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Abstract

We present test results for the smooth lattice method using an Oppenheimer-
Snyder spacetime. The results are in excellent agreement with theory
and numerical results from other authors.

1 Introduction

In recent times many numerical relativists have good reason to celebrate – the
long battle to secure the holy grail [1] is over (though some might prefer to
redraw the battle lines). The works of Pretorius [2, 3] and others [4, 5] have
opened a new era for computational general relativity. This has spawned
many new projects that directly address the needs of the gravitational wave
community. Many groups are now running detailed simulations of binary
systems in full general relativity as a matter of course. Does this mean that
the development of computational methods for general relativity is now over?
The experience in other fields would suggest otherwise, look for example at
computational fluid dynamics where a multitude of techniques are commonly
used, including spectral methods, finite element methods, smooth particle
hydrodynamics, high resolution shock capture methods and the list goes
on. The important point to note is that one method does not solve all the
problems and thus in numerical relativity it is wise, even in the face of the
current successes, to seek other methods to solve the Einstein equations.
It is in that spirit that we have been developing what we call the smooth
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lattice method [6, 7, 8]. This is a fundamentally discrete approach to general
relativity based on a large collection of short geodesic segments connected
to form a lattice representation of spacetime. The Einstein equations are
cast as evolution equations for the leg-lengths with the Riemann and energy-
momentum tensors acting as sources. Of course the Riemann tensor must be
computed from the leg-lengths and this can be done in a number of related
ways, such as by fitting a local Riemann normal coordinate expansion to a
local cluster of legs or to use the geodesic deviation equation, or, and with
more generality, to use the second variation of arc-length. Past applications
of the method have included a full 3+1 simulation of the vacuum Kasner
cosmology [8] and a 1+1 maximally sliced Schwarzschild spacetime [6]. In
both cases the simulations were stable and showed excellent agreement with
the known solutions while showing no signs of instabilities (the maximally
sliced Schwarzschild solution ran for t > 1000m and was stopped only because
there was no point in running the code any longer).

In this paper we report on our recent work using the Oppenheimer-Snyder
[9] spacetime as a benchmark for our smooth lattice method [6, 7, 8]. We
chose this spacetime for many reasons, it has been cited by many authors
[10, 11, 12, 13, 14, 15, 16] as a standard benchmark for numerical codes (and
thus comparative results are available), the analytic solution is known (in a
number of time slicings), the equations are simple and there are many simple
diagnostics that can be used to check the accuracy of the results (as described
in sections 11, 12).

In an impressive series of papers, Shapiro and Teukolsky ([10, 11, 14]) used
the Oppenheimer-Snyder spacetime as the first in a series of test cases. They
were motivated by certain problems in relativistic stellar dynamics (such as
the formation of neutron stars and black holes from supernova) and they
developed a set of codes based on the standard ADM equations, adapted to
spherical symmetry, in both maximal and polar slicing and using an N -body
particle simulation for the hydrodynamics. They made limited use of the
exact Schwarzschild solution to develop an outer boundary condition for the
lapse function while using both the Schwarzschild and FRW solutions to set
the initial data. Though their discussion on the size of their errors is brief
(for the Oppenheimer-Snyder test case), they did note that the errors were
of the order of a percent or so (for a system with 240 grid points and 1180
dust particles). In a later work, Baumgarte et al. [15] extended their work
by expressing the metric and the equations in terms of an out-going null
coordinate. This leads to a slicing that covers all of the spacetime outside
(and arbitrarily close to) the event horizon. In this version of their code
Baumgarte et al. [15] chose to solve only the equations for the dust ball by
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using the Schwarzschild solution as an outer boundary condition.

This idea, to replace the exterior equations with the known Schwarzschild
solution, has been used by Gourgoulhon [13], Schinder et al. [12] and Romero
et al. [16]. Gourgoulhon [13] used a radial gauge and polar slicing while
solving the equations using a spectral method and reported errors in the
metric variables between 10−7 to 10−5. However, with the onset of the Gibbs
phenomena, the code could only be run until the central lapse collapsed to
around 2×10−3. Schinder et al. [12] used the same equations as Gourgoulhon
[13] but with a discretisation based on a standard finite difference scheme.
They reported errors of order 1% for evolution times similar to those of
Gourgoulhon [13]. The work of Romero et al. [16] differs from that of Schinder
et al. [12] in that they used high-resolution shock capture methods for the
hydrodynamics. They report evolutions down to a central lapse of 1.3×10−10.

Our results compare very well against those given above with our errors
being of the order fractions of a per-cent for 1200 grid points. Our code
runs, without any signs of instabilities, for maximal slicing out to t = 500m
where the central lapse has collapsed to 10−110 (see Figure (27)). We make
no use of the known solutions other than the conservation of local rest energy
(we use a particle like method to compute the rest density). We also provide
extensive comparisons of our results with the exact solution (see section 12).

In the following sections we will describe all aspects of our code, including
the design of the lattice (section 2), the curvature and evolution equations
(sections 3, 4 and 6), computing the density (section 7), the junction condi-
tions (section 9), setting the initial data (section 10.5) and finally the results
(section 12).

We will make frequent reference to two papers, our earlier paper on the
Schwarzschild spacetime [8] and a companion paper showing how the Einstein
equation can be applied to the lattice [17]. We will refer to these as Paper 1
and Paper 2 respectively.

2 The Oppenheimer-Snyder lattice

What design should we choose for the lattice? We will take a minimalist
approach – build the simplest lattice that captures the required symmetries
while being sufficiently general to allow the full dynamics to be expressed
through the evolution of the lattice data. Here is a construction of such
a lattice. Take a single spacelike radial geodesic, in one Cauchy surface,
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extending from the centre of the dust ball out to the distant asymptotically
flat regions and sub-divide it into a series of short legs with lengths denoted
by Lzz. We will refer to the end points of each leg as the lattice nodes. Note
that we are free to choose the Lzz as we see fit (in the same way that we are
free to choose the lapse function in an ADM evolution). Now construct a
clone of this geodesic by rotating it through any small angle (while remaining
in the Cauchy surface). Finally connect the corresponding nodes of the pair
of geodesics by a second set of geodesic legs, with lengths denoted this time by
Lxx (see Figure (1)). We now have a spacelike 3-dimensional lattice contained
within one Cauchy surface. From here on in we allow this lattice to vary
smoothly with time.

Note that each leg of this lattice is a geodesic segment of the 3-metric of the
Cauchy surface. We could also connect the nodes of the lattice with geodesic
segments of the full 4-dimensional spacetime (much like constructing chords
to arcs of a circle). This gives us two representations of the lattice, both
sharing the same node points with the first composed of short 3-geodesics
and the second composed of short 4-geodesics. Suppose that typical leg-
lengths in the two representations are 3Lij and 4Lij respectively. Then it is
not hard to see that 4Lij = 3Lij +O(3L3

ij). The upshot is that in all of our
equation in this paper we are free to use either representation (the differences
being at least as small as the truncation errors).

The Lzz and Lxx are all that we need to describe the geometry of each Cauchy
surface but we also need some way to represent the dust ball on the lattice.
Again, we shall take a minimalist approach – we know that the dust can be
described as a set of particles travelling on timelike geodesics with conserved
rest mass. Thus we add a series of dust particles on the radial geodesic with
each particle carrying a conserved rest mass.

As noted above, we are free to distribute the lattice nodes as we see fit. How
should we do this? We know that the dust ball will collapse so it makes
sense to tie the lattice nodes to the dust particles, i.e. the lattice nodes
follow in-falling timelike geodesics. But what of the nodes outside the dust
ball? Again, by appeal to simplicity, we demand that every lattice node,
interior and exterior, follow the in-falling timelike geodesics. In this scheme
the lattice nodes do not follow the trajectories normal to the Cauchy surface
(in contrast to the scheme in Paper 1). This introduces a drift vector γµ (see
Figure (3)) (which is similar to but distinct from the shift vector, see [8]).

The lattice just described differs from the Schwarzschild lattice of Paper 1
in a number of important ways – it contains an internal boundary (the edge
of the dust ball), the lattice nodes are not at rest in each Cauchy surface,
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the lattice carries a set of dust particles and at the inner boundary Lxx = 0.
Thus we will need to develop new boundary conditions (section 9), new
evolution equations for the nodes (i.e. adapt the geodesic equations to the
lattice, section 6) and an algorithm to compute the rest energy density from
the rest masses carried by the dust particles (section 7).

In Paper 1 we employed Riemann normal coordinates as a stepping stone
to develop the purely scalar equations for the leg-lengths, time derivatives,
constraints etc. We went on to speculate whether or not these coordinates
imbued the numerical scheme with any favourable properties (we argued that
they did not). One way to avoid this coordinate issue is simply to derive the
equations without reference to a coordinate system. In this paper we will
represent tensors, such as the Riemann and extrinsic curvatures, by their
frame components. We will use an orthonormal frame built as follows. We
choose the first two basis vectors, mµ

x and mµ
z , to be the unit tangent vectors

to Lxx and Lzz respectively at the mid-point of Lxx, see Figure (1). The
remaining two basis vectors (mµ

y and mµ
n) can be chosen freely (subject to

the orthornormal condition, e.g. mµ
n could be chosen as the unit normal to

the Cauchy surface). With this choice of basis a typical frame component for
the extrinsic curvature could be written as Kµνm

µ
am

µ
b . Such notation quickly

becomes tiresome so we will introduce the abbreviation Kab to represent
Kµνm

µ
am

µ
b with an obvious generalisation to other tensors.

We will allow a slight variation to this notation. On occasions we will find it
useful to refer to a leg by its end points, such as i and j. That leg will have
its own unit tangent vector which we denote by mµ. We will then take Kij
to be Kµνm

µmν . This small change will only ever be used for the extrinsic
curvature.

The dust particles follow future pointing timelike geodesics. We will use vµ

to denote the velocity 4-vector of the dust particles and we will record the
frame components as vn = −vµnµ and vz = vµm

µ
z where nµ is the unit normal

to the Cauchy surface.

The notation just introduced sits quite nicely with the notation used in Paper
1. In that paper we wrote Kxx, for example, to denote the x− x coordinate
components of Kµν in the local Riemann normal frame. In that frame we
chose the three metric gµν(x) at the origin to equal diag(1, 1, 1) and the basis
vectors mµ

a to have values δµa . Thus Kxx = Kµνm
µ
xm

ν
x. The upshot is that

coordinate components of Paper 1 have the same numerical values as the
frame components used in this paper. Thus we would reasonably expect
that the equations used in Paper 1 should carry over to this paper with only
minor changes to accommodate the introduction of the dust. This indeed
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proves to be the case (which is reassuring). The details will be presented in
section 4 where we will use a formalism developed in Paper 2 to derive, from
scratch, the evolution equations for the lattice.

3 The Riemann curvatures

The question here is: How do we compute the Riemann curvatures,Rxyxy and
Rxzxz, from the Lxx and Lzz? In our previous paper, Paper 1, we computed
two Riemann curvatures, Rxyxy and Rxzxz, using

0 =
d2Lxx
dz2

+RxzxzLxx geodesic deviation (3.1)

0 =
d (L2

xxRxyxy)

dz
−Rxzxz

dL2
xx

dz
Bianchi identity (3.2)

These equations will be used as follows. First we use the geodesic deviation
equation to compute the Rxzxz for each node across the lattice. This then
allows us to integrate the Bianchi identity for Rxyxy from the centre to the
outer boundary.

This scheme sounds simple but there a number of (obvious) complications.
Firstly, the equations are singular at the centre (where Lxx = 0) and secondly,
Rxzxz will not be continuous across the junction. These complications are
new to this investigation but we also inherit one further complication from
Paper 1: what boundary condition should we use at z = 0 when integrating
the Bianchi identity? This last problem is rather easy to deal with. At the
centre of the dust ball we know that the metric must be isotropic and thus
we can be certain that Rxyxy = Rxzxz at z = 0.

How do we handle the singularity at z = 0? Again, by symmetry arguments
we can assert that Rxzxz,µ = 0 at z = 0. Thus in a small neighbourhood
of z = 0 we must have Rxzxz = A + Bz2 where A and B are independent
of position and z is the radial proper distance measured from z = 0. Thus
it is not unreasonable to use a quadratic interpolation of Rxzxz to estimate
Rxzxz at z = 0. Our experience shows that this works very well but it does
require some care (see section 10.1 for the full details). Before dealing with
the junction issue we should emphasise that this process is an interpolation
rather than an extrapolation of the data to z = 0. To see this just imagine
extending the radial geodesics of the lattice through z = 0 so that we can
use Rxzxz = A+Bz2 with z in a range −z0 < z < z0 for some small z0.
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The frame components Rxx = Rµνm
µ
xm

ν
x and Rzz = Rµνm

µ
zm

ν
z of the Ricci

tensor are rather easy to construct from Rxyxy and Rxzxz. Using the or-
thonormal frame mµ

x, mµ
y and mµ

z we can easily deduce that

Rxx = Rxyxy +Rxzxz (3.3)

Ryy = Rxyxy +Rxzxz (3.4)

Rzz = 2Rxzxz (3.5)

with all other Rab = 0. From these equations it is easy to verify that the
scalar curvature is given by

R = 2Rxyxy + 4Rxzxz (3.6)

The one remaining complication is the discontinuity in Rxzxz at the junction.
This will be discussed in detail in section 9.

4 The evolution equations

The equations of Paper 1 have served us well so far but now we must chart
a new path. The reason is that, unlike our approach in Paper 1, here we
allow the lattice nodes to drift across the Cauchy surfaces and this will in-
troduce extra terms in the evolution equations. There is also the issue of
introducing the energy momentum sources but, as we shall see later, this is
really very easy to do (it amounts to little more than adding a term of the
form 8πkTµνm

µmν to the vacuum equations). So how do we develop evolu-
tion equations for a non-zero drift vector? In Paper 2 we showed how the
standard 3+1 ADM equations with a zero shift vector can be recovered from
the equations for the second variation of arc-length. And as arc-lengths of
geodesics are central to our smooth lattice approach this new formalism is
well suited to our current task.

We begin by recalling from Paper 2 the equations for the first and second
variation of the geodesic segment that connects nodes i and j

dLij
dt

= [mµt
µ]ji =

∫ j

i

mµm
νtµ;ν ds (4.1)

d2Lij
dt2

= [tα;µt
µmα]ji −

∫ j

i

4Rµανβm
µmνtαtβ ds

+

∫ j

i

(
tµ;αt

µ
;νm

αmν − (mµm
νtµ;ν)

2) ds (4.2)
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It is tempting to jump in by setting tµ = Nnµ + γµ and to let the equations
take us where they will. Indeed this works well for the first variation. We
start be making the said substitution and massage the result as follows

dLij
dt

= [mµtµ]ji

= [mµ(Nnµ)]ji + [mµγµ]ji

=

∫ j

i

mµmν(Nnµ);ν ds+ [mµγµ]ji

=

∫ j

i

mµmν(−NKµν) ds+ [mµγµ]ji

= −NKijLij + [mµγµ]ji

In the second last line we have used Nnµ;ν = − (⊥N,µ)nν − NKµν and
mµnµ = 0 while in writing the last line we have assumed that the leg-length
is sufficiently short that the integrand can estimated by a simple quadrature,
in this case the mid-point rule (later in section 10.3 we will have reason to
change this to a Trapezoidal rule). A similar equation can be found in Paper
2 (differing only in the absence of the γ terms). For the pair of legs Lxx and
Lzz we thus obtain

dLxx
dt

= −NKxxLxx + [mµ
xγµ]

dLzz
dt

= −NKzzLzz + [mµ
zγµ]

and to keep the notation a little less cluttered we have not written the end
points on the [· · · ] terms.

What can we say about the [mµγ
µ] terms? Let γ̃µ be the unit vector parallel

to γµ. Then we can immediately use the first variation equation once again
(see Figure (4)) to deduce that [mxµγ̃

µ] equals dLxx/dz where, as usual, z
is the radial proper distance measured along G1. However, γ̃µ = γµ/γz and
by spherical symmetry we know that γz does not change from one radial
geodesic to the next. Thus we deduce that [mxµγ

µ] = γzdLxx/dz. We now
turn to the other leg, Lzz. In this case mµ

z and γµ are parallel and thus we
can not invoke the first variation equation. But that is of no concern simply
because mzµγ

µ = γz = Nvz/vn. Thus we have [mzµγ
z] = [Nvz/vn]. The
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equations for the first time derivatives of Lxx and Lzz can now be written as

dLxx
dt

= −NKxxLxx +

(
Nvz
vn

)
dLxx
dz

(4.3)

dLzz
dt

= −NKzzLzz +

[
Nvz
vn

]
(4.4)

We turn our attention now to adapting the equations for the second variation
to our simple lattice.

Our job would be greatly simplified if it happened that γµ = 0 but on the
current lattice that is not the case. So we now introduce a second lattice
on which we set γµ = 0. The nodes of the first lattice will follow the dust
particles while those of the second lattice will follow trajectories normal to
their Cauchy surfaces (which will differ from those of the first lattice). Note
that the second lattice has been introduced solely to aid the exposition – the
second lattice will never be needed nor used in our actual computer programs.
To keep the bookkeeping clear we will identify data on the second lattice by
the addition of a dash. The second lattice is created at some generic time,
say t = t0, and we choose to assign identical initial data to both lattices, i.e.
L′ij = Lij, K′ij = Kij etc. on Σ(t0). We have no reason to use distinct Cauchy
surfaces for each lattice (we only want to set γµ = 0) so we are free to set
N ′ = N and dN ′/dt = dN/dt. It follows that we also have 4R′µναβ = 4Rµναβ

across Σ(t0). Our task now is to adapt the equations for the first and second
variations to the second lattice. This has already been done in Paper 2 where
we have shown that

dL′ij
dt

= −NK ′µνmµmνL′ij

d2L′ij
dt2

=
1

N

dN

dt

dL′ij
dt
− 1

L′ij

(
dL′ij
dt

)2

+N2K ′µαK
′µ
βm

αmβL′ij

+NN;αβm
αmβL′ij −N2

(
4Rµανβ

)
mµmνnαnβL′ij

Where we head next depends upon what type of equations we wish to work
with. We can develop either a second-order set of equations involving both
dL′ij/dt and d2L′ij/dt

2 or a first order system involving dL′ij/dt and dK′ij/dt.
We will take the second approach for two reasons, it mimics the standard
ADM approach and, more importantly, it eliminates the dN/dt term (which
would add undue complexity when using maximal slicing). Between this pair

9



of equations we can easily eliminate d2L′ij/dt
2 with the following result

dK′ij
dt

= −N;αβm
αmβ +N

(
4Rµανβ

)
mµmνnαnβ

+ 2N
(
K′ij
)2 −NK ′µαK ′µβmαmβ

where K′ij := K ′µνm
µmν . This last equation controls the evolution of K′ij for

the second lattice. Can we use this information to deduce the evolution of
Kij on the first lattice? Yes, by simply splitting the evolution into a part
parallel to the normal plus a part parallel to the drift vector. Since Kij is a
scalar function we can use a standard chain rule to write

dKij
dt

=
dK′ij
dt

+K′ij,µγµ

and as Kij = K′ij on Σ(t0) we arrive at

dKij
dt

= −N;αβm
αmβ +N

(
4Rµανβ

)
mµmνnαnβ

+ 2N (Kij)2 −NKµαK
µ
βm

αmβ +Kij,µγµ

In a moment we will apply this equation to Kxx = Kµνm
µ
xm

ν
x and Kzz =

Kµνm
µ
zm

ν
z but first we recall that both γµ and mµ are tangent to Σ, T µν =

ρvµvν and for our spherically symmetric lattice, Kµν is diagonal and γz =
Nvz/vn . We will also need the contracted Gauss equation, namely,

4Rµανβm
µmνnαnβ =

(
−⊥4Rµν +Rµν +KKµν −KαµK

α
ν

)
mµmν

We then find that the above equation for dKij/dt when applied to Kxx and
Kzz leads to

dKxx
dt

= −N,xx +N (Rxx +KKxx − 4πkρ) +

(
Nvz
vn

)
Kxx,z (4.5)

dKzz
dt

= −N,zz +N
(
Rzz +KKzz +

(
4− 8v2n

)
πkρ

)
+

(
Nvz
vn

)
Kzz,z (4.6)

This pair of equations coupled with (4.3,4.4) are the evolution equations for
the lattice.

5 The constraints

The general form of the Hamiltonian and momentum constraints are

R +K2 −KµνK
µν = 16πkTµνn

µnν

⊥
(
K|ν −Kµ

ν|µ
)

= 8πk⊥ (Tµνn
µ)
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where K = Kµ
µ. It is a simple matter to apply these equations to the

Schwarzschild spacetime, see Paper 1 for details. For the present case we need
to account for the non-zero Tµν in the interior of the dust ball. We can easily
adapt the equations of Paper 1 by simply adding on the terms 8πkTµνn

µnν for
the Hamiltonian and 8πkTµνn

µmν
z for the momentum constraints (projections

in the other two directions mµ
x and mµ

y yield the trivial equation 0 = 0). This
leads to

0 = Rxyxy + 2Rxzxz +K2
xx + 2KxxKzz − 8πkρv2n (5.1)

0 =
1

Lxx

(
Kzz

dLxx
dz
− d(LxxKxx)

dz

)
− 4πkρvnvz (5.2)

(for simplicity we have cleared a common factor of 2 from both equations).

6 The particle equations

Here we will derive the equations governing the evolution of the particle
4-velocities.

We will use the geodesic equation 0 = vµ;νv
ν to obtain evolution equations

for the vn and vz components of the particle’s 4-velocity.

The computation are simple but do entail a few steps. We begin by writing
dvn/dt as a directional derivative along tµ = λvµ. The Leibniz rule is then
applied which in turn allows the geodesic equations 0 = vµ;νv

ν to be imposed.
Finally, we use

Nnµ;ν = −⊥N,µnν −NKµν (6.1)

to re-write nµ;ν in terms of the lapse and extrinsic curvatures. The details
are as follows.

dvn
dt

= vn;νt
ν = − (vµnµ);ν (λvν) = −λvµvνnµ;ν

= λvµvν
(

1

N
(⊥N,µ)nν +Kµν

)
= −vzvn

λ

N
N,z +

1

λ
γµγνKµν

But we also know that λ = N/vn and 0 = γx = γy while γz = Nvz/vn so
this last equation may be further reduced to just

dvn
dt

= −vzN,z +N
v2z
vn
Kzz (6.2)
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The computations for dvz/dt are much the same,

dvz
dt

= vz;νt
ν = (vµmzµ);ν(λt

ν) = λvµvνmzµ;ν

= λ (vnn
µ + vzm

µ
z ) vνmzµ;ν

= λvnn
µvνmzµ;ν

24-Feb-2011

I should have written (λvν) not (λtν) in the 1st line of the above.

dvz
dt

= vz;νt
ν = (vµmzµ);ν(λv

ν) = λvµvνmzµ;ν

= λ (vnn
µ + vzm

µ
z ) vνmzµ;ν

= λvnn
µvνmzµ;ν

The term nµvνmzµ;ν can be computed by expanding 0 = (mzµn
µ);νv

ν and
then using (6.1) to obtain

0 = mzµ;νn
µvν +

vn
N
N,z −Kµνm

µ
zm

ν
z

which, when substituted into the previous equation for dvz/dt, leads to

dvz
dt

= −vnN,z +NvzKzz (6.3)

One simple check we can immediately apply to our equations is to ask: do
they preserve the unit normalisation of vµ? Since we have chosen nµ and mµ

z

to be unit vectors the question reduces to asking if d(−v2n + v2z)/dt vanishes
for all t. From the above equations this is easily seen to be so.

7 The density

There are at least two ways to compute the density, either by solving the
Hamiltonian constraint or by integrating the equations of motion for the
dust, namely, 0 = (ρvµvν);ν .

Recall that the Hamiltonian constraint is given by

Rxyxy + 2Rxzxz +K2
xx + 2KxxKzz = 8πkρv2n (7.1)
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This equation is trivial to solve for ρ since on each Cauchy surface all of the
other quantities are known. Notice that v2n = 1 + v2z and thus vn > 0.

Using the Hamiltonian constraint is one of many tricks used in numerical
relativity to coerce better stability properties from the evolution equations.
The merits of doing so have been debated over the years and is not something
we will delve into here. However as we are trying to establish the limitations
of the smooth lattice method it makes sense to explore other methods to com-
pute the density. So for our second method we turn to the energy-momentum
equations. From 0 = (ρvµvν);ν we learn two things (i) the dust particles fol-
low time like geodesics, 0 = vµ;νv

ν and (ii) the rest mass is conserved along
the worldtube generated by the dust particles 0 = d/dt

∫
ρdV ′ where d/dt

is the time derivative following the dust and dV ′ is the proper volume in the
dust’s rest frame. We will need both equations to compute the density.

Recall that we have chosen to tie the dust particles to the nodes of the
lattice. As the nodes drift relative to the Cauchy surface there will be a
non-zero boost between the rest frame of the dust and that of the Cauchy
surface. Thus, in terms of the volume element dV on the Cauchy surface we
have ∫

C0

ρvn dV =

∫
C1

ρvn dV

where C0, C1 denote the intersections of a dust worldtube with a pair of
Cauchy surfaces, one at time t0 and another at a later time t1.

The question which arises now is: how do we construct the three dimensional
cross-sections C0 from the 2-dimensional lattice? The solution is depicted in
Figure (2) where we have simply taken the original lattice and rotated it
by π/2 about the central geodesic G1. This creates C0 and C1 as truncated
pyramids with a square cross-section. In each of these we take the density
to be constant. The volume of C0 and C1 can be computed by elementary
Euclidean geometry (the dust is minimally coupled to the geometry and thus
curvature corrections can be ignored). This leads to

(V )i =
1

3
(Lzz)i

((
L2
xx

)
i
+ (Lxx)i(Lxx)i+1 +

(
L2
xx

)
i+1

)
where (Lxx)i and (Lxx)i+1 are the values of Lxx at nodes i and i+ 1 respec-
tively. The previous conservation equation can now be re-written as

3mi = (ρvn)i (Lzz)i

((
L2
xx

)
i
+ (Lxx)i(Lxx)i+1 +

(
L2
xx

)
i+1

)
(7.2)

where mi is the conserved rest mass along the worldtube (mi is set as part
of the initial conditions). The vn are estimated at the centre of each cell
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by quadratic interpolation from the neighbouring nodes (which will draw in
nodes beyond this basic cell). This equation can then be solved for ρ. We
assign that ρ to the centre of the cell and then use quadratic interpolation
to estimate ρ at the lattice nodes.

8 Maximal slicing

A maximally sliced spacetime is defined to be a spacetime for which K = 0
everywhere. Such spacetimes are often constructed by first setting K = 0
on an initial Cauchy surface (e.g. on a time symmetric initial slice) and then
demanding that dK/dt = 0 throughout the evolution. For our lattice we have
K = 2Kxx+Kzz and thus from the equations (4.5,4.6) we see that dK/dt = 0
provided

0 = 2N,xx +N,zz −N
(
R− 4πk

(
1 + 2v2n

)
ρ
)

But in Paper 1 we showed that under spherical symmetry

N,xx =
1

Lxx

dLxx
dz

N,z

which allows us to re-write the previous equation as

0 = N,zz +
2

Lxx

dLxx
dz

N,z −N
(
R− 4πk

(
1 + 2v2n

)
ρ
)

(8.1)

We treat this as an ordinary differential equation for N . The boundary
conditions are simple, at z = 0 we require dN/dz = 0 while at the outer
boundary we require 1 = limz→∞N . Note also that the differential equation
is singular at z = 0 (due to the 1/Lxx term). We deal with this by appealing
to the spherical symmetry of the solution at z = 0 to deduce that N,xx = N,zz

and thus our original differential equation for N can be re-written as

0 = 3N,zz −N
(
R− 4πk

(
1 + 2v2n

)
ρ
)

at z = 0 (8.2)

which is clearly non-singular. The same result can also be obtained by ap-
plying l’Hôpital’s rule to (1/Lxx)(dN/dz) as z → 0. At the junction we know
that ρ and R suffer a jump discontinuity. Thus we expect a corresponding
jump discontinuity in d2N/dz2 which in turn forces both N and dN/dz to be
continuous across the junction. This adds extra constraints to the numerical
solution of the above equation. We will cover this in more detail in section
10.2 but for the moment we note that our method computes two separate
solutions, one for either side of the junction, which are then matched at the
junction.

14



9 The junction conditions

Darmois [18] and later Israel [19] developed a very elegant approach to handle
discontinuities in a metric in General Relativity. However, their method
requires some work to push through so we defer the details to Appendix A
preferring instead to present here a direct approach.

By integrating the geodesic deviation equation (3.1) over a short interval
z ∈ (−ε,+ε) we obtain

0 =

[
dLxx
dz

]+ε
−ε

+

∫ +ε

−ε
RxzxzLxx dz

If we require Rxzxz to be bounded on each Cauchy surface then we must have

0 = lim
ε→0

[
dLxx
dz

]+ε
−ε

and thus dLxx/dz is continuous everywhere on the lattice and, most im-
portantly, across the junction. We also know that Lxx and dLxx/dt must
be continuous and thus from the evolution equation (4.3) we see that 0 =
limε→0[Kxx]+ε−ε. From here on we shall dispense with the limits on the square
brackets and take [. . . ] to mean limε→0[· · · ]+ε−ε.

Applying a similar integration to the Bianchi identity leads to

0 =
[
L2
xxRxyxy

]
− lim

ε→0

∫ +ε

−ε
Rxzxz

dL2
xx

dz
dz

and thus
0 = [Rxyxy] (9.1)

since Lxx must be continuous every where on the lattice. Thus we con-
clude that Rxyxy is continuous on the lattice. However, by inspection of the
Hamiltonian constraint (5.1), we see that the same can not be said for Rxzxz.
Since we know that 0 = [Lxx] and 0 = [Kxx] we see that continuity of the
Hamiltonian requires

[Rxzxz] = [4πkρv2n −KxxKzz] (9.2)

We also need suitable junction conditions for the lapse function when us-
ing maximal slicing. First we demand that the clocks of a pair of observers
travelling close to but on opposing sides of the junction should remain syn-
chronised throughout their journey. Thus we find that the lapse is continuous
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across the junction, 0 = [N ]. For the first derivative we follow the method
outlined above. Integrating the maximal slicing equation (8.1) over the short
interval z ∈ (−ε,+ε) leads to

0 = [N,z] + lim
ε→0

∫ +ε

−ε

(
2

Lxx

dLxx
dz

N,z −N
(
R− 4πk

(
1 + 2v2n

)
ρ
))

dz

and as we except all terms in the integral to be bounded (at worst) and
Lxx > 0 we see that this requires

0 = [N,z] (9.3)

Equations (9.1), (9.2) and (9.3) constitute the full set of junction conditions
for our lattice. Other conditions such as 0 = [Lxx] and 0 = [N ] are trivially
implemented in the numerical code (they require no special care). However
we have no freedom in our data to guarantee 0 = [dLxx/dz]. The reason
is that all of the Lxx leg lengths are subject to the evolution equations and
we have to live with what they dictate. Of course we expect the jump in
dLxx/dz to be small and to vanish as the lattice is progressively refined.

10 Numerical methods

To obtain numerical solutions of our equations we turn once again to the tech-
niques developed in Paper 1. We use second order accurate finite differences
(on a non-uniform grid) for all of the spatial derivatives, such as dLxx/dz
and d2N/dz2 (though with a two exceptions, as noted below in section 10.4,
for the three nodes centred on the junction). The time integration employs
a standard 4th-order Runge-Kutta method and the time step is chosen so
that the Courant factor for the smallest Lzz on the lattice is 1/2 (the leg on
which this occurs lies on the surface of the dust ball).

The lattice and its attendant equations in this paper differ most notably from
those of Paper 1 by the presence of the dust ball. This not only introduces
new terms in the equations but it also forces many of the variables, or their
derivatives, to be discontinuous at the junction. Dealing with these discon-
tinuities requires some care. For the geodesic deviation equation (3.1), the
Bianchi identity (3.2) and the maximal lapse equation (8.1), the general ap-
proach is to solve those equations twice, once on either side of the junction,
and then use the junction conditions to match the solutions. The details are
as follows.
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10.1 The Riemann curvatures

The discretised forms of the geodesic deviation equation (3.1) and the Bianchi
identity (3.2) were given in Paper 1 and, apart form some minor notational
changes, are equivalent to the following pair of equations

(Lxx)i(Rxzxz)i = −
(
d2Lxx
dz2

)
i

(10.1)

2
(
L2
xx

)
i
(Rxyxy)i =

(
L2
xx

)
i

(
(Rxzxz)i + (Rxzxz)i−1

)
+
(
L2
xx

)
i−1

(
2(Rxyxy)i−1 − (Rxzxz)i − (Rxzxz)i−1

) (10.2)

where the second derivatives of Lxx are computed using the second order
non-uniform finite differences (as described in section 10.4).

Our plan is to use this pair of equations to calculate the Riemann curvatures
on the lattice but we immediately encounter two problems, the equations are
singular at z = 0 and, as previously noted, the second derivatives of Lxx are
not continuous across the junction. The first problem is rather easy to deal
with. We draw upon the required spherical symmetry at z = 0 to deduce that
dRxzxz/dz = 0 at z = 0 and thus Rxzxz(z) = A + Bz2 +O (z3) near z = 0.
The coefficients A and B are obtained by fitting Rxzxz(z) = A+Bz2 to two
samples for (Rxzxz)i (typically (Rxzxz)4 and (Rxzxz)8 for nJ = 120) and then
setting (Rxzxz)i = A + Bz2i for each node near z = 0 (i.e. at z = 0, z1, z2
and z3). For Rxzxz we again call on the spherical symmetry to assert that
(Rxyxy)0 = (Rxzxz)0. Our numerical experiments show that we have no need
to use the quadratic interpolation scheme for (Rxyxy) near z = 0.

We turn now to the issue of the junction. As with the lapse function, we
compute both Riemann curvatures separately on each side of the junction.
We first use the above equations to compute the curvatures for all of the
interior lattice nodes excluding the node at the junction. At the junction we
apply a series of interpolations in conjunction with the boundary conditions
to set the curvatures on the junction and one node point outside it. The
details are as follows.

First we use cubic extrapolation to compute the one-sided limits limz↑zJ Rxyxy

and limz↑zJ Rxzxz, which we abbreviate as (Rxyxy)
- and (Rxzxz)

-. We then
use the junction condition (9.1) and the Hamiltonian constraint (5.1), which
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we re-write as

(Rxyxy)
+ = (Rxyxy)

- (10.3)

(Rxzxz)
+ = −1

2

(
Rxyxy +K2

xx +KxxKzz
)+

(10.4)

to step across the junction (with the + super-script denoting the right hand
one-sided limit). We then return to the above discrete equations (10.1) and
(10.2) to compute the curvatures in the exterior region. This too requires
some explanation. We first compute (Rxzxz)i from i = nJ + 2 to i = n∞ − 1
(i.e. we skip the first exterior node and stop one node in from the outer
boundary). We then return to the node we skipped over (i.e. i = nJ + 1) and
use cubic interpolation (using the the nodes nJ , nJ + 2, nJ + 3 and nJ + 4) to
estimate (Rxzxz) at that node. The Bianchi identity can then be applied to
all the exterior nodes (except the node on the outer boundary). Finally, we
use cubic extrapolation to compute the curvatures on the boundary nodes.
This completes the computation of the curvatures.

10.2 Maximal slicing

The discrete form of the maximal lapse equation (8.1) is of the form

0 = ai(N)i+1 + bi(N)i + ci(N)i−1 (10.5)

for some set of coefficients ai, bi and ci (see Appendix B for the details). We
wish to solve this set of equations subject to the following conditions

0 = N,z at z = 0 (10.6)

0 = [N ] at z = zJ (10.7)

0 = [N,z] at z = zJ (10.8)

1 = lim
z→∞

N (10.9)

By reflection symmetry at z = 0 we can easily extend the lattice to z < 0.
Thus a discrete version of (10.6) would be N−1 = N+1. Continuity at z = zJ
allows us to use one value of N at zJ , which we denote by NJ . However, the
continuity of N,z is not something we can prescribe but must be obtained by
an iterative process (to be described below). We denote the left and right
hand limits for N,z at z = zJ by (N,z)

- and (N,z)
+ respectively. We compute

these one-sided limits, for a given set of (N)i, by a cubic extrapolation of
(N,z)i. This too requires some explanation. We start with the four nodes
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nearest to but excluding the junction. We then use cubic extrapolation of
the (N)i on these nodes to extend the (N)i to the junction and two nodes
beyond (we store this generated data in a separate array so as not to overwrite
the data already defined on those nodes). Finally we use the standard non-
uniform second order finite differences to estimate the first derivative at the
junction. This computation is done twice, once for each one-sided limit. For
the outer boundary we simply set 1 = N∞.

The discrete equations for (N)i are solved in three iterations with each iter-
ation involving separate solutions for (N)i on each side of the junction. The
algorithm requires two guesses for N , one for N at z = 0 and one for N
at z = zJ which we denote by (GN)0 and (GN)J respectively. With given
values for these guesses we use a Thomas algorithm to solve the tri-diagonal
system (10.5) for 0 ≤ z ≤ zJ and again for zJ ≤ z ≤ z∞. Our guesses
are unlikely to be correct (at first) so we record the errors in the boundary
conditions by E0 = (N)+1 − (N)−1 and EJ = (N,z)

+ − (N,z)
-. Our aim is

to choose the two guesses so that 0 = E0 and 0 = EJ . We chose three pairs
of guesses (0, 0), (0, 1/2) and (1, 1) for ((GN)0, (GN)J) and we recorded the

corresponding errors as E
(j)
0 and E

(j)
J for j = 1, 2, 3. Since the discrete equa-

tions are linear and homogeneous in (N)i we can form a linear combination
such as

Ni = α1N
(1)
i + α2N

(2)
i + α3N

(3)
i (10.10)

to satisfy the boundary and junction by an appropriate choice of constants
α1, α2 and α3. The result is a 3 by 3 system of equations

1 =N∞ = α1 + α2 + α3

0 = E0 = α1E
(1)
0 + α2E

(2)
0 + α3E

(3)
0

0 = EJ = α1E
(1)
J + α2E

(2)
J + α3E

(3)
J

which is easily solved for the three weights αi which in turn allows the final
(correct) solution for the maximal lapse to be computed from (10.10).

10.3 The time derivatives

Spatial derivatives are calculated at each node using data from the surround-
ing nodes, and in cases where this might draw in data from across the junc-
tion, we first use cubic extrapolation to extend the data across the junction
(which we store separately so as not to overwrite exiting data).

With the exception of the junction node there is no ambiguity in applying the
evolution equations to the nodes of the lattice. However, the discontinuities
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at the junction demand, once again, that we tread carefully near and at the
junction. Consider Kzz which in geodesic slicing will be multiple valued at
the junction. How do we handle this situation? We have already exhausted
our supply of junction conditions in forming the two jump conditions (10.3)
and (10.4) for the Riemann curvatures. So in the absence of any further
information about Kxx we have no choice but to consider its left and right
hand limits as independent of each other (despite the loose coupling afforded
by the evolution equations). Each term could be evolved by evaluating time
derivatives built from one-sided limits of the source terms. There is however
an easier approach which we found to work quite well. The idea is to re-
interpret the junction node not as node on which to apply the evolution
equations but rather as a convenient staging post to impose the junction
conditions. In this view we do not evolve the data on the junction node.
Rather we treat that data as kinematical which we compute by one-sided
extrapolations of the surrounding data (which are evolved via the normal
evolution equations).

So in our code we use (4.3), (4.5), (4.6), (6.2) and (6.3) (subject to a minor
change noted below) to evolve Lxx, Kxx, Kzz, vn and vz on the nodes i =
0, 1, 2, · · ·nJ−1 and i = nJ +1, nJ +2, nJ +3, · · ·n∞−1. We use (4.4) (again,
see below) to evolve the Lzz for all legs not connected to the junction. For the
two legs attached to junction we use one-sided cubic extrapolation of dLzz/dt
to compute their time derivatives. At the outer boundary we impose static
boundary conditions for all of the data.

There is one exception to this simple algorithm. We use a one-sided extrap-
olation to set dLxx/dt at the node nJ − 1. This proved to be essential for
long term stability with maximal slicing (but made no difference in geodesic
slicing). We can offer no reasonable explanation as to why this works other
than the following admittedly vague rationalisation. By extrapolating the
time derivatives outwards from the interior of the dust ball to the node nJ−1
we might be halting or minimising the inward propagation of any errors that
arise at the junction. Delving deeper into this mystery is best left for another
time.

There is one remaining subtlety that we must address. The careful reader
may have noticed that in the present context we are treating the Kxx and
Kzz as being defined on the nodes whereas the extrinsic curvatures arose in
section 4 by approximating the integrals by a mid-point rule. Thus if we wish
to use node based values for Kxx and Kzz we should use a Trapezoidal rule
to estimate the integrals. This is a minor change and leads to the following
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node-based equations

dLxx
dt

= −〈NKxx〉Lxx +

〈
Nvz
vn

〉
dLxx
dz

(10.11)

dLzz
dt

= −〈NKzz〉Lzz +

[
Nvz
vn

]
(10.12)

where the angle-brackets denotes an average of that quantity over the leg
while the square-brackets continues to denote the change across a leg. In
fact for the Lxx equation the angle-brackets are redundant (the end points
carry identical values) but were retained simply for emphasis. Since the
Riemann curvatures are already node-based we see that no such averaging
is required for the extrinsic curvature equations (10.1) and (10.2). Note also
that the spatial derivatives are also node based (by suitable choice of the
finite difference operators).

10.4 The spatial derivatives

The evolution equations (4.3–4.6) and the momentum constraint (5.2) re-
quire spatial derivatives of the Lxx, Lzz, Kxx and Kzz. For all but the two
nodes either side of the junction (i.e. at nodes nJ − 1 and nJ + 1), and the
junction itself, we employ second order non-uniform spatial derivatives as
described in Paper 1. On the two nodes either side of the junction we use
one-sided quadratic extrapolation. This is the only point in the code where
we used quadratic approximations and we do so because both linear and (in-
terestingly) cubic interpolation lead to instabilities forming at the junction
(at around t ≈ 13 for cubic extrapolation and only for one of our models with
nJ = 240 and n∞ = 1200). The derivatives at the junction are computed
last using one-sided cubic extrapolation.

The only other spatial derivatives that need to be computed are the first
and second derivatives of the lapse function (for use in the maximal slicing
equation (8.1) and in the particle equations (6.2,6.3)). Once again we use
the second order non-uniform spatial derivatives from Paper 1 for all of the
nodes with the exception of the five nodes centred on the junction. For nodes
nJ ± 2 and nJ ± 1 we use cubic extrapolation to build an extended set data.
This introduces some temporary and artificial nodes which we chose to be
symmetric to the real nodes (e.g. when extending the data for node nJ−1 we
create new nodes nJ , nJ + 1 that are the mirror images (in nJ − 1) of nJ − 2
and nJ − 3). The derivatives on nodes nJ ± 2 and nJ ± 1 are then computed
on this extended data set using the standard non-uniform centred differences
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while the derivatives on the junction are computed using one-sided cubic
extrapolation.

Once the maximal slicing equation has been solved we do have the option of
using that equation as an alternative way to calculate the second derivatives
of the lapse. We chose not to do so because we did not want to give the
smooth lattice method a helping hand – we want to test the method under
conditions closer (albeit in 1+1 form) to what we would expect for other
spacetimes (i.e. for a true 3+1 evolution).

10.5 The initial data

We require two things of our initial data, first they must satisfy the con-
straints (5.1) and (5.2), and second they must describe a time-symmetric
initial slice. This last condition is readily satisfied upon setting Kxx = 0,
Kzz = 0 and vn = 1, vz = 0 which in turn ensures that the momentum con-
straint is also satisfied. What we are left with is the Hamiltonian constraint,
the leg lengths, Lxx, Lzz and the density ρ, i.e. we have one constraint for
three (sets) of data. Clearly there are a range of options here, so what should
we do? We turn once again to the scheme developed in Paper 1. There we
chose to set the Lzz and then use the Hamiltonian constraint to set the Lxx.
But here we also need the density.

Keep in mind that our aim is neither to discover nor explore the Oppenheimer-
Snyder solution but rather to use it as a test of the smooth lattice method.
Thus it is not unreasonable to borrow some information from the exact solu-
tion to set some of the data on the lattice, in particular the density. We recall
here some basic equations from the exact solutions for the Oppenheimer-
Snyder spacetime (see [9, 20, 21, 22]).

There are two free parameters in the solution, the ADM mass m and the
Schwarzschild areal radius R0 of the dust ball. From these we can compute
the proper radius of the dust ball zJ , the FRW parameters am and χ0 > 0
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and the density ρ using

sin2 χ0 =
2m

R0

(10.13)

am =
2m

sin3 χ0

(10.14)

zJ = amχ0 (10.15)

8πkρ =
3

a2m
(10.16)

Clearly, we also have ρ = 0 in the Schwarzschild exterior.

We used these equations to set zJ and ρ, for a given m and R0. To this we
added choices for the total length of the lattice z∞, the number of interior
nodes nJ and the total number of nodes n∞ on the lattice.

Note that we still have the freedom to distribute the nodes along the z-
axis (this amounts to setting the (Lzz)i). We know that some of the spatial
gradients are zero at z = 0, that they rise to a maximum near the junction
and then settle down in the distant asymptotically flat regions of the lattice.
Thus it makes sense to concentrate the nodes around the junction. With this
in mind we chose to start at the junction and use a geometric progression to
set the (Lzz)i in both the interior and exterior regions. We chose the same
geometric ratio in both regions while also requiring (Lzz)nJ−1 = (Lzz)nJ

.
From here it is simple matter to compute all of the (Lzz)i across the lattice.

We now turn to the problem of setting Lxx and the Riemann curvatures.
By reworking the Hamiltonian constraint, geodesic deviation and Bianchi
identity we find that across the lattice

(Lxx)i = (Lxx)i−1 +
(Lzz)i−1
(Lzz)i−2

((Lxx)i−1 − (Lxx)i−2)

− 1

2
(Lzz)i−1 ((Lzz)i−1 + (Lzz)i−2) (LxxRxzxz)i−1

(10.17)

while the curvatures in the dust-ball are uniform and are given by

(Rxzxz)i = (Rxyxy)i =
8πkρ

3
(10.18)

and finally, in the Schwarzschild region, we find

(Rxzxz)i = (Rxzxz)i−1

(
5 (L2

xx)i−1 − (L2
xx)i

5 (L2
xx)i − (L2

xx)i−1

)
(10.19)

(Rxyxy)i = −2(Rxzxz)i (10.20)
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Note that the initial data is required (by assumption) to be homogeneous and
isotropic inside the dust-ball. Thus it follows that the Riemann curvatures
and the density are uniformly distributed throughout the dust-ball.

These equations can be used to set the Lxx, Rxyxy andRxzxz across the lattice
(a process that will require the junction conditions for the curvatures). But
to start the ball rolling we must make some choice for (Lxx)0, and (Lxx)1.
Clearly (Lxx)0 = 0 but for (Lxx)1 we are free to make any choice we like (we
chose (Lxx)1 = 0.001(Lzz)0 so that dLzz/dz = 0.001 at z = 0, as discussed
below in section 12).

10.6 Density

In section 7 we noted that the density can be computed using either the
Hamiltonian constraint, in the form (7.1), or by the conservation equation
(7.2). We find that, for long term stability when using the second method,
we are forced to use the Hamiltonian constraint at exactly the two nodes just
inside the junction (i.e. at nodes nJ − 2 and nJ − 1). This was found by pure
numerical experimentation. Why this should be so is unclear to us but it is
probably tied to the same mechanism noted above (with regard to halting
the inward propagation of errors from the junction by imposing “correct”
values near the junction).

11 Diagnostics

From the known solution for the Oppenheimer-Snyder spacetime a number
of useful diagnostics can be drawn. Here we will discuss those diagnostics
which, in the following section, we will apply to our numerical results.

For geodesic slicing it is rather easy to show [20] that the proper radius of
the dust-ball zJ varies with proper time t according to

zJ(t) =
amχ0

2
(1 + cos η(t)) (11.1)

where am = 2m/ sin3 χ0 and η(t) is the solution of 0 = −2t + am(η + sin η)
with η > 0 (notice that Petrich et al. use η where we use η − π).

Another simple diagnostics arises from the central density which is given by

ρ(t) = 24a−2m (1 + cos η(t))−3 (11.2)
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This is singular when η = π at which point the proper radius is zero and the
dust ball has collapsed onto the singularity. This will occur after a proper
time of

tSg = πm

(
R0

2m

)3/2

(11.3)

and at this moment, or a short time before, we expect our code to crash.

As the dust-ball collapses an outer apparent horizon will form and this too
provides useful checks on our numerics. It is known that when the outer
most apparent horizon forms it does so at the surface of the dust-ball. In
our numerical code we locate the horizon by noting where on the radial
axis the quantity dLxx/dz − KxxLxx vanishes. The root of this equation is
the location of the apparent horizon (this follows from the condition that
0 = ∂A/∂u where A is the area of a 2-sphere and ∂/∂u is the outward
pointing null vector to the 2-sphere, see Paper 1 for more details). The time
at which the horizon forms is also well known and this affords yet another
check on our numerical results. For geodesic slicing it can be shown that the
time, tHg , and location zHg , of the apparent horizon are given by

tHg =
m

sin3 χ0

(π − 2χ0 + sin(2χ0)) (11.4)

zHg =
m

sin3 χ0

(1− cos(2χ0)) (11.5)

Note that in geodesic slicing the nodes are at rest relative to the Cauchy sur-
faces and thus this time tHg equals the proper time measured by the observer
following that junction as it falls inwards and eventually meets the outward
expanding event horizon. The quantity zHg measures the proper distance out
from the centre of the dust-ball to the junction.

Hawking’s area theorem can also be used as a diagnostic. The theorem
requires that the area of the event horizon should be constant once all of the
dust has fallen within the event horizon. For our lattice this would require
that the Lxx on the event horizon should be constant for the remainder of
the evolution. This is easily checked (by interpolating the values of Lxx from
the nodes onto the event horizon).

Equations for the time and location of the horizon, as well as the density
and radius diagnostics, are also available for maximal slicing but with one
drawback – the equations as given by Petrich et al. require a numerical
integration of some elliptic integrals. This introduces its own set of numerical
issues and we found that our implementation of the Petrich equations could
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only be reliably used for t . 32 (for m = 1 and R0 = 5). Even so, this was
sufficient time to allow for a useful comparison to be made.

We also have one extra diagnostic for the case of maximal slicing. There it
is known that the lapse function will, after an initial period, settle into an
exponential decay. Petrich et al. show that N(t, 0) ∼ A exp(βt) where A is
a constant and β = −(2/3)(3/2) ≈ −0.5443311. We can use this to test our
code by measuring the slope of the logN versus t.

There are of course two other diagnostics – the Hamiltonian and momentum
constraints.

In summary we have the following set of diagnostics.

• The constraints.

• The history of the junction.

• The history of the central density.

• The crash time for geodesic slicing.

• The Petrich solution for maximal slicing.

• The exponential collapse of the central lapse.

• The time and location of the first apparent horizon.

• The constancy of the area of the event horizon in the vacuum region.

Clearly we have a raft of diagnostics and it is now time to turn to the actual
results.

12 Results

Our aim was to write a code that used as few assumptions as needed to obtain
reliable results. In the end we have split the computation of the lapse from
the rest of the code. The evolution of the code takes as input (at each time
step) the values of the lapse across the lattice. We do not use the Hamiltonian
or momentum constraints apart from the two exceptions noted in sections
10.1 and 10.6. We employ no artificial smoothing such as artificial viscosity
nor do we add on any constraint preserving terms. Our time integrations
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are conducted using a 4th-order Runge-Kutta routine and our time step was
updated after every time step by setting it equal to 1/2 the shortest Lzz on
the grid (which usually is the leg on or just inside the junction). This choice
sets the Courant factor to 1/2 for legs near the junction (with smaller values
for legs away from the junction).

We set our initial data using 8πk = 1, m = 1, R0 = 5, z∞ = 400 and
dLxx/dz = 0.001 at z = 0. We ran the code for three separate models, with
(nJ , n∞) = (60, 300), (120, 600) and (240, 1200) for both the geodesic and
maximal slicing and one further model with (nJ , n∞) = (240, 2400) for max-
imal slicing. The results for a selection of quantities are displayed in Figures
(5–28). The first point to note is that the results are well behaved with no
apparent instabilities even through to very late in the evolution. The junc-
tion remains sharp without any noticeable smoothing and the constraints,
though not zero, do not show the exponential growth often associated with
unstable evolutions.

We ran the geodesic code until it crashed at time tS = 12.41793 which
compares well with the exact time tSg = 12.41824 (note that the time step at
the crash was 8.19× 10−6 which is considerably smaller than the initial time
step of 5.38× 10−3).

For geodesic slicing we found the apparent horizon formed at tH = 10.87837
and zH = 2.16534 while the exact values are tHg = 10.87804 and zHg =
2.16527. While for maximal slicing the numerical values were tH = 16.98238,
zH = 2.38015 compared with the exact values tHm = 17.02246, zHm = 2.37971.

For maximal slicing and the collapse of the lapse diagnostic we estimated the
slope over the interval 25.0 ≤ t ≤ 35.0 and obtained β = −0.54424 compared
with the exact value of −0.54433.

In Figures (25,26) we have plotted the fractional errors in the radius and the
central density for the first three models (as described above). For geodesic
slicing the errors are very small. For maximal slicing the errors do decrease
with increasing number of nodes however it would appear that the errors
are not converging to zero. The simple explanation is that we set N = 1
on a finite outer boundary and this clearly incurs an error. To test this we
re-ran our code with different choices for the location of the outer boundary
(while retaining the same number of nodes). This showed that the peaks in
Figures (26) varied inversely with the distance to the outer boundary z∞.
Incidentally, the broad peaks in those figures correspond to the formation of
the apparent horizon.

For maximal slicing we have taken a snapshot of the numerical data at a
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fixed time, Figure (24), to compare the density and the lapse with their
exact values (from the Petrich code) across the lattice. Once again we see an
initial convergence from coarse to fine resolutions but then the convergence
appears to falter. This is also due to the use a of finite outer boundary, the
peaks in the errors being proportional to 1/z∞. Similar considerations apply
to the snapshots of the Hamiltonian and momentum constraints, see Figure
(23). The corresponding snapshot for geodesic slicing is shown in Figure (22).
In this case the errors are not limited by z∞ but instead depend only on nJ
and n∞ and with the limited data available (only three models) it appears
that the peaks in these figures reduce by a factor of about 4 for each doubling
of (nJ , n∞).

The fractional changes in the horizon Lxx are shown in Figure (28). This
shows that for t < 32 the horizon area varied by no more than 5 × 10−2

percent for the coarsest model improving to less than 1 × 10−3 percent for
the finest model. By t ≈ 500 the error had grown to less than 2 percent for
the finest model.

We also ran our code using the Hamiltonian constraint to set the density and
found results very similar to those just given.

13 Discussion

The results just presented are very encouraging. They are consistent with
our previous investigations of the smooth lattice method [7, 8, 6] yielding
excellent results with only minor demands on computational resources. This
gives us confidence that the method is viable but further tests are certainly
required in particular an example in full 3+1 dimensions, without symme-
tries, is imperative. This is a work in progress and we hope to report on this
soon.

One striking feature of the results for maximal slicing which we have so far
ignored is the wave-like behaviour displayed in many of the plots (and similar
behaviour was also noted in Paper 1). This is certainly not a gravitational
wave (the spacetime is spherically symmetric). Can this behaviour be un-
derstood from the evolution equations? Without delving too far into the
analysis we note that the first order equations (4.3) and (4.5) can be recast
as a single second order equation for Lxx. This will involve d2Lxx/dt

2 and
the Riemann curvatures. But in these late times, where the waves are ap-
parent, we see that |Rxzxz| � |Rxyxy| and thus the curvatures are dominated
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by Rxyxy which, through the geodesic deviation equation, (3.1), introduces
d2Lxx/dz

2 into the second order evolution equation for Lxx. Thus we have in
the one equation the two key elements of the one-dimensional wave equation
for Lxx and so wave-like behaviour is not surprising. Of course this is a very
loose argument and there are many more terms to contend with before it can
be said that the wave-like behaviour can be understood in standard terms.
We will pursue this matter in a later paper.

A The Darmois-Israel junction conditions

Consider a spacetime (g,M) and let S be some 3-dimensional time like sur-
face in M. This surface will divide M into two parts; one part, ML, to the
left of S and another part,MR, to the right. In the absence of surface layers
(e.g. infinitesimally thin shells of dust with non-zero energy) the Darmois-
Israel junction conditions [18, 19] ensure that g is a solution of Einstein’s
equations everywhere in M provided it is a solution in M/S, and most im-
portantly, that the first and second fundamental forms on S are continuous
across S.

Suppose we denote the first and second fundamental forms on S by h̃ and
K̃ respectively. Then each of these quantities can be calculated from the
embedding of S in either ML or in MR. The junction conditions requires
that both computations yield identical results, that is 0 = [h̃] and 0 = [K̃].

In our case we take (g,M) to be the Oppenheimer-Snyder spacetime and S
to be the surface generated by the evolution of the surface of the dust. We
will use a ˜ symbol to denote quantities that live on S, for example, h̃ and
K̃ will represent the 3-metric and extrinsic curvatures respectively on S. We
extend this notation slightly to allow ñ to be unit (space like) normal to S
in M.

Our first task will be to express the junction conditions in terms of data on
Σ.

We know that Lxx lies in S and thus the junction condition 0 = [h̃] requires
both 0 = [Lxx] and 0 = [dLxx/dt] while 0 = [K̃] requires 0 = [dLxx/dz] (note
that d/dz is not normal to S but it can be resolved into pieces parallel and
normal to S and the result follows). Looking back at the evolution equation
(4.3) we see that this series of observations leads to the simple condition that
0 = [Kxx]. We will make use of this result in the following discussions on the
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Riemann curvatures. Consider the Gauss equation for S, namely,

⊥̃
(
4Rµανβ

)
= R̃µανβ − K̃µνK̃αβ + K̃µβK̃αν

where ⊥̃ is the projection operator for S i.e. ⊥̃µν = δµν − ñµñν . Since the
vectors mµ

x, mµ
y are both tangent to S and since 0 = [K̃µν ] we have

0 = [4Rµανβm
µ
xm

ν
xm

α
ym

β
y ]

We can apply the Gauss equation once again, but this time for Σ rather than
S, that is

⊥
(
4Rµανβ

)
= Rµανβ +KµνKαβ −KµβKαν

This leads to the simple equation

0 = [Rxyxy] (A.1)

where we have used 0 = [Kxx] and the fact that Kµν is diagonal. This is
one of our two junction conditions for the Riemann curvature. The second
condition will apply to Rxzxz and as we shall soon see amounts to no more
than requiring continuity of the Hamiltonian constraint across the junction
(as we would expect).

We repeat the above procedure this time using the vectors mµ
x and tµ and

after the first Gauss equation we find

0 = [4Rµανβm
µ
xm

ν
yt
αtβ]

Now tµ is spanned by nµ and mµ
z , that is tµ = vnn

µ+vzm
µ
z , and thus we have

0 = [v2n⊥ (Rµανβn
µnν)mα

zm
β
z + 2vnvz⊥ (Rµναβn

µ)mν
zm

α
xm

β
x

+ v2z⊥ (Rµναβ)mµ
zm

ν
zm

α
xm

β
x]

where we have also included the projection operator⊥ for Σ (sincemµ
x andmµ

z

are both tangent to Σ) in preparation for the second application of the Gauss
equation. This time we will need the Gauss equation and its contractions
with nµ, that is

⊥
(
4Rµανβ

)
= Rµανβ +KµνKαβ −KµβKαν

⊥
(
4Rµανβn

µ
)

= Kαβ|ν −Kαν|β

⊥
(
4Rµανβn

µnν
)

= −⊥
(
4Rαβ

)
+Rαβ +KKαβ −KαµK

µ
β
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Using the Einstein equations, 4Rαβ = 8πk(Tαβ − (1/2)gαβT ), the constraint
equation K|µ −Kµ

ν
|ν = 8πk⊥(Tµνn

ν) and the diagonal character of Kµν we
find that

⊥ (Rµναβ)mµ
zm

ν
zm

α
xm

β
x = Rxzxz +KxxKzz

⊥ (Rµναβn
µ)mν

zm
α
xm

β
x = −4πkρvnvm

⊥ (Rµανβn
µnν)mα

zm
β
z = −4πkρ+Rxyxy +Rxzxz +KxxKzz +K2

xx

and thus our junction condition can be reduced to

0 =

[
1

2
ρv2n −Rxzxz −KxxKzz

]
(A.2)

where we have used v2z = v2n − 1 to eliminate vz. Looking back at our con-
straint equations (5.1) we see that this last equation, along with 0 = [Rxyxy]
and 0 = [Kxx], shows that the Hamiltonian constraint must be conserved
across the junction (as expected).

B The maximal lapse equation

Let (N)i be the node values of the lapse function across the lattice. Then
using second order accurate finite differences (on a non-uniform grid) we
obtain the following discrete equations

0 = ai(N)i+1 + bi(N)i + ci(N)i−1 (B.1)

with

ai =
2

(Lzz)i

(
(Lzz)i−1
(Lxx)i

(
dLxx
dz

)
i

+ 1

)
(B.2)

ci =
−2

(Lzz)i−1

(
(Lzz)i
(Lxx)i

(
dLxx
dz

)
i

− 1

)
(B.3)

bi =
4
(
L̄zz
)
i

(Lzz)i−1(Lzz)i

(
(∆Lzz)i
(Lxx)i

(
dLxx
dz

)
i

− 1

)
− 2
(
L̄zz
)
i

(
R− πkρ(8v2n + 4)

)
i

(B.4)

for z > 0 and

ai =
6

(Lzz)i
ci =

6

(Lzz)i−1
(B.5)

bi =
−4
(
L̄zz
)
i

(Lzz)i−1(Lzz)i
− 2
(
L̄zz
)
i

(
R− πkρ(8v2n + 4)

)
i

(B.6)
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for z = 0.

In the above equations we have introduced 2
(
L̄zz
)
i

= (Lzz)i + (Lzz)i−1 and
(∆Lzz)i = (Lzz)i − (Lzz)i−1.
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Figure 1: In this figure we show how the lattice is constructed from two radial
geodesics G0 and G2 and the series of interconnecting legs Lxx. The third geodesic
G1 lies midway between G0 and G2 is used to define the radial legs Lzz. The grey
patch to the left represents (part) of the dust ball. Note that the Lxx legs have
been drawn as straight lines as a reminder that these legs are geodesic segments.

Figure 2: Here we display the 3-dimensional cell which we use to compute the
energy density from the conservation equation (7.2).
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Figure 3: In this figure we introduce most of the kinematical quantities on the
lattice. The dust particle’s unit 4-velocity is vµ, while γµ is the drift vector, nµ

the unit normal to the Cauchy surface Σt, N is the lapse function and δτ is the
proper time measured along the dust particle’s trajectory.
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Figure 4: In this diagram it is easy to see that [mxµγ̃
µ] = dLxx/dz where γ̃ is the

unit vector parallel to γ. This result is used in section 4 when deriving equation
(4.3).
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Figure 5: The Lxx and Lzz leg lengths plotted from t = 0 to t = 12 in steps of 0.8.
The small dots denote the lattice node points. The larger diamonds denote the
location of the apparent horizon. This occurs late in the evolution and appears
only on the last two curves. The inward motion of the junction is also clearly
evident in this plot.
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Figure 6: The Riemann curvatures, Rxyxy top and Rxzxz bottom. Notice the
flat profiles inside the dust ball. This feature can be seen in many of the following
figures.
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Figure 7: The extrinsic curvatures, Kxx top and Kzz bottom.
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Figure 8: The constraints. These grow rapidly as the singularity is approached
and this causes the first 10 curves to be too small to be seen on this scale.
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Figure 9: The Lxx leg lengths for t = 0 to t = 32 in 20 steps (top, with 0 < z < 10)
and t = 0 to t = 500 in 10 steps (bottom, with 10 < z < 400). This time
the motion of the apparent horizon is much more noticeable than for the case of
geodesic slicing.
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Figure 10: The Lzz leg lengths for t = 0 to t = 32 in 20 steps (top, with
0 < z < 10) and t = 0 to t = 500 in 10 steps (bottom, with 10 < z < 400). Notice
the extreme change in Lzz at the junction. The curves bunch together late in the
evolution due to the exponential collapse of the lapse (see Figure (17)).
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Figure 11: The Riemann curvature Rxyxy.
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Figure 12: The Riemann curvature Rxzxz.
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Figure 13: The extrinsic curvature Kxx.
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Figure 14: The extrinsic curvature Kzz.
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Figure 15: The Hamiltonian constraint. This shows a slowly growing error for
later times.
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Figure 16: The momentum constraint. This shows a similar slow growing peak
as seen in the Hamiltonian constraint.
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Figure 17: A logarithmic plot of the lapse. The even gaps between the curves
shows clearly that the collapse is exponential in time. Note the extreme value of
the lapse at the origin for late times, of order 10−110.
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Figure 18: The trace of the extrinsic curvature K. This should be zero for all
time. In the lower plot the lapse has collapsed in that part of the lattice and thus
there is no apparent evolution in K. In the upper plot (nJ , n∞) = (240, 1200)
while for lower plot we used (nJ , n∞) = (240, 2400).
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Figure 19: The particle velocity vn.
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Figure 20: The particle velocity vz.
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Figure 21: The The rest density for geodesic slicing (top) and maximal slicing
(bottom).
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Figure 22: This is a snapshot of the constraints across the lattice at a fixed time
in geodesic slicing. The three curves correspond to the three models described in
the text. Note that the peaks decrease rapidly as the number of lattice nodes is
increased. The horizontal axes have been truncated to give a better view of the
data.
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Figure 23: The Hamiltonian and momentum constraints across the lattice at a
fixed time with maximal slicing. The peak occurs near the junction and appears
to vary as 1/n∞.
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Figure 24: The fractional errors for the lapse and the rest density across the
lattice with maximal slicing. The large error in the coarsest lattice is probably
due to having too few nodes. The finer lattice show much better errors but note
that the lapse appears not to converge at the origin. This is due to the use of a
finite outer boundary for the lapse.
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Figure 25: The fractional errors for the radius and the central density for geodesic
slicing. The convergence is clear and it is rapid (we make no attempt to estimate
the order of the convergence).
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Maximal time τ
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Figure 26: The fractional errors for the radius and the central density for maximal
slicing. The peak occurs around the time when the apparent horizon forms. The
height of the peak for the finest resolution is limited by the location of the outer
boundary. Doubling z∞ halves the height of the peak.
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Figure 27: The lapse at the origin for the three models superimposed on the
exact data of Petrich et al. (top) and for the single long term model (bottom).
This shows clearly that the lapse collapses exponentially.
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Maximal time τ
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Figure 28: The fractional change in the Lxx on the horizon for the three models
(top) and for the long-term integration (bottom) in maximal slicing). These errors
should be zero by Hawking area theorem.
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