation for the number
of 2-connected (n,m)-graphs. His proof uses calculus to deduce the recurrence formula from a well
known differential equation for the generating functions of the number of connected graphs and 2-
connected graphs; see [HP73] (pp. 10, 11). For a combinatorial proof, see [WW79]. Wright [Wri78]
also found an exact formula for the number 2-connected (n, n + k)-graphs with fixed k. It is
possible that following an approach close to the one in [BMC90], one could obtain an asymptotic
formula for the 2-connected (n,m)-graphs. However, we believe that this would be very difficult
since the proof in [BMC90] is not simple and the recurrence relation for 2-connected graphs is
more complicated than the one for connected graphs.

The k-core of a graph G is a maximal subgraph of G with minimum degree at least k. We
extend this definition and simply call a graph a k-core if it has minimum degree at least k.

Since 2-connected graphs must have minimum degree at least 2 (if they have more than
two vertices), we work with 2-cores. Our approach uses some of the basic ideas in [PW05] where
the (sub-)problem being addressed was asymptotic enumeration of connected 2-cores with a given
number of edges and vertices. One possible plan can be described as follows, and could potentially
be of use for any graph property. First, compute the probability that a random graph with given
degree sequence is 2-connected, where the degree sequence is chosen randomly, the degrees being
independent truncated Poisson random variables, conditioned on the sum being 2m. (Truncated
means conditioning on the value being at least 2.) Next, using the results in [PW03] we can
try to deduce that the same probability of connectedness holds for a random 2-core. In that
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paper, it is essentially shown, starting with the basic enumeration results of McKay [McK85],
that the degree sequence of a random (n,m)-graph which is a 2-core is strongly related to a
sequence of independent truncated Poisson random variables, conditioned on the sum being 2m
(see [PW03, Equation (13)] for example). Note that, in the first step, we do not need to estimate
the probability for some degree sequences (e.g., if the maximum degree is too high) as long as
we show that they have very low probability of occurring as the degree sequence of a random
(n,m)-graph with minimum degree at least 2.

This plan works quite well provided m/n → ∞, in which case we use another result of
 Luczak [ Luc92] to show that the probability of 2-connectedness tends to 1 in the Poisson-based
model. For this we need to use the pairing model, a common model used for analysing random
graphs with given degrees. However, if m/n → 1, a random 2-core tends to have many isolated
cycles, so the probability of 2-connectedness tends to 0 and then the plan is difficult to carry
out. For such m, and, for convenience, whenever m is bounded, we use a construction in [PW05]
called the kernel configuration model, a modification of the pairing model. This is a probability
space enabling direct analysis of the 2-cores that have no isolated cycles, and the above plan is
readily adapted to using this model.

The models mentioned above are explained in Section 3.
Combining the results obtained for degree sequences we obtain asymptotic formulae for the

number of 2-connected (n,m)-graphs for the following three cases: m/n→ 1, m/n bounded away
from 1 and m/n→∞. We then combine all three cases into a single formula (Theorem 1). The
pieces of the proof of this are finally gathered together in Section 7. The final section adapts the
method to counting 2-edge-connected graphs.

2 Main results

We assume that m > n. Let T (n,m) denote the number of labelled 2-connected (simple) graphs
with n vertices and m edges. We may assume that the vertex set is [n].

In preparation for the statement of our results we define the odd falling factorial (2m−1)!! :=
(2m− 1)(2m− 3) · · · 1, and the average degree c := 2m/n.

Define g : R++ → R by g(λ) := λ(eλ − 1)/(eλ − 1− λ). Then g is an increasing function with
g(λ)→ 2 as λ→ 0. Since c > 2, we may let λc be the (unique) positive root of

g(λ) =
λ(eλ − 1)
eλ − 1− λ

= c,

and we set

η̄c :=
λce

λc

eλc − 1
and pc :=

λ2
c

2 (eλc − 1− λc)
.

Our main result is the following.

Theorem 1. Suppose m = O(n log n) and m− n→∞. Then

T (n,m) ∼ (2m− 1)!!
(exp(λc)− 1− λc)n

λ2m
c

√
2πnc(1 + η̄c − c)

√
c− 2pc

c
exp

(
− c

2
− λ2

c

4

)
.

To prove this, we first obtain asymptotic formulae for T (n,m) for the following three cases:
c→ 2, bounded c > 2, and c→∞.

Theorem 2. Suppose m = O(n log n) and r := 2m− 2n→∞. Then
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(a) if c→ 2,

T (n,m) ∼ (2m− 1)!!
(exp(λc)− 1− λc)n

λ2m
c

√
2πn(c− 2)

·
√

3r
e
√

2m
.

(b) if c = O(1) and c > C0 for a constant C0 > 2 for n large enough,

T (n,m) ∼ (2m− 1)!!
(exp(λc)− 1− λc)n

λ2m
c

√
2πnc(1 + η̄c − c)

√
c− 2pc

c
exp

(
− c

2
− λ2

c

4

)
.

(c) if c→∞,

T (n,m) ∼ (2m− 1)!!
(exp(λc)− 1− λc)n

λ2m
c

√
2πnc

exp
(
− η̄c

2
− η̄2

c

4

)
.

For each case, we prove that the formula obtained is asymptotically equivalent to the formula
in Theorem 1. Then we show how to combine these to obtain Theorem 1.

As we have already mentioned, Wright [Wri83] proved an asymptotic formula for the case
k := m− n = o(

√
n) with k →∞. His formula is

T (n,m) = a
√

6πnn+3k−1/2e2k−n(18k2)−k(1 +O(k−1) +O(k2/n)),

where a is a constant. Wright gave a method of estimating a, and computed it to be 0.058549831 . . ..
Using λc = 3r/n + O(r2/n2) when k = o(n2/3) (see [PW03]) and Stirling’s approximation, we
easily determine a to be 1/(2eπ) = 0.05854983152 . . . from Theorem 2(c). More precisely, we find
λc = 3r/n− 3

2 (r/n)2 + 6
5 (r/n)3 +O((r/n)4) when k = o(n2/3), and then it is easy to obtain the

following.

Corollary 3. Suppose that k = m− n = o(n2/3) and k →∞. Then

T (n,m) ∼
√

3
e
√

2π
nn+3k−1/2e2k−n+3k2/(2n)(18k2)−k.

One can also check easily that for m ≈ n log n, our formula is asymptotic to the total number
of (n,m)-graphs, in accordance with the result of Erdős and Rényi mentioned above.

The proof of each case in Theorem 2 follows the same strategy. First we study the general
“typical” degree sequences of each case, computing the (asymptotic) probability that a graph
with a given degree sequence is 2-connected. With this, we obtain an asymptotic formula for the
number of 2-connected graphs with degree sequence d. For all typical sequences, we obtain the
same probability (within a uniform error). This allows us to sum over degree sequences obtaining
an asymptotic formula for T (n,m) in each case.

We use D(n,m) to represent the set of degree sequences d := (d1, . . . , dn) such that
∑n
i=1 di =

2m and di ≥ 2 for all i ∈ [n]. For d ∈ D(n,m) define η(d) := 1
2m

∑
dj(dj − 1) and let T (d)

represent the number of 2-connected graphs with degree sequence d. For every integer j, let
Dj = Dj(d) denote |{i : di = j}|.

Define Y = (Y1, . . . , Yn) to be a vector of independent truncated Poisson random variables
Y ∼ Po(2, λc) defined by

P(Y = j) =
λjc

j!(eλc − 1− λc)
for j = 2, 3, . . . .

Theorem 4. Suppose m = O(n log n) and r := 2m− 2n→∞. Then

(a) Suppose further that c→ 2. Let ψ(n) = r1−ε for some ε ∈ (0, 1/4). If d ∈ D(n,m) satisfies
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(i) |D2 − E (D2(Y))| ≤ ψ(n),

(ii) |D3 − E (D3(Y))| ≤ ψ(n),

(iii) |
∑
i

(
di

2

)
− E (

∑
i

(
Yi

2

)
)| ≤ ψ(n),

(iv) di ≤ 8 log(n−D2(d)) for every i,

then

T (d) ∼
√

3r
e
√

2m
· (2m− 1)!!∏n

j=1 dj !
.

(b) Suppose further that c = O(1) and c = c(n) = 2m/n > C0 for a constant C0 > 2 for n large
enough. Let ψ(n) = 1/nε for some ε ∈ (0, 1/4). If d ∈ D(n,m) satisfies

(i) di ≤ 6 log n for every i,

(ii) |η(d)− η̄c| ≤ ψ(n) and

(iii) |D2/n− pc| ≤ ψ(n),

then

T (d) ∼ (2m− 1)!!∏n
j=1 dj !

√
c− 2pc

c
exp

(
− c

2
− λ2

c

4

)
.

(c) If c→∞ and d ∈ D(n,m) satisfies max di ≤ nε for some ε ∈ (0, 0.01) then

T (d) ∼ (2m− 1)!!∏n
j=1 dj !

exp
(
−η(d)

2
− η(d)2

4

)
.

3 Background and preliminary results

3.1 Models for graphs of given degree sequence

The pairing model or configuration model is a standard theoretical tool for studying graphs of a
given degree sequence. For d ∈ D(n,m) a random perfect matching is placed on a set of 2m points
which are grouped into n cells of size d1, d2, . . . , dn. This random pairing naturally corresponds in
an obvious way to a random pseudograph (possibly containing loops or parallel edges) of degree
sequence d in which each cell becomes a vertex.

Let U(d) denote the probability the random pairing model is simple, and U ′(d) the probability
that a random pairing is both 2-connected and simple. It is well known that the number of pairings
corresponding to a given (simple) graph is

∏n
j=1 dj !, thus

T (d) =
(2m− 1)!!∏n

j=1 dj !
U ′(d). (1)

Let C(n,m) denote the number of labelled (simple) graphs with n vertices and m edges (with
vertex set [n]) with minimum degree at least 2 and let

Q(n,m) :=
∑

d∈D(n,m)

n∏
j=1

1
dj !

.

Recall the definition of the sequence Y = (Y1, . . . , Yn) of independent truncated Poisson random
variables with parameter (2, λc). Let Σ denote the event that

∑
i Yi = 2m. Then [PW03, Eq.

(13)] states that
C(n,m) = (2m− 1)!!Q(n,m)E

(
U(Y)|Σ

)
. (2)
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This was obtained by summing the analogue of (1) for U(d) over d ∈ D(n,m). Applying the
same argument to (1), one easily obtains

T (n,m) = (2m− 1)!!Q(n,m)E
(
U ′(Y)|Σ

)
. (3)

This distribution Y has been studied by several authors. Facts about it will be introduced as
they are needed. The probability of the event Σ has been estimated quite precisely in terms of
the variance of Y . (See Lemma 2 and Theorem 4(a) of [PW03].)

We will use the estimate in Theorem 4(a) of [PW03]:

P(Σ) =
1 +O(r−1)√

2πnc(1 + η̄c − c)
= Ω(1/

√
r), (4)

where r := 2m− 2n under the conditions that r = O(n log n) and r →∞. One of the reasons for
which (3) holds is that Q(n,m) can be rewritten as (eλc − 1− λc)nλ−2m

c P(Σ), and so (4) gives

Q(n,m) =
(eλc − 1− λc)n

λ2m
c

√
2πnc(1 + η̄c − c)

(1 +O(r−1)). (5)

When the degrees are all at least 2, the kernel configuration model of Pittel and Wormald
[PW05] can provide some advantages. Before describing the model we need some definitions.
The 2-core of a graph is its maximal subgraph of minimum degree at least 2. The pre-kernel of
a graph is obtained from the 2-core by throwing away any components which are simply cycles.
The kernel of a graph is obtained from the pre-kernel by replacing each maximal path of degree-2
vertices by a single edge. We say that a pseudograph is a pre-kernel (respectively, a kernel) if it
is the pre-kernel (respectively, kernel) of some graph. Now we are ready to describe the kernel
configuration model for a degree sequence d ∈ D(n,m).

For each i with di ≥ 3 create a set Si of di points. Choose, uniformly at random, a perfect
matching on the union of these sets of points. Assign the remaining numbers {i : di = 2} to the
edges of the perfect matching and, for each edge, choose a linear order for these numbers. The
assignment and the linear ordering are chosen uniformly at random. The pairing and assignment
(with linear orderings) are the configuration. A pseudograph G is constructed by collapsing each
set Si to a vertex (producing a kernel K) and placing the degree-2 vertices on the edges of the
kernel according to the assignment and linear orderings.

It is not hard to show (see Corollary 2 in [PW05]) that each pre-kernel can be produced by
the same number of configurations, and

T (d) =
(2m′ − 1)!!(m− 1)!P(2cs(d))

(m′ − 1)!
∏
i∈R(d) di!

,

where R = R(d) := {i ∈ [n] : di ≥ 3}, m′ = m′(d) := 1
2

∑
i∈R di, and 2cs(d) is the event that the

pre-kernel produced by the kernel configuration model is 2-connected and simple. For later use,
let n′ = n′(d) := |R(d)| =

∑
j≥3Dj(d). By Stirling’s formula,

T (d) =
(2m− 1)!!

√
m′/mP(2cs)∏n

i=1 di!
(1−O(1/m′)) . (6)

In [PW05, (5.3)], a similar expression for the event of being connected and simple was summed
over d ∈ D(n,m). We can use the same argument, using (4) and (5), and defining

w(d) := P(2cs(d))
√
m′, (7)
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to get

T (n,m) = (1−O(1/m′)) (2m− 1)!!Q(n,m)
√
m−1E (w(Y)|Σ).

= (1−O(1/r)) (2m− 1)!!
(eλc − 1− λc)n

λ2m
c

√
2πnc(1 + η̄c − c)

√
m−1E (w(Y)|Σ).

(8)

3.2 Relation between vertex and edge connectivity

In this section we investigate some properties of 2-connected graphs which may be of independent
interest. We show that, asymptotically almost surely, a random kernel is 2-connected if and only
if it is 2-edge-connected. (An event is said to occur asymptotically almost surely (a.a.s.) if its
probability is 1− o(1).) In this article, for convenience, we allow 2-connected pseudographs and
2-edge-connected pseudographs to have loops. In particular, a cut-vertex of a pseudograph is a
vertex whose removal (along with all incident edges) increases the number of components, and a
graph is 2-connected if it has no cutvertices and at least three vertices.

Proposition 5. Let d ∈ D(n,m) satisfying n ≥ 3 and 3 ≤ δ = d1 ≤ · · · ≤ dn = ∆ ≤ n0.04. Let
K be the kernel of the random pseudograph produced by the pairing model using degree sequence
d. A.a.s., K is 2-connected iff it is 2-edge-connected.

Proof. Let K be the random kernel produced by the pairing model using degree sequence d
satisfying n ≥ 3 and 3 ≤ δ = d1 ≤ · · · ≤ dn = ∆ ≤ n0.04. By closely following  Luczak’s
proofs of properties of (simple) graphs with given degree sequence in [ Luc92, Section 12.3]), it is
straightforward to prove the following lemmas.

Lemma 6. A.a.s., no subgraph of K with s vertices, 2 ≤ s ≤ n0.4, has more than 1.2s edges.

Lemma 7. A.a.s., each subset of K with s vertices, n0.3 ≤ s ≤ dn/2e has more than δ neighbours.

Suppose that v is a cut-vertex in K not in a bridge. Then v decomposes K into components
W1 and W2 with |W1| ≤ |W2|. Note that v sends at least 2 edges to W1 and at least 2 edges to
W2. (Otherwise v would be in a bridge).

Suppose that |W1| = 1. Then the number of edges induced by W1 ∪ {v} is at least 3 (since
δ ≥ 3) which is 3

2 |W1 ∪ {v}|. On the other hand, if |W1| ≥ 2, the number of edges induced by
W1 ∪{v} is at least (3|W1|+ 2)/2 ≥ 1.25|W1 ∪{v}|. For |W1 ∪{v}| ≤ n0.4, we conclude that such
v a.a.s. does not exist, by Lemma 6. Otherwise, |W1| ≥ n0.3 and such v a.a.s. does not exist by
Lemma 7.

So a.a.s. K has a bridge if it has a cut-vertex. The converse is deterministically true for
pseudographs with at least three vertices, and the proposition follows.

Note that Lemmas 6 and 7 actually imply that a.a.s. there are no cut-sets of cardinality from
2 to δ − 1 inclusive.

4 The case c→ 2

In this case, we can directly implement the plan presented in the introduction: we examine the
probability that a random n-vertex graph is 2-connected when its vertex degrees are chosen as
independent truncated Poissons random variables, conditioned on the sum being 2m. We do this
for typical degree sequences and then transfer this result to a random (n,m)-graph with minimum
degree 2.

Recall the definition of the sequence Y of independent truncated Poisson random variables
and the associated event Σ used in (8).

7



Define µ2 = E (D2(Y)), µ3 = E (D3(Y)) and µ = E (
∑n
i=1

(
Yi

2

)
). We need to know the

asymptotic behaviour of these expected values.

Lemma 8. We have µ2 = n− r + o(r), µ3 = r + o(r) and µ = n+ 2r + o(r).

The proof of this lemma is straightforward and depends only on properties of Y that follow
easily from facts established by Pittel and Wormald [PW03, PW05]. The proof is presented at
the end of the section.

We now define a set of “typical” degree sequences. Let ψ(n) : N → R+ be any function
such that ψ(n) = o(r). (We will specify a particular such function later.) Recall the definition
n′(d) =

∑
j≥3Dj . Let

D̃(ψ) :=
{
d ∈ D(n,m) : |D2(d)− µ2| ≤ ψ(n); |D3(d)− µ3| ≤ ψ(n);∣∣∣ n∑

i=1

(
di
2

)
− µ

∣∣∣ ≤ ψ(n); max
i
di ≤ 8 log n′(d)

}
.

and define D̃c(ψ) := D(n,m) \ D̃(ψ).
Let d ∈ D̃(ψ). We want to compute the probability of 2cs(d) as in (7). It easy to see that this

is the same as the event that G is simple and K is 2-connected and loopless (but permitting K to
have multiple edges). Let B denote the event that G is simple and K is 2-edge-connected and has
no loops. The maximum degree in K is at most 8 log(n′) < (n′)0.04 so we may use Proposition 5
to deduce P(B) = P(2cs(d)) + o(1).

We have that max di ≤ 6 log n and, by Lemma 8 and the definition of D̃(ψ),∑
i∈R(d)

(
di
2

)
=

n∑
i=1

(
di
2

)
−D2(d) = n+ 2r + o(r)− (n− r + o(r)) = 3r + o(r) < 4r,

for large n, which are sufficient conditions (by Lemma 5 in [PW05]) for a random kernel con-
figuration to be a.a.s. simple. Thus, the probability of G being simple is 1 + o(1). (Actually,
in [PW05] it is shown to be 1−O(r/n+ 1/r).)

For a random pairing having a given degree sequence of minimum degree at least 3, the
probability of being 2-edge-connectivity was investigated by  Luczak in [ Luc92]. He shows (in his
Lemma 12.1(iii)) that this probability approaches exp

(
− 3

2D3/m
′) provided D3/m

′ approaches
a positive constant. Using Lemma 8 for µ2,

m′(d) = m−D2(d) = m− µ2 +O(ψ) = m− µ2 + o(r) =
3r + o(r)

2
.

Applying this to K, we have
D3(d)
m′

=
r + o(r)

(3/2)r + o(r)
∼ 2

3

so the probability that K is 2-edge-connected goes to 1/e. Note that K being 2-edge-connected
implies that there are no loops on vertices of degree 3 in K. The expected number of loops in K
on vertices of degree at least 4 is∑

i:di≥4

(
di
2

)
1

2m′ − 1
=

(
n∑
i=1

(
di
2

)
−D2 − 3D3

)
1

3r + o(r)
= o(1)

by Lemma 8, so a.a.s. no such loops exist. We conclude that P(B) ∼ 1/e, and thus

P(2cs(d)) ∼ 1
e
. (9)
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These two results together with (6) give Theorem 4(a) and, in particular recalling w(d) =
P(2cs(d))

√
m′ from (7),

w(d) ∼ 1
e

√
3r
2
.

Finally, we will show Theorem 2(a). Let ψ(n) = r1−ε for some ε ∈ (0, 1/4). We will show

P(D̃(ψ)|Σ) = 1 +O(
√
r/n) +O(r2ε−1/2). (10)

Then using the formula for w(d) shown above for any d ∈ D̃(ψ), we have

E (w(Y)|Σ) = E (w(Y)|D̃(ψ))P(D̃(ψ)|Σ) + E (w(Y)|D̃c(ψ))P(D̃c(ψ)|Σ)

= E (w(Y)|D̃(ψ))(1−O(
√
r/n)−O(r2ε−1/2)) + o(

√
r)

∼ 1
e

√
3r
2
,

which combined with (8), and using

c(1 + η̄c − c) ∼ c− 2 (11)

for c→ 2 (see [PW03](20)), gives the conclusion of Theorem 2(a).
So it suffices to prove (10). Let pi denote the probability that a variable with distribution

Po(2, λc) has value i. Recall that η(d) = (
∑n
i=1 di(di − 1))/(

∑n
i=1 di). First we will study the

first three conditions in the definition of D̃(ψ). Let F be the event that Y fails to satisfy any
of the three conditions. Using Chebyshev’s inequality, together with p2(1 − p2)n = O(r) and
p3(1− p3)n ≤ p3n = O(r) by straightforward calculations, we have that

P(|D2(Y)− µ2| ≥ ψ(n)) ≤ p2(1− p2)n
ψ(n)2

= O

(
r

ψ(n)2

)
and

P(|D3(Y)− µ3| ≥ ψ(n)) ≤ p3(1− p3)n
ψ(n)2

= O

(
r

ψ(n)2

)
.

There is a concentration result for µ shown in [PW03, p. 262] which may be expressed as

P
(∣∣∣ n∑

i=1

(
Yi
2

)
− µ

∣∣∣ ≥ ψ(n)
)

= O

(
λcm

2

nψ(n)2

)
.

In [PW03], Lemma 1(a) states

λc = 3(c− 2) +O((c− 2)2) = 3r/n+O(r2/n2). (12)

Thus,

λcm
2

n
=

3rm2

n2
+O

(
r2m2

n3

)
= O(r).

Hence

P
(∣∣∣ n∑

i=1

(
Yi
2

)
− µ

∣∣∣ ≥ ψ(n)
)

= O

(
r

ψ(n)2

)
.

9



This implies that P(F ) = O(r/ψ(n)2). Using (4) we get

P(F |Σ) ≤ P(F )
P(Σ)

= O(
√
r)O

(
r

ψ(n)2

)
= O

(
r3/2

ψ(n)2

)
.

Now consider the last condition in the definition of D̃(ψ): maxi di ≤ 8 log n′(d). If the first
condition in the definition of D̃(ψ) holds, then, using Lemma 8, we have D2(d) = n − r + φ(n)
for some function φ(n) = o(r) and so n′(d) = r − φ(n). Let F ′ denote the event that the first
condition holds but the last condition fails. Thus, P(F ′) ≤ P

(
maxi Yi ≥ 8 log(r − φ(n))

)
. For

r ≤
√
n, it is easy to see that E (Dj(Y)) = O

(
rj−2/nj−3

)
for every j ≥ 4. Thus, using Markov’s

inequality and the union bound, one can prove that

P(Dj(Y) ≥ 1 for some j ≥ 8) ≤ n ·O(1/n2) = O(1/n).

For r >
√
n, it is easy to bound the tail probability of Yi (see (3.17) of [PW05] for example) as

P(Yi ≥ 8 log(r − φ(n))) = O (exp(−4 log(r − φ(n)))) = O (exp(−4 log r)) = O

(
1
n2

)
.

Thus, P(maxi Yi > 8 log(r − φ(n))) = O(1/n). Since P(Σ) = Ω(1/
√
r), we conclude that

P(F ′|Σ) ≤ O(
√
r)O(1/n) = O(

√
r/n).

Hence

P(D̃(ψ)|Σ) ≥ 1− P(F |Σ)− P(F ′|Σ) = 1 +O

(
r
√
r

ψ(n)2

)
+O(

√
r/n) = 1 +O(r2ε−1/2) +O(

√
r/n),

and we proved (10).

Proof of Lemma 8. Let r(Y) :=
∑n
i=1 Yi−2n and n′(Y) := n−D2(Y). Note that r(Y) may not

coincide with r because we are not conditioning on Σ. But

E (r(Y)) = E
( n∑
i=1

Yi

)
− 2n =

n∑
i=1

2m
n
− 2n = 2m− 2n = r. (13)

Note that
n∑
i=1

Yi =
∑

i∈R(Y)

Yi + 2D2(Y) ≥
∑

i∈R(Y)

3 + 2n− 2n′(Y) = 3n′(Y) + 2n− 2n′(Y) = n′(Y) + 2n.

Hence, n′(Y) ≤ r(Y).
Thus,

D2(Y) = n− n′(Y) ≥ n− r(Y). (14)

and so, by (13),
E (D2(Y)) ≥ n− r. (15)

Moreover, D2(Y) ≤ n−D3(Y), which implies that

E (D2(Y)) ≤ n− E (D3(Y)). (16)

10



Since n−r = n+o(n) and n−D3(Y) ≤ n, we conclude that E (D2(Y)) = n+o(n). Using (12),

E (D3(Y)) =
λ3
c

3!(eλc − 1− λc)
n =

λc
3

E (D2(Y)) =
(
r

n
+O

(
r2

n2

))
(n+ o(n))

= r + o(r) +O(r2/n) = r + o(r).

By (16), E (D2(Y)) ≤ n−E (D3(Y)) = n−r+o(r). So by (15), we conclude that E (D2(Y)) =
n− r + o(r).

In [PW05], the line after (5.6) (with error term corrected to O(r2/n)) states E
(∑n

i=1

(
Yi

2

))
=

n+ 2r +O(r2/n) = n+ 2r + o(r).

5 The case c bounded away from 2, and bounded

Let ψ : N→ R be a function such that ψ(n) = o(1). Let

D̃(ψ) :=
{
d ∈ D(n,m) : di ≤ 6 log n ∀i; |η(d)− η̄c| ≤ ψ(n); |D2(d)− pcn| ≤ nψ(n)

}
Let D̃c(ψ) := {d ∈ Nn : di ≥ 2 ∀i; d 6∈ D̃(ψ)}. (Note that if d ∈ D̃(ψ) then

∑
di = 2m but we do

not have this constraint for D̃c(ψ).)
Let d ∈ D̃(ψ). We use the kernel configuration model to investigate the graphs with no isolated

cycles and with degree sequences in D̃(ψ). According to the general plan in the introduction,
we will then see that the probability such graphs are 2-connected is concentrated around a given
value when the degree sequence consists of independent truncated Poissons, and show how this
probability then carries over to random graphs with a given number of edges.

Let d′ be the restriction of d to the coordinates with value at least 3, and let G be obtained
using the kernel configuration model with degree sequence d. Recall n′ = |{i : di ≥ 3}|.

Let P be the random perfect matching placed on a set S with
∑n′

i=1 d
′
i points grouped in cells

of size d′1, d
′
2, . . . , d

′
n′ . Let K be the kernel (obtained by contracting the cells of P ). Let vi denote

the vertex with degree d′i in K. Let M denote the number of edges in K.
We want to compute the probability that G is 2-connected and simple. Let B be the event that

G is simple and that K is 2-edge-connected and has no loops. Since n′ = (1−pc)n+o(n) = Θ(n),
we have maxi di ≤ 6 log n ≤ (n′)0.04, and so Proposition 5 says that, conditioning on B, K is
a.a.s. 2-connected. If K is 2-connected and loopless, it is easy to show that G is also 2-connected.
In other words,

P(2cs|B) = (1 + o(1)).

Note that 2cs ⊆ B for n > 2.
Let A denote the event that G has no multiple edges and K has no loops.  Luczak has shown

(see Lemma 12.1(ii) in [ Luc92]) that in a random pseudograph with given degree sequence, with
the distribution of pairing model, having minimum degree at least 3, a.a.s. all 2-edge-connected
components, except at most one, are loops at vertices of degree 3. Hence, P(A \B) = o(1). Since
B ⊆ A, we deduce P(A) = P(B) + o(1).

We will show that
P(A) ∼ pa := exp(−c/2− λ2

c/4). (17)

Hence,
P(2cs) = P(2cs|B)P(B) = (1 + o(1))P(A) ∼ pa. (18)

Note that D2(d) = pcn+ nO(ψ(n)) ∼ pcn and η(d) = η̄c +O(ψ(n)) ∼ η̄c. Thus√
m′(d)
m

=

√
m−D2(d)

m
=

√
(c/2)n− pcn+ o(n)

(c/2)n
∼
√
c− 2pc

c

11



since c > 2 and pc ≤ 1. Using this fact together with (18),

P(2cs(d))
√
m′ ∼

√
m

√
c− 2pc

c
pa, (19)

which together with (6) proves Theorem 4(b).
So in order to prove Theorem 4(b), it suffices to prove (17). The proof is presented in

Section 5.1.
We now prove Theorem 2(b). First we show that

P(Y ∈ D̃c(ψ)) = O(n−1ψ(n)−2) and P(Y ∈ D̃c(ψ)|Σ) = O(n−1/2ψ(n)−2). (20)

We will use some properties of Y developed by Pittel and Wormald [PW03]. Equation (27)
in [PW03] states that P(Y ≥ j0) = O(exp(−j0/2)) provided j0 > 2eλc, where Y ∼ Po(2, λc).
Lemma 1(b) in the same paper assures λc ≤ 2m/n, which is O(1) in the present case, allowing
us to choose j0 = 6 log n, apply the union bound, and conclude

P(max
i
Yi > 6 log n) = O

(
1
n2

)
.

Note that D2(Y) has binomial distribution with probability pc. Using Chebyshev’s inequality,

P(|D2(Y)− pcn| ≥ nψ(n)) ≤ pc(1− pc)n
n2ψ(n)2

= O

(
1

nψ(n)2

)
since 0 ≤ pc ≤ 1

Pittel and Wormald also show (see [PW03, p. 262]),

P(|η(Y)− η̄c| ≥ α) = O

(
λc
nα2

)
.

Since λc ≤ c = O(1),

P(|η(Y)− η̄c| ≥ ψ(n)) = O

(
λc

nψ(n)2

)
= O

(
1

nψ(n)2

)
.

Hence,

P(Y ∈ D̃c) = O

(
1

nψ(n)2

)
.

Since r := 2m− 2n = Θ(n), (4) implies that P(Σ) = Ω(1/
√
n). Conditioning on Σ, we have

P(Y ∈ D̃c|Σ) ≤ P(Y ∈ D̃c)
P(Σ)

= O

(
n1/2

nψ(n)2

)
= O

(
1

n1/2ψ(n)2

)
.

This proves (20).
Let ψ(n) = n−ε for some constant ε ∈ (0, 1/4). Using (19) and (20),

E (w(Y)|Σ) = E (w(Y)|D̃(ψ))P(D̃(ψ)|Σ) + E (w(Y)|Σ ∩ D̃c(ψ))P(D̃c(ψ)|Σ).

Note that w(Y) ≤
√
m′ since P(2cs) ≤ 1. By (20), we have that P(D̃c(ψ)|Σ) = O(1/n1/2−2ε).

So E (w(Y)|Σ ∩ D̃c)P(D̃c|Σ) = O(
√
m′/n1/2−2ε). Hence,

E (w(Y)|Σ) = E (w(Y)|Σ ∩ D̃(ψ))(1−O(1/n1/2−2ε)) +O(
√
m′/n1/2−2ε)

=
√
m

√
c− 2pc

c
pa(1 + o(1))(1−O(1/n1/2−2ε)) +O(

√
m′/n1/2−2ε)

=
√
m

√
c− 2pc

c
exp(−c/2− λ2

c/4)(1 + o(1)),

which together with (8) proves Theorem 2(b).
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5.1 Showing P(A) ∼ pa

Here we show (17). Recall that d ∈ D̃(ψ). Let e1, . . . , e` denote the possible loops in K. For
every 1 ≤ i ≤ `, let Xi be the indicator variable for ei ∈ E(K). Let X =

∑`
i=1Xi. Let f1, . . . , ft

denote the possible double edges in K (here we do not include double loops). For every 1 ≤ j ≤ t,
let Yj be the indicator variable for fj ⊆ E(G). Let Y =

∑t
j=1 Yj .

Using the method of moments, we will show that X + Y
d→ Po(c/2 + λ2

c/4), which gives (17).
For this we need to show, for every positive integer k, that

E ([X + Y ]k) =
(
c

2
+
λ2
c

4

)k
+ o(1).

Considering the first moment, note that for every 1 ≤ i ≤ `, we have that P(Xi = 1) ∼ 1/(2M).
For the double edges, we need to know the probability that a given set of edges of the kernel is
not assigned any vertices of degree 2 in the kernel configuration model. Let

δ =
(
c− 2pc

c

)2

=
(
λc
c

)2

. (21)

For any fixed q and any set of edges {e1, . . . , eq} in K, the probability that none of these kernel
edges is assigned a vertex of degree 2 (and hence become edges of G) can be estimated as follows.

P({e1, . . . , eq} ⊆ E(G)|{e1, . . . , eq} ⊆ E(K)) =
D2−1∏
i=0

(
1− q

M + i

)
∼ exp

(
−q

D2−1∑
i=0

1
M + i

)

∼
(

M − 1
M +D2 − 1

)q
∼
(
cn/2− pcn

cn/2

)q
= δq/2.

(22)

Thus, for every 1 ≤ j ≤ t, we have that

P(Yj = 1) = P(fj ⊆ E(K)) · P(fj ⊆ E(G)|fj ⊆ E(K)) ∼ δ

(2M)2
.

Hence,

E (X + Y ) = E (X) + E (Y ) ∼ ` · 1
2M

+ t · δ

(2M)2

=
∑n′

i=1

(
d′i
2

)
2M

+
δ

(2M)2
∑
(i,j)
i6=j

(
d′i
2

)(
d′j
2

)
.

We will use the following lemma, which is proved in the end of the section.

Lemma 9. Let q be a fixed positive integer. For d ∈ D̃(ψ),

∑
(i1,...,iq)

q∏
j=1

(
d′ij
2

)
· 1

(2M)q
∼
( c

2

)q
,

where the sum is over all (i1, . . . , iq) ∈ [n′]q where ij 6= ij′ for all j 6= j′.

13



Thus,

E (X + Y ) ∼ c

2
+
λ2
c

4
.

It only remains to examine the higher moments, and show that

E ([X + Y ]k) =
∑

k1+k2=k

(
k

k1

) ∑
y∈I(k1,k2)

P(W (y) = 1)

for y ∈ I(k1, k2), where I(k1, k2) is the set of tuples y ∈ ({e1, . . . , e`})k1 × ({f1, . . . , ft})k2 such
that yi 6= yj for i 6= j and

⋃k
i=1{yi} induces a matching on the set of points S, and W (y) is

the indicator variable for the event that Xi = 1 for every ei ∈ {y1, . . . , yk} and Yj = 1 for every
fj ∈ {y1, . . . , yk}.

Let I ′(k1, k2) be the set of tuples y ∈ I(k1, k2) such that, in the graph induced by
⋃k
i=1{yi}

in K, the degree of every vertex is either 0 or 2. (This is the non-overlapping case.) Let
I ′′(k1, k2) := I(k1, k2) \ I ′(k1, k2).

For y ∈ I ′′(k1, k2), it is easy to see that the graph induced by
⋃k
i=1{yi} in K has more edges

than vertices. For any fixed multigraph H with more edges than vertices, the expected number
of copies of H in K can be bounded as follows. There are at most (n′)|V (H)| ways of assigning the
vertices of H to vertices of K. If we assign a vertex with degree d in H to a vertex v in K, then
there are at most ∆d ways of choosing the points inside v to be the points of the vertex in H.
So there are at most (n′)|V (H)|∆2|E(H)| = O((n′)|V (H)|(log n)2|E(H)|) possible copies of H in K.
The probability that a set of |E(H)| edges in K is O(M−|E(H)|). Thus, the expected number of
copies of H in K is at most

O

(
(n′)|V (H)|(log n)2|E(H)|

M |E(H)|

)
= O

(
(n′)|V (H)|(log n)2|E(H)|

(n′)|V (H)|+1

)
= o(1).

From this, since k is fixed, we deduce that∑
k1+k2=k

(
k

k1

) ∑
y∈I′′(k1,k2)

P(W (y) = 1) = o(1).

For I ′(k1, k2), using (22) and Lemma 9,∑
y∈I′(k1,k2)

P(W (y) = 1) =
∑

y∈I′(k1,k2)

δk2

(2M)k1+2k2
= |I ′(k1, k2)| 1

(2M)k1+2k2
δk2

=
∑

(v1,...,vk1+2k2 )

k1+2k2∏
i=1

(
d′vi

2

)
1

(2M)k1+2k2
· δk2

∼
( c

2

)k1+2k2
δk2 ,

where vi 6= vj in (v1, . . . , vk1+2k2) for every i 6= j.
Thus,

E ([X + Y ]k) = o(1) +
∑

k1+k2=k

(
k

k1

) ∑
y∈I′(k1,k2)

P(W (y) = 1)

=
∑

k1+k2=k

(
k

k1

)( c
2

)k1+2k2
δk2 + o(1)

=
(
c

2
+
λ2
c

4

)k
+ o(1),
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as required to establish (17).

Proof of Lemma 9. For every q ≥ 1, let

Lq := {(i1, . . . , iq) : 1 ≤ ij ≤ n′ ∀j};

L6=q := {(i1, . . . , iq) ∈ Lq : ij 6= ij′ ∀j 6= j′}

and
L=
q := {(i1, . . . , iq) ∈ Lq : ij = ij′ for some j 6= j′}.

We have∑n′

i=1 d
′
i(d
′
i − 1)∑n′

i=1 d
′
i

=
∑n
i=1 di(di − 1)− 2D2∑n

i=1 di − 2D2
∼ η̄ccn− 2pcn

cn− 2pcn
=
η̄cc− 2pc
c− 2pc

= c.

So, for every q ≥ 1,

∑
(i1,...,iq)∈Lq

q∏
j=1

(
d′ij
2

)
· 1

(2M)q
=

(∑
i

(
d′i
2

)
2M

)q
∼
( c

2

)q
= Θ(1). (23)

For q ≥ 2, we have that

∑
(i1,...,iq)∈L=

q

q∏
j=1

(
d′ij
2

)
· 1

(2M)q
≤ q! ·

∑
(i1,...,iq−1)∈Lq−1

(
d′i1
2

) q−1∏
j=1

(
d′ij
2

)
· 1

(2M)q

≤ q! ∆2

4M

∑
(i1,...,iq−1)∈Lq−1

q−1∏
j=1

(
d′ij
2

)
· 1

(2M)q−1

∼ q! ∆2

4M

( c
2

)q−1

= o(1).

(24)

Note that for q = 1, we have Lq = L6=q and we are done by (23). So suppose q ≥ 2. Then Lq
is the disjoint union of L6=q and L=

q . Thus, using (23) and (24),

∑
(i1,...,iq)∈L 6=q

q∏
j=1

(
d′ij
2

)
· 1

(2M)q
=

=
∑

(i1,...,iq)∈Lq

q∏
j=1

(
d′ij
2

)
· 1

(2M)q
−

∑
(i1,...,iq)∈L=

q

q∏
j=1

(
d′ij
2

)
· 1

(2M)q

=
∑

(i1,...,iq)∈Lq

q∏
j=1

(
d′ij
2

)
· 1

(2M)q
+ o(1) ∼

( c
2

)q
.

6 The case c→∞
Recall that n and m are such that m = O(n log n), m > n and m/n → ∞. The set D(n,m)
contains all degree sequences d such that

∑n
i=1 di = 2m and di ≥ 2 for all i ∈ [n].

Recall that U(d) is the probability of obtaining a simple graph using the pairing model with
degree sequence d, and U ′(d) is defined similarly, for the event that it is additionally 2-connected.
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Let 0 < ε < 0.01 be a constant, and let

D̃ := {d ∈ D(n,m) : max di ≤ nε} and D̃c := D(n,m) \ D̃.

By [ Luc92, Theorem 12.2(iii)],
U(d) ∼ U ′(d). (25)

when d is in D(n,m) and satisfies D2(d)/m → 0 and maxi di ≤ n0.01. The condition on D2 is
satisfied by all d of concern when n is large since D2(d) ≤ n and c → ∞. Thus (25) holds for
any sequence d(n) with d ∈ D̃ and m/n→∞ where m = 1

2

∑n
i=1 di.

It is known [McK85] that

U(d) ∼ exp
(
−η(d)/2− η(d)2/4.

)
(26)

This result, together with (1), proves Theorem 4(c).
If all degree sequences were in D̃, we could immediately deduce Theorem 2(c) from (25). So

it remains to show that the other degree sequences have no effect asymptotically. We need to
randomize d with the distribution of the vector Y of independent truncated Poissons as defined
in Section 3.1, we have

E
(
U ′(Y)|Σ

)
= E

(
U ′(Y)|D̃

)
P(D̃|Σ) + E

(
U ′(Y)|D̃c

)
P(D̃c|Σ)

= E
(
U(Y)|D̃

)
(1 + o(1))P(D̃|Σ) +O(P(D̃c|Σ)) (27)

by (25). Properties of Y were investigated by Pittel and Wormald, and in particular [PW03, Eq.
(27)] implies for any β > 0

P(max
j
Yj ≥ mβ) ≤ exp(−nα)

for some fixed α(β). This shows that P(D̃c|Σ) = O(exp(−nα)) for some fixed positive α.
Also, [PW03, Theorem 4(b) and (21)] give

E
(

exp(−η(Y)/2− η(Y)2/4)|Σ
)
≥ exp(−O(log2 n)).

Using (26) and the bound on P(D̃c|Σ), we may now deduce that the first term in (27) dominates
the second, and thus

E
(
U ′(Y)|Σ

)
∼ E

(
U(Y)|D̃

)
.

Similarly,

E
(
U(Y)|Σ

)
= E

(
U(Y)|D̃

)
P(D̃|Σ) +O(P(D̃c|Σ)) ∼ E

(
U(Y)|D̃

)
and so

E
(
U ′(Y)|Σ

)
∼ E

(
U(Y)|Σ

)
. (28)

By Theorem 3 ([PW03]) and equation (13) ([PW03]),

C(n,m) ∼ (2m− 1)!!Q(n,m)E
(
U(Y)|Σ

)
∼ (2m− 1)!!Q(n,m) exp

(
−η̄c/2− η̄2

c/4
)
.

So by (3) and (5),

T (n,m) ∼ C(n,m) ∼ (2m− 1)!!
(eλc − 1− λc)n

λ2m
c

√
2πnc(1 + η̄c − c)

exp
(
−η̄c/2− η̄2

c/4
)
. (29)

Since c → ∞, we have that λc ∼ c (see Lemma 1(c) from [PW03]). This implies that η̄c =
λce

λc/(eλc − 1) ∼ c. This fact together with (29) implies Theorem 2(c).
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7 Proof of Theorem 1

Note that we have already proved Theorem 2. If we prove that in each of the three cases
in Theorem 2

T (n,m) ∼ (2m− 1)!!
(exp(λc)− 1− λc)n

λ2m
c

√
2πnc(1 + η̄c − c)

√
c− 2pc

c
exp

(
− c

2
− λ2

c

4

)
then the subsubsequence principle easily implies Theorem 1. (See [JLR00] (Section 1.2) for the
subsubsequence principle.)

It suffices to show √
3r
2m

1
e
∼
√
c− 2pc

c
exp

(
− c

2
− λ2

c

4

)
, when c→ 2

and

exp
(
− η̄c

2
− η̄2

c

4

)
∼
√
c− 2pc

c
exp

(
− c

2
− λ2

c

4

)
, when c→∞.

(See (11) and (29).)
So suppose c→ 2. Using Lemma 1 from [PW03], λc = 3(c− 2) +O((c− 2)2) = o(1). Thus,

exp
(
− c

2
− λ2

c

4

)
∼ exp

(
− c

2

)
∼ 1
e
.

By series expansion, pc = 1− 1
3 ·(3(c−2))+O((c−2)2) = 3−c+O

(
r2

n2

)
. Using c = 2m/n = 2+r/n,√

c− 2pc
c

=

√
c− 6 + 2c+O(r2/n2)

c
=

√
3(2 + r/n)− 6 +O(r2/n2)

2 + r/n
∼
√

3r
2m

.

Now suppose c→∞. In this case λc ∼ c (see Lemma 1(c) from [PW03]). From the definition
of λc we have c = λc +O(λ2

ce
−λc). Also,

η̄c = λc ·
eλc

eλc − 1
= λc +O(λce−λc) and pc =

λ2
c

2(eλc − 1− λc)
→ 0.

This implies √
c− 2pc

c
∼ 1 and exp

(
− η̄c

2
− η̄2

c

4

)
∼ exp

(
− c

2
− λ2

c

4

)
.

We now have Theorem 1.

8 Enumeration of k-edge-connected graphs

In the introduction we observed that for k ≥ 3 and for m under consideration, almost all k-cores
on n vertices and m edges are k-connected, so it follows that almost all are also k-edge-connected.
This settles the enumeration of k-edge-connected (n,m)-graphs for fixed k ≥ 3. When k = 2 we
have the following result.

Theorem 10. Suppose m = O(n log n) and m− n → ∞. Then the number of 2-edge-connected
(n,m)-graphs is asymptotic to

(2m− 1)!!
(exp(λc)− 1− λc)n

λ2m
c

√
2πnc(1 + η̄c − c)

√
c− 2pc

c
exp

(
− c

2
− λ2

c

4
+

λ3
c

2(eλc − 1)2

)
.
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Proof. The result is established by adapting the methods used for 2-connected graphs, so we omit
unimportant details.

For c→∞ we have shown that almost all (n,m)-graphs are 2-connected, hence the asymptotic
formula for the 2-connected graphs also holds for the 2-edge-connected ones.

For c→ 2 our proof actually showed that the probability of a 2-edge-connected simple graph in
the kernel configuration model is asymptotic to the probability of a 2-connected simple graph. So,
once again, the asymptotic formula for the 2-connected graphs also holds for the 2-edge-connected
graphs.

When c is bounded away from 2 and bounded, the situation is more interesting. For 2-
connectivity, the key computation used the method of moments to deduce the Poisson distribution
of the number of loops in the kernel plus the number of double edges in the pseudograph. (See
Section 5.1.) Note that, using [ Luc92, Lemma 12.1(ii)] as we did in Section 5, the graph G will
a.a.s. be 2-edge-connected if it has no loops or multiple edges and no cycle in the kernel on a
vertex of degree 3. Thus, in the present case we must study the random variable X + Y + Z,
where X counts loops on vertices of degree 3 in the kernel, Y counts double edges in the kernel
which are assigned no vertices of degree 2, and Z counts loops in the kernel at vertices of degree
at least 4 which are not assigned at least 2 degree-2 vertices. Analogous arguments establish the
Poisson distribution of X + Y + Z. We discuss only the computation of the first moment here.

There are three ways to attach a loop to each of the kernel’s D3 vertices of degree 3. Analogous
to the condition on D2(d)−pcn in the definition of D̃(ψ) in Section 5, we can assume for the crucial
computations that D3 ∼ p3n, where p3 is the probability that a truncated Poisson Po(2, λc) takes
the value 3. Each possible loop occurs with probability 1/(2M), giving E (X) = D3/(2M) ∼
c/2− λc/2.

From Section 5.1 we have E (Y ) ∼ λ2
c/4. To compute E (Z) we must first estimate the

probability that a given kernel edge is not assigned at least two degree-2 vertices. The number
of assignments of the D2 degree-2 vertices to the M kernel edges is the rising factorial [M ]D2 .
Either the given kernel edge is assigned no vertices, which has probability

[M − 1]D2

[M ]D2
=
M − 1
m− 1

∼
√
δ,

or the edge is assigned exactly one vertex, which has probability

D2
[M − 1]D2−1

[M ]D2
= D2

M − 1
(m− 2)(m− 1)

∼ (1−
√
δ)
√
δ

since the degree-2 vertex may be chosen in D2 ways. The sum of these two probabilities is 2
√
δ−δ.

The number of ways to attach a loop among the vertices of degree at least 4 is
∑n′

i=1

(
d′i
2

)
− 3D3.

Each occurs with probability 1/(2M). Using Lemma 9 we have

E (Z) =
∑n′

i=1

(
d′i
2

)
− 3D3

2M
(2
√
δ − δ) ∼

(
c

2
− 3D3

2M

)
(2
√
δ − δ) ∼ λc

2
− λ3

c

2(eλc − 1)2
.

The probability that G is 2-edge-connected and simple is thus

exp
(
− c

2
− λ2

c

4
+

λ3
c

2(eλc − 1)2

)
,

and the formula for the number of 2-edge-connected graphs follows as in the 2-connected case.
This concludes the proof of the theorem.
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Note: The alert reader will notice that an alternative way to derive this result would be to take
 Luczak’s corollary at the end of Section 12.5 in [ Luc92], which gives the probability of 2-edge-
connectedness of graphs with a given degree sequence, and then use our argument to extend this
to graphs with minimum degree 2. The resulting formula agrees with ours if one corrects the
formulae in Theorem 12.4 of his paper, and its Corollary, to let D3/M

′ → c (not D3/M) in his
notation. (We believe the source of this problem is in the first displayed equation in the proof
of [ Luc92, Theorem 12.4].)
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