
Preprint: arXiv:1512.03457

Two dimensional axisymmetric

smooth lattice Ricci flow.

Leo Brewin

School of Mathematical Sciences
Monash University, 3800

Australia

26-Nov-2015

Abstract

A lattice based method will be presented for numerical investigations
of Ricci flow. The method will be applied to the particular case of 2-
dimensional axially symmetric initial data on manifolds with S2 topol-
ogy. Results will be presented that show that the method works well
and agrees with results obtained using contemporary finite difference
methods.

1 Introduction

The Ricci flow [1] of a metric g is described by the equation

∂g

∂t
= −2Ric(g) (1.1)

where Ric(g) is the Ricci tensor of the metric g. Though there is an extensive
literature on the mathematical properties of Ricci flows [2, 3, 4, 5] there is
far less material concerning numerical methods for Ricci flow [6, 7, 8].

In 2005 Rubinstein and Sinclair [6] presented a some numerical studies of
2-dimensional Ricci flow for two classes of geometries, one in which the ge-
ometry was axisymmetric, and a second more general class in which the
axisymmetric condition was dropped. In both cases the surfaces were closed
2-surfaces topologically equivalent to a 2-sphere. They displayed their re-
sults for a variety of initial configurations and where possible, displayed the

1

evolved 2-surfaces as isometric embeddings in E3. It is well known that not all
2-geometries can be realised as an isometric embedding in E3. However, for
the axisymmetric case they showed that the Ricci flow would preserve the ex-
istence of an embedding in E3. They also showed, for the non-axisymmetric
case, that under the Ricci flow it may not be possible, at later times, to
embedded the surface isometricly in E3.

For both classes of geometries Rubinstein and Sinclair were able to demon-
strate the expected behaviour for late term evolution under Ricci flow, namely,
that in the absence of neck-pinching, the geometry evolves towards that of a
2-sphere. Their numerical studies were however limited by numerical issues
that caused the evolution to fail at late times.

Other works include a series of papers by Kim and co-workers [9, 10] in which
they used a modified Ricci flow to solve the problem of finding a 2-metric that
matches a prescribed Gaussian curvature. Miller and his co-workers [8] have
used their extensive experience in the Regge calculus to explore numerical
simulations of Ricci flow in S3. They have also recently reported on neck
pinching singularities in 3-dimensions [11]. The works of Kim and Miller both
employ simplicial methods to estimate the curvatures. In contrast Garfinkle
and Isenberg [7] used traditional finite difference methods to follow the Ricci
flow for a class of geometries on S3. They were particularly interested in
the formation of neck pinching singularities and the development of critical
behaviour in the solutions along the lines found by Choptuik [12].

The purpose of this paper is to use the axisymmetric models of Rubinstein
and Sinclair as a basis to demonstrate a novel method for computational
differential geometry. This method is based on the idea that a smooth ge-
ometry can be approximated by a finite set of overlapping cells, with each
cell defined by a small set of vertices and legs, and in which each cell carries
a locally smooth metric. Such a structure is known as a smooth lattice and
has been successfully employed in constructing numerical solutions of the
Einstein field equations (see [13, 14, 15]).

Since this smooth lattice method is not widely known it seems appropriate
to provide a short review of the method.

2

2 A smooth lattice

A smooth lattice can be considered as a generalisation of a simplicial lattice
this being a manifold built from a finite collection of simplices each endowed
with a flat metric. The simplicial lattice, also known as a piecewise flat
lattice, is the basis of many studies in discrete differential geometry and has
also been used in General Relativity in a formulation known as the Regge
Calculus ([16, 17, 18]). The simplicial and smooth lattices differ in one
important aspect – the smooth lattice uses a locally smooth metric rather
than a piecewise flat metric. The domain over which each locally smooth
metric is defined is bounded by the nearby vertices and legs. Each such
domain is known as a computational cell and pairs of adjacent cells are
allowed to have a non-trivial overlap.

The picture that emerges form this is much like that of an atlas of charts that
covers a manifold. Each chart can be viewed as a computational cell while
the overlap between pairs of cells defines the transition functions between
overlapping charts.

A simple example of 2-dimensional smooth lattice is shown in figure (1).
This shows a lattice composed of the yellow legs and red vertices that forms
a discrete approximation to the underlying smooth blue surface. The figure
also shows two overlapping computational cells.

The data that is employed in a smooth lattice is at least the set of leg lengths
and possibly other geometric data such as the Riemann tensor within each
computational cell. Note that the leg length assigned to any one leg is a
property of that leg (i.e., if a leg is shared by a pair of cells then each cell
uses the same length for that leg). It should also be noted that each leg is
viewed as a geodesic segment of a (possibly unknown) smooth geometry (the
geometry for which the smooth lattice is an approximation). Without this
assumption the path joining the vertices of a leg would be ambiguous (and
cell dependent). This geodesic assumption imposes a soft constraint on the
vertices of the lattice – they must be chosen so that the geodesic for each
leg is uniquely defined. For smooth geometries this is always possibly by a
suitable refinement of the lattice.

Using a local smooth metric allows the usual machinery of differential geom-
etry to be applied directly to the lattice. In contrast, the piecewise constant
nature of the metric on a simplicial lattice requires considerable care when
applying differential operators to the lattice. For example, the curvature ten-
sor on a simplicial lattice must be interpreted in the sense of distributions.

3

Since each leg in a computational cell is assumed to be defined as the unique
geodesic for that leg, it follows that it is always possible to construct a local
set of Riemann normal coordinates in each computational cell. Denote these
coordinates by xµ. Then the smooth metric, in this cell, can be written as

gµν(x) = gµν +
1

3
Rµανβx

αxβ +O
(
L3
)

(2.1)

where gµν = diag(1, 1, 1, · · ·) and L is a typical length scale for the cell.

Using Riemann normal coordinates allows some useful quantities to be easily
computed. For example the arc-length Lij of the geodesic connecting vertices
i and j is given by

L2
ij = gµν∆x

µ
ij∆x

ν
ij −

1

3
Rµανβx

µ
i x

ν
i x

α
j x

β
j +O

(
L5
)

(2.2)

while the unit tangent vector vµ to the geodesic, at vertex i, is given by

vµ =
1

Lij

(
∆xµij −

1

3
Rµ

αβρx
ρ
i∆x

α
ij∆x

β
ij

)
+O

(
L4
)

(2.3)

In the above pair of equations xµi are the Riemann normal coordinates of
vertex i and ∆xµij = xµi − xµj .

Both of these equations will be used later when developing one particular
method to evolve the Ricci flow.

3 Mathematical formulation

3.1 Rubinstein and Sinclair

For their axisymmetric geometries Rubinstein and Sinclair choose coordi-
nates (ρ, θ) in which the 2-metric is given by

ds2 = h(ρ)dρ2 +m(ρ)dθ2 (3.1)

with 0 ≤ ρ ≤ π and 0 ≤ θ < 2π. Smoothness of the metric at ρ = 0 and
ρ = π requires (√

m(ρ)
)′

=
√
h(ρ) at ρ = 0, π (3.2)

where the dash ′ denotes the derivative with respect to ρ.

4

The components of the Ricci tensor are, for 0 < ρ < π,

Rθρ = Rρθ = 0

Rρρ =
(m′)2

4m2
− m′′

2m
+
m′h′

4mh

Rθθ =
(m′)2

4mh
− m′′

2h
+
m′h′

4h2

(3.3)

while at the the poles, where ρ = 0 or ρ = π,

Rθθ = Rθρ = Rρθ = 0

Rρρ =
m′′′′

4m′′
− h′′

2h

(3.4)

The Ricci flow equation (1.1), for this metric in these coordinates, can then
be written as

∂m

∂t
= −(m′)2

2mh
+
m′′

h
− m′h′

2h2

∂h

∂t
= −(m′)2

2m2
+
m′′

m
− m′h′

2mh

(3.5)

for 0 < ρ < π and as
∂m

∂t
= 0

∂h

∂t
=
h′′

h
− m′′′′

2m′′

(3.6)

at the poles.

3.2 Smooth lattice Ricci flow

The basic data on a smooth lattice includes the leg-lengths, the Riemann
normal coordinates and the corresponding Riemann curvatures all of which
must be considered as functions of time under the Ricci flow. The question
then must be – how might each of these quantities be evolved forward in
time?

Consider first the evolution of the leg-lengths. The natural starting point
would be the basic Ricci flow equation which, in coordinate form, can be
written as

∂gµν
∂t

= −2Rµν (3.7)

5

Consider a typical leg defined by the vertices i and j. Sub-divide this leg
into many short segments and let a typical segment have end points a and
b. Our first step will be to form an estimate for the evolution of the segment
followed by a summation over all segments to obtain an evolution equation
for the leg.

Choose a new set of coordinates yµ tied to the vertices of the segment (i.e., the
coordinates of the vertices do not change with time). The squared length of
the segment joining a and b can be estimated as L2

ab = gµν∆y
µ
ab∆y

ν
ab + fabL

3
ab

where ∆yµab = yµb − yµa and fabL
3
ab is the truncation error (in using the first

term to estimate L2
ab). Note that if the geodesic joining i to j does not pass

through any curvature singularites then fab will be finite along that geodesic.
Let vµab be a unit vector tangent to the geodesic pointing from a to b. Then
from (3.7) and using ∆yµab = vµabLab, it follows that

∂Lab
∂t

= −Rµνv
µ
abv

ν
abLab +

1

2
fabL

2
ab (3.8)

which, upon summing over all segments, leads to

∂Lij
∂t

= −
∑
ab

Rµνv
µ
abv

ν
abLab +

1

2

∑
ab

fabL
2
ab (3.9)

The final step is to take the limit as the number of segments N approaches
infinity. The first sum on the right hand side is in the form of a Riemann
sum while the second term is subject to

0 ≤
∣∣∣∑
ab

fabL
2
ab

∣∣∣ ≤ N max
ab
|fab|L2

ab (3.10)

and thus vanishes as N → ∞ provided maxab Lab = O (1/N). This leads to
the basic evolution equation for the leg-lengths, namely

∂Lij
∂t

= −
∫ j

i

Rµνv
µvν ds (3.11)

where s is the arc-length along the geodesic joining i to j and vµ(s) is the
unit-tangent to the geodesic. Note that since the integrand is a pure scalar
the restriction to the adapated coordinates yµ is no longer required. Thus
equation (3.11) is valid in all frames.

In any numerical code the integral in (3.11) must of course be estimated in
terms of data available on the lattice. One example would be a Trapezoidal
rule such as ∫ j

i

Rµνv
µvν ds ≈ 1

2

(
(Rµνv

µvν)i + (Rµνv
µvν)j

)
Lij (3.12)

6

in which the values for Rµν are obtained from two cells, one based on vertex
i, the other based on vertex j. All of the results presented in section (5)
used the above approximation. Note also that for the case of a 2-metric,
2Rµν = Rgµν , and thus the right hand side of (3.11) can be expressed as

−
∫ j
i
Rds/2.

This shows clearly that if the Riemann curvatures are known then the leg-
lengths can be evolved. So the question now is – how are the Riemann
curvatures obtained? Two methods will be presented, one in which the Rie-
mann curvatures are derived from the leg-lengths and a second method in
which they are evolved in consort with the leg-lengths. In both cases the
Riemann normal coordinates are obtained directly from the lattice data.

The first method, in which the curvatures are derived from the leg-lengths,
works as follows. Consider a typical 2-dimensional cell consisting of a set of
N triangles∗ sharing a common vertex. The data to be computed are the
2N+2 coordinates for the N+1 vertices and the one curvature component for
the cell giving a total of 2N+3 unknowns. However, three of the coordinates
can be freely chosen (e.g., locate the origin at the central vertex and align one
axis with one of the legs) reducing the number of unknowns to 2N . There are
also 2N constraints provided by the known leg-lengths. Thus the coordinates
and curvatures can be found by solving the coupled system of equations given
above (2.2). One objection to this method is that it can be computationally
expensive to solve this system of equations at each time step.

In the second approach, the Riemann curvatures are evolved using known
evolution equations for the Riemann curvatures. Morgan and Tian [4] show
that†, under Ricci flow and in a local Riemann normal frame,

∂Rαβ

∂t
= ∇2Rαβ + 2Rµ

αβ
νRµν − 2Rα

µRβµ (3.13)

(see equation 3.6 of [4]).

For the case of a 2-dimensional metric, where 2Rµν = Rgµν , it is easy to show
from (3.7) and (3.13) that

∂R

∂t
= ∇2R +R2 (3.14)

∗Note that the use of triangles is simply for the sake of argument, a 2-dimensional
smooth lattice could also be built from any other shape provided that the computations
for the curvatures and coordinates are well defined.
†Here the Riemann curvature is defined by Rα

µνβv
β = vαµ;ν − vαν;µ and the Ricci

tensor by Rµν = Rα
µνα

7

A convenient lattice, for the 2-dimensional axisymmetric case, is shown in
figure (2). This has a ladder like structure in which each computational cell
consists of three consecutive rungs of the ladder. Pairs of cells overlap over
a pairs of rungs. A typical cell is shown in figure (7) where the length of the
rungs are denoted by Lx and the origin of the Riemann normal coordinates is
chosen at the centre of the rung and aligned with the x-axis pointing to the
right and parallel to the rung. It is possible to explicitly solve the leg-length
equations (2.2) (see Appendix A for full details) but for this particular lattice
there is a much quicker road to an equation linking the Lx to the Riemann
curvature. The axisymmetry of the geometry shows that the rails of the
ladder can be chosen to be geodesics that extend from the north to south
poles. Thus it is not surprising that a geodesic deviation equation of the
form

d2Lx
ds2

= −1

2
RLx (3.15)

applies to this lattice‡. This equation was used in the numerical simulations
described below to compute R given the Lx on the lattice.

The second method uses equation (3.14) to evolve the Ricci scalar. However
this requires values for ∇2R which in the local Riemann normal coordinates
are given by

∇2R =
∂2R

∂x2
+
∂2R

∂y2
(3.16)

At first glance it seems that a simple finite difference scheme could be used to
estimate the derivatives on the right hand side. This would be incorrect as it
fails to take account of the different coordinate frames being used in each cell.
One way to deal with this issue is to pick one cell and extend its coordinates
into the neighbouring cells. This allows coordinate transformations to be
made so that data from neighbouring cells can be imported into the chosen
cell. At this point the finite difference approximation can be made. For our
choice of lattice this leads to (see Appendix B)

∇2R =
∂2R

∂x2
+
∂2R

∂y2
=

1

Lx

dLx
ds

dR

ds
+
d2R

ds2
(3.17)

where s is the arc-length measured from the north and south poles and where
d/ds is the ordinary derivative with respect to s.

‡This equation can also be obtained as a limiting form of the leg-length equations (2.2)
(as shown in Appendix A).

8

In summary the evolution equations for this lattice are as follows. The leg-
lengths are evolved using (3.11) while the curvatures are evolved using

R = − 2

Lx

d2Lx
ds2

method 1

∂R

∂t
= R2 +

1

Lx

dLx
ds

dR

ds
+
d2R

ds2
method 2

(3.18)

4 Numerical formulation

4.1 Initial data

Rubinstein and Sinclair chose a two parameter family of initial data of the
form

h(ρ) = 1

m(ρ) =

(
sin ρ+ c3 sin 3ρ+ c5 sin 5ρ

1 + 3c3 + 5c5

)2 (4.1)

for 0 ≤ ρ ≤ π and where c3 and c5 are freely chosen constants. Note that
this choice of initial data is clearly consistent with the smoothness condition
(3.2).

The initial data for the Rubinstein and Sinclair model was obtained by
sampling the above metric functions on a uniform initial grid, namely, at
ρi = i∆ρ, i = 0, 1, 2, · · ·N − 1 with ∆ρ = π/N . The same uniform grid was
used to set the initial data for the smooth lattice. Vertices were distributed
uniformly from the north to south pole with labels ranging from 0 at the
north pole to N at the south pole. The length of the leg joining vertex i to
i+ 1 (i.e., one segment of one rail of the ladder) is denoted by Lyi while the
length of the transverse leg passing through vertex i (i.e., one of the rungs of
the ladder) is denoted by Lxi. Finally, the Ricci scalar at vertex i is denoted
by Ri. The leg lengths Lxi and Lyi between the north pole and the equator
were computed using a numerical geodesic integrator while symmetry across
the equatorial plane was used to set the remaining leg lengths (Rubinstein
and Sinclair do likewise for their initial data).

4.2 The poles

Though the use of a numerical grid adapted to the symmetry reduces the
computational complexity it does introduce its own problems at the poles.

9

This is clear from the form of the evolution equations in which various terms
are unbounded for grid points arbitrarily close to the poles. Thus some care
must be taken when evolving data at or close to the poles.

Rubinstein and Sinclair used equations (3.6) at the poles. They also noted
that local errors near the poles could violate the smoothness condition (3.2).
They dealt with this problem by replacing the evolved values of

√
m with

f(ρ)
√
m(ρ) with f(ρ) a smooth function with values peaked at the poles and

rapidly decaying to 1 away from the poles. This function f(ρ) was specially
crafted to preserve the smoothness condition (3.2).

A different approach was employed for the smooth lattice equations. In this
case the symmetry of the underlying geometry was used to extend the data
across the poles. For example, the rails of the lattice are readily extended
across the poles as shown in figure (3). Then at the north pole, (Lxi)i=−j =
−(Lxi)i=j while (Lyi)i=−j = (Lyi)i=j+1 and R−j = Rj with a similar pattern
applied at the south pole. This makes it easy to compute symmetric finite
difference approximations for all non-singular terms in the neighbourhood of
the poles. Let the vertices of the extended lattice be labelled by i with values
−m,−m+1,−m+2, · · · 0, 1, 2, · · ·N,N+1, N+2, · · ·N+m wherem is a small
postive integer and where the poles have i = 0 and i = N . For method 1, the
values of R on the lattice were calculated as follows. Let n < m be another
small postive integer. Then for i = n, n+1, n+2 · · ·N−n−2, N−n−1, N−n
use equation (3.18) to compute R while for the remaining values of i use local
polynomial interpolation to fill in the remaining values for R. For method
2 there are two choices available, either interpolate the time derivatives of
R befor a time step or interpolate R after a time step. The first choice
failed badly for the double dumbbell but work well for the 2-sphere and the
single dumbbell. The second choice, to interpolate after a time step, worked
very well for all three initial data sets. Note that a fourth order Runge-
Kutta method (as used here) includes four time steps. The interpolation
just described was applied after each of the four time steps of the Runge-
Kutta method.

Note that the rotational symmetry can be used to good effect in the interpo-
lation. Consider a smooth function f(s) defined in a neighbourhood of the
either pole and where s is the arc-length (along the geodesic) measured from
the pole. Suppose f(s) is an even function of s (such as for example R and
its time derivative). Then f(s) can be expanded as a power series

f(s) = a0 + a2s
2 + a4s

4 + · · · (4.2)

for some set of coefficients ai, i = 0, 1, 2, · · · Let fi be the discrete value of

10

f(s) at s = si for i = n, n+1, n+2, · · ·m. Then fj for j = −n+1,−n+2,−n+
3, · · · 0, 1, 2, · · ·n−1 can be estimated by polynomial interpolation on the data
(s2, f)i, i = n, n+1, n+2 · · ·m. This not only ensures smoothness across the
poles but also creates higher order estimates than would be obtained using
the data (s, f)i.

All of the results presented below were obtained using n = 2 and m = 4.

4.3 Filtering

In an attempt to minimise high frequency errors, Rubinstein and Sinclair
filtered out high frequency components in the gid values for h(ρ) and

√
m(ρ).

They observed that this reduced but did not cure the problem of numerical
instabilities. No filtering of this kind was used in the smooth lattice codes.

4.4 Re-gridding

Consider an initial lattice in which the vertices are uniformly distributed (i.e.,
Lyi is constant over the range of i). At later times the vertices will no longer
be uniformly distributed with some vertices being drawn together while oth-
ers will be pushed apart. This is a natural outcome of the evolution under the
Ricci flow. Unfortunately this can introduce two problems. First, as some
leg lengths shrink, the corresponding time step set by Courant condition may
become prohibitively small. Second, the ensuing irregular structure in the
lattice will lead to increasing truncation errors in the estimates of the first
and second derivatives required in equations (3.18). These problems can be
reduced by periodic re-gridding of the lattice as follows. Create a new lattice,
with uniformly distributed Lyi, then use quadratic interpolation to produce
new values for Lxi and R on the new lattice. This simple scheme proved to
be the key step in obtaining long term stable integrations. This observation
was also noted by Rubinstein and Sinclair (using a scheme almost identical to
that used here though they refer to this as a reparametrization of the data).

4.5 Time step

The Ricci flow equations are a form of heat equation and thus when using
explicit forward time integrators (such as a fourth-order Runge-Kutta for the
smooth lattice or the FTCS used by Rubinstein and Sinclair) a Courant like

11

condition should be used to ensure stability of the numerical solution. The
Courant condition for a numerical heat equation is of the form ∆t = C(∆x)2

where C is the Courant factor, ∆t the time step and ∆x a typical discreti-
sation scale. For both smooth lattice methods it was found that choosing
∆t = 0.1 maxi Lyi worked very well with no signs of instabilties throughout
the simulation. It is interesting to note that Rubinstein and Sinclair chose
a fixed time step of ∆t = 0.0001. This may explain the instabilities they
observed later in their evolutions.

4.6 Embedding

A natural question to ask is – Can the 2-dimensional geometries generated
by the Ricci flow always be isometricly embedded in Euclidian R3? In the
general case, where no symmetries apply, the answer is no. But for the case
of a rotationally symmetric geometry Rubinstein and Sinclair showed that
an embedding is always possible. They went on to show that the isometric
surface in R3 could be generated by rotating the curve described by

x(ρ) =

∫ ρ

0

(
h(s)− 1

4m

(
∂m(s)

∂s

)2
)
ds

y(ρ) =
√
m(ρ)

(4.3)

for 0 ≤ ρ ≤ π around the x-axis (where (x, y, z) are the usual Cartesian
coordinates coveringR3). Note that this curve passes through (0, 0). However
for aesthetic effect it is convenient to translate the curve along the x-axis so
that x(0) = −x(π). For the initial data given above (4.1) this produces a
curve that is reflection symmetric in the y-axis.

A similar construction should be possible starting form the lattice variables
Lx and Ly. One approach would be to first extract the metric functions
h(ρ) and m(ρ) from the lattice data Lx and Ly and to the then compute the
generating curve using equations (4.3). However, there is a simpler and more
direct approach. Consider two planes. The first plane P is the xy-plane while
the second plane P ′ obtained by a small rotation of P around the x-axis. The
lattice, viewed as a ladder, is then inserted between this pair of planes with
each end of the ladder tied to the x-axis. The Cartesian coordinates of each
vertex can be computed from the Lxi and Lyi as follows.

Let the (x, y)i be the coordinates of vertex i in P . The coordinates, (x, y)′i,
of the corresponding vertex in P ′ will be obtained by a rotation of (x, y)i by

12

an angle α, independent of i, around the x-axis. Thus

x′i = xi cosα + yi sinα

y′i = −xi sinα + yi cosα
(4.4)

Start by setting (x, y)0 = (0, 0) and (x, y)1 = (0, Ly0). Note that setting
x0 = x1 = 0 ensures that embedded surface is locally flat at the north pole.
Then (x, y)′0 = (0, 0) and

x′1 = Ly0 sinα

y′1 = Ly0 cosα
(4.5)

But the leg joining (x, y)1 to (x, y)′1 (i.e., a rung of the ladder) has length
Lx1 and thus using the Euclidean metric of R3 leads to

L2
x1 = (x′1 − x1)2 + (y′1 − y1)2 = 2L2

z0(1− cosα) (4.6)

which allows α to be computed from Lx1 and Ly0. The remaining coordinates
are computed in a similar manner. Suppose the coordinates for vertices
0, 1, 2, · · · i−1 have been computed. Then the coordinates for the next vertex
i are obtained by solving the coupled pair of equations

L2
zi−1 = (xi − xi−1)2 + (yi − yi−1)2

L2
xi = (x′i − xi)2 + (y′i − yi)2 (4.7)

for (x, y)i. Once all of the coordinates have been computed the curve is
translated along the x-axis, to centre the curve, by the replacement xi 7→
xi − xe where xe is the (original) x-coordinate of the vertex on the equator.

5 Results

Results for three distinct initial datasets, two that match those of Rubinstein
and Sinclair and a third for a unit 2-sphere, will be presented.

The first dataset, which has the look of a single dumbbell, uses c3 = 0.766, c5 =
−0.091 while the second dataset, a double dumbbell, has c3 = 0.021, c5 =
0.598 and the third is a unit 2-sphere with c3 = c5 = 0.

The slrf codes were run until the time step had been reduced by a pre-
determined factor (200 for the 2-sphere and 400 for the dumbells). The
ricci-rot code ran until it detected significant numerical errors (beyond this
point the code would crash). The run time for the ricci-rot codes was always
shorter than that for the slrf-codes.

13

For initial data based on a unit 2-sphere it is a easy to show that the sub-
sequent evolution continues to be a 2-sphere with a radius r(t) that evolves
according to

r2(t) = 1− 2t (5.1)

This not only shows that r → 0 as t→ 1/2 but it also provides a very simple
test of each of the three computer codes, the Rubinstein and Sinclair code
(which they named ricci-rot) and the two smooth lattice codes (which will
be referred to as slrf-v1 and slrf-v2 corresponding to the two smooth lattice
methods). Figure (4) displays the the fractional error in r2(t), defined by

e(t) =
r2(t)− 1 + 2t

r2(t)
(5.2)

as a function of time. It shows clearly that, for this initial data, the three
codes produce very good results. The upward trend in the curves near t = 0.5
is most likely a numerical artefact due to the rapidly increasing curvature
(R ≈ 500 at t = 0.49). The small noise in the curves are due to the re-
gridding (slrf-v1,v2) and filtering (ricci-rot).

Figures (5,6) display a history of the embeddings for each of the three models
with each figure showing results from all three codes (short dashes for ricci-
rot, a longer dashes for slrf-v1 and a solid line for slrf-v2). The ricci-rot code
generally terminated much earlier than the slrf codes§ and this can be seen
in the upper panel of figure (5) which shows a lone dashed curve this being
the final curve computed by the ricci-rot code. Similar lone curves can be
seen in figure (6).

For the 2-sphere and single dumbbell all three codes gave almost identical
results (the three curves appearing almost as a single curve) but for the
double dumbbell there is a small difference between the codes at later times.
This difference is almost certainly due to discretisation errors. This claim
was tested by running the codes with an increased number of grid points
(from 100 to 200 for slrf-v1,v2 and from 801 to 1201 for ricci-rot¶). The
results are shown in figure (6) which shows improved agreement between all
three codes.

The fact that all three codes produce almost identical results should not
be understated. The codes employ fundamentally different algorithms, they

§This could probably be improved by allowing a variable time step in the ricci-rot code.
¶The ricci-rot code was unable to evolve the double dumbbell initial data to t = 0.11

for 1601 grid points.

14

were written by different people and in different computer languages (ricci-
rot in C and slrf-v1,v2 in Ada). That these codes agree as well as they do is
a very strong indication that they are giving correct results.

6 Discussion

Though the results presented here for the smooth lattice method are encour-
aging much work still remains to be done. For example, can the method be
used for non-symmetric geometries in two or more dimensions? Another line
of investigation would to be to compare the relative merits of the two smooth
lattice methods presented here. It might be argued that in the absence of
global geodesics the first method would be ruled out as the geodesic deviation
equation could not be readily adapted to the lattice. However, it would still
be possible to extract estimates for R, without resort to the geodesic equa-
tion, as shown in appendix (A). These and other questions will be explored
in a later paper.

The clear separation between the metric and topology on the lattice seems
well suited to the study of Ricci flow in 3 dimensions where complex be-
haviours are known to develop.

Appendix A. The geodesic deviation equation

In section (3.2) it was claimed that the geodesic deviation equation (3.15)
can be obtained from the leg-length equation (2.2) provided that the rails of
the ladder (see figure (2)) are be chosen to be geodesics of the 2-geometry.
The purpose of this appendix is to fill in the details of that claim.

A single computational cell is shown in figure (7). This consists of seven
vertices and eight legs. The Riemann normal coordinates are chosen so that
the origin is located at the centre of leg (ad) and the x-axis is aligned to
the same leg. The assumed symmetries in the 2-geometry ensures that the
coordinates for each of the seven vertices can be chosen as shown in table
(1).

With this choice of coordinates it is a simple matter to write out in full the

15

a = (Lxo/2, 0) b = (xb, yb) f = (xf , yf)

d = (−Lxo/2, 0) c = (−xb, yb) e = (−xf, yf)

Table 1: The Riemann normal coordinates of the 6 of the 7 vertices in figure
(7). The remaining vertex o has coordinates (0, 0).

leg-length equations (2.2). This leads to

L2
px = L2

bc = 4x2
b −

2

3
(xbyb)

2R

L2
mx = L2

ef = 4x2
f −

2

3
(xfyf)

2R

(∆sp)
2 = L2

ab =
1

4
(2xb − Lxo)2 + y2

b −
1

6
(Lxoyb)

2R

(∆sm)2 = L2
af =

1

4
(2xf − Lxo)2 + y2

f −
1

6
(Lxoyf)

2R

(A.1)

where ∆sp and ∆sm are defined by ∆sp = Lyp, ∆sm = Lym and R = 2Rxyxy

is the Ricci scalar. This is a non-linear system of four equations for five
unknowns, namely, the curvature R and the four coordinates (xb, yb) and
(xf , yf). Put aside, for the moment, the obvious problem that an extra
equation is required to fully determine all five unknowns. Then the above
equations can be viewed as a set of four equations for the four unknown co-
ordinates. Consider now the progression towards the continuum limit where
the computational cells will be much smaller than the length scale associated
with the curvature (e.g., L2

ab � 1/R). It follows that the curvature terms in
the above equations will be small compared to the leading terms and thus it
should be possible to express the coordinates as a power series in R. Thus
put

xb = x0b + x1bR +O
(
R2
)

xf = x0f + x1fR +O
(
R2
) (A.2)

Similar expansions could be made for yb and yf . However, equations (A.1)
contain y2

b and y2
f but not y1

b nor y1
f . Thus it is simpler to use a power series

for y2 rather than for y, that is

y2
b = w0b + w1bR +O

(
R2
)

y2
f = w0f + w1fR +O

(
R2
) (A.3)

Substituting these into equations (A.1) and then following the standard pro-

16

cedure of expansion and equating terms leads to

0 = −L2
px + 4x2

0b

0 = −L2
mx + 4x2

0f

0 = −4(∆sp)
2 + 4w0b + (2x0b − Lxo)2

0 = −4(∆sm)2 + 4w0f + (2x0f − Lxo)2

(A.4)

for the R0 terms and

0 = 12x1bx0b − x2
0bw0b

0 = 12x1fx0f − x2
0fw0f

0 = 6w1b + 6(2x0b − Lxo)x1b − w0bL
2
ox

0 = 6w1f + 6(2x0f − Lxo)x1f − w0fL
2
ox

(A.5)

for the R1 terms. This set of equations are easily solved leading to

96xb = 48Lxp −
(
(Lxo − Lxp)2 − 4(∆sp)

2
)
RLxp

96xf = 48Lxm −
(
(Lxo − Lxm)2 − 4(∆sm)2

)
RLxm

96y2
b = 48

(
4(∆sp)

2 − (Lxo − Lxp)2
)

−
(
(Lxo − Lxp)2 − 4(∆sp)

2
)

(4L2
ox + LxpLxo − L2

px)R

96y2
f = 48

(
4(∆sm)2 − (Lxo − Lxm)2

)
−
(
(Lxo − Lxm)2 − 4(∆sm)2

)
(4L2

ox + LxmLxo − L2
mx)R

(A.6)

There remains of course the issue of the missing equation. Since there are no
more leg-length equations to invoke that final equation must come from some
constraint to remove any remaining freedoms in the structure of the lattice.
There are considerable freedoms in choosing where to locate the vertices on
the 2-geometry. An obvious choice is to require that the edges that comprise
the rails of the ladder form a global geodesic (i.e., a single geodesic that
stretches form the north to south pole). This can be achieved by requiring
the tangent vectors along the rails to be continuous from one segment to the
next (e.g., from leg (fa) to leg (ab)). Continuity of the tangent vector at
vertex a in figure (7) thus requires

0 = vµp + vµm (A.7)

There are actually two equations here, one for each component of the vectors.
However, the y component yields a trivial equation in the continuum limit
which leaves just the x component as the required final equation. Using

17

equation (2.3) to construct the unit tangent vectors vp and vm and then
setting vxp + vxm to zero leads to the following equation

0 =
1

2

Lxp − Lxo
∆sp

+
1

2

Lxm − Lxo
∆sm

− (2Lxo + Lxp) ((Lxo − Lxp)2 − 4(∆sp)
2)R

96∆sp

− (2Lxo + Lxm) ((Lxo − Lxm)2 − 4(∆sm)2)R

96∆sm

(A.8)

It is not hard to see that this is a non-uniform finite difference approximation
for the following differential equation

0 =
d2L

ds2
+

1

2
RL− 1

8
RL

(
dL

ds

)2

(A.9)

where now L = L(s). This equation can be reduced to the geodesic deviation
equation in the case where L is taken to be very small relative to the curvature
scales.

Appendix B. The Laplacian

In this appendix the details of the calculations leading to equation (3.17) will
be presented.

As noted in the text (section 3.2), a correct calculation of ∇2R will require
proper attention to the coordinate transformations required when sharing
data between neighbouring frames. The calculation of ∇2R will proceed by
way of a finite difference method but not before the relevant data has been
imported from the neighbouring frames. The first job then is to build these
transformations.

Figure (8) shows a set of 5 computational cells. Cells m, o and p are three
consecutive cells on the lattice while cells l and r are ghost cells created as
clones of cell o. The data in the ghost cells l and r are, by axisymmetry,
identical to the data in cell o. However the basis vectors of their coordinate
frames are not aligned to each other. It is easy to see that there is a simple
rotation that maps the basis vectors from one cell to the other. Consider now
a vector field v on the 2-dimensional manifold. Let p̄ denote the coordinate
frame associated with the cell p. Let vµ

ab̄
denote the components of v at

18

the point a in the frame b̄. Suppose that v is a vector that respects the
axisymmetry of the 2-geometry, then

vµ
ll̄

= vµoō = vµrr̄ (B.1)

Now at the point l the basis vectors for frame l̄ are a rotation of those for ō.
Thus

vxlō = vxll̄ cos θ − vy
ll̄

sin θ

vylō = vy
ll̄

cos θ + vxll̄ sin θ
(B.2)

for some angle θ. This is one step in the process of importing data into frame
ō. The same argument can be applied for right hand frame r̄. This leads to

vxrō = vxrr̄ cos θ + vyrr̄ sin θ

vyrō = vyrr̄ cos θ − vxrr̄ sin θ
(B.3)

Clearly no rotations are required for the frames m̄, ō and f̄ and thus

vxpō = vxpp̄

vypō = vypp̄

vxmō = vxmm̄
vymō = vymm̄

(B.4)

The components of the vector v are now known at all five points in the one
frame, ō. Thus the derivatives at o can be estimated using a finite difference
method. For example

∂vx

∂x
=
vxrō − vxlō
Lox

=
vyrr̄ sin θ − vy

ll̄
sin θ

Lox
(B.5)

But vyrr̄ = vy
ll̄

= vyoō and thus

∂vx

∂x
= vyoō

2 sin θ

Lox
(B.6)

and to leading order in the lattice scale 2 sin θ = (Lpx − Lox)/∆s = dLx/ds
thus

∂vx

∂x
= vy

1

Lx

dLx
ds

(B.7)

where vxoō has been abbreviated to vx and Lox to Lx. Since the transforma-
tions between the frames m̄, ō and f̄ are trivial there is no need to pay any
special attention to the y derivatives. They can be computed as regular finite

19

differences on the raw data in these frames. Thus at o and in the Riemann
normal frame at o

∇v =

(
vx

1

Lx

dLx
ds

)
∂x +

∂vy

∂y
∂y (B.8)

Suppose now that the vector field v is the gradient of some scalar function
φ. Then v = ∇φ and

∇2φ =
∂vx

∂x
+
∂vy

∂y

= vy
1

Lx

dLx
ds

+
∂2φ

∂y2

=
1

Lx

dLx
ds

∂φ

∂y
+
∂2φ

∂y2

(B.9)

and since the y coordinate measures proper distance along the lattice it
follows that d/ds = d/dy and thus

∇2φ =
1

Lx

dLx
ds

∂φ

∂s
+
∂2φ

∂s2
(B.10)

which agrees with (3.17) for the particular case where φ = R.

20

Figure 1: An example of a 2-dimensional lattice. This shows two overlapping
computational cells, one red, the other green. The two cells share data in the
pink region. Note that cells in this diagram were chosen to form a regular
structure for purely aesthetic reasons. On a general lattice the number of
triangles meeting at a vertex may vary from vertex to vertex and likewise for
the leg-lengths. Note that in the smooth lattice method each leg in the lattice
is taken to be a short geodesic segment of the smooth geometry for which the
lattice is an approximation.

21

Figure 2: This is an example of the lattice used to represent the rotationally
symmetric 2-geometries. In the text this structure is often described as a
ladder. The ladder is bounded by two geodesics that stretch from the north to
south poles. The rungs of the ladder are short legs that connect corresponding
points on the rails of the ladder. A typical computational cell is bounded by
three consecutive rungs and the four segments of the rails of the ladder. The
region shared by two cells is bounded by a common pair of rungs and two
segments of the rails.

22

Figure 3: This is close-up view of the lattice showing clearly the extension of
the lattice over the poles. This extension is allowed by the rotational symmetry.

23

t

e(
t)

=
1
−

(1
−

2t
)/
r2

N = 100

N = 100

N = 801

N = 200

N = 200

N = 1201

0.0 0.1 0.2 0.3 0.4

−0.5

0.0

0.5

1.0×10−3

Figure 4: These plots display the history of the fractional error in r2(t) for
the Ricci flow of a unit 2-sphere. The green curves are those for the ricci-rot
code, while the remaining curves are for the smooth lattice methods (red for
the first method, blue for the second). The noise in the curves is due to the
regridding (for the smooth lattice codes) and the reparametrization (for the
ricci-rot code). The upward rise in the errors for late times is most likely due
to to increased truncation errors.

24

t = 0.00 : 0.50

t = 0.00 : 0.22

Figure 5: Each curve in each of these plots is a generating curve for the
isometric embedding of the 2-geometry in E3. The full 2-geometry would be
obtained by rotating the curve around the horizontal axis. The upper diagram
is for the 2-sphere and shows clearly that the geometry remains spherical
throughout the evolution. The lower diagram is for the single dumbbell initial
data. This shows a transition from an initial geometry with both postive and
negative R through to later stages where R is strictly positive and increasing
(as expected). Note that each curve here is actually three curves, one for each
of the three methods. That they appear as a single curve is strong evidence
of the correctness of the numerical codes.

25

t = 0.00 : 0.14

t = 0.00 : 0.14

Figure 6: This shows the generating curves for the double dumbbell initial
data. Unlike the previous figure, here it is possible to discern small differences
between the three methods for late times. The upper figure was run with a
coarse resolution (N = 100 for the slrf codes, N = 801 for the ricci-rot code)
while the lower figure uses N = 200 and N = 1201 respectively. This increased
resolution has brought the three curves closer together and thus the differences
are most likely due to limited resolution rather than any error in the code.

26

Figure 7: A typical computational cell in the ladder lattice. The horizontal
legs are the rungs of the ladder while the remaining legs are segments of the
rails of the ladder. In the text the typical leg-lengths are denoted by Lx and Ly
however in this diagram extra sub-scripts o, p and m are used to distinguish the
various legs. The origin of the Riemann normal coordinate frame is located at
the vertex o. The vectors vp and vm are the unit tangent vectors to the geodesic
segments. The vertices are labeled clockwise from a to f . The coordinates for
these vertices in terms of the leg-lengths are derived in Appendix A.

27

Figure 8: This diagram shows a single computational cell labelled o and its
for four neighbouring cells. The data in the cells labelled l (for left) and r (for
right) are identical to that in cell o (due to rotationally symmetry). The arrows
in each cell represent the axes of the Riemann normal coordinate frames. The
rotation angle from cell o to cell r can be computed using standard flat space
Euclidian geometry (the rotation matrix is applied in Appendix B only to the
Riemann curvatures and thus to leading order in the curvatures, the Euclidian
approximation is appropriate). Note that the overlap between cells r and o
contains just two legs (likewise for cells l and o). This is not sufficient to fully
determine the coordinate transformation between the respective frames. This
problem is resolved by using the known rotational symmetry.

28

References

[1] R. S. Hamilton, Three-Manifolds with Positive Ricci Curvature,
J.Diff.Geom 17 (1982) 255–306.

[2] B. Chow and D. Knopf, The Ricci flow: an introduction, vol. 110.
American mathematical society Providence, 2004.

[3] Bennett Chow, Peng Lu, and Lei Ni, Hamilton’s Ricci Flow, vol. 77 of
Graduate Studies in Mathematics. American Mathematical Society,
2006.

[4] J. W. Morgan and G. Tian, Ricci flow and the Poincaré conjecture,
vol. 3. American Mathematical Soc., 2007.

[5] P. Topping, Lectures on the Ricci flow, vol. 325. Cambridge University
Press, 2006.

[6] J. H. Rubinstein and R. Sinclair, Visualizing ricci flow of manifolds of
revolution, Experimental Mathematics 14 (2005) no. 3, 285–298.

[7] D. Garfinkle and J. Isenberg, Numerical studies of the behavior of ricci
flow, Contemporary Mathematics 367 (2005) 103–114.

[8] W. A. Miller, J. R. McDonald, P. M. Alsing, D. X. Gu, and S.-T. Yau,
Simplicial ricci flow, Communications in Mathematical Physics 329
(2014) no. 2, 579–608.
http://dx.doi.org/10.1007/s00220-014-1911-6.

[9] M. Jin, J. Kim, F. Luo, and X. Gu, Discrete surface ricci flow,
Visualization and Computer Graphics, IEEE Transactions on 14
(2008) no. 5, 1030–1043.

[10] M. Jin, J. Kim, and X. D. Gu, Discrete surface ricci flow: Theory and
applications, in Mathematics of Surfaces XII, pp. 209–232. Springer,
2007.

[11] P. M. Alsing, W. A. Miller, M. Corne, X. Gu, J. R. McDonald, S. Ray,
C. Tison, and S.-T. Yau, Simplicial Ricci Flow: An Example of a Neck
Pinch Singularity in 3D, arXiv:1308.4148 [math.DG].

[12] M. W. Choptuik, Universality and scaling in gravitational collapse of a
massless scalar field, Phys. Rev. Lett. 70 (1993) 9–12.

29

http://dx.doi.org/10.1007/s00220-014-1911-6
http://dx.doi.org/10.1007/s00220-014-1911-6
http://dx.doi.org/10.1007/s00220-014-1911-6
http://arxiv.org/abs/1308.4148

[13] L. Brewin, A numerical study of the Regge Calculus and Smooth
Lattice methods on a Kasner cosmology., Class. Quantum Grav. 32
(2015) 195008, arXiv:1505.00067.

[14] L. Brewin, An Einstein-Bianchi system for Smooth Lattice General
Relativity. I. The Schwarzschild spacetime., Phys. Rev. D 85 (2012)
no. 12, 124045, arXiv:1101.3171.

[15] L. Brewin, An Einstein-Bianchi system for Smooth Lattice General
Relativity. II. 3+1 vacuum spacetimes., Phys. Rev. D 85 (2012) no. 12,
124046, arXiv:1104.1356.

[16] T. Regge, General Relativity without coordinates, Il Nuovo Cimento
XIX (1961) no. 3, 558–571.

[17] A. P. Gentle, Regge calculus: a unique tool for numerical relativity,
Gen. Rel. Grav. 34 (2002) 1701–1718, gr-qc/0408006.

[18] R. M. Williams, Quantum Regge Calculus, in Approaches to Quantum
Gravity, D. Oriti, ed., ch. 19, pp. 360–377. Cambridge University
Press, 2009.

30

http://arxiv.org/abs/arXiv:1505.00067
http://arxiv.org/abs/arXiv:1101.3171
http://arxiv.org/abs/arXiv:1104.1356
http://arxiv.org/abs/gr-qc/0408006

	Introduction
	A smooth lattice
	Mathematical formulation
	Rubinstein and Sinclair
	Smooth lattice Ricci flow

	Numerical formulation
	Initial data
	The poles
	Filtering
	Re-gridding
	Time step
	Embedding

	Results
	Discussion
	The geodesic deviation equation
	The Laplacian

