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Abstract

We will show that the ADM 3+1 evolution equations, for a zero shift
vector, arise naturally from the equations for the second variation of
arc-length.

1 Introduction

Discussions of the dynamics of general relativity often begin with the ADM
3+1 evolution equations [1]. These equations describe the second time deriva-
tives of the spatial metric in terms of other quantities such as the lapse func-
tion and the extrinsic and Riemann curvatures. If by some means we happen
to have a local solution (in time) of those equations then we could imagine
computing the arc length for short geodesic segments. What then would
we get for the value of the second time-derivative of that arc-length? This
question has been discussed many times elsewhere [2, 3] but under a differ-
ent name – the second variation of arc-length. Clearly the second variation
of arc-length and the ADM 3+1 evolution equations must be related. The
purpose of this paper is to establish that relationship. The result is not un-
expected – the equations for the second variation of arc-length can be used
to recover the standard ADM 3+1 evolution equations with zero shift vector.

There is value in this presentation beyond the purely pedagogical – the re-
sults presented here provide strong theoretical support for an approach to
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numerical relativity being developed by the author [4, 5, 6, 7]. This method is
known as smooth lattice relativity and is closely related to the Regge calculus
[8, 9, 10]. Both methods use a lattice to describe the metric but they differ
most notably in the way they treat the curvatures. In the Regge calculus
the metric is piecewise flat with the result that the curvatures are distribu-
tions on the 2-dimensional subspaces known as bones (or hinges) while on a
smooth lattice we allow the metric to vary smoothly in the neighbourhood of
any vertex. This allows all the usual tools of differential geometry to be ap-
plied to the smooth lattice. In particular we can easily compute the Riemann
and extrinsic curvatures in terms of the geodesic arc-lengths of the lattice
and thus, using equations (3.3,3.4) or (2.5), the second time derivatives of
the leg-lengths. This makes the study of dynamics on a smooth lattice quite
simple in principle (though as with any numerical method in general relativ-
ity the practical aspects are far from trivial). Attempts have been made to
adapt the ADM 3+1 equations to the Regge calculus [11, 12] but progress
has been slow. A much more promising scheme, for the Regge calculus, is
due to Sorkin [13] with later development by Barrett et al. [14] and Gentle
and Miller [15].

2 First and second variations

Discussions on the first and second variations normally arise when asking
questions about geodesics such as: Is the geodesic that joins two points
unique? Is it the shortest geodesic? How far can the geodesic be extended
before it fails to be the shortest geodesic? The mathematical theory that
answers these questions is very elegant and has previously found its way into
general relativity as a tool in studying the global properties of spacetime [16].
Hawking and Penrose [17, 18] made extensive use of the first and second vari-
ations of non-spacelike geodesics in their singularity theorems. In contrast,
our interest in the first and second variations is that they provide a natural
setting in which to ask different questions of geodesics: How can the first
and second time derivatives (of the arc-length) be computed? And how are
they related to the curvature tensors? As already noted in the introduction
these questions will lead to the standard ADM 3+1 evolution equations with
a zero shift vector. But first we need to introduce some basic notation and
to make clear the class of curves we will be working with.

Choose a point i and a small neighbourhood of i in which the spacetime is
non-singular. All of the curves we are about to construct will have a finite
length and will lie totally within this neighbourhood. Through i construct a
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timelike curve Ci with affine parameter η. From Ci we can construct a nearby
curve Cj by dragging Ci sideways a short distance (i.e. drag Ci along a short
spacelike vector field defined on Ci). We now have two nearby timelike curves
Ci and Cj (the point j on Cj can be easily identified – it has the same η value
as i has on Ci). We will assume that the two curves Ci and Cj are sufficiently
close that, for any given η, we can construct a unique geodesic that joins the
two curves.

Consider now the family of geodesics generated by allowing η to vary. This
family of geodesics (actually, segments of geodesics) will cover a 2-dimensional
subspace (like a taut ribbon) which we will denote by S. We will introduce
coordinates on S in a rather obvious way. Consider a point P on S. There
will be exactly one space like geodesic (of S, by assumption) that passes
through P . The point P will be located some fraction, λ, along the geodesic
from Ci to Cj. Thus the points on Ci will have λ = 0 while those points on
Cj will have λ = 1. We will take the other coordinate for P to be the value
of η that identifies this geodesic from all others (in S). The coordinates for
P are then taken to be (λ, η). This situation is displayed in figure (1).

Consider now a global coordinate system, xµ, for the spacetime. Then S can
also be described by functions of the form xµ(λ, η). We now define a pair of
vectors ηµ and λµ by

ηµ =
∂xµ

∂η
, λµ =

∂xµ

∂λ
(2.1)

and a pair of unit vectors nµ and mµ by

nµ =
1

N
ηµ , mµ =

1

M
λµ (2.2)

where N and M are scalar functions that ensure that the vectors are indeed
unit vectors. Clearly the vector ηµ is tangent to the λ = constant curves
while λµ is tangent to the η = constant curves (and both vectors will, in
general, be neither unit nor orthogonal, despite appearances in figure (1)).
It is rather easy to show that M = ds/dλ = Lij where s is the proper
distance along the geodesic and Lij is the length of that geodesic. Recall

that ds/dλ is constant along a geodesic while Lij =
∫ 1

0
(ds/dλ) dλ and thus

Lij = ds/dλ. Next, using the requirement that mµ be a unit vector leads
immediately to M = ds/dλ = Lij as claimed. Later, when we specialise to
the ADM 3+1 formulation in section 3 we shall see that N is the usual lapse
function associated with the time coordinate η.

We can now state clearly the equations for the arc-length and their variations.
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Arc-length

Lij =

∫ j

i

(
gµν

∂xµ

∂λ

∂xν

∂λ

)1/2

dλ (2.3)

First variation

dLij
dη

= [mµη
µ]ji =

∫ j

i

mµm
νηµ;ν ds (2.4)

Second variation

d2Lij
dη2

= [ηα;µη
µmα]ji −

∫ j

i

Rµανβm
µmνηαηβ ds

+

∫ j

i

(
ηµ;αη

µ
;νm

αmν − (mµm
νηµ;ν)

2) ds (2.5)

For ease of reference we have included a proof of the above equations in the
appendices. See also [2, 3] for more details.

3 The ADM evolution equations. Pt. 1

Consider a typical Cauchy surface Σ and suppose that the pair of time like
curves Ci and Cj intersect Σ at the points i and j respectively. At i we
have two vectors nµ, the unit normal to Σ and mµ, the unit tangent to the
geodesic that connects i to j. If we construct a third unit vector m′µ as a
linear combination of nµ and mµ,

m′µ cosh θ = mµ + nµ sinh θ

we can, by careful choice of the boost angle θ, ensure that m′µ is tangent to
Σ. That is, we require θ such that 0 = nµm

′µ. This arrangement is shown
in figure (2). In what follows we will be looking at the behaviour of various
expressions in the case where Lij is small. So our present task is to ask : How
does θ vary with Lij? The first observation is trivial : θ → 0 as Lij → 0.
Now from 0 = nµm

′µ we have

sinh θ = nµm
µ

and thus across the leg we have

[sinh θ]ji = [nµm
µ]ji =

dLij
dη
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If we choose Lij to be sufficiently small then we can be sure that the geodesic
(that joins i to j) intersects Σ only at i and j (see figure (3)). From this
constraint we observe that θi and θj must be of opposite signs and thus

|sinh θi|+ |sinh θj| =
∣∣∣∣dLijdη

∣∣∣∣
Thus each term on the left must be of order O (dLij/dη), that is

θ = O
(
dLij
dη

)
as Lij → 0

01-Jan-2010

There is a small error in the above argument. I should have written

[N sinh θ]ji = [ηµm
µ]ji =

dLij
dη

Note the introduction of thge lapse function. As a consquence of this error
I now need to take account of the behaviour of the lapse across the leg. For
a short leg the lapse is almost constant and can thus be factored out. This
change should be carried through leading to the final statement that

θ = O
(

1

N

dLij
dη

)
as Lij → 0

3.1 The first variation

Our aim in this section is to recast the expressions for the first and second
variations in terms of the familiar ADM data, the lapse, shift and extrinsic
curvatures.

The extrinsic curvature, Kµν , can be defined in a number of ways (see [1]),
such as

NKµν = −Nnµ;ν −⊥(N,µ)nν

where ⊥ is the projection operator (⊥µν = hµν = δµν + nµnν). Then

ηµ;ν = (Nnµ);ν = N,νn
µ −⊥(N ,µ)nν −NKµ

ν

and thus

mµmν (Nnµ);ν = mµmν (N,νnµ +Nnµ;ν)

= (mνN,ν) sinh θ −NKµνm
µmν
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01-Jan-2010

There is another small error here. The last line two lines should be

mµmν (Nnµ);ν = mµmν (N,νnµ +Nnµ;ν)

= (nνN,ν) sinh2 θ −NKµνm
µmν

This error is carried through into the next two equations but the remaining
equations of this section (appear) to be correct.

This can now be substituted into the integral for the first variation (2.4)

dLij
dη

=

∫ j

i

mµmνηµ;νds

=

∫ j

i

(mνN,ν sinh θ −NKµνm
µmν) ds

Recall that we are dealing with short geodesic segments. Thus we can use
any of a number of methods to estimate the integral. To be specific, we will
chose a mid point rule (see [19]) which leads to

dLij
dη

= (mνN,ν sinh θ)Lij − (NKµνm
µmν)Lij +O

(
L2
)

where each term is evaluated at the mid-point of the geodesic. But since
θ = O (dL/dη) we see that the first term is of order O (L2) and thus

dLij
dη

= − (NKµνm
µmν)Lij +O

(
L2
)

(3.1)

Notice that mµ is the unit tangent vector at the mid-point of the geodesic
that joins i to j and thus we have

mµLij = xµj − x
µ
i +O

(
L3
)

(3.2)

So, if we put ∆xµij = xµj − x
µ
i we can rewrite (3.1) as

dL2
ij

dη
= −2NKµν∆x

µ
ij∆x

ν
ij +O

(
L3
)

(3.3)
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3.2 The second variation

Once again we use the basic definition of the extrinsic curvature to express
the terms appearing in the second variation in an ADM form. We will do
the calculations by splitting our previous expression for the second variation
(2.5) into the following pieces

d2Lij
dη2

= J1 + J2 + J3 + J4

J1 = [ηα;µη
µmα]ji J2 = −

∫ j

i

Rµανβm
µmνηαηβ ds

J3 =

∫ j

i

ηµ;αη
µ
;νm

αmν ds J4 = −
∫ j

i

(mµm
νηµ;ν)

2 ds

3.2.1 The second term

We start with this term as it requires very little work. We simply substitute
ηµ = Nnµ and approximate the integral via a mid-point rule leading to

J2 = −
∫ j

i

Rµανβm
µmνηαηβ ds = −N2Rµανβm

µmνnαnβLij +O
(
L2
)

3.2.2 The fourth term

Here we use mµmνηµ;ν = −NKµνm
µmν +O (L) (the error term arises from

the nµm
µ = sinh θ = O (L) terms). Thus we are led to

J4 = −
∫ j

i

(mµmνηµ;ν)
2 ds = −

∫ j

i

(−NKµνm
µmν +O (L))2 ds

= − (NKµνm
µmν)2 Lij +O

(
L2
)

= − 1

Lij

(
dLij
dη

)2

+O
(
L2
)

where we have used (3.1) in the second last line.

The remaining terms are not so easily dealt with.
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3.2.3 The third term

For the third term the details are as follows

J3 =

∫ j

i

ηµ;αη
µ
;νm

αmνds

=

∫ j

i

(N,αnµ +Nnµ;α) (N,βn
µ +Nnµ;β)mαmβ ds

=

∫ j

i

(
− (N,αm

α)2 +N2nµ;αn
µ
;βm

αmβ
)
ds

=

∫ j

i

(
− (N,αm

α)2 + (⊥(N,µ)nα +Kµα) (⊥(N ,µ)nβ +Kµ
β)mαmβ

)
ds

=

∫ j

i

(
− (N,αm

α)2 +N2KµαK
µ
βm

αmβ +O (L)
)
ds

12 Mar 2011

The second last line in the above equation should read

=

∫ j

i

(
− (N,αm

α)2 + (⊥(N,µ)nα +NKµα) (⊥(N ,µ)nβ +NKµ
β)mαmβ

)
ds

Notice the two extra N ’s. The final line in the above equation is correct.

The error term O (L) in the last line arises from terms of the form nµm
µ =

sinh θ = O (L). Now we use the mid-point rule, once again, to obtain

J3 =

∫ j

i

ηµ;αη
µ
;νm

αmνds = − (N,αm
α)2 Lij +N2KµαK

µ
βm

αmβLij +O
(
L2
)

3.2.4 The first term

Finally, we turn to the first term [ηα;µη
µmα]ji . Using the same substitutions

as we have used before and also using NnµN,µ = dN/dη we obtain

J1 = [ηα;µη
µmα]ji =

[
1

N

dN

dη
ηµmµ

]j
i

+ [NN,µm
µ]ji

We choose to write this result as a sum of two terms each of the form [· · · ]ji
so that we can deal with each term separately. In the first term we have
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(1/N)dN/dη which varies slowly over the short geodesic and thus may be
taken as a constant (plus an error term of order O (L)), thus we have[

1

N

dN

dη
ηµmµ

]j
i

=
1

N

dN

dη
[ηµmµ]ji + [ηµmµ]ji O (L)

=
1

N

dN

dη

dLij
dη

+O
(
L2
)

For the second term we use a Taylor series expansion

[NN,µm
µ]ji =

d

ds
(NN,µm

µ)Lij +O
(
L2
)

= (NN,µm
µ);αm

αLij +O
(
L2
)

= (N,µm
µ)2 Lij +NN;αβm

αmβLij +O
(
L2
)

The appearance of the term N;αβ is encouraging – it reminds us of the similar
term in the ADM equations. We can improve on this situation. Notice that
m′µ = mµ +O (L) and thus

N;αβm
αmβ = N;αβm

′αm′β +O (L)

However, m′µ is tangent to Σ thus we also have

N;αβm
αmβ = N|αβm

′αm′β +O (L) = N|αβm
αmβ +O (L)

where the vertical stroke denotes covariant differentiation with respect to the
3-metric intrinsic to Σ.

Combining these two results we obtain our final estimate for the first term
in the second variation

[ηα;µη
µmα]ji =

1

N

dN

dη

dLij
dη

+ (N,µm
µ)2 Lij +NN|αβm

αmβLij +O
(
L2
)

Now we can reassemble the pieces. The result is

d2Lij
dη2

=
1

N

dN

dη

dLij
dη
− 1

Lij

(
dLij
dη

)2

+N2KµαK
µ
βm

αmβLij

+NN|αβm
αmβLij −N2Rµανβm

µmνnαnβLij +O
(
L2
)
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We are almost finished, we just need to do a little bit of tidying up. We
multiply both sides by Lij/N and noting that

d2L2
ij

dη2
= 2

(
dLij
dη

)2

+ 2Lij
d2Lij
dη2

d

dη

(
1

N

dL2
ij

dη

)
= − 1

N2

dN

dη

dL2
ij

dη
+

1

N

d2L2
ij

dη2

we can rewrite the above equation as

d

dη

(
1

N

dL2
ij

dη

)
= 2N|αβ∆xαij∆x

β
ij (3.4)

+ 2N (KµαK
µ
β −Rµανβn

µnν) ∆xαij∆x
β
ij +O

(
L3
)

where we have also used ∆xµij = mµLij +O (L3).

For completeness, we repeat here the result we previously obtained for the
first time derivative,

dL2
ij

dη
= −2NKµν∆x

µ
ij∆x

ν
ij +O

(
L3
)

(3.3)

4 The ADM evolution equations. Pt. 2

This completes the first stage of the construction. We have successfully ex-
pressed the first and second variations in terms of the extrinsic and Riemann
curvatures. Our second and final stage will, among other things, introduce
the metric tensor as a replacement for the geodesic arc-lengths. As we shall
soon see, this is not a difficult task. The most notable change is not in the
symbols, from L2

ij to gµν , but in the structure of the equations. We will be
re-working an equation defined over a geodesic segment into an new equation
defined at a point.

Consider a typical geodesic segment with end-points i and j. The time like
worldlines Ci and Cj generated by i and j are, by assumption, orthogonal
to the Cauchy surfaces. Thus we can use these curves to propagate the
spatial coordinates of each Cauchy surface forward in time. This means that
the spatial coordinates of any point on Ci are constant along Ci and thus
0 = d∆xµij/dη.
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We now introduce the metric by estimating Lij using a mid-point rule for∫
ds,

Lij =

∫ j

i

(
gµν

∂xµ

∂λ

∂xν

∂λ

)1/2

M dλ

=

(
gµν

∂xµ

∂λ

∂xν

∂λ

)1/2

M +O
(
L2
)

where each term on the right hand side is evaluated at the mid point of the
geodesic. But we have previously shown (2.1,2.2) and (3.2) that ∂xµ/∂λ =
mµLij = ∆xµij +O (L3). We can use this to estimate L2

ij as

L2
ij = gµν∆x

µ
ij∆x

ν
ij +O

(
L3
)

We can go one step further by noting that gµν = hµν − nµnν and nµ∆xµij =
Lij sinh θ = O (L2) and thus to leading order in L we have

gµν∆x
µ
ij∆x

ν
ij = hµν∆x

µ
ij∆x

ν
ij +O

(
L4
)

which, when substituted into the above, leads to

L2
ij = hµν∆x

µ
ij∆x

ν
ij +O

(
L3
)

(4.1)

It is now just a short step to the finish line. First substitute (3.3) into (3.4)
and then (4.1) into (3.3) and finally take the ∆xµij terms out through the time
derivatives. Then notice that the ∆xµij are arbitrary and that the coefficients
of ∆xµij∆x

ν
ij are symmetric in µν and purely spatial. This allows us to cancel

the ∆xµ from both sides of the equations after which we can safely let L→ 0
(the details of this series of substitutions and eliminations are excluded as
they follow very standard lines). As expected the final result is nothing other
than the familiar ADM evolution equations with a zero shift vector

dhµν
dη

= −2NKµν

dKµν

dη
= −N|µν −N

(
KµαK

α
ν −Rµανβn

αnβ
)

A The first variation

We know that the mixed partial derivatives of xµ(λ, η) must commute, thus
we must have

λµ,νη
ν = ηµ,νλ

ν
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and for a symmetric connection (which we are using) we also have

λµ;νη
ν = ηµ;νλ

ν

which can be re-expressed, terms of the unit vectors nµ and mµ, as

(Nnµ);ν (Mmν) = (Mmµ);ν (Nnν) (A.1)

Finally, as the vector mµ is the unit tangent to an η = constant geodesic, we
have

0 = mµ
;νm

ν

and

0 =
∂2xµ

∂λ2
+ Γµαβ

∂xα

∂λ

∂xβ

∂λ

We will use the above equations frequently in the following discussions.

Here we consider the geodesic arc-length and its first time derivative,

Lij =

∫ 1

0

ds

dλ
dλ =

∫ 1

0

(
gµν

∂xµ

∂λ

∂xν

∂λ

)1/2

dλ

dLij
dη

=
d

dη

∫ 1

0

ds

dλ
dλ =

∫ 1

0

∂

∂η

(
gµν

∂xµ

∂λ

∂xν

∂λ

)1/2

dλ

Note that the path xµ(λ, η) in each of these integrals is a geodesic and that η
is constant along the geodesic. The second integral in the last equation above
can be readily evaluated using standard techniques (expand the η derivative,
swap orders of mixed derivatives, integrate by parts and impose the geodesic
equation). The result is

dLij
dη

=
1

Lij

[
gµν

∂xµ

∂λ

∂xν

∂η

]j
i

= [mµη
µ]ji

where we have taken the small liberty of replacing the limits 0 and 1 with the
more suggestive labels i and j. This is an elegant result – it shows that for
a geodesic segment, dLij/dη can be computed from data defined only at the
end points of the geodesic. This may seem simple but it hides a significant
complexity – the data involved can only be found by solving a two-point
boundary value problem.

Despite this compact and elegant form for the first time derivative, we will
now develop an alternative integral expression that happens to be better
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suited to our later calculations of the second time derivative. Consider for
the moment the quantity Q defined by

Q =

∫ j

i

mµm
ν (Nnµ);ν ds

with the integration path being, as expected, an η = constant geodesic. We
will now show that Q = dLij/dη. We begin by writing ds = (ds/dλ)dλ =
Mdλ and using the commutation relation (A.1) to obtain

Q =

∫ j

i

mµη
ν (Mmµ);ν dλ

Now expand the covariant derivative and use 1 = mµm
µ and 0 = mµm

µ
;ν to

obtain

Q =

∫ j

i

ηνM,ν dλ =

∫ j

i

∂

∂η

(
ds

dλ

)
dλ =

d

dη

∫ j

i

ds

dλ
dλ =

dLij
dη

Thus we have shown that

dLij
dη

= [mµη
µ]ji =

∫ j

i

mµm
νηµ;ν ds (2.4)

Our challenge now is to compute the second time derivative. This proceeds
in a manner similar to the above calculation though it is a tad lengthy.

B The second variation

To compute the second derivative we need only apply d/dη to (2.4). This
leads to

d2Lij
dη2

=
d

dη

∫ j

i

mµm
νηµ;ν ds =

∫ j

i

∂

∂η
(mµm

νηµ;νM) dλ

=

∫ j

i

(mµη
µ
;νλ

ν);α η
α dλ

=

∫ j

i

(mµ;αη
µ
;νλ

ν +mµη
µ
;ν;αλ

ν +mµη
µ
;νλ

ν
;α) ηα dλ

We will apply various manipulations to the three main parts of this integral
and we will make extensive use of the geodesic equations, 0 = mµ

;νm
ν , the
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commutation relations, λµ;νη
ν = ηµ;νλ

ν and the observations that mµ is a
unit vector along the geodesic.

We start by splitting the above integral into three pieces

I1 =

∫ j

i

mµ;αη
µ
;νλ

νηα dλ

I2 =

∫ j

i

mµη
µ
;ν;αλ

νηα dλ

I3 =

∫ j

i

mµη
µ
;νλ

ν
;αη

α dλ

which we will now attempt to simplify.

Integral I1

Put λν = mνM and mµ;αM = (mµM);α −mµM;α and then use the commu-
tation rule on λµ;αη

α to obtain

I1 =

∫ j

i

ηµ;αη
µ
;νm

αmνM dλ−
∫ j

i

mµM;αη
αηµ;νm

ν dλ

Consider the second integral in this pair and denote it by I4. Since mµ is a
unit vector we can slide a factor of mθm

θ inside M;α, like this

I4 =

∫ j

i

mµ

(
mθm

θM
)
;α
ηαηµ;νm

ν dλ

=

∫ j

i

mµ

(
mθ;αm

θM +mθ

(
mθM

)
;α

)
ηαηµ;νm

ν dλ

The term mθ;αm
θ is zero since mµ is a unit vector while the remaining term

is ripe for a commutation operation. This leads to

I4 =

∫ j

i

mµmθη
θ
;αm

αMηµ;νm
ν dλ =

∫ j

i

(mµm
νηµ;ν)

2M dλ

So our final expression for I1 is

I1 =

∫ j

i

(
ηµ;αη

µ
;νm

αmν − (mµm
νηµ;ν)

2)M dλ

Integral I3
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We step out of sequence here because one term arises in this computation
that will be useful when we tackle the second integral I2.

This integral is slightly easier to work with than the first integral and it will
give rise to the Riemann tensor. The main device used here is to swap the
order of the second partial derivatives on ηµ;ν;α balanced by the addition of
the Riemann tensor. Thus we have

I3 =

∫ j

i

mµη
µ
;ν;αm

νηαM dλ

=

∫ j

i

mµ (ηµ;α;ν +Rµ
ρανη

ρ)mνηαM dλ

= I5 −
∫ j

i

Rµανβm
µmνηαηβM dλ

where we have introduced a fifth integral,

I5 =

∫ j

i

mµη
µ
;α;νm

νηαM dλ

Integral I2 + I5

As we shall soon see, the integrand for I2 + I5 can be combined to form a
total derivative and thus the integration is trivial. We start by forming the
sum I2 and I5

I2 + I5 =

∫ j

i

(
ηα;µη

µ
;βm

αmβ + ηµ;α;νmµη
αmν

)
ds

where ds = Mdλ. By careful inspection of the integrand, while noting the
geodesic conditions, 0 = mµ

;νm
ν , it is not hard to see that the integrand can

also be written as (ηα;µη
µmα);νm

ν . Thus we have

I2 + I5 =

∫ j

i

(ηα;µη
µmα);νm

ν ds

= [ηα;µη
µmα]ji

Our job is done, all of the integrals have been evaluated as far as possible –
all that remains is to combine the above results. This leads to

d2Lij
dη2

= [ηα;µη
µmα]ji −

∫ j

i

Rµανβm
µmνηαηβ ds

+

∫ j

i

(
ηµ;αη

µ
;νm

αmν − (mµm
νηµ;ν)

2) ds (2.5)
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This last integral can be simplified slightly by introducing

vµ = ηµ − ηρmρmµ

which leads to

d2Lij
dη2

= [ηα;µη
µmα]ji −

∫ j

i

Rµανβm
µmνηαηβ ds+

∫ j

i

vµ;αv
µ
;νm

αmν ds

16



Figure 1: This figure displays the 2-dimensional surface S constructed from
the pair of time like worldlines Ci and Cj . The curve connecting i to j is a
spacelike geodesic with length Lij . Along these geodesics η = constant. Note that
the tangent vectors nµ and mµ are unit vectors but they need not be mutually
orthogonal.
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Figure 2: In this figure the lower (straight) curve is the geodesic that joins i to j.
The upper curve (which is not shown in figure (1)) arises from the intersection of
the Cauchy surface with the 2-dimensional surface S. The unit vectors nµ and m′µ

are orthogonal. Note that, in general, η is not constant on each Cauchy surface.

Figure 3: This is a situation that we explicitly exclude. In this case the points
i and j are so far apart that the geodesic intersects the Cauchy surface at points
other than i and j. In this case θi and θj have the same signs, contrary to the
assumptions made in the text.
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