
Preprint: arXiv:1703.00029

Evolutions of Gowdy, Brill and Teukolsky

initial data on a smooth lattice.

Leo Brewin

School of Mathematical Sciences
Monash University, 3800

Australia

1-Mar-2017

Abstract

Numerical results, based on a lattice method for computational gen-
eral relativity, will be presented for Cauchy evolution of initial data
for the Brill, Teukolsky and polarised Gowdy space-times. The simple
objective of this paper is to demonstrate that the lattice method can,
at least for these space-times, match results obtained from contempo-
rary methods. Some of the issues addressed in this paper include the
handling of axisymmetric instabilities (in the Brill space-time) and an
implementation of a Sommerfeld radiation condition for the Brill and
Teukolsky space-times. It will be shown that the lattice method per-
forms particularly well in regard to the passage of the waves through
the outer boundary. Questions concerning multiple black-holes, mesh
refinement and long term stability will not be discussed here but may
form the basis of future work.

1 Introduction

With the recent successful detection of gravitational waves, and the rea-
sonable expectation of more to follow, there will soon be a wealth of new
information about the universe allowing ever more detailed questions to be
asked. But the computational methods that have served us well for today’s
questions may well prove to be inadequate for the questions that arise in the
near future. So it seems that there is good reason to continue to develop new

1

approaches to computational general relativity. One such approach, known
as smooth lattice general relativity, will be described in this paper. As its
name suggests it is based on a lattice and it employs a metric that is locally
smooth.

The smooth lattice method differs from traditional numerical methods in
computational general relativity in a number of important aspects. The
space-time manifold consists of a large collection of overlapping computa-
tional cells with local Riemann normal coordinates used in each cell. The
computational cells are a set of vertices and legs that define small subsets
of the manifold. The use of local Riemann normal coordinates in each each
cell not only reduces the complexity of the evolution equations but it also
explicitly incorporates the Einstein equivalence principle into the formalism.
The lattice method provides an elegant separation between the topological
properties of the space-time (by specifying combinatoric data such as the
connections between cells, vertices etc.) and the metric properties (by spec-
ifying data such as leg-lengths, curvature components etc. within each cell).
A key element of the lattice method is that it uses the second Bianchi iden-
tities to evolve the Riemann curvatures. More details of the lattice method
will be given later in section (3).

Previous applications of the lattice method includes the Schwarzschild [1],
Oppenheimer-Snyder [2] and Kasner [3] space-times. Though these were im-
portant tests of the lattice method, they lacked some of the more challenging
aspects expected in full 3-dimensional computational general relativity, in
particular the presence of gravitational waves and their interactions with the
outer boundaries on a finite computational grid. In this paper evolutions of
a smooth lattice with zero shift for the Gowdy [4], Brill [5] and Teukolsky [6]
spacetimes will be presented. The objective is not to explore any new fea-
tures of these space-times but rather to use them as examples of the smooth
lattice method.

The boundaries in the Gowdy space-time will be handled using standard
periodic boundary conditions while the Brill and Teukolsky space-times will
require an out outgoing radiation condition. The Brill space-time adds the
extra complexity of the numerical instabilities that arise from the use of a
lattice adapted to the axisymmetry. These issues will be addressed in the
following sections.

This class of space-times has been studied extensively by other authors.
See [7, 8, 9] for the Gowdy space-time, [10, 11, 12, 13] for Brill waves and
[14, 15] for Teukolsky waves.

2

The structure of this paper is as follows. The notation used in this paper will
be defined in the following section. Sections (3,4) provide a broad summary
of the smooth lattice method including details of the evolution equations on
a typical lattice. The specific details of the lattice, the construction of the
initial data and the evolution equations for each of the three spacetimes are
given sections (5,6,7). This is followed by a short discussion on the use of
the Einstein toolkit [16] before the results are presented in section (9). Most
of the algebraic calculations are deferred to the appendices (A–G).

2 Notation

Throughout this paper Greek letters will denote space-time indices while
spatial indices will be denoted by just three Latin letters, i, j and k. The
remaining Latin letters will serve as vertex labels. One small exception to
these rules will be noted in Appendix (B) where Latin indices will be used
(extensively) to record frame components for differential forms.

The coordinates for a typical Riemann normal frame will be denoted by
either (t, x, y, z) or xµ while globally defined coordinates will be denoted by
the addition of a tilde such as (t̃, x̃, ỹ, z̃) or x̃µ. A tilde will also be used
to denote tensor components in the global frame, e.g., T̃xy would be the x̃ỹ
component of the tensor T in the global coordinate frame. Note that the
global coordinates are not an essential part of the smooth lattice method.
They appear in this paper solely to assist in setting the initial data and also
when comparing the evolved data against the exact solution or against data
obtained by other numerical means (e.g., a finite difference code).

A key element of the smooth lattice method is that it employs many local
Riemann normal frames. This introduces a minor bookkeeping issue – if a
tensor is defined across two frames, how should its components in each frame
be recorded? Let a and b be the Riemann normal frames associated with the
pair of vertices a and b. Consider a vector v defined over this pair of frames.
Then the components, in the frame b, of the vector v at vertex a will be
denoted by vαab while vαaa denotes the components, in a, of v at a. Similar
notation will be used for other tensors, for example Rα

βpq would denote the
components of the Ricci tensor at the vertex p in the frame q.

It is customary to denote the Cauchy time parameter by the symbol t. How-
ever, that symbol is reserved for the time coordinate of a typical local Rie-
mann normal frame and thus some other symbol is required, for example

3

t̃ with a corresponding time derivative operator d/dt̃. The proliferation of
tildes that would follow from this choice can be avoided with the following
convention – replace d/dt̃ with d/dt and take the d/dt to be the time deriva-
tive operator associated with the Cauchy time parameter t̃. This convention
applies only to the operator d/dt, thus a (partial) time derivative such as vµ,t
should be understood as a derivative with respect to the Riemann normal
coordinate t.

The signature for the metric, Riemann and Ricci tensors follows that of
Misner, Thorne and Wheeler [17].

3 Smooth lattices

A smooth lattice is a discrete entity endowed with sufficient structure to
allow it to be used as a useful approximation to a smooth geometry (which
in the context of computational general relativity is taken to be a solution
of the Einstein equations). The typical elements of a smooth lattice are
combinatoric data such as vertices, legs, etc. and geometric data such as a
coordinates, the Riemann and metric tensors and any other geometric data
needed to make the approximation to the smooth geometry meaningful.

An n-dimensional smooth lattice can be considered as a generalisation of an
n-dimensional piecewise linear manifold. The later are constructed by gluing
together a collection of flat n-simplices in such a way as to ensure that the
resulting object is an n-dimensional manifold, that the points common to
any pair of n-simplices form sub-spaces of dimension n − 1 or less and that
the metric is continuous across the interface between every pair of connected
n-simplices.

In a smooth lattice the cells need not be simplices, they are required to
overlap with their neighbours and the curvature may be non-zero throughout
each cell. The picture to bear in mind is that the cells of a smooth lattice
are akin to the collection of coordinate charts that one would normally use
to cover a manifold. The overlap between each pair of charts is non-trivial
and allows for coordinate transformations between neighbouring charts. So
too for the smooth lattice – each pair of neighbouring cells overlap to the
extent that a well defined transition function can be constructed. This is an
essential element of the smooth lattice formalism – it is used extensively when
computing various source terms in the equations that control the evolution of
the lattice (see appendix (A) for further details). Another important feature

4

of the smooth lattice is that each cell of the lattice need not be flat. The
intention here is to better allow the smooth lattice to approximate smooth
geometries than could otherwise be achieved using piecewise flat simplices
(compare the approximation of a sphere by spherical triangles as opposed
to flat triangles). The smooth lattice should also provide smoothly varying
estimates for various quantities (for example the geodesic length of a leg) in
the overlap region between a pair of cells. The use of the adjective smooth
in the name smooth lattice is intended to capture the idea that all quantities
on the lattice should vary smoothly (as best as possible) across the lattice.

Denote the smooth geometry by (g,M) where g is the metric on the n-
dimensional manifold M . A smooth lattice representation of (g,M) can
be constructed in a number of stages, in particular, choose a set of cells
Mi, i = 1, 2, 3, · · · that cover M , add the vertices and legs and finally add
the metric data to the lattice.

The cells Mi, i = 1, 2, 3, · · · must be chosen so that each point in M is
contained in at least one Mi and each point in each Mi should also be a point
in M . Now decorate M by introducing a set of vertices V and a set of legs L
as follows. Add one or more vertices to each cell and in each cell label one of
these as the central vertex for that cell (which will later serve as the origin of
a set of coordinates local to the cell). Thus each cell will contain one central
vertex as well as other vertices (which are also the central vertices of other
neighbouring cells). The legs L of the lattice are chosen as the geodesics that
connects the central vertices between pairs of neighbouring cells. Paths other
than geodesics could be used but since the geodesic is defined intrinsically
by the underlying smooth geometry it is a natural choice. There is, however,
the issue of the uniqueness of the geodesic – if the curvature is too large or
the vertices too far apart there may not exist a unique geodesic joining the
pair of vertices. This problem can be overcome by a suitable choice of cells –
in regions where the curvature is large the cells should be small and closely
packed while in other regions, where the curvature is weak, the cells can be
well spaced out. It is well known that such a construction is always possible
(in the absence of curvature singularities).

The next step in the construction is to assign metric data to the cells. In
each cell Mi, expand the metric around the central vertex in terms of a local
set of Riemann normal coordinates xα (see [18, 19, 20]), that is

ds2 =

(
gαβ −

1

3
Rαµβνx

µxν − 1

6
Rαµβν,γx

µxνxγ + · · ·
)
dxαdxβ (3.1)

The coefficients gαβ, Rαµβν etc. can be obtained by projecting their corre-

5

sponding quantities from the smooth metric onto a local orthonormal basis
on the central vertex.

At this stage the lattice is an exact copy of the original smooth geometry
but with additional structure (the vertices, legs, cells, coordinates etc.). The
approximation is introduced by truncating the series expansion for the metric
at some finite order. The lattice will then no longer be an exact copy of the
original smooth metric and should be considered an entity in its own right
and will be denoted by (g,M, V, L). The original smooth geometry will now
be denoted by (g̃, M̃).

For the space-times considered in this paper the metric in each cell will be
taken as

ds2 =

(
gαβ −

1

3
Rαµβνx

µxν
)
dxαdxβ (3.2)

where gαβ = diag(−1, 1, 1, 1). This form of the metric will lead to estimates
for the geodesic lengths that differ from that given by (g̃, M̃). By inspection
of the (3.1) and (3.2) it is should be clear that for a typical leg (p, q) in M̃
and M , the geodesic lengths, using the two metrics g̃ and g, will differ by a
term of order O (RL5) where R and L are estimates of the largest curvatures
and lengths in any of the cells that contain this leg.

If (p, q) is a leg in the smooth lattice then the (squared) geodesic length can
be estimated (see [19, 20]) on the smooth lattice using

L2
pq = gαβ∆xαpq∆x

β
pq −

1

3
Rαµβνx

α
px

β
px

µ
qx

ν
q +O

(
RL5

)
(3.3)

where where ∆xαpq = xαq − xαp . Of course other sources of truncation errors
will arise as part of the numerical evolution of the lattice data so this O (RL5)
truncation is the best that can expected at this level of approximation. To
obtain higher order approximations would require not only retaining more
terms in the series expansion for the metric but would also require the cells
to overlap beyond nearest neighbours.

Imagine for the moment that the truncation errors on the right hand side
of (3.3) where discarded. This leaves one equation that links the vertex
coordinates, the leg lengths and the curvatures. It might be thought that
given sufficiently many leg-lengths that the curvatures and coordinates could
be computed by solving (3.3). Past experience shows that even though the
equations can be solved (in some cases) the resulting evolution of the lattice
did not converge to the continuum space-time. It was found that correct

6

evolutions could be obtained by evolving either the leg-lengths and curvatures
or equally by evolving the coordinates and the curvatures. Both approaches
will be discussed in more detail in section (4.2).

3.1 Continuous time smooth lattices

The construction of the smooth lattice as described above would naturally
lead, for the case of computational general relativity, to a structure that is
discrete in both space and time. There is, however, an alternative picture
in which the lattice evolves smoothly in time while retaining its discrete
spatial structure. This allows for a fairly simple construction of a Cauchy
initial value problem on such a lattice (as described later in the following
section. For the remainder of this paper, the smooth lattice, its coordinates,
leg lengths and Riemann curvatures should be considered to evolve smoothly
with time.

4 Cauchy evolution of a smooth lattice

Suppose that the spacetime (g̃, M̃) can be foliated by a one parameter fam-
ily of spatial hypersurfaces Σ(t̃) (i.e., each Σ(t̃) is a Cauchy surface in (g̃, M̃)).
Each element of this family could be represented by a lattice with 3-dimensional
computational cells denoted by Σi. The 4-dimensional computational cells
Mi of M will be taken as the space-time volume swept out by the correspond-
ing Σi for an infinitesimal increment in the Cauchy time parameter t̃. Thus
a single Mi is a 4-dimensional cylinder, with a 3-dimensional base Σi, that
connects a pair of infinitesimally close Cauchy surfaces while the set of all
Mi, i = 1, 2, 3, · · · fills out the space-time region between that pair of Cauchy
surfaces.

The dynamical variables on a smooth lattice can be chosen to include the
Riemann curvatures on the central vertex and either the (squared) leg-lengths
or the Riemann normal coordinates for each vertex in each cell. In either case,
the addition of the extrinsic curvatures (at the central vertex) allows the full
set of evolution equations for the lattice to be given in first order form.

7

4.1 Lapse and shift

In the standard formulation of the Cauchy initial value problem for general
relativity the lapse function and shift vectors can be freely specified at each
point in the space-time. This naturally carries over to the smooth lattice
by allowing the lapse function and shift vector to be freely specified on the
central vertex of each cell.

In computational general relativity it is usually the case that once the lapse
function and shift vector have been fully specified then there are no remaining
coordinate freedoms. This is not exactly true on a smooth lattice – each cell
carries its own local set of coordinates and specifying the lapse and shift at
one point in that cell is not sufficient to properly constrain the coordinates on
the remaining vertices. What remains is the freedom to orient the coordinate
axes within each cell. Thus using boosts and spatial rotations the t-axis can
be aligned with the world-line of the central vertex (for the case of zero shift)
while the spatial axes can be given some preferred alignment with some of
the remaining vertices of the cell.a This is a choice that depends on the
structure of the cells and possibly on any symmetries that might exist in the
space-time.

In each of the space-times considered in this paper the shift vector will be
set equal to zero (i.e., the world-lines of the vertices will be normal to the
Cauchy surfaces) while the lapse function will be given as a function on the
set of central vertices.

4.2 Evolving the legs and coordinates

The only legs that will be evolved in a cell are those that are directly con-
nected to the central vertex. There are two reasons for making this choice.
First, legs that are not tied to the central vertex are likely to incur a larger
truncation error than legs closer to the central vertex (such as those tied to
that vertex). Second, there is no contribution to the leg-length from the Rie-
mann tensor for legs directly connected to the central vertex thus avoiding
any issues of accounting for time derivatives of such terms.

Consider a typical cell with central vertex o and let q be any of its vertices.
A standard result from differential geometry, known as the first variation of

aThis picture changes slightly if the coordinates are evolved, see the comment at the
end of section (4.2).

8

arc-length [21, 22, 23], states that for a one-parameter family of geodesics,
the arc-length Loq will evolve according to

dLoq
dt

= [vµ(Nnµ)]qo (4.1)

where vα is the (forward pointing) unit tangent vector to the geodesic, nµ is
the (future pointing) unit tangent vector to the vertex world-line and N is the
lapse function. For a short leg, where the lapse and extrinsic curvatures are
approximately constant across the leg, this result can be estimated by [24]b

dLoq
dt

= −NKαβv
α
oqv

β
oqLoq +O

(
L2
)

(4.2)

Since N and Kαβ are defined on the vertices there is an ambiguity in attempt-
ing to apply this equation to any leg – each leg is defined by two vertices so
which vertex should supply the required values? As there is no clear reason
to prefer one vertex over the other it seems reasonable to take the average
from both vertices, that isc

dLoq
dt

= −1

2

(
(NKαβ)qq v

α
qoqv

β
qoq + (NKαβ)oo v

α
oqov

β
oqo

)
Loq +O

(
L2
)

(4.3)

A simple generalisation of this result can be obtained by noting that any 3-
geodesic within a Cauchy surface can be arbitrarily approximated by a large
sequence of short 4-geodesics of the space-time. The arc-length for each short
4-geodesic is subject to the above evolution equation and thus, on summing
over all contributions to the path and taking a suitable limit, it follows that

dL̃oq
dt

= −
∫ q

o

NKαβv
α
oqv

β
oqds (4.4)

where s is the proper distance along the path and L̃oq =
∫ q
o
ds is the arc-

length of the 3-geodesic.

Using this equation to evolve the leg-lengths requires a re-appraisal of how the
legs of the lattice are interpreted. In the standard formulation [3], the legs of
the lattice are geodesics in space-time (and will appear as chords connecting
the vertices) whereas in this alternative interpretation the geodesics now lie
entirely within a Cauchy surface.

bThis paper contains a number of small errors that do not effect the final results. A
corrected version can be found on ArXiv:0903.5365

cThis result can also be obtained directly from (4.1) as shown in Appendix (F).

9

The evolution equation (4.4) is suitable for simple lattices, such as the Gowdy
lattice, where information about N and Kαβ can be deduced along the entire
path. In all other cases, such as the Brill and Teukolsky lattices, the former
evolution equation (4.3) must be used.

As the leg-lengths evolve, so too must the Riemann normal coordinates. So
it is natural to ask: What are the appropriate evolution equations for the
xα? A simple calculation, as detailed in [3], shows that for any vertex p in a
cell

dxαp
dt

= −NKα
βx

β
p (4.5)

A short independent derivation of this equation can also be found in Ap-
pendix (E). Note that in choosing to evolve the coordinates, the freedom to
adapt the coordinates to the lattice, as described in section (4.1), can only be
imposed either on the initial Cauchy surface or at future times by applying
suitable rotations.

4.3 Evolving the extrinsic curvatures

In [3] the evolution equations for the extrinsic curvatures where given for the
particular case of a unit lapse. The method employed in that paper can be
easily repeated for the more general case of a non-constant lapse. The results
are as followsd

dKxx

dt
= −N,xx +N

(
Rtxtx +K2

xx −K2
xy −K2

xz

)
(4.6)

dKyy

dt
= −N,yy +N

(
Rtyty +K2

yy −K2
xy −K2

yz

)
(4.7)

dKzz

dt
= −N,zz +N

(
Rtztz +K2

zz −K2
xz −K2

yz

)
(4.8)

dKxy

dt
= −N,xy +N (Rtxty −KxzKyz) (4.9)

dKxz

dt
= −N,xz +N (Rtxtz −KxyKyz) (4.10)

dKyz

dt
= −N,yz +N (Rtytz −KxyKxz) (4.11)

dThese equations can also be obtained directly by projecting the Arnowitt, Deser and
Misner (ADM) 3+1 equations [17], with zero shift, onto a local orthonormal frame.

10

These equations apply at the central vertex where, in the Riemann normal
frame of this vertex, nα = δαt and where the covariant derivatives N;αβ coin-
cides with the partial derivatives N,αβ.

4.4 Evolving the Riemann curvatures

In 4-dimensions there are 20 algebraically independent components of the
Riemann tensor at any one point and in each cell these are taken to be

Rxyxy, Rxyxz, Rxyyz, Rxzxz, Rxzyz, Ryzyz

Rtxxy, Rtyxy, Rtzxy, Rtxxz, Rtyxz, Rtzxz, Rtyyz, Rtzyz (4.12)

Rtxtx, Rtyty, Rtztz, Rtxty, Rtxtz, Rtytz

Of these, the first 14 will be evolved while the remaining 6 will be set by
applying the vacuum Einstein equations (see section (4.5)).

The evolution equations for the Riemann curvatures are based upon the
second Bianchi identities. At the origin of the local frame (i.e., the central
vertex) the connection vanishes and thus these equations take the simple
form

Rxyxy,t = Rtyxy,x −Rtxxy,y (4.13)

Rxyxz,t = Rtzxy,x −Rtxxy,z (4.14)

Rxyyz,t = Rtzxy,y −Rtyxy,z (4.15)

Rxzxz,t = Rtzxz,x −Rtxxz,z (4.16)

Rxzyz,t = Rtzxz,y −Rtyxz,z (4.17)

Ryzyz,t = Rtzyz,y −Rtyyz,z (4.18)

Rtxxy,t = −Rxyxy,y −Rxyxz,z (4.19)

Rtyxy,t = Rxyxy,x −Rxyyz,z (4.20)

Rtzxy,t = Rxyxz,x +Rxyyz,y (4.21)

Rtxxz,t = −Rxyxz,y −Rxzxz,z (4.22)

Rtyxz,t = Rxyxz,x −Rxzyz,z (4.23)

Rtzxz,t = Rxzxz,x +Rxzyz,y (4.24)

Rtyyz,t = Rxyyz,x −Ryzyz,z (4.25)

Rtzyz,t = Rxzyz,x +Ryzyz,y (4.26)

There is, however, a small bump in the road in using these equations to
evolve the curvatures – the only data immediately available are the point

11

values for the curvatures in each cell and thus some process must be ap-
plied to estimate the partial derivatives in each cell. It is possible to use
a finite difference approximation using data from neighbouring cells but in
doing so a proper account must be made of the different orientations of the
neighbouring frames. This is clearly true for the spatial derivatives where
neighbouring frames may differ by boosts and rotations. It is also true for the
time derivatives due to progression of boosts needed to keep the world-line of
the origin of the local frame normal to the Cauchy surfaces. Thus Rtzxy,x, for
example, will consist not only of the raw partial derivatives (i.e., taking the
raw data from neighbouring frames without regard for coordinate transfor-
mations) but also of terms that account for the boosts and rotations between
neighbouring frames. The details are spelt out in full, for the particular class
of lattices used in this paper, in Appendix (C) leading to expression such as

Rαβµν,γ = Rαβµν†γ −mλ
αγRλβµν −mλ

βγRαλµν −mλ
µγRαβλν −mλ

νγRαβµλ

(4.27)

in which the Rαβµν†γ are the raw partial derivatives of Rαβµν and the mα
βγ

are geometrical data built solely from the structure of the lattice (i.e., they
depend only on the leg-lengths and Riemann normal coordinates). This result
is very much like the usual definition of a covariant derivative. This does of
course lead to a significant increase in the number of terms in each equation.
The full set of equations (for a zero shift) can be found in Appendix (G).

4.5 The vacuum Einstein equations

The second Bianchi identities provide no information about the time deriva-
tives of the Riemann components such as Rtxtx. Consequently such compo-
nents can not be evolved but rather must be determined algebraically by ap-
plying the (vacuum) Einstein equations. Thus the 6 curvaturesRtxtx, Rtxty · · ·Rtytz

are obtained from

0 = Rxx = −Rtxtx +Rxyxy +Rxzxz (4.28)

0 = Ryy = −Rtyty +Rxyxy +Ryzyz (4.29)

0 = Rzz = −Rtztz +Rxzxz +Ryzyz (4.30)

0 = Rxy = −Rtxty +Rxzyz (4.31)

0 = Rxz = −Rtxtz −Rxyyz (4.32)

0 = Ryz = −Rtytz +Rxyxz (4.33)

12

4.6 Constraint equations

The constraints consist not only of the four standard Hamiltonian and mo-
mentum constraints, which on a lattice take the form

0 = Rtt = Rtxtx +Rtyty +Rtztz (4.34)

0 = Rtx = Rtyxy +Rtzxz (4.35)

0 = Rty = −Rtxxy +Rtzyz (4.36)

0 = Rtz = −Rtxxz −Rtyyz (4.37)

but also the extra constraints that arise from allowing the Riemann cur-
vatures to be evolved. These constraints follow from the second Bianchi
identities, namely

0 = Rxyxy,z +Rxyyz,x −Rxyxz,y (4.38)

0 = Rxyxz,z +Rxzyz,x −Rxzxz,y (4.39)

0 = Rxyyz,z +Ryzyz,x −Rxzyz,y (4.40)

0 = Rtyxy,z +Rtyyz,x −Rtyxz,y (4.41)

0 = Rtzxy,z +Rtzyz,x −Rtzxz,y (4.42)

0 = Rtxxy,z +Rtxyz,x −Rtxxz,y (4.43)

Note that Rtxyz is not one of the 20 chosen Rαβµν but it can be computed
directly using Rtxyz = Rtyxz −Rtzxy.

5 Gowdy polarised cosmologies

Polarised Gowdy cosmologies on T 3 × R are a class of solutions of the vac-
uum Einstein equations that posses two linearly independent spatial Killing
vectors. The metric, in coordinates adapted to the symmetries, is commonly
written in the form [25, 26]

ds2 = t̃−1/2eλ/2
(
−dt̃2 + dz̃2

)
+ t̃
(
ePdx̃2 + e−Pdỹ2

)
(5.1)

where P and λ are functions of (t̃, z̃) and where ∂/∂x̃ and ∂/∂ỹ are the two
Killing vectors. Each of the spatial coordinates (x̃, ỹ, z̃) are required to be
periodic (to respect the T 3 topology). The functions P and λ used in this
paper are those given by New-Watt etal [25], namely,

P (t̃, z̃) = J0(2πt̃) cos(2πz̃) (5.2)

λ(t̃, z̃) = − 2πt̃J0(2πt)J1(2πt̃) cos2(2πz̃) + 2(πt̃)2
(
J2
0 (2πt̃) + J2

1 (2πt̃)
)

− 2π2
(
J2
0 (2π) + J2

1 (2π)
)
− πJ0(2π)J1(2π) (5.3)

13

with z̃ restricted to [−0.5, 0.5]. The domain for x̃ and ỹ can be chosen as any
finite interval, e.g., [0, 1].

The metric is singular only at t̃ = 0 and consequently initial data should be
set at some other time (e.g., at t̃ = 1 as described below). The Gowdy initial
data will be evolved away from the t̃ = 0 singularity.

5.1 A Gowdy lattice

A lattice that represents the spatial part of this metric is rather easy to
construct. Start by discretising the z̃ axis into a finite number of points
labelled from 0 to Nz with the point labelled 0 identified with that labelled
Nz (i.e., two labels for a single point). These points will soon be identified
as the vertices of the lattice. Note that there are no legs at this stage, these
will be added later. Now use the Killing vectors ∂/∂x̃ and ∂/∂ỹ to drag the
discretised z̃ axis along the x̃ and ỹ axis. The legs of the lattice can now
be constructed as the space-time geodesics that connect pairs of points (now
taken as vertices of the lattice). This leads to the simple lattice shown in
figure (1) consisting of Nz computational cells labelled from 0 to Nz with
cell 0 identified with cell Nz. This lattice contains three classes of legs, one
for each of the three coordinate axes, namely, Lxx, Lyy and Lzz. Other data
that must be carried by the lattice include the extrinsic curvatures, Kαβ, the
Riemann curvatures, Rαβµν and the lapse function N .

Consider a typical computational cell, as shown in figure (1), and ask the
question: How should the Riemann normal frame be constructed? Let ∂α be
the unit basis vectors for the Riemann normal frame. Now choose the origin
of the Riemann normal frame to be (permanently) attached to the central
vertex. Next, use boosts to ensure that ∂t is normal to the Cauchy surface,
then use rotations to ensure that the vertices of Lzz lie on the z-axis and also
for the vertices of Lxx to lie in the xz-plane. Given the symmetries of the
Gowdy space-time it is no hard to appreciate that the (t, x, y, z) coordinates
of the seven vertices of the cell Mp will be of the following form

xµ0p = (0, 0, 0, 0)µ

xµ1p = (t1, 0, 0, (Lzz)p)
µ xµ2p = (t2, 0, 0,−(Lzz)p−1)

µ

xµ3p = (t3, 0, (Lyy)p, 0)µ xµ4p = (t4, 0,−(Lyy)p, 0)µ

xµ5p = (t5, (Lxx)p, 0, 0)µ xµ6p = (t6,−(Lxx)p, 0, 0)µ

(5.4)

where the time coordinate is given by 2t = −Kαβx
αxβ (see [27]).

14

Note that this construction also ensures that the Riemann normal axes are
aligned with their Gowdy counterparts (as a consequence of the Gowdy met-
ric being diagonal).

5.2 Initial data

A straightforward computation on the Gowdy metric reveals that there are
three non-trivial extrinsic curvatures, K̃xx, K̃yy and K̃zz and five non-trivial
Riemann curvatures, R̃xyxy, R̃xzxz, R̃yzyz, R̃txxz and R̃tyyz. The lattice values
for the extrinsic and Riemann curvatures, Kαβ and Rαβµν , were computed by
projecting their counterparts, K̃αβ and R̃αβµν , onto the local Riemann normal
frame. This provides not only a way to identify the non-trivial components
on the lattice but also a simple way to assign the initial data.

The leg-lengths Lxx, Lyy and Lzz were set as follows. The Lxx were computed
as the length of the geodesic connecting (1, 0, 0, z̃) to (1, δx̃, 0, z̃) with δx̃ =
0.0001. A similar approach was used to compute the Lyy this time using the
points (1, 0, 0, z̃) and (1, 0, δỹ, z̃) with δỹ = δx̃ = 0.0001. A common value
for Lzz was chosen for all cells, namely

Lzz =
1

Nz

∫ 0.5

−0.5

√
g̃zz dz̃ (5.5)

This in turn required the z̃ coordinate to be unequally spaced from cell to
cell. Starting with z̃0 = −0.5 the successive z̃p for p = 1, 2, 3 · · ·Nz− 1 where
found by treating the equation

0 = Lzz −
∫ z̃p

z̃p−1

√
g̃zz dz̃ (5.6)

as a non-linear equation for z̃p given z̃p−1.

5.3 Evolution equations

The evolution equations for Lxx, Lyy and Lzz follow directly from equation
(4.4) by making appropriate use of the symmetries built into the Gowdy
lattice, in particular that the legs are aligned to the coordinate axes and
thus vαox = (0, 1, 0, 0), vαoy = (0, 0, 1, 0) and vαoz = (0, 0, 0, 1) while rotational
symmetry ensures that the integrand in (4.4) is constant along the x and y

15

axes. This leads to the following evolution equations for Lxx, Lyy and Lzz in
cell p,

dLxx
dt

= −NKxxLxx (5.7)

dLyy
dt

= −NKyyLyy (5.8)

dLzz
dt

= −
∫ p+1

p

NKzz ds (5.9)

and where s is the arc-length along the leg connecting successive cells (i.e.,
along the z̃-axis of the lattice) and where the limits (p, p+ 1) are understood
to denote the corresponding vertices.

The evolution equations for the extrinsic and Riemann curvatures can be
constructed in at least two ways. In the first approach the evolution equations
for the K̃αβ and R̃αβµν can be projected onto the the local Riemann normal
frame. The second approach is to impose the known symmetries on the the
complete set of equations given in Appendix (G). Both approaches lead to
the following set of equations for the extrinsic curvatures,

dKxx

dt
= −N,xx +N

(
K2
xx +Rxyxy +Rxzxz

)
(5.10)

dKyy

dt
= −N,yy +N

(
K2
yy +Rxyxy +Ryzyz

)
(5.11)

dKzz

dt
= −N,zz +N

(
K2
zz +Rxzxz +Ryzyz

)
(5.12)

16

and for the Riemann curvatures,

dRxyxy

dt
= N(Ryzyz + 2Rxyxy)Kxx +N(Rxzxz + 2Rxyxy)Kyy

−Nmx
zxRtyyz −Nmy

zyRtxxz (5.13)

dRxzxz

dt
= N(Ryzyz + 2Rxzxz)Kxx +N(Rxyxy + 2Rxzxz)Kzz

−Nmx
zxRtxxz − 2RtxxzN,z −NRtxxz†z (5.14)

dRyzyz

dt
= N(Rxzxz + 2Ryzyz)Kyy +N(Rxyxy + 2Ryzyz)Kzz

−Nmy
zyRtyyz − 2RtyyzN,z −NRtyyz†z (5.15)

dRtxxz

dt
= N(Kyy + 2Kzz)Rtxxz +N(Rxyxy −Rxzxz)m

y
zy

− (Rxyxy + 2Rxzxz)N,z −NRxzxz†z (5.16)

dRtyyz

dt
= N(Kxx + 2Kzz)Rtyyz +N(Rxyxy −Ryzyz)m

x
zx

− (Rxyxy + 2Ryzyz)N,z −NRyzyz†z (5.17)

where

N,z =
∂N

∂s
N,zz =

∂2N

∂s2
(5.18)

N,xx =
1

Lxx

∂Lxx
∂s

∂N

∂s
N,yy =

1

Lyy

∂Lyy
∂s

∂N

∂s
(5.19)

Rtxxz†z =
∂Rtxxz

∂s
Rtyyz†z =

∂Rtyyz

∂s
(5.20)

mx
zx =

1

Lxx

∂Lxx
∂s

my
zy =

1

Lyy

∂Lyy
∂s

(5.21)

5.4 The lapse function

The lapse function can be freely chosen across the lattice either by way of
an explicit function (e.g. N = 1) or by evolving the lapse along with other
lattice data. This second choice will taken in this paper where three different

17

methods for evolving the lapse will be used, namely

dN

dt
= −2NTrK 1+log (5.22)

dN

dt
= −N2TrK Harmonic (5.23)

dN

dt
= −N2Kzz Exact (5.24)

where TrK = Kxx+Kyy+Kzz. The 1+log and harmonic lapse equations are
standard gauge choices and need no explanation while the third equation, as
its name suggests, is designed to track the exact solution. This exact lapse
equation can be obtained as follows. First note that for the exact solution
N2 = g̃zz. Then use dg̃zz/dt = −2NK̃zz to obtain dN/dt = −K̃zz whereupon
the result follows by noting that K̃zz = g̃zzKzz = N2Kzz.

Many other choices are of course possible but those just given stand out as
they allow for a direct comparison with either the exact solution (5.1–5.3) or
with the results from the Cactus code.

Initial values for the lapse will be discussed later in section (9.1).

5.5 Constraints

The only constraints that survive under the symmetries inherent in the
Gowdy space-time are (4.34,4.37,4.38) and can be written as

0 = C1 = Rxyxy +Rxzxz +Ryzyz (5.25)

0 = C2 = Rtxxz +Rtyyz (5.26)

0 = C3 = Rxyxy†z +KxxRtyyz +KyyRtxxz

+ (Rxyxy −Ryzyz)m
x
zx + (Rxyxy −Rxzxz)m

y
zy (5.27)

where Rxyxy†z, m
x
zx and my

zy are given by (5.20,5.21). Note also that trivial
factors have been cleared from the first two equations. This set of constraints
were not imposed during the evolution but were instead used as a quality
control on the evolved data (see section (9.1)).

5.6 Numerical dissipation

It was found that for some choices of the lapse function, most notably the
1 + log choice, the addition of some numerical dissipation could significantly
prolong the evolution.

18

The particular form of numerical dissipation used here is based upon the
familiar Kreiss-Oliger approach in which an additional term is added to the
right hand side of selected evolution equations, in our case, the evolution
equations for the extrinsic and Riemann curvatures. In each case the modified
evolution equation in cell p was of the form

dY

dt
=

(
dY

dt

)
ε=0

− 2ε

(Lzz)p + (Lzz)p+1

(Yp+3 − 6Yp+2 + 15Yp+1 − 20Yp

+ Yp−3 − 6Yp−2 + 15Yp−1) (5.28)

where ε is a small number (in the results described below ε = 0.8). The first
term on the right hand side is the right hand side of the evolution equations
(5.10-5.17) while the second term is a naive approximation to εL5

zzd
6Y/ds6.

The important point is that the dissipation scales as O (L5
zz) and thus will

vanish in the limit as Lzz → 0.

6 Brill waves

Brill waves [5] are time and axisymmetric solutions of the vacuum Einstein
equations generated by initial data of the form

ds2 = ψ4
(
e2q
(
dρ̃2 + dz̃2

)
+ ρ̃2dφ̃2

)
(6.1)

in which (ρ̃, φ̃, z̃) are cylindrical polar coordinates and where ψ(ρ̃, z̃) and
q(ρ̃, z̃) are a class of functions subject to the conditions of asymptotic flatness,
the vacuum Einstein equations and reflection symmetry across both z̃ = 0
and ρ̃ = 0. The reflection symmetry across ρ̃ = 0 follows from the condition
that the data be well behaved at ρ̃ = 0. However, the condition that the data
be reflection symmetric across z̃ = 0 has no physical basis and is introduced
only to reduce the bulk of the numerics (i.e., the data can be evolved in the
quarter plane (ρ̃ > 0, z̃ > 0) rather than the half plane (ρ̃ > 0, |z̃|<∞)).

Brill showed that the initial data will have a finite ADM mass when the
functions q and ψ behave as q = O (r̃−2) and ψ = 1 + O (r̃−1) as r̃ → ∞
where r̃2 = ρ̃2 + z̃2. He also showed that for the initial data to be well
behaved near the ρ̃ = 0 coordinate singularity, q must behave like q = O (ρ̃2)
as ρ̃→ 0 which can also be expressed as

0 = lim
ρ̃→0

q , 0 = lim
ρ̃→0

(
∂q

∂ρ̃

)
(6.2)

19

while the reflection symmetric conditions on q and ψ requires

0 = lim
ρ̃→0

(
∂q

∂ρ̃

)
, 0 = lim

z̃→0

(
∂q

∂z̃

)
(6.3)

0 = lim
ρ̃→0

(
∂ψ

∂ρ̃

)
, 0 = lim

z̃→0

(
∂ψ

∂z̃

)
(6.4)

The condition that ψ = 1 + O (r̃−1) as r̃ → ∞ was implemented using a
standard mixed outer boundary condition,

∂ψ

∂r̃
=

1− ψ
r̃

as r̃ →∞ (6.5)

Finally, the vacuum Einstein equations requires ψ to be a solution of the
Hamiltonian constraint which in this case takes the form

∇2ψ = −ψ
4

(
∂2q

∂ρ̃2
+
∂2q

∂z̃2

)
(6.6)

where ∇2 is the (flat space) Laplacian in the cylindrical coordinates (ρ̃, φ̃, z̃).
The three momentum constraints provide no new information as they are
identically satisfied for any choice of q and ψ.

6.1 Eppley Initial data

The function q(ρ̃, z̃) was chosen as per Eppley [28], namely

q(ρ̃, z̃) =
aρ2

1 + (ρ̃2 + z̃2)n/2
(6.7)

with n = 5 (any n ≥ 4 would be sufficient to satisfy q = O (ρ̃−2)). The pa-
rameter a governs the wave amplitude with a = 0.01 in the results presented
below. Even though this is a weak amplitude it is sufficient to test the lattice
method.

The Hamiltonian constraint (6.6), subject to the boundary conditions (6.4–
6.5), was solved for ψ using standard second order centred finite differences
(including on the boundaries). The grid comprised 2048×2048 equally spaced
points covering the rectangle bounded by ρ̃ = z̃ = 0 and ρ̃ = z = 20.
The finite difference equations were solved (with a maximum residual of
approximately 10−13) using a full multigrid code. The full Brill 3-metric

20

was then constructed using the reflection symmetry across z = 0 and the
rotational symmetry around the z-axis.

Since the Brill initial data is axisymmetric it is sufficient to use a 2-dimensional
lattice on which to record the initial data for the lattice. An example of such
a lattice is shown in figure (2). Each cell contains legs that are (at t̃ = 0)
aligned to the Brill (ρ̃, z̃) axes as well as a set of diagonal legs. A full 3-
dimensional lattice could be constructed by rotating this 2-dimensional lat-
tice around the symmetry axis (as indicated in figure (2)). In our computer
code the right portion of lattice covered the domain bounded by ρ̃ = z̃ = 0,
z̃ = ±5 and ρ̃ = 5 while the left portion was obtained by reflection symme-
try across ρ̃ = 0. This places the symmetry axis mid-way from left to right
across the lattice (this is the blue axis shown in figure (2)).

Each cell of the lattice contains 9 vertices o, a, b, · · · , h plus one additional
vertex p connected just to the central vertex o. The purpose of the extra
vertex p is that the collection of all such vertices defines the image of the
2-dimensional lattice under the action of the rotational symmetry. Figure
(2) shows two such additional lattices in which each yellow leg has vertices
of the form (o, p).

In each cell the local Riemann normal coordinates (t, x, y, z) were chosen as
follows

xαpo = (0, 0, yp, 0) (6.8)

xαdo = (0, xd, 0, zd) xαco = (0, 0, 0, zc) xαbo = (0, xb, 0, zb) (6.9)

xαeo = (0, xe, 0, ze) xαoo = (0, 0, 0, 0) xαao = (0, xa, 0, za) (6.10)

xαfo = (0, xf , 0, zf) xαgo = (0, xg, 0, zg) xαho = (0, xh, 0, zh) (6.11)

for some set of numbers xa, za, · · · yp and where the labels o, a, b, · · · , h follow
the pattern shown in figure (4).

The leg-lengths and Riemann normal coordinates were set by first distribut-
ing the Nx × Nz vertices as equally spaced points in the (ρ̃, z̃) domain,
(−5,−5) to (5, 5), and then integrating the geodesic equations as a two-point
boundary value problem for each leg in each cell.

The remaining initial data on the lattice consists of the non-zero components
of the Riemann and extrinsic curvatures along with either the leg-lengths or
the vertex coordinatese. Given the symmetries of the Brill metric it is not
hard to see that the there are only 4 non-trivial extrinsic curvatures, Kxx,

eThe choice depends on which evolution scheme is used – evolving the leg-lengths or
evolving the coordinates.

21

Kyy, Kzz and Kxz and 8 non-trivial extrinsic curvatures, Rxyxy, Ryzyz, Rxzxz,
Rxyyz, Rtxxz, Rtzxz, Rtyxy and Rtyyz. Each of these 12 curvatures were given
initial values by projecting their counterparts from the Brill metric (extended
to 3+1 form using a unit lapse and setting dψ/dt = dq/dt = 0 at t̃ = 0) onto
the local orthonormal frame.

6.2 Evolution equations

The initial data just described has only 12 non-trivial components for the
Riemann and extrinsic curvatures. It is easy to see that that this situation
is preserved by the evolution equations. For example, equation (4.9) shows
that dKxy/dt = 0 for this particular set of initial data. Thus all of the
symmetries in the initial data will be preserved throughout the evolution
(e.g., Kxy will remain zero for all time). This leads to the following set of
evolution equations for the 4 extrinsic curvatures

dKxx

dt
= Rxyxy +Rxzxz +K2

xx −K2
xz (6.12)

dKyy

dt
= Rxyxy +Ryzyz +K2

yy (6.13)

dKzz

dt
= Rxzxz +Ryzyz +K2

zz −K2
xz (6.14)

dKxz

dt
= −Rxyyz (6.15)

22

while the evolution equations for the 8 Riemann curvatures are

dRxyxy

dt
= (Ryzyz + 2Rxyxy)Kxx + (Rxzxz + 2Rxyxy)Kyy −KxzRxyyz

−mx
yyRtyxy −mx

zxRtyyz +Rtyxy†x (6.16)

dRyzyz

dt
= (Rxzxz + 2Ryzyz)Kyy + (Rxyxy + 2Ryzyz)Kzz −KxzRxyyz

−mx
zzRtyxy −mx

yyRtzxz −Rtyyz†z (6.17)

dRxzxz

dt
= (Ryzyz + 2Rxzxz)Kxx + (Rxyxy + 2Rxzxz)Kzz + 2KxzRxyyz

−mx
zxRtxxz −mx

zzRtzxz +Rtzxz†x −Rtxxz†z (6.18)

dRxyyz

dt
= (Kzz + 2Kyy)Rxyyz − (Ryzyz + 2Rxyxy)Kxz +mx

zzRtyyz

−Rtyxy†z (6.19)

dRtxxz

dt
= (Kyy + 2Kzz)Rtxxz − 2KxzRtzxz −mx

yyRxyyz

−Rxzxz†z (6.20)

dRtzxz

dt
= (Kyy + 2Kxx)Rtzxz + (Ryzyz −Rxzxz)m

x
yy − 2KxzRtxxz

+Rxzxz†x (6.21)

dRtyxy

dt
= (Kzz + 2Kxx)Rtyxy + (Ryzyz −Rxyxy)m

x
zz −KxzRtyyz

− 2mx
zxRxyyz +Rxyxy†x −Rxyyz†z (6.22)

dRtyyz

dt
= (Kxx + 2Kzz)Rtyyz + (Rxyxy −Ryzyz)m

x
zx −KxzRtyxy

− 2mx
zzRxyyz +Rxyyz†x −Ryzyz†z (6.23)

where mx
yy, m

x
zx and mx

zz are solutions of

vyqsa + vyuwe = mx
yy

(
vxeaov

y
tpo − vxtpovyeao

)
(6.24)

vxhba + vxbdc + vxdfe + vxfhg = mx
zx

(
vzeaov

x
gco − vzgcovxeao

)
(6.25)

vzhba + vzbdc + vzdfe + vzfhg = mx
zz

(
vzeaov

x
gco − vzgcovxeao

)
(6.26)

where vαabc = xαbc − xαac. The equations for mx
yy, m

x
zx and mx

zz were ob-
tained by a simple application of equation (A.16) to the xz-plane (leading to
equations (6.25) and (6.26)) and the yz-plane (leading to equation (6.24)).

The final set of evolution equations required are those for the leg-lengths or
the vertex coordinates. In contrast to the Gowdy lattice it was decided to

23

evolve the vertex coordinates. There are two reasons for doing so. First,
the above evolution equations for the Rαβµν refer directly to the vertex coor-
dinates and second, solving the coupled set of non-linear equation (3.3) for
the the vertex coordinates involves not only extra work but was observed to
lead to asymmetric evolutions (i.e., the evolved data failed to be reflection
symmetric across the symmetry axis). This loss of symmetry was attributed
to the algorithm [3] used to solve these equationsf.

6.3 Numerical dissipation

Other authors [11, 29] have noted that the singular behaviour of the evo-
lution equations on the symmetry axis can cause numerical instabilities to
develop along the symmetry axis. This problem can be avoided by either us-
ing a fully 3-dimensional formulation (which is computationally expensive)
or mitigated by introducing numerical dissipation. Similar instability prob-
lems were expected on the 2-dimensional axisymmetric lattice. By direct
experiment it was found that good damping of the numerical instabilities
could be obtained by applying a Kreiss-Oliger dissipation to the evolution
equations. The standard practice is to weight the dissipation term by powers
of the discretisation scale (i.e., powers of L) to ensure that the dissipation
terms do not dominate the truncation errors inherent in the numerical in-
tegrator. For a 4th-order Runge-Kutta integrator (as used here) this would
require a dissipation term of order O (L6) which would be the case for a
6th-order derivative term (as used in the Gowdy lattice (5.28)). However, on
this simple Brill lattice, where cells interact only by nearest neighbours, the
best that can be done is to use a 2nd-derivative dissipation term. The choice
used in the results given below was

dY

dt
=

(
dY

dt

)
ε=0

+ ε (Ya + Yc + Ye + Yg − 4Yo) (6.27)

where ε is a small number and the first term on the right hand side is time
derivative without dissipation while the second term is a crude estimate of
O (L2)∇2Y on the cell (the subscripts correspond to the vertices displayed
in figure (4)). The dissipation was applied only to the Riemann curvatures
as no significant gains were noted when the dissipation was also applied to
the extrinsic curvatures. In the results presented below ε = 1.0 (this was the

fThe algorithm in [3] computes the coordinates one by one visiting the vertices in a
clock wise order. But for two cells on either side of the symmetry axis, one cell should be
processed clockwise and the other anti-clockwise.

24

smallest value of ε that allowed the evolution to remain stable to at least
t = 10).

6.4 Inner boundary conditions

Figure (2) show three copies of the 2-dimensional lattice sharing the common
symmetry axis. Away from the symmetry axis the three copies of the lattice
provide sufficient data to estimate y derivatives of data on the lattice. How-
ever, this construction clearly fails at the symmetry axis. One consequence
of this can be seen in equation (6.24) which, when expressed in terms of the
coordinates and leg-lengths, leads to mx

yy ≈ −(1/Lyy)(dLyy/dx) where x
is the proper distance measured along the x-axis. This shows that mx

yy is
singular on the symmetry axis (where Lyy = 0). The upshot is that any y
derivative, on this choice of lattice, will by singular on the symmetry axis
(e.g., all of the y derivatives in equations (4.13–4.26)).

One approach to dealing with this problem is to return to equations (4.13–
4.26) and make direct use of the rotational symmetry to express all of the
y derivatives in terms of the (manifestly non-singular) x derivatives on the
symmetry axis. As an example, let Vαβ be the components of a tensor V
on the lattice. Now consider a copy of the lattice rotated by π/2 about the
symmetry axis. Denote the components of V on the second lattice by V ′αβ.
Then V ′αβ = Vαβ by rotational symmetry. However, on the symmetry axis the
coordinates for both lattices are related by x′ = y, y′ = −x and z′ = z thus
the usual tensor transformation law would give V ′xy = −Vyx. But V ′xy = Vxy
and thus Vxy = −Vyx on the symmetry axis. Now suppose Vαβ = Wα,β for
some tensor W . It follows that Wx,y = −Wy,x on the symmetry axis. This
idea can be applied to any tensor on the lattice in particular to the derivatives
of Rαβµν .

It is also possible to gain information about the curvature components by
considering a rotation of π rather than π/2. Following the steps described
above, the result is that any component of a tensor with an odd number of x
indices will be anti-symmetric across the symmetry axis while the remaining
components will be symmetric. This shows immediately that Kxz, Rxyyz,
Rtyxy and Rtzxz must vanish on the symmetry axis.

The upshot is that the evolution equations (4.13–4.26) can be reduced, on

25

the symmetry axis, to just 5 non-zero equations

dRxyxy

dt
= 2(Rxzxz + 2Rxyxy)Kxx − 2mx

zxRtxxz +Rtyxy†x (6.28)

dRxzxz

dt
= 3KxxRxzxz + (Rxyxy + 2Rxzxz)Kzz −mx

zxRtxxz

+Rtzxz†x −Rtxxz†z (6.29)

dRyzyz

dt
= 3KxxRxzxz + (Rxyxy + 2Rxzxz)Kzz −mx

zxRtxxz −Rtyyz†z (6.30)

dRtxxz

dt
= (Kxx + 2Kzz)Rtxxz +mx

zxRxyxy −mx
zxRxzxz −Rxzxz†z (6.31)

dRtyyz

dt
= (Kxx + 2Kzz)Rtxxz +mx

zxRxyxy −mx
zxRxzxz

+Rxyyz†x −Ryzyz†z (6.32)

Though these equations are non-singular there remains a numerical problem
with cells near the symmetry axis – their proximity to the symmetry axis
can lead to instabilities in the evolution.

A better approach, described in more detail below, is to excise a strip of cells
containing the symmetry axis (as shown in figure (2)) and to interpolate from
outside the strip to recover the time derivatives of the Riemann curvatures
within the strip. This, along with numerical dissipation, proved to be crucial
in obtaining stable evolutions.

The interpolation near the symmetry axis was implemented as follows. The
cells of the 2-dimensional lattice where indexed by rows and columns aligned
to the x̃ and z̃ axes. Each cell was given an index pair such as (i, j) with i
denoting the number of columns from the x̃ = 0 axis (i.e., the symmetry axis)
and j the number of rows from the z̃ = 0 axis. The interpolation used data
from the cells i = 3, 4, 5, 6, 7, for a given j, to supply data for the cells with i =
−2,−1, 0, 1, 2, for the same j. In each case the interpolation was tailored to
respect the known symmetry of the data across the symmetry axis. Thus for
dRxyxy/dt, which is symmetric across x̃ = 0, a polynomial of the form y(x) =
a0 +a2x

2 + · · · a8x8 was used. For anti-symmetric data the polynomial was of
the form y(x) = a1x+ a3x

3 + · · · a9x9. The five coefficients a0, a2, · · · a8 and
a1, a3, · · · a9 were determined using trivial variations of standard methods for
polynomial interpolation. The choice of interpolation indices i = 3, 4, 5, 6, 7,
which correspond to the light blue strip in figure (2), was found by trial
and error as it gave stable evolutions (in conjunction with the numerical
dissipation) without being overly expensive.

26

There is a simple variation on this interpolation scheme in which the data
from the symmetry axis (i.e., equations (6.28–6.32)) is included in the data
used to build the polynomial. Thus data on the cells i = 0, 3, 4, 5, 6, 7 would
be used to build data for cells i = −2,−1, 1, 2. The evolutions that resulted
form this construction were highly unstable and crashed at approximately
t = 4.7.

6.5 Outer boundary conditions

The outer boundary of the lattice is defined to be a skin of cells one cell deep
on the outer edges of the lattice (as indicated by the orange region in figure
(2)). In each of the boundary cells the Riemann and extrinsic curvatures were
evolved by way of an outgoing radiation boundary condition of the form

∂f

∂t
= −f

r̃
− r̃

x̃ini

∂f

∂n
(6.33)

where f is one of the Riemann and extrinsic curvatures and n is the outward
pointing unit normal to the cell (at the central vertex). The x̃i are constants
set equal to the Brill the coordinates (ρ̃, z̃) of the central vertex at t = 0.
Finally, r̃ = (ρ̃2+ z̃2)1/2. The leg-lengths and Riemann normal coordinates in
each cell were not evolved but rather copied across from the nearest inward
neighbouring cell.

This is an extremely simplistic set of boundary conditions (particularly so
for the leg-lengths and coordinates). It was chosen simply to get a numerical
scheme up and running. The surprise it that it works very well (as discussed
below in section (9.2)).

6.6 Constraints

Only five of the ten constraints (4.34–4.43) survive once the axisymmetry of
the Brill space-time is imposed. The surviving equations are (4.34,4.35,4.37,4.38,4.40)

27

and can be written in the form

0 = C1 = Rxyxy +Rxzxz +Ryzyz (6.34)

0 = C2 = Rtyxy +Rtzxz (6.35)

0 = C3 = Rtxxz +Rtyyz (6.36)

0 = C4 = (Rxyxy −Ryzyz)m
x
zx −mx

yyRxyyz − 2mx
zzRxyyz

+KxxRtyyz +KyyRtxxz +KxzRtyxy +Rxyxy†z +Rxyyz†x (6.37)

0 = C5 = (Ryzyz −Rxyxy)m
x
zz + (Ryzyz −Rxzxz)m

x
yy − 2mx

zxRxyyz

+KyyRtzxz +KzzRtyxy +KxzRtyyz −Rxyyz†z −Ryzyz†x (6.38)

where some simple numerical factors have been factored out.

7 Teukolsky linearised waves

The results for the Gowdy and Brill spacetimes are promising but a proper
test of the smooth lattice method requires that it be applied to truly 3-
dimensional data, i.e., initial data devoid of any symmetries such as the
Teukolsky linearised waves [6] described by the metric

ds2 =− dt̃2 + dr̃2 + r̃2dΩ2

+
(

2− 3 sin2 θ̃
)
A(t̃, r̃)dr2

−
(
A(t̃, r̃)− 3(sin2 θ̃)C(t̃, r̃)

)
r2dθ̃2

−
(
A(t̃, r̃) + 3(sin2 θ̃)

(
C(t̃, r̃)− A(t̃, r̃)

))
r̃2 sin2 θ̃dφ̃2

− 6r
(

sin θ̃ cos θ̃
)
B(t̃, r̃)dr̃dθ̃

(7.1)

where

A(t̃, r̃) =
3

r̃5
(
r̃2F (2) − 3r̃F (1) + 3F

)
(7.2)

B(t̃, r̃) =
−1

r̃5
(
−r̃3F (3) + 3r̃2F (2) − 6r̃F (1) + 6F

)
(7.3)

C(t̃, r̃) =
1

4r̃5
(
r̃4F (4) − 2r̃3F (3) + 9r̃2F (2) − 21r̃F (1) + 21F

)
(7.4)

F (n) =
1

2

(
dnQ(t̃+ r̃)

dr̃n
− dnQ(t̃− r̃)

dr̃n

)
(7.5)

28

and where Q(x) is an arbitrary function of x. Note that this form of the
metric differs slightly from that given by Teukolsky. Here the function F
has been expressed as an explicit combination of ingoing and outgoing waves
(thus ensuring time symmetric initial data). Note also that the derivatives
of F are taken with respect to r̃ rather than x as used by Teukolsky. Con-
sequently, the signs of the odd-derivatives of F in the expressions for A, B
and C have been flipped.

Following Baumgarte and Shapiro [14], the function Q(x) was chosen to be

Q(x) = axe−x
2

with a > 0 (7.6)

as this produces initial data describing a compact wave centred on the origin
with a wave amplitude controlled by the parameter a.

Note that the metric (7.1) is not an exact solution of the vacuum Einstein
equations but rather a solution of the linearised equations in the sense that
Gab(g) = O (a2).

This form of the metric requires some care when setting the initial data near
r̃ = 0 (where the coordinates are singular). A better choice is to express the
metric in standard Cartesian coordinates. At the moment of time symmetry,
t̃ = 0, the Cartesian components, hij, of the 3-metric are given by

hx̃x̃ = 1− 24a
(
1 + (r̃2 − 4)ỹ2 − x̃2z̃2

)
e−r̃

2

(7.7)

hỹỹ = 1− 24a
(
1 + (r̃2 − 4)x̃2 − ỹ2z̃2

)
e−r̃

2

(7.8)

hz̃z̃ = 1 + 24a
(
(x̃2 + ỹ2 − 2)2 − 2

)
e−r̃

2

(7.9)

hx̃ỹ = 24ax̃ỹ
(
r̃2 + z̃2 − 4

)
e−r̃

2

(7.10)

hx̃z̃ = − 24az̃x̃
(
x̃2 + ỹ2 − 2

)
e−r̃

2

(7.11)

hỹz̃ = − 24aỹz̃
(
x̃2 + ỹ2 − 2

)
e−r̃

2

(7.12)

where r̃ = (x̃2 + ỹ2 + z̃2)1/2.

The 3-dimensional lattice was built by a simple generalisation of the 2-
dimensional lattice used for the Brill waves. The grid was built from a set of
Nx×Ny×Nz equally spaced points in a the 3-dimensional volume bounded by
|x|= |y|= |z|= 5. The points were then identified as the vertices of the lattice
while on each of the x̃ỹ, x̃z̃ and ỹz̃ planes, legs were added in exactly the same
pattern as for the 2-dimensional Brill lattice, recall figure (2). Consequently
many of the ideas discussed in regard to the Brill lattice carry over to the

29

this lattice. Initial data for the coordinates and leg-lengths were assigned by
integrating the geodesic equations as two-point boundary problems for each
leg of the lattice (this was time consuming but only needed to be done once).
The outer boundary conditions were exactly as per equation (6.33) but on
this occasion applied to all six faces of the lattice. Geodesic slicing was used
(i.e., zero shift and unit lapse) and as there are no symmetries, the full set of
evolution equations (4.6–4.11) and (4.13–4.26) were used (see also Appendix
(G)). The implementation of the numerical dissipation is in this case slightly
different to that for the 2-dimensional lattice. The appropriate version of
(6.27) for the 3-dimensional lattice is

dY

dt
=

(
dY

dt

)
ε=0

+ ε

(
−6Yo +

∑
i

Yi

)
(7.13)

where the sum on the right hand side includes contributions from the 6
immediate neighbouring cells. The term in the second set of brackets in this
expression is an approximation to O (L2)∇2Y and thus will converge to zero
on successively refined lattices.

Since the Teukolsky space-time carries no symmetries it follows that none of
the constraints (4.34–4.43) will be trivially satisfied throughout the evolution.
Including results for all 10 constraints is somewhat of an overkill so results will
be presented (in section (9.3)) for just the Hamiltonian constraint, namely,

0 = C1 = Rxyxy +Rxzxz +Ryzyz (7.14)

8 Cactus

The combination of the open source code Cactus [30] and the Einstein Toolkit [16]
(collectively referred to here as the Cactus code) provide a well understood
framework for computational general relativity. The Cactus code was used
largely out of the box but with some simple extensions for setting the initial
data for the Brill and Teukolsky space-times. A new thorn was written for
the Brill space-time to set the initial data from the discretised metric pro-
vided by the same multigrid code used to set the lattice initial data. For the
Teukolsky metric the EinsteinInitialData/Exact thorn was extended to
include the exact 3-metric given in equations (7.7–7.12). These changes were
made to ensure that the lattice and Cactus evolutions were based on exactly
the same initial data.

30

The Cactus initial data were built over the same domain as used in the cor-
responding lattice initial data. The initial data were integrated using the
standard BSSN and ADM thorns. The BSSN thorn used a 4th order Runge-
Kutta integrator and artificial dissipation was applied to all dynamical vari-
ables with a dissipation parameter equal to 0.1. The ADM integrations used
a two-step iterated Crank-Nicholson scheme without artificial dissipation.
The time step in each case was chosen to ensure a Courant factor of 1/8.

The Cactus code does not provide values for the components of either the 3
or 4 dimensional Riemann tensor. However the spatial components, such as
R̃xyxy, can be reconstructed from the 3 dimensional components of the Ricci
tensor and metric using a combination of the Gauss-Codazzi equations

⊥R̃αβµν = 3R̃αβµν + K̃αµK̃βν − K̃ανK̃βµ (8.1)

and the equation

3R̃αβµν = R̃αµh̃βν − R̃αν h̃βµ + h̃αµR̃βν − h̃ανR̃βµ −
R̃

2

(
h̃αµh̃βν − h̃αν h̃βµ

)
(8.2)

where h̃αβ is the 3-metric, R̃αβ is the 3-Ricci tensor and R̃ = h̃αβR̃αβ.

Since the Cactus and lattice data are expressed in different frames some
post-processing of the data is required before the two sets of data can be
compared. There are two aspects to this, first, mapping points between
the respective spaces (e.g., given a point in the Cactus coordinates what is
the corresponding point in the lattice?) and second, comparing the data
at those shared points. Recall that when constructing the initial data for
the Brill and Teukolsky lattices, the vertices of the lattice were taken as
the uniformly distributed grid points in the Brill and Teukolsky coordinates.
This correspondence is preserved throughout the evolution by the zero shift
condition. This is not the case for the Gowdy space-time where the initial
data was constructed on an unequally spaced grid (see section (5.1)) while
in contrast the Cactus code uses an equally spaced grid. In this case the
conversion of tensor components, such as R̃αβµν , from the Cactus data into
a form suitable for comparison with the lattice data entails two steps, first,
the tensor is projected onto a local orthonormal frame, second, the radial
z̃ coordinate is converted to a radial proper distance s̃. Since the Gowdy
metric is diagonal the projection onto the coordinate aligned orthonormal
frame is trivial, for example Rxyxy = h̃xxh̃yyR̃xyxy, while the proper distance
between successive grid points can be computed by

∆s̃ii+1 =

∫ i+1

i

√
h̃zz dz̃ (8.3)

31

where the limits (i, i+ 1) are understood to represent the corresponding grid
points. The integral was estimated by a cubic polynomial based on the grid
points (i− 1, i, i+ 1, i+ 2).

9 Results

The evolution equations for the Brill and Teukolsky lattices were integrated
using a 4th order Runge-Kutta routine with a fixed time step δt chosen to
satisfy a Courant condition of the form δt < CδL where δL is the shortest
leg-length on the lattice and where C is a Courant factor with 0 < C < 1.
The same integration scheme was used for the Gowdy lattice apart from one
small change where the Courant condition was based upon Nδt < Cmin(Lzz)
where N is the largest lapse on the lattice. This Courant condition uses the
shortest Lzz for the simple reason that the evolution equations (5.7,5.8) for
Lxx and Lyy admit a re-scaling of Lxx and Lyy and thus their values can not
influence δt.

A trial and error method was first used to find any time step that yielded a
stable evolution (despite the cost). This allowed a more informed judgement
to made by careful examination of the history of the leg-lengths. Thus for the
Gowdy lattices the time step was chosen as δt = 0.0512/Nz corresponding to
a Courant factor of 1/20, while for the Brill and Teukolsky lattices the time
step, with C = 1/8, was set by δt = 1.25/(Nz − 1).

9.1 Gowdy

There are two obvious tests that can be applied to the lattice data, first, a
comparison against the exact data and, second, a comparison against numer-
ical results generated by the Cactus code. Other tests that can be applied
include basic convergence tests as well as observing the behaviour of the
constraints.

The initial data for the lapse was chosen according to the comparison being
made. The comparisons with the Cactus data were based on a unit lapse,
N = 1, while the comparisons with the exact solution used initial values
taken from the exact solution, N = eλ/4 at t̃ = 1.

The dissipation parameter ε (see equation (5.28)) was set equal to 0.8 (which
was found by trial and error as the smallest value that ensured good stability

32

for the 1 + log lapse). The integral in equation (5.9) was estimated using a
4th order interpolation built from 5 cells centred on this leg.

Selected results can be seen in figures (5–9) and show that the lattice method
works well with excellent agreement against the exact and numerical solu-
tions. Note that since the lattice expands by factors of order 100, the Lzz
have been uniformly scaled to squeeze the lattice into the range [−0.5, 0.5].
Figure (5) shows a comparison of the original and scaled data. Figures (8,9)
show the behaviour of selected constraints as well as basic convergence tests.

9.2 Brill

The results for the Brill initial data are shown in figures (10–13). In all
cases the dissipation parameter ε for the lattice was set equal to 1.0 (except
as noted in figure (13)). The Cactus BSSN data was computed on a full
3-dimensional grid and thus there is no reason to expect any instabilities on
the symmetry axis. This allows a much small dissipation parameter, ε = 0.1,
to be used for the BSSN evolutions. The Cactus ADM thorn does not appear
to support any form of Kreiss-Oliger numerical dissipation.

The expected behaviour for the Brill wave is that the curvature will be prop-
agated away from the symmetry axis with the wave hitting the edges of the
outer boundary by about t = 5 followed by the four corners by about t = 7
and will completely cross the boundary by about t = 10. As the wave moves
across the grid it should leave zero curvature in its wake (though the extrinsic
curvatures need not return to zero).

The results for all three methods at t = 5 are shown in figure (10) where it
is clear that though there is some good agreement in the propagation of the
main the wave there are also some notable differences. The ADM method
shows a series of parallel waves propagating in from the outer boundary
towards the symmetry axis (such waves will later be referred to as boundary
waves, these waves are particular evident in movies from t = 0 to t = 10)
while the BSSN data shows a non-propagating bump close to the origin.
In contrast the lattice data shows a smooth behaviour in the wave with no
apparent boundary waves nor any sign of a bump. By t = 10 (see figure
(11)) the ADM data shows not only the boundary waves but also reflected
waves from the outer boundary. Similar reflected waves can also be seen in
the BSSN results though with a significantly smaller amplitude. The bump
in the BSSN data has remained in place and has grown in amplitude. The
lattice data shows no signs of reflection but there is a very small bump that

33

correlates with the wings of the BSSN bump.

It is reasonable to ask why the three methods should give such different
results in the region behind the main wave. The smooth profile in the lattice
data might be due to the large dissipation parameter compared to that used
in the ADM and BSSN data. The boundary waves in the ADM data are
clearly associated with the boundary conditions while the cause of the bump
in the BSSN data is not so easy to identify from these plots. A more detailed
analysis will be given later when discussing the Teukolsky data where similar
behaviour was observed.

The effects of changing dissipation parameter on the evolution of the lattice
data is shown in figure (13). This shows clearly how crucial the numerical dis-
sipation is in controlling the instabilities. The figure also shows that despite
the significant dissipation (ε = 1.0) required to suppress the axis instability,
the broad features of the main wave are largely unaffected.

Figure (12) shows the behaviour of the constraints C1 (6.34) and C4 (6.37)
over the period t = 0 to t = 10. The remaining three constraints are not
shown as they show much the same behaviour. Each plot contains four curves
corresponding to different lattices scales, Nz = 101 (red), Nz = 201 (blue),
Nz = 401 (green) and Nz = 801 (black). These show that the constraints
appear to decrease as Nz is increased. It also appears that the constraints
settle to a non-zero value as t increases. This could be due to truncation
errors inherent in the solution of the Hamiltonian equation (6.6) coupled
with the interpolation to the lattice (though this claim was not tested). The
two bumps in the left figure, one just after t = 5 and one close to t = 10
are most likely due to reflections from the outer boundary (this too was not
tested).

9.3 Teukolsky

The Teukolsky data is specified on a full 3-dimensional grid/lattice and is
thus not susceptible to the axis instability seen in the Brill data. This allows
for a much smaller dissipation parameter to be used for the lattice, ADM
and BSSN codes, in this case ε = 0.1.

The results for the Teukolsky initial data are shown figures (14–18) and bear
some similarities with the results for the Brill initial data. However, in this
case the boundary and reflected waves appear to be much less noticeable
while the bump in the BSSN data is still present and is more pronounced
than in the Brill wave data.

34

The plots in figure (17) show that the bump in the BSSN data is a numerical
artefact. The figure shows that as the spatial resolution is decreased (i.e.,
increasing Nz) the amplitude of the bump, at t = 5, decreases. The figure
also shows that the amplitude of the bump grows with time. No attempt
was made to determine the source of the bump.

In order to better understand the influence of the outer boundary condition
on the evolution it was decided to run the lattice, ADM and BSSN codes on
two different sets of initial data, each with the same spatial resolution but
with one grid twice the size of the other (i.e., one grid had boundaries at
±5 and the other at ±10). The influence of the outer boundary condition
on the evolution was then be measured by comparing the evolution on the
common region. The results are shown in figure (18). The right panel shows
the evolution of Rxyxy on the lattice on both grids with Nz = 101 for the
red curve and Nz = 201 for the blue curve. Notice how the red curve lies
entirely on top of the blue curve even as the wave passes through the ±5
boundary. The left panel shows the difference in Rxyxy between the two grids
for the lattice data (red curve) and for the BSSN data (green curve, using
Nz = 100 and Nz = 200). This shows clearly that the boundary waves for
both methods are present well before the main wave hits the boundary. It
also shows that the amplitude for the BSSN data is much larger than for the
lattice data. Note also that the boundary waves do not propagate very far
into the grid (in stark contrast to the ADM Brill waves). By t = 10 the main
wave has left the smaller grid and the data in the left panel describes a mix
of waves dominated by the reflected waves. This figure also shows that the
BSSN data contains a long wavelength mode while the waves in the lattice
data are much smaller in amplitude and are dominated by high frequency
modes (which are rapidly suppressed by the numerical dissipation).

The evolution of the Hamiltonian constraint (7.14) is shown in figure (16).
The linear growth in the constraint for the BSSN data is due solely to the
growth of the BSSN bump at the origin. The sharp rise in the constraint
for the lattice data for Nz = 201 is due to the onset of a small instability
in the lattice near the origin. This can also be seen in the small bump in
the lower right plot of figure (18). This instability can be suppressed by
increasing the dissipation parameter but at the expense of compromising
the quality of the evolution. The source of this instability is thought to
be due to the residual extrinsic curvatures driving the lattice vertices in
different directions leading to distorted computational cells that break the
near-planar assumptions built into the derivation of equations (A.16). This is
an important issue for the viability of the lattice method and will be explored
in more detail in subsequent work.

35

10 Discussion

The passage of the waves through the outer boundaries appear to be better
handled by the lattice method than both the ADM and BSSN methods. This
is particularly true for the Brill waves but less so for the Teukolsky waves.
It is reasonable to ask if this is a generic feature of the lattice method and
if so, then which features of the lattice method gives rise to this result?
An argument can be made that this behaviour may well be germane to the
lattice method. The basis of the argument is the simple observation that in
any small region of space-time covered by Riemann normal coordinates the
first order coupled evolution equations for the Riemann curvatures (4.13–
4.26) can be de-coupled to second order equations in which the principle
part is the wave operatorg. That is, for each Riemann component such as
Rxyxy,

Rxyxy,tt = Rxyxy,xx +Rxyxy,yy +Rxyxy,zz +O
(
R2
)

(10.1)

where the term O (R2) is a collection of terms quadratic in the Rαβµν . The
natural outgoing boundary condition for this wave equation is the Sommer-
feld condition as per equation (6.33). Thus it is not surprising that the lattice
method works as well as it does. This result is a direct consequence of the use
of Riemann normal coordinates. In a generic set of coordinates the principle
part would not be the wave operator.

As encouraging as the results may appear to be there remain many questions
about the method. How does it behave for long term integrations? What are
its stability properties? How can it be extended to higher order methods?
How can mesh refinement be implemented? How well does it work on purely
tetrahedral meshes? How well does it work for non-unit lapse functions?
How can black holes be incorporated into a lattice (punctures or trapped
surfaces?) and how would these holes move through the lattice? How can
energy flux, ADM mass and other asymptotic quantities be computed on a
lattice?

These are all important question and must answered before the lattice method
can be considered for serious work in computational general relativity. These
questions will be addressed in later papers.

gThis is shown in detail in section 4.3 and 4.4 of [27] but note that the author failed
to explicitly state that all computations were for the principle part of the equations.

36

Appendix A. The transition matrices

The transition matrices play a central role in the computation of the deriva-
tives such as Rxyxy,z. They are used to import data from neighbouring cells
so that the vertices of a chosen cell are populated with data expressed in
the frame of that cell. A finite difference estimate can then be made for the
required partial derivatives.

The purpose of this appendix is to extend the approach given in [3]. In that
paper particular attention was paid to the form of the transition matrix for
a cubic lattice. It was argued that, with sufficient refinement of the lattice,
the transition matrices should vary smoothly across the lattice and should
converge to the identity matrix in the continuum limith.

The particular feature of the cubic lattice that makes it attractive for our
purposes is that it is easily sub-divided in a manner that preserves its original
structure. This allows a whole family of cubic lattices to be constructed, with
arbitrarily small cells, and thus it is easy to investigate the continuum limit
of the lattice.

For a vertex p with neighbour q the transition matrixi M allows data such
as vαqq to be imported from q to p via

vαqp = Mα
βv

β
qq (A.1)

When constructing a frame within a cell there is considerable freedom in
locating the origin and orientation of the coordinate axes. A simple and
natural choice is to locate the origin on the central vertex and to align the
coordinate axes with various sub-spaces of the cell (e.g., align the x-axis to
the leg (0, 1), the y-axis to the plane spanned by the legs (0, 1) and (0, 2)
etc.).

Without further information about the relationship of one cell to another
little can be said about the corresponding transition matrices. However, for
the cubic lattice it is not hard to see that the frames for a typical pair of
cells can be chosen so that the transition matrix will be of the form

Mα
β = δαβ +mα

β +O
(
L2
)

(A.2)

hBoth of these conditions apply to cubic lattices but need not apply for other lattices.
iThere is one such matrix for each pair (p, q). In this paper the transition matrix will

be denoted by M rather than M(p, q) as used in [3].

37

where mα
β = O (L) are determined from the data in the pair of cells (i.e.,

the coordinates and leg-lengths). This form of M ensures that it converges
to the identity matrix in the continuum limit (e.g., by successive refinements
of the cubic lattice). Note that the mα

β must be subject to a constraint since
the resulting transition matrix must preserve scalar products. That is, for
any pair of vectors u and v,

vαqpu
α
qp = vαqqu

α
qq (A.3)

which leads immediately to

0 = mαβ +mβα (A.4)

This shows that the mαβ define a skew-symmetric 4 × 4 matrix determined
by just six independent entries (corresponding to three boosts and three
rotations).

The mα
β were computed in [3] by applying (A.1) to a specially chosen set

of vectors. A different approach will be taken in this paper, one that will be
seen to be more in the spirt of Cartan’s method of local frames (see Appendix
B).

First recall that the lattice is assumed to be a discrete approximation to
some possibly unknown smooth geometry. Thus it is reasonable to requite
that the mα

β should also be smooth functions across the lattice. This allows
the mαβ to be expanded as a Taylor series based on the vertex p. That is

mαβ = mαβγx
γ
qp +O

(
L2
)

(A.5)

for some set of coefficients mαβγ.

Now consider a closed path such as that defined by the four vertices o, a, b, c
in figure (4). Clearly

0 = vαoao + vαabo + vαbco + vαcoo (A.6)

where vαpqr are defined by vαpqr = xαqr − xαpr and xαqr are the coordinates of
vertex q in the frame r. However, the vector joining vertices a to b can also
be expressed in terms of the frame a. Likewise, the vector joining b to c can
be expressed in terms of the frame c. Using the transformation law given by
(A.1) leads to

vαabo = vαaba +mα
βγv

β
abav

γ
oao (A.7)

vαbco = vαbcc +mα
βγv

β
bccv

γ
oco (A.8)

38

Substituting this pair of equations into (A.6) leads to

vαoao + vαaba + vαbcc + vαcoo = mα
βγ

(
−vβabavγoao − vβbccvγoco

)
(A.9)

This construction can be applied to each of the 6 coordinate planes leading to
24 equations for the 24 unknowns mα

βγ. In the cases of a lattice that evolves
continuously in time it is possible (see Appendix D) to solve these equations
for 15 of the mα

βγ in terms of the extrinsic curvatures Ki
j and the lapse

function N . This leaves just 9 equations (based on the spatial coordinate
planes) for the 9 remaining mα

βγ.

Though it is possible to use the above equations (A.9) to directly compute
the mα

βγ doing so might introduce a systematic bias due to the asymmetric
arrangement of the legs relative to the central vertex. An improved set of
equations can be obtained simply by adding together the equations that
would arise from each of the four tiles of figure (4) attached to the central
vertex o. This leads to the following set of equations

vαhba + vαbdc + vαdfe + vαfhg = mα
βγ

(
−vβhbavγoao − vβbdcvγoco − vβdfevγoeo − vβfhgvγogo

)
(A.10)

Now since each vαpqr = O (L) it follows that the right hand side of (A.10) is
O (L2) and thus

vαbdc + vαfhg = O
(
L2
)

(A.11)

vαhba + vαdfe = O
(
L2
)

(A.12)

which allows the terms vαfhg and vαdfe on the right hand side of A.10 to be
replaced by their counterparts leading to

vαhba + vαbdc + vαdfe + vαfhg = mα
βγ

(
−vβhbavγeao − vβbdcvγgco

)
(A.13)

Finally note that

vαhba = vαgco +O (L) (A.14)

vαbdc = −vαeao +O (L) (A.15)

and therefore

vαhba + vαbdc + vαdfe + vαfhg = −mα
βγ

(
vβgcov

γ
eao − vβeaovγgco

)
(A.16)

These are the equations that were used in the computer code to compute the
mα

βγ.

39

Appendix B. Cartan structure equations

Equations (A.4) and (A.16) bear a striking similarity to the Cartan structure
equationsj

0 = ωij + ωji (B.1)

dωi = −ωij ∧ ωj (B.2)

in which ωi are the basis 1-forms, ωij are the connection 1-forms and where
the metric is given by g = gijω

iωj with gij = diag(−1, 1, 1, 1).

The purpose of this appendix is to show how equations (A.4) and (A.16) can
be obtained from the Cartan structure equations (B.1) and (B.2).

To start the ball rolling, note that equations (A.4) and (B.1) agree upon
choosing mi

j = ωij. Showing that the remaining pair of equations (A.16)
and (B.2) agree requires a bit more work. Start by integrating (B.2) over the
tile R defined by the vertices b, d, f, h in figure (4)∫

R

dωi = −
∫
R

ωijkω
k ∧ ωj (B.3)

where ωij has been expanded as ωijkω
k. This equation can be re-written

using Stoke’s theorem as∫
∂R

ωi = −
∫
R

ωijkω
k ∧ ωj (B.4)

The path integral on the left can be split into four pieces, one the four edges
of the tile. On each edge set ωi = dxi where xi are the local Riemann
normal coordinates appropriate to the edge (e.g., along the edge (b, d) use
the coordinates of frame c). Thus∫

∂R

ωi =
∑

(p,q)∈∂R

∫ q

p

dxi = vihba + vibdc + vidfe + vifhg (B.5)

where vipqr = xiqr − xipr. The area integral on the right hand side of (B.4) can
be estimated to leading order in the length scale L by approximating ωijk by
its value at the vertex o. Thus∫

R

ωijkω
k ∧ ωj = ωijko

∫
R

ωk ∧ ωj +O
(
L3
)

(B.6)

jLatin indices will be used in this appendix to denote frame components (rather than
spatial indices). This follows standard notation for differential forms.

40

and noting that the integrand on the right is just the area 2-form for the tile
leads to the estimate∫

R

ωijkω
k ∧ ωj = ωijko

(
vkeaov

j
gco − vkgcovjeao

)
+O

(
L3
)

(B.7)

The integrated form of the Cartan equation (B.4) can now be re-written as

vihba + vibdc + vidfe + vifhg = −ωijko
(
vjgcov

k
eao − vjeaovkgco

)
+O

(
L3
)

(B.8)

which agrees (apart from the Greek/Latin indices), to leading order in L,
with (A.16) provided mi

jk = ωijko.

Appendix C. Source terms

A lattice would normally consist of a finite number of local frames, one for
each central vertex. But there is nothing to stop the construction of a local
frame at every point in the lattice. The new frames could be introduced by
any rule but for a smooth lattice it is reasonable to require that the frames
vary smoothly across the lattice. This will certainly be the case when the
transition matrices are of the form

Mα
β(x) = δαβ +mα

βγx
γ (C.1)

The addition of these extra frames makes it easier to discuss differentiation
on the lattice.

Consider a cell p and some point q within that cell. Let vα be the components
of a typical vector at q expressed in the local frame of q, that is vαq = vαqq. The
components of the vector in the frame p would then be given by Mα

βqpv
α.

This allows the derivatives of vα at p and in p to be computed as follows

vα,γ = vα,γpp =
(
Mα

βv
β
)
,γp

(C.2)

= Mα
β,γpv

β
p +Mα

βpv
β
,γp (C.3)

= mα
βγv

β
p + vα,γp (C.4)

At this point there is a slight problem with the notation. The last term on
the right hand side above is a derivative of vα formed from the raw point
values of the vα. That derivative takes no account of the transition matrices
and thus is not the partial derivative (indeed the partial derivative is the term

41

on the left hand side). To emphasise this distinction the following notation
will be used. Define a new derivative operator † byk

vα†γ = vα,γp (C.5)

Then the equation (C.4) can be written as

vα,γ = vα†γ +mα
βγv

β (C.6)

where it is understood that all terms are evaluated at p and in p. By following
a similar line of reasoning it is not hard to see that, for example,

vα,γ = vα:γ −mβ
αγvβ (C.7)

Rαβ,γ = Rαβ:γ −mρ
αγRρβ −mρ

βγRαρ (C.8)

As a consistency check it is rather easy to see that applying this notation to
0 = gαβ;γ = gαβ,γ leads directly to equation (A.4). To see that this is so first
note that gαβqq = diag(−1, 1, 1, 1) at every vertex q and thus the derivatives
gαβ†γ are zero everywhere. This leads immediately to equation (A.4).

It should be noted that the hessian of lapse N,ij could be computed entirely
from data within a single frame or by sharing data, such as N,i, between
neighbouring frames. In the later case some care must be taken when com-
puting terms like N†x†y since the colon derivatives need not commute.l

Appendix D. The time components of mα
βγ

In a lattice that is discrete in both space and time there would be 24 distinct
mα

βγ in each computational cell. However, in the case of a continuous time
lattice with a zero shift vector at each central vertex, 15 of the 24 mα

βγ can
be expressed in terms of the lapse function N and the extrinsic curvature
Kij, namely

mi
jt = 0 (D.1)

mt
ij = mt

ji = −Kij (D.2)

mt
it = (logN),i (D.3)

kBut note that mixed † derivatives need not commute.
lFor example, N,x,y = N†x†y −my

xyN,y −mz
xyN,z while N,y,x = N†y†x −mx

yxN,x −
mz

yxN,z and as N,x,y = N,y,x it follows that N†x†y − N†y†x = my
xyN,y + mz

xyN,z −
mx

yxN,x −mz
yxN,z which in general will not be zero.

42

The key to this computation will be the application of (A.9) to two carefully
chosen tiles, in particular a time-like tile (generated by the evolution of a
spatial leg) and a spatial tile (where all of the vertices lie in one Cauchy
surface).

Showing that mt
ij = mt

ji

Consider a spatial tile in which all of the vertices of the tile lie within one
Cauchy surface, Thus the t component of the various vα in (A.9) are zero.
This leads immediately to

0 = (mt
ij −mt

ji)v
i
oaov

j
oco (D.4)

where the implied sum over j includes only the spatial terms (since vt = 0).
Since this equation must be true for all choices of vioaov

j
oco it follows that

mt
ij = mt

ji (D.5)

Showing that mt
it = (logN),i

Consider now the time-like tile generated by the leg (oa) as it evolves between
a pair of nearby Cauchy surfaces (as indicated by vertices (o, a, b, c) in figure
(4)). The two time-like edges (oc) and (ab) are tangent to the world-lines
normal to the Cauchy surface while the space-like edges (oa) and (bc) are the
two instances of the leg (ab), one at time t the other at t+ δt. Since the shift
vector is assumed to vanish at each central vertex, it follows that

vαoco = (Nδt, 0, 0, 0)αoco (D.6)

vαaba = (Nδt, 0, 0, 0)αaba (D.7)

Likewise, for the spatial edges the vα will have a zero t component and thus
will be of the form

vαoao = (0, vx, vy, vz)αoao (D.8)

vαcbc = (0, vx, vy, vz)αcbc (D.9)

for some choice of vioao and vicbc. With this choice for the vα and noting that
Naba = Noco +O (L), the t component of equation (A.9) is given by

(Naba −Noco)δt = (mt
it −mt

ti)v
i
oaoNocoδt+O

(
L2δt

)
(D.10)

43

Noting that mt
ti = 0 and estimating the left hand side by N,ioov

i
oaoδt leads

to

N,ioov
i
oao = Nocom

t
itv

i
oao (D.11)

and since the vioao are arbitrary, it follows that

mt
it = (logN),i (D.12)

in which it is understood that all terms are evaluated at o in the frame o.

Showing that mt
ij = −Kij

This computation follows on directly from the previous computation. This
time our attention is on the spatial terms of equation (A.9), namely

vioao − vicbc = (mi
jt −mi

tj)v
j
oaoNocoδt+O

(
L2δt

)
(D.13)

Now recall that vαpqr is defined by vαpqr = xαqr − xαpr and as xαoo = xαcc = 0 it
follows that

xiao − xibc = (mi
jt −mi

tj)x
j
aoNocoδt+O

(
L2δt

)
(D.14)

and on taking a limit as δt→ 0 leads immediately to the evolution equations

−
(
dxi

dt

)
ao

= (mi
jt −mi

tj)x
j
aoNo +O

(
L2
)

(D.15)

for the coordinates xiao(t). Now take d/dt of gijx
i
aox

j
ao and use equation (4.5)

to obtain

gijx
i
ao

(
dxj

dt

)
ao

= −NKijx
i
aox

j
ao (D.16)

which when combined with the above result leads to

Kijx
i
aox

j
ao = mijtx

i
aox

j
ao −mitjx

i
aox

j
ao (D.17)

and as the first term on right vanishes due to mijt = −mjit the above can be
further simplified to

0 = (Kij +mitj)x
i
aox

j
ao (D.18)

But from (D.5), mitj = −mtij = −mtji = mjti, and as the xiao are arbitrary
(since the vertex a can be chosen anywhere in the cell) the previous equation
can only be true provided

mitj = −Kij (D.19)

or equally

mt
ij = −Kij (D.20)

44

Showing that mi
jt = 0

The next task is to show that mi
jt = 0. This is rather easy to do. Having

just shown that mt
ij = −Kij means that equation (D.15) can also be written

as

−
(
dxi

dt

)
ao

= (mi
jt +Ki

j)x
j
aoNo +O

(
L2
)

(D.21)

which when compared with (4.5) shows that

0 = mi
jtx

j
aoNo (D.22)

for any choice of xjaoNo. This in turn requires mi
jt = 0.

Appendix E. Evolution of xi

Our aim here is to obtain evolution equations for the spatial coordinates xi(t)
of each vertex in a computational cell.

To begin, consider two points p and q chosen arbitrarily in a typical cell.
Equation (D.15) can be applied to this pair of points leading to

−
(
dxi

dt

)
po

= (mi
jt −mi

tj)x
j
poNo (E.1)

−
(
dxi

dt

)
qo

= (mi
jt −mi

tj)x
j
qoNo (E.2)

Now combine this pair by contracting (E.1) with xjqo and (E.2) with xjpo while
noting that mijt = −mjit to obtain

−gijxjqo
dxipo
dt
− gijxjpo

dxiqo
dt

= Kij(x
i
qox

j
po + xjqox

i
po)No (E.3)

After shuffling terms across the equals sign this can also be re-written as(
NoKijx

i
po + gij

dxipo
dt

)
xjqo = −

(
NoKijx

i
qo + gij

dxiqo
dt

)
xjpo (E.4)

This equation must be true for all choices of (p, q). As the bracketed term
on the left hand side depends only on p, that term must match the only p

45

dependent term on the right hand side, namely the xjpo. Thus it follows that

NoK
i
jx
j
po +

dxipo
dt

= αxipo (E.5)

NoK
i
jx
j
qo +

dxiqo
dt

= −αxiqo (E.6)

for some scalar α. But upon setting p = q in (E.4) it follows that

gikx
k
po

(
NoK

i
jx
j
po +

dxipo
dt

)
= 0 (E.7)

which when applied to (E.5) leads to

0 = αgijx
i
pox

j
po = αL2

op (E.8)

and thus α = 0. This leads immediately to

dxipo
dt

= −NoK
i
jx
j
po (E.9)

with a similar result for the point q. Since the point p is arbitrary it follow
that this result holds for any point in the computational cell.

Appendix F. Evolution of Loq

Equation (4.3) can be obtained from (4.1) as follows. Let (o, q) be a typical
leg connected to the central vertex of some cell. Our first step is to express
the various vectors at o and q in terms of the local frames o and q. Since the
shift vector is assumed to be zero across the lattice it is follows that the unit
normals take the simple form

nαoo = (1, 0, 0, 0) (F.1)

nαqq = (1, 0, 0, 0) (F.2)

while

vαoqoLoq = xαqo (F.3)

vαqoqLoq = xαoq (F.4)

which follows directly from the definition of Riemann normal coordinates xα.
Recall that xα

ab
are the Riemann normal coordinates of the vertex a in the

46

frame b. Note also that the forward pointing unit tangent vectors vαoo and vαqq
are given by

vαoo = vαoqo (F.5)

vαqq = −vαqoq (F.6)

Now substitute the above equations (F.1–F.6) into (4.1) to obtain

Loq
dLoq
dt

= Loq[vµ(Nnµ)]qo (F.7)

= Loq (vµ(Nnµ))q − Loq (vµ(Nnµ))o (F.8)

= −Nqxµoqn
µ
qq −Noxµqon

µ
oo (F.9)

= Nqtoq +Notqo (F.10)

where t is the Riemann normal time coordinate. However, as shown in [27],

−2toq = (Kαβ)qq x
α
oqx

β
oq +O

(
L3
)

(F.11)

−2tqo = (Kαβ)oo x
α
qox

β
qo +O

(
L3
)

(F.12)

which using (F.3–F.4) can also be written as

−2toq = (Kαβ)qq v
α
qoqv

β
qoqL

2
oq +O

(
L3
)

(F.13)

−2tqo = (Kαβ)oo v
α
oqov

β
oqoL

2
oq +O

(
L3
)

(F.14)

and thus

2Loq
dLoq
dt

= − (NKαβ)qq v
α
qoqv

β
qoqL

2
oq − (NKαβ)oo v

α
oqov

β
oqoL

2
oq +O

(
L3
)

(F.15)

which leads immediately to equation (4.3).

Appendix G. Complete evolution equations

The following are the complete set of evolution equations for the 14 Riemann
curvatures for the particular case of a zero shift vector. These were obtained
by applying the process outlined in appendix (C) to the second Bianchi
identities (4.13–4.26).

47

dRxyxy

dt
= N(KyzRxyxz −KxzRxyyz − 2KxyRtxty −mx

yxRtxxy −mx
yyRtyxy

−mx
zxRtyyz−my

zyRtxxz +(Rtyty+Rxyxy)Kxx+(Rtxtx+Rxyxy)Kyy

+ (Rtyxz − 2Rtzxy)m
x
zy + (Rtyxz +Rtzxy)m

y
zx −Rtxxy†y +Rtyxy†x)

− 2N,yRtxxy + 2N,xRtyxy

(G.1)

dRxyxz

dt
= N(KzzRxyxz −KxzRtxty −mx

yzRtyxy −my
zzRtxxz

+ (Rtytz +Rxyxz)Kxx + (Rxyyz −Rtxtz)Kxy + (Rtxtx +Rxyxy)Kyz

− (Rtxxy+Rtzyz)m
x
zx+(Rtzxz−Rtyxy)m

y
zx+(Rtyxz−2Rtzxy)m

x
zz

−Rtxxy†z +Rtzxy†x) + (Rtyxz +Rtzxy)N,x −N,yRtxxz −N,zRtxxy

(G.2)

dRxyyz

dt
= N(KzzRxyyz +KyzRtxty +mx

yzRtxxy +mx
zzRtyyz

+ (Rxyyz −Rtxtz)Kyy + (Rtytz +Rxyxz)Kxy − (Rtyty +Rxyxy)Kxz

− (Rtxxy +Rtzyz)m
x
zy + (Rtzxz −Rtyxy)m

y
zy − (Rtyxz +Rtzxy)m

y
zz

−Rtyxy†z +Rtzxy†y)− (Rtyxz − 2Rtzxy)N,y +N,xRtyyz −N,zRtyxy

(G.3)

dRxzxz

dt
= N(KxyRxzyz +KyzRxyxz − 2KxzRtxtz +mx

yxRtzyz −mx
zxRtxxz

−mx
zzRtzxz +my

zzRtxxy + (Rtztz +Rxzxz)Kxx+ (Rtxtx+Rxzxz)Kzz

+ (Rtzxy − 2Rtyxz)m
x
yz − (Rtyxz +Rtzxy)m

y
zx −Rtxxz†z +Rtzxz†x)

− 2N,zRtxxz + 2N,xRtzxz

(G.4)

dRxzyz

dt
=N(KyyRxzyz−KyzRtxtz+mx

yyRtzyz−mx
zyRtxxz+(Rtxty+Rxzyz)Kzz

+ (Rtztz +Rxzxz)Kxy − (Rtytz +Rxyxz)Kxz + (Rtxxz −Rtyyz)m
x
yz

− (Rtyxz +Rtzxy)m
y
zy + (Rtyxy −Rtzxz)m

y
zz +Rtzxz†y −Rtyxz†z)

+ (Rtzxy − 2Rtyxz)N,z +N,xRtzyz +N,yRtzxz

(G.5)

48

dRyzyz

dt
= N(KxyRxzyz −KxzRxyyz − 2KyzRtytz −mx

yyRtzxz −mx
zzRtyxy

−my
zyRtyyz −my

zzRtzyz + (Rtztz +Ryzyz)Kyy + (Rtyty +Ryzyz)Kzz

− (Rtzxy − 2Rtyxz)m
x
yz − (Rtyxz − 2Rtzxy)m

x
zy −Rtyyz†z +Rtzyz†y)

− 2N,zRtyyz + 2N,yRtzyz

(G.6)

dRtxxy

dt
= N(KyzRtxxz +KzzRtxxy + 2KyyRtxxy − 2KxyRtyxy −mx

yzRxyyz

+mx
zzRxzyz + 2mx

zyRxyyz − 2my
zyRxyxz − (Rtyxz +Rtzxy)Kxz

+ (Rxyxy −Rxzxz)m
y
zz −Rxyxy†y −Rxyxz†z)

− (Rtxtx +Rxyxy)N,y +N,xRtxty −N,zRxyxz

(G.7)

dRtyxy

dt
= N(KzzRtyxy −KxzRtyyz + 2KxxRtyxy − 2KxyRtxxy +mx

yzRxyxz

−my
zzRxzyz − 2mx

zxRxyyz + 2my
zxRxyxz + (Rtyxz − 2Rtzxy)Kyz

− (Rxyxy −Ryzyz)m
x
zz +Rxyxy†x −Rxyyz†z)

+ (Rtyty +Rxyxy)N,x −N,yRtxty −N,zRxyyz

(G.8)

dRtzxy

dt
= N(−KxzRtxxy −KyzRtyxy +mx

yxRxyyz −mx
yyRxyxz −mx

zxRxzyz

+my
zyRxzyz + (Rtyxz +Rtzxy)Kxx − (Rtxxz −Rtyyz)Kxy

− (Rtyxz−2Rtzxy)Kyy +(Rxyxy−Ryzyz)m
x
zy− (Rxyxy−Rxzxz)m

y
zx

+Rxyxz†x +Rxyyz†y) + (Rtytz +Rxyxz)N,x − (Rtxtz −Rxyyz)N,y

(G.9)

dRtxxz

dt
= N(KyyRtxxz + 2KzzRtxxz − 2KxzRtzxz +KyzRtxxy −mx

yyRxyyz

+mx
zyRxzyz − 2mx

yzRxzyz + 2my
zzRxyxz − (Rtyxz +Rtzxy)Kxy

+ (Rxyxy −Rxzxz)m
y
zy −Rxyxz†y −Rxzxz†z)

− (Rtxtx +Rxzxz)N,z +N,xRtxtz −N,yRxyxz

(G.10)

49

dRtyxz

dt
= N(−KxyRtxxz −KyzRtzxz +mx

yxRxyyz −mx
zxRxzyz −mx

zzRxyxz

+my
zzRxyyz + (Rtyxz +Rtzxy)Kxx − (Rtzxy − 2Rtyxz)Kzz

− (Rtxxy +Rtzyz)Kxz + (Rxzxz −Ryzyz)m
x
yz − (Rxyxy−Rxzxz)m

y
zx

+Rxyxz†x −Rxzyz†z) + (Rtytz +Rxyxz)N,x − (Rtxty +Rxzyz)N,z

(G.11)

dRtzxz

dt
= N(KyyRtzxz +KxyRtzyz + 2KxxRtzxz − 2KxzRtxxz −my

zyRxyyz

+mx
zyRxyxz + 2mx

yxRxzyz − 2my
zxRxyxz + (Rtzxy − 2Rtyxz)Kyz

− (Rxzxz −Ryzyz)m
x
yy +Rxzxz†x +Rxzyz†y)

+ (Rtztz +Rxzxz)N,x −N,zRtxtz +N,yRxzyz

(G.12)

dRtyyz

dt
= N(KxxRtyyz −KxzRtyxy + 2KzzRtyyz − 2KyzRtzyz −mx

yxRxyxz

+my
zxRxzyz + 2mx

yzRxzyz − 2mx
zzRxyyz − (Rtyxz − 2Rtzxy)Kxy

+ (Rxyxy −Ryzyz)m
x
zx +Rxyyz†x −Ryzyz†z)

− (Rtyty +Ryzyz)N,z +N,xRxyyz +N,yRtytz

(G.13)

dRtzyz

dt
= N(KxxRtzyz +KxyRtzxz + 2KyyRtzyz − 2KyzRtyyz +mx

zxRxyxz

−my
zxRxyyz − 2mx

yyRxzyz + 2mx
zyRxyyz + (Rtzxy − 2Rtyxz)Kxz

− (Rxzxz −Ryzyz)m
x
yx +Rxzyz†x +Ryzyz†y)

+ (Rtztz +Ryzyz)N,y +N,xRxzyz −N,zRtytz

(G.14)

50

References

[1] Leo Brewin. “An Einstein-Bianchi system for Smooth Lattice General
Relativity. I. The Schwarzschild spacetime.” In: Phys. Rev. D 85.12
(2012), p. 124045. eprint: arXiv:1101.3171.

[2] Leo Brewin and Jules Kajtar. “A Smooth Lattice construction of the
Oppenheimer-Snyder spacetime”. In: Phys. Rev. D 80 (2009), p. 104004.
doi: 10.1103/PhysRevD.80.104004. eprint: arXiv:0903.5367. url:
http://users.monash.edu.au/~leo/research/papers/files/

lcb09-05.html.

[3] Leo Brewin. “A numerical study of the Regge Calculus and Smooth
Lattice methods on a Kasner cosmology.” In: Class. Quantum Grav.
32 (2015), p. 195008. eprint: arXiv:1505.00067.

[4] R.H. Gowdy. “Gravitational waves in closed universes”. In: Phys. Rev.
Lett. 27 (1971), pp. 826–829. doi: 10.1103/PhysRevLett.27.826.

[5] Dieter R. Brill. “On the positive definite mass of the Bondi-Weber-
Wheeler time-symmetric gravitational waves”. In: Annals of Physics 7
(1959), pp. 466–483.

[6] S. A. Teukolsky. “Linearized Quadrupole Waves in General Relativity
and the Motion of Test Particles”. In: Phys. Rev. D 26 (1982), pp. 745–
750.

[7] Beverly K. Berger and Vincent Moncrief. “Numerical investigation of
cosmological singularities”. In: Phys. Rev. D 48 (1993), pp. 4676–4687.

[8] S D Hern and J M Stewart. “The Gowdy T 3 cosmologies revisited”.
In: Class. Quantum Grav. 15 (1998), pp. 1581–1593.

[9] David Garfinkle. “The fine structure of Gowdy spacetimes”. In: Class.
Quantum Grav. 21 (2004), S219–S231.

[10] Kenneth R. Eppley. “Pure Gravitational Waves”. In: Sources of grav-
itational radiation. Ed. by L. Smarr. Cambridge, England: Cambridge
University Press, 1979, p. 275.

[11] Matthew W. Choptuik et al. “An Axisymmetric Gravitational Collapse
Code”. In: Class. Quantum Grav. 20 (2003), pp. 1857–1878. eprint: gr-
qc/0301006.

[12] Miguel Alcubierre et al. “Gravitational collapse of gravitational waves
in 3D numerical relativity”. In: Phys. Rev. D 61 (2000), 041501 (R).
eprint: gr-qc/9904013.

51

arXiv:1101.3171
https://doi.org/10.1103/PhysRevD.80.104004
arXiv:0903.5367
http://users.monash.edu.au/~leo/research/papers/files/lcb09-05.html
http://users.monash.edu.au/~leo/research/papers/files/lcb09-05.html
arXiv:1505.00067
https://doi.org/10.1103/PhysRevLett.27.826
gr-qc/0301006
gr-qc/0301006
gr-qc/9904013

[13] Shoken M. Miyama. “Time Evolution of Pure Gravitational Waves”.
In: Prog.Theor.Phys. 65 (1981), pp. 894–909.

[14] Thomas W. Baumgarte and Stuart L. Shapiro. “Numerical integration
of Einstein’s field equations”. In: Phys. Rev. D 59 (1998), p. 024007.
eprint: gr-qc/9810065.

[15] A. M. Abrahams et al. “Gravitational Wave Extraction and Outer
Boundary Conditions by Perturbative Matching”. In: Phys. Rev. Lett.
80 (1998), pp. 1812–1815.

[16] Frank Löffler et al. “The Einstein Toolkit: A Community Computa-
tional Infrastructure for Relativistic Astrophysics”. In: Class. Quantum
Grav. 29.11 (2012), p. 115001. doi: doi:10.1088/0264-9381/29/11/
115001. eprint: arXiv:1111.3344[gr-qc].

[17] Charles W. Misner, Kip S. Thorne, and John Archibald Wheeler. Grav-
itation. W. H. Freeman and Company, San Francisco, 1973.

[18] T.J. Willmore. Riemannian Geometry. Oxford University Press, Ox-
ford, 1996.

[19] J. L. Synge. Relativity: The General Theory. North-Holland Publishing
Co., 1960.

[20] Leo Brewin. “Riemann Normal Coordinate expansions using Cadabra”.
In: Class. Quantum Grav. 26 (2009), p. 175017. doi: 10.1088/0264-
9381/26/17/175017. eprint: arXiv:0903.2087. url: http://users.
monash.edu.au/~leo/research/papers/files/lcb09-03.html.

[21] Marcel Berger. A Panoramic View of Riemannian Geometry. Springer
Berlin / Heidelberg, 2003.

[22] Isaac Chavel. Riemannian Geometry. A modern introduction, 2nd ed.
Cambridge University Press, Cambridge., 2006.

[23] Noel J. Hicks. Notes on Differential Geometry. D. Van Nostrand, 1965.

[24] Leo Brewin. “Deriving the ADM 3+1 evolution equations from the
second variation of arc length”. In: Phys. Rev. D 80 (2009), p. 084030.
doi: 10.1103/PhysRevD.80.084030. eprint: arXiv:0903.5365. url:
http://users.monash.edu.au/~leo/research/papers/files/

lcb09-04.html.

[25] Kimberly C. B. New et al. “Stable 3-level leapfrog integration in nu-
merical relativity”. In: Phys. Rev. D 58 (1998), p. 064022.

[26] Miguel Alcubierre et al. “Towards standard testbeds for numerical rel-
ativity”. In: Class. Quantum Grav. 21 (2004), pp. 589–613.

52

gr-qc/9810065
https://doi.org/doi:10.1088/0264-9381/29/11/115001
https://doi.org/doi:10.1088/0264-9381/29/11/115001
arXiv:1111.3344 [gr-qc]
https://doi.org/10.1088/0264-9381/26/17/175017
https://doi.org/10.1088/0264-9381/26/17/175017
arXiv:0903.2087
http://users.monash.edu.au/~leo/research/papers/files/lcb09-03.html
http://users.monash.edu.au/~leo/research/papers/files/lcb09-03.html
https://doi.org/10.1103/PhysRevD.80.084030
arXiv:0903.5365
http://users.monash.edu.au/~leo/research/papers/files/lcb09-04.html
http://users.monash.edu.au/~leo/research/papers/files/lcb09-04.html

[27] Leo Brewin. “An Einstein-Bianchi system for Smooth Lattice General
Relativity. II. 3+1 vacuum spacetimes.” In: Phys. Rev. D 85.12 (2012),
p. 124046. eprint: arXiv:1104.1356.

[28] Kenneth Eppley. “Evolution of time-symmetric gravitational waves:
Initial data and apparent horizons”. In: Phys. Rev. D 16 (1977), pp. 1609–
1614.

[29] David Garfinkle and G. Comer Duncan. “Numerical evolution of Brill
waves”. In: Phys. Rev. D 63 (2001), p. 044011.

[30] Tom Goodale et al. “The Cactus Framework and Toolkit: Design and
Applications”. In: Vector and Parallel Processing – VECPAR’2002, 5th
International Conference, Lecture Notes in Computer Science. Berlin:
Springer, 2003. url: http://edoc.mpg.de/3341.

53

arXiv:1104.1356
http://edoc.mpg.de/3341

Figure 1: Two examples of a subset of the Gowdy 1-dimensional lattice.
The left figure shows a single cell in the while the right figure shows a pair
of neighbouring cells. The purple vertices are the central vertices of their
respective cells. Note that the vertical legs pass through the central vertex
and begin and end on the red vertices. This also applies to the corresponding
horizontal legs. In contrast, the radial legs begin and end on the central
vertices.

Figure 2: Details of the Brill 2-dimensional lattice. The left figure shows a
subset of the lattice including two overlapping cells. Each cell is a 2 × 2 set
of vertices and legs. An axisymmetric lattice is obtained by assembling copies
of the 2-dimensional lattice in the manner shown in the middle figure. The
yellow legs in the middle figure are needed to define the separation between
the copies. The right figure shows the various subsets of the lattice used
to evolve the data and to apply various boundary conditions. Data in the
outer boundary (the orange region) were evolved using a radiation boundary
condition while the data on and near the symmetry axis (the dark blue region)
were evolved by interpolating the time derivatives from the nearby cells (the
light blue region). The remaining data (in the yellow region) were evolved
using the lattice evolution equations.

54

Figure 3: A typical computational cell for the Teukolsky lattice. This figure
shows, for simplicity, only one of three sets of yellow diagonal legs. A proper
figure would show yellow diagonal legs on each of the three coordinate planes
(bounded by the green rectangles). Note also that though this cell looks regular
(roughly equal leg-lengths and apparently orthogonal legs) this is again just
to simplify the figure. In general the leg-lengths and their mutual angles will
vary (slightly) across the cell.

Figure 4: A typical set of vertices and legs used in computing the transition
matrices, ma

bc. The coordinate axes in these figures are applicable only to the
2-dimensional Brill lattice and should be ignored when reading the discussion
in Appendix (A) particularly in the calculations leading to equation (A.16).

55

●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●

●●●

● ●

●●●

● ●

●●●

● ●

●●●

● ●

●●●

● ●

●●●

● ●

●●●

● ●

●●●

● ●

●●●

● ●

●●●

● ●

●●●

● ●

●●●

● ●

●●●

● ●

●●●

● ●

●●●

● ●

●●●

● ●

●●●

● ●

●●●

● ●

●●●

● ●

●●●

● ●

●●●

● ●

●●●

● ●

●●●

● ●

●●●

● ●

●●●

● ●

●●●

● ●

●●●

● ●

●●●

● ●

●●●

● ●

●●●

● ●

●●●

● ●

●●●

● ●

●●●

Proper distance

N

ruby/final/track-07.rb

−40.0 −20.0 0.0 20.0 40.0

5

10

15

Scaled distance

N

t = 1.00 : 20.00 : 1.00

−0.5 −0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4 0.5

Figure 5: This figure shows the rapid expansion (into the future of the t = 0
singularity) of the lattice in the 1+log slicing. The left plot shows the lapse
(from t = 1 to t = 20 in steps of 1) as a function of the un-scaled proper
distance while the right plot shows the same data but using a re-scaled z-axis.
The red curves display the lattice data (for Nz = 1024) while the blue dots
are from the Cactus data (with Nz = 400 though only every fourth point is
shown). The agreement between the lattice and Cactus data is very good.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

● ●
●

●
●

●
●

● ● ●
●

●
●

●
●

● ●

● ●
●

● ● ●
●

● ● ●
●

● ● ●
●

● ●

● ●
●

● ● ●
●

● ● ●
●

● ● ●
●

● ●

● ●
●

● ● ●
●

● ● ●
●

● ● ●
●

● ●

Scaled distance

K
z
z

t = 2.00 : 6.00 : 0.50ruby/final/track-02.rb

−0.5 −0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4 0.5

−0.25

−0.20

−0.15

−0.10

−0.05

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

● ●
●

●
●

●

●
● ● ●

●

●
●

●

●
● ●

● ●
●

● ● ●
●

● ● ●
●

● ● ●
●

● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

Scaled distance

R
x
y
x
y

t = 2.00 : 6.00 : 0.50ruby/final/track-02.rb

−0.5 −0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4 0.5

−0.05

0.00

0.05

0.10

0.15

Figure 6: A comparison of the lattice data for the exact slicing against the
New-Watt etal [25] data. The continuous line denotes the lattice data (using
Nz = 1024) while the New-Watt data (with Nz = 32) are denoted by points. It
is clear that the lattice data agrees very well with the New-Watt data. There
are 9 curves in each figure representing data from t = 2 to t = 6 in steps of
0.5.

56

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●●●

● ● ●
● ● ● ●

●
●

●
● ● ● ● ● ●

●
●

●
● ● ● ●

● ● ● ● ●
● ● ● ●

●
●

●
● ● ● ● ● ●

●
●

●
● ● ● ●

● ● ●

●●●

● ● ●
●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ●

●
●

●
●

● ● ● ● ●
●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ●

●
●

●
●

● ● ●

●●●

● ●

●●●

● ●

●●●

● ●

●●●

● ●

●●●

● ●

●●●

● ●

●●●

● ●

●●●

● ●

●●●

● ●

●●●

● ●

●●●

● ●

●●●

● ●

●●●

● ●

●●●

● ●

●●●
● ●

●●●
● ●

●●●

Scaled distance

K
z
z

t = 2.00 : 20.00 : 1.00ruby/final/track-06.rb

−0.5 −0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4 0.5

−0.2

−0.1

0.0

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

● ● ●
●

●
●

●
●

●
●

● ● ● ● ● ●
●

●
●

●
●

●
●

● ● ● ● ●
●

●
●

●
●

●
●

● ● ● ● ● ●
●

●
●

●
●

●
●

● ● ●

●● ●●● ●●● ●●● ●●● ●●● ●●● ●●● ●●● ●●● ●●● ●●● ●●● ●●● ●●● ●●● ●●● ●●●●

Scaled distance

R
x
y
x
y

t = 2.00 : 20.00 : 1.00ruby/final/track-06.rb

−0.5 −0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4 0.5

−0.07

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0.00

0.01

Figure 7: This figure is similar to the previous figure but this time for the
1+log slicing. The Cactus data (blue points) is based on Nz = 400 with only
every fourth point shown. The lattice data (red lines) is based on Nz = 1024.
Each figure contains 20 curves for t = 2 to t = 20 in steps of 1.

Cauchy time

C
1
=
R

x
y
x
y
+
R

x
z
x
z
+
R

y
z
y
z

ruby/final/constraint-01.rb

5.0 10.0 15.0 20.0

0.
5

1.
0

1.
5

2.
0

2.
5×

10
−
9

Proper distance

C
1
=
R

x
y
x
y
+
R

x
z
x
z
+
R

y
z
y
z

t = 10.00ruby/final/constraint-02.rb

−20.0 −10.0 0.0 10.0 20.0

−
2.
0

0.
0

2.
0

4.
0

6.
0

8.
0×

10
−
6

Figure 8: This figure shows the behaviour, in the 1+log slicing, of the C1

constraint (5.25) over time (left panel) and across the grid at a fixed time
(right panel). The data in the left panel are for the case Nz = 1024 and show
the maximum values of C1 across the grid. The right hand panel shows three
curves, Nz = 256 (red), Nz = 512 (blue) and Nz = 1024 (green) with y values,
at t = 5, scaled by 1, 32 and 1024 respectively. The close agreement in the
curves suggests that the constraints converge to zero as O

(
N−5z

)
. Similar

behaviour was observed for the remaining two constraints (5.26,5.27). The
somewhat erratic behaviour in the left panel most likely arises by the fact
that the grid point on which the maximum occurs need not be a continuous
function of time.

57

Proper distance

S
ca

le
d
K

z
z
−
(K

z
z
) b
es
t

t = 10.0ruby/final/converge-01.rb

−20.0 −10.0 0.0 10.0 20.0

−
1.
0

−
0.
5

0.
0

0.
5×

10
−
3

Proper distance

S
ca

le
d
R

x
y
x
y
−
(R

x
y
x
y
) b
es
t

t = 10.0ruby/final/converge-01.rb

−20.0 −10.0 0.0 10.0 20.0

−
3.
0

−
2.
0

−
1.
0

0.
0

1.
0

2.
0

3.
0

4.
0×

10
−
6

Figure 9: This figure show the convergence of two metric functions, Kzz and
Rxyxy, as a function of Nz in the 1+log slicing. The three curves correspond
to Nz = 128 (red), Nz = 256 (blue) and Nz = 512 (green) and have their y
values scaled by 1, 32 and 1024 respectively. For the 1+log slicing there is no
exact solution available so the best available data (i.e., Nz = 1024) was taken
as a best estimate of the exact solution. This suggests that the lattice data is
converging to the exact solution as O

(
N−5z

)
.

58

Proper distance

R
x
y
x
y

t = 5.00ruby/final/track-01.rb

−5.0 −4.0 −3.0 −2.0 −1.0 0.0 1.0 2.0 3.0 4.0 5.0

−2

−1

0

1×10−3

Figure 10: This figure shows a comparison between the lattice, ADM and
BSSN evolutions of Rxyxy for the Brill initial data at t = 5. All three methods
agree well though the ADM and BSSN results show small waves near the
symmetry axis. The figure in the lower right shows the data for all three
methods (red, lattice), (blue, ADM) and (green, BSSN) along the x̃ axis.

59

Proper distance

R
x
y
x
y

t = 10.00ruby/final/track-01.rb

−5.0 −4.0 −3.0 −2.0 −1.0 0.0 1.0 2.0 3.0 4.0 5.0

−6

−5

−4

−3

−2

−1

0

1

2

3×10−4

Figure 11: This is similar to figure (10) but for the case t = 10. It shows
clears signs of reflected waves in the both ADM and BSSN data while the
lattice data is mostly flat apart from two small bumps aligned to the wings of
the BSSN bump.

60

Cauchy time

C
1
=
R

x
y
x
y
+
R

x
z
x
z
+
R

y
z
y
z

ruby/final/constraint-01.rb

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

0.
0

1.
0

2.
0

3.
0

4.
0

5.
0

6.
0

7.
0
8.
0×

10
−
4

Cauchy time

C
4
=
R

x
y
x
y
,z
+
R

x
y
y
z
,x
−
R

x
y
x
z
,y

ruby/final/constraint-01.rb

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

0.
0

0.
5

1.
0

1.
5×

10
−
3

Figure 12: This pair of figures record the maximum value of the Brill con-
straints C1 and C4 across the lattice for 0 < t < 10. Note that the constraints
remain bounded and appear to decay towards a constant but non-zero value
during the evolution. The non-zero value is probably tied to the truncation
error in solving the Hamiltonian constraint (6.6). The small bumps at approx-
imately t = 5 and t = 10 in the left hand figure are probably due to reflections
from the outer boundary (though this was not tested). The remaining con-
straints C2, C3 and C5 are not included here as they show much the same
behaviour as shown above.

61

Proper distance

R
x
y
x
y

t = 10.00ruby/final/dissip-01.rb

−1.0 −0.5 0.0 0.5 1.0

−2

0

2

4

6

8×10−3

Proper distance

R
x
y
x
y

t = 5.00ruby/final/dissip-01.rb

3.0 3.5 4.0 4.5 5.0

−2

−1

0

1×10−3

Figure 13: The top row of this figure shows how effective the numerical
dissipation can be in suppressing the axisymmetric instabilities. The data
differs only in the choice of the dissipation parameter, on the left ε = 0.1 while
on the right ε = 1.0. The bottom row shows data along the x̃ axis for four
choices of the dissipation parameter, ε = 0.1 (red), ε = 0.2 (blue), ε = 0.5
(green) and ε = 1.0 (black). The lower right figure shows that the dissipation
has only a small effect on the peaks of the wave at t = 5.

62

Proper distance

R
x
y
x
y

t = 5.00ruby/final/track-01.rb

−5.0 −4.0 −3.0 −2.0 −1.0 0.0 1.0 2.0 3.0 4.0 5.0

−0.02

−0.01

0.00

0.01

Figure 14: This figure is similar to figure (10) but in this case showing the
evolutions of the Teukolsky data. There are no obvious boundary waves but
the bump in the BSSN data remains. The lattice data again looks smooth and
flat behind the main wave.

63

Proper distance

R
x
y
x
y

t = 10.00ruby/final/track-01.rb

−5.0 −4.0 −3.0 −2.0 −1.0 0.0 1.0 2.0 3.0 4.0 5.0

−0.02

−0.01

0.00

Figure 15: As per figure (14) but at t = 10. The BSSN bump has grown by
a about 50% over the period t = 0 to t = 10. There is also a very small bump
in the lattice data near the origin.

64

Cauchy time

C
1
=
R

x
y
x
y
+
R

x
z
x
z
+
R

y
z
y
z

ruby/final/constraint-02.rb

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

0.
0

1.
0

2.
0

3.
0

4.
0×

10
−
2

Cauchy time

C
1
=
R

x
y
x
y
+
R

x
z
x
z
+
R

y
z
y
z

ruby/final/constraint-02.rb

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2×

10
−
1

Cauchy time

C
1
=
R

x
y
x
y
+
R

x
z
x
z
+
R

y
z
y
z

ruby/final/constraint-01.rb

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5×

10
−
2

Proper distance

C
1
=
R

x
y
x
y
+
R

x
z
x
z
+
R

y
z
y
z

t = 5.00ruby/final/constraint-03.rb

−5.0 −4.0 −3.0 −2.0 −1.0 0.0 1.0 2.0 3.0 4.0 5.0

−
1.
0

−
0.
8

−
0.
6

−
0.
4

−
0.
2

0.
0

0.
2×

10
−
2

Figure 16: These plots show the behaviour of the C1 constraint (7.14) for the
evolution of the Teukolsky initial data. The plots in the top left (ADM), top
right (BSSN) and bottom left (SLGR) show the evolution of the maximum of
C1 across the xy-plane. The colours in the ADM and BSSN plots correspond
to Nx = Ny = Nz = 26 (red), 50 (blue), 100 (green) and 200 (black) while
for the lattice the corresponding numbers are 25, 51,101 and 201. The plot in
bottom right shows the values of C1 along the x̃-axis for the lattice data at
t = 5 for three lattices, Nx = Ny = Nz = 51 (red), 101 (blue) and 201 (green).

65

Proper distance

R
x
y
x
y

t = 5.00ruby/final/converge-01.rb

−2.0 −1.0 0.0 1.0 2.0

−0.10

−0.05

0.00

Proper distance

R
x
y
x
y

t = 5.00 : 10.00 : 1.00ruby/final/converge-02.rb

−2.0 −1.0 0.0 1.0 2.0

−0.07

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0.00

0.01

0.02

Figure 17: This pair of plots shows the behaviour the BSSN bump as a
function of the number of grid points (left plot with Nz = 26 (red), Nz = 50
(blue), Nz = 100 (green) and Nz = 200 (black)) and as a function of time
(right plot for t = 5 to t = 10 in steps of 1). The left plot shows that as the
number of grid points is increased the size of the bump decreases while the
right plot shows that the bump increases linearly with time. This bump is the
source of the linear growth in the constraint seen in figure (16).

66

(Rxyxy)N − (Rxyxy)2N
ruby/final/bc-test-01-3r2c.rb

−2

0

2×10−6

Rxyxy

t = 2.00

−0.02

0.00

0.02

0.04

−2

0

2×10−4

t = 6.00

−0.010

−0.005

0.000

0.005

0.010

Proper distance

−4.0 −2.0 0.0 2.0 4.0

−2

0

2×10−4

Proper distance

t = 10.00

−10.0 −5.0 0.0 5.0 10.0

−0.005

0.000

0.005

0.010

Figure 18: These plots were created by evolving two sets of initial data, one
with Nx = Ny = Nz = 101, the other with Nx = Ny = Nz = 201. Both initial
data sets used ∆x = ∆y = ∆z = 0.1. There are two curves in the right plot,
both for Rxyxy, one on the small grid (red) and the other on the larger grid
(blue). Note how the red curve lies directly on top of the blue curve. The
plots on the left show the difference in Rxyxy between the two evolutions on
|x|< 5. The green curve is for the BSSN data while the red curve is for the
lattice data.

67

	Introduction
	Notation
	Smooth lattices
	Continuous time smooth lattices

	Cauchy evolution of a smooth lattice
	Lapse and shift
	Evolving the legs and coordinates
	Evolving the extrinsic curvatures
	Evolving the Riemann curvatures
	The vacuum Einstein equations
	Constraint equations

	Gowdy polarised cosmologies
	A Gowdy lattice
	Initial data
	Evolution equations
	The lapse function
	Constraints
	Numerical dissipation

	Brill waves
	Eppley Initial data
	Evolution equations
	Numerical dissipation
	Inner boundary conditions
	Outer boundary conditions
	Constraints

	Teukolsky linearised waves
	Cactus
	Results
	Gowdy
	Brill
	Teukolsky

	Discussion
	The transition matrices
	Cartan structure equations
	Source terms
	The time components of m
	Evolution of x^i
	Evolution of Loq
	Complete evolution equations

