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Abstract. This paper presents the results of applying specific time series statistical 

techniques to observed historical groundwater-climate data at the Ranger uranium 

project. By developing and applying existing statistical techniques, rarely used in 

mining studies, improved confidence about the understanding of the groundwater-

climate relationship at the Ranger uranium project is obtained. This forms a sound 

basis upon which future climate scenarios can be used to predict the response of 

the groundwater after rehabilitation and into the long-term, especially with respect 

to potential climate change impacts. 

Introduction 

The relationship between groundwater and climate is critical to understand in the 
design of uranium mine rehabilitation, especially in tropical regions with intense 
monsoonal rains and extended dry seasons. The Ranger uranium mine is located in 
the wet-dry tropics of northern Australia and is surrounded by the world heritage-
listed Kakadu National Park (Fig. 1) – making it imperative to understand the 
groundwater-climate relationship to ensure that appropriate rehabilitation designs 
are implemented upon mine closure. 

There are a variety of techniques which can be used to model the relationship 
between groundwater and climatic conditions. The complex geology, topography 
and climatic variability of the Ranger project area makes a deterministic process-
based model a challenging task. For a simpler approach, this paper presents the 
application of time series statistical techniques, an approach rarely used in mining 
projects (companion conference papers present physical modelling approach). 
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Ranger uranium project, Northern Territory, Australia 

The Ranger uranium deposits were first discovered and 1969, and after extended 
controversy and debate, was approved for development in 1977. Production began 
in August 1981, and is currently at 5,000 t U3O8/year via open cut mining and a 
conventional mill. At present, mining is scheduled to be completed in 2012, with 
milling of ore stockpiles to be completed by 2020. The site is located on freehold 
indigenous land, controlled by the Mirarr traditional owners. 

The Ranger project is located in the Alligator Rivers Region and is surrounded 
by the world-heritage listed Kakadu National Park (Fig. 1). The area has a wet-dry 
monsoonal climate, with average annual rainfall of ~1,450 mm and pan evapora-
tion of ~2,500 mm. Virtually all rainfall occurs during the monsoonal months of 
December to March, leading to a strongly positive water balance over this time. 

After completion of mining and milling, the Ranger site will be rehabilitated, 
and a key legal criterion for tailings is that they “will not result in any detrimental 
environmental impacts for at least 10,000 years” (Senate 2003). As groundwater is 
the key driver for long-term migration, it is therefore critical to understand 
groundwater-climate relationships (especially in light of potential climate change 
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Fig.1. Location and outline of the Ranger uranium project, Northern Territory, 
Australia. 
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impacts). Given Ranger’s location, there is a range of climate and groundwater 
monitoring data which can be analysed, with an example shown in Fig. 2. 

Methodology and approach 

Conceptual hydrologic model 

The groundwater behaviour at the Ranger site is treated as a one-dimensional and 
effectively vertical flow system, based on the large head changes each wet season 
relative to minor lateral flow. In this manner, the recharge of groundwater during 
the wet season causes a rise in the water table, while the negative flux during the 
dry season (due to both soil evaporation and vegetative transpiration) leads to a 
subsequent decline in the water table. The monthly climatic flux is shown in Fig. 
3. The extent of this annual cyclical movement of groundwater is dependent on 
soil types, underlying geology and relatively flat topography (see Kabir et al 
2008). The groundwater bores chosen for analysis were screened based on long-
term trends and no evidence of direct mining impacts on head levels (eg. seepage). 

All data is obtained from monitoring of groundwater and climate (rainfall, pan 
evaporation) at the Ranger site, courtesy of Energy Resources of Australia Ltd 
(ERA, mine owner) or the Office of the Supervising Scientist (OSS, Federal agen-
cy) (further details are given in Kabir, 2008). 

Time series statistical techniques – brief review 

Although times series statistical techniques (TSST) methods are widely used in 
other disciplines (e.g. economics, hydrology), they have seen little application in 
groundwater studies(e.g. Fig. 2). Only a brief review is possible herein; for a more 
thorough treatment see Brockwell and Davis (2002). 
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Fig.2. Monthly net flux (rainfall minus estimated evapotranspiration) versus groundwater 
response, Ranger site. Note both annual variation plus longer term decadal variation. 
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At its simplest conceptual basis, time series techniques involve developing a 
statistical relationship between an independent variable (e.g. climate data as cause) 
and a dependent variable (e.g. groundwater response as effect). 

In this study, exploratory data analysis was undertaken to examine seasonality, 
trends and random noise (e.g. Fig. 2). Classical decomposition techniques were 
used to address this, and represents a univariate time series model, given as 
(Brockwell and Davis 2002): 

Xt = mt + st + At (Eq.1) 

and EAt = 0, st+d + At  and∑ =
=

d
1j j 0  s   (Eq.2) 

where Xt is the dependent variable at time t (ie. groundwater), mt is the long-
term trend component, st is the seasonal component, At is the random noise com-
ponent (a zero-mean stationary process), EAt is the expected value of At, and d is 
the period of seasonal components. 

The seasonal component is calculated such that the period length (d) ensures 
the values are the same. For example, a period of 12 is used for monthly data. The 
algebraic sum of the 12 months seasonal components should equal zero (Eq. 2). 
The seasonal components of the net flux and groundwater level are given in Fig. 3. 

A univariate autoregressive moving average (ARMA) model could explain the 
time series of climate and groundwater data of four selected bores, however, the 
causal relationship between climate and groundwater levels requires multivariate 
analyses. Therefore two specific TSST methods, namely the transfer function 
noise (TFN) model and the multivariate autoregressive (MA) model, were used for 
modelling the groundwater-climate data. 

The first TSST model applied in this paper is the TFN model, and involves 
transforming data to generate zero-mean stationary data sets. The TFN model can 
then be represented as (Brockwell and Davis 2002): 

Y(t) = T(B).X(t) + N(t) (Eq.3) 
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Fig.3. Monthly rainfall, estimated evapotranspiration and net flux. 
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where Y(t) is the dependent variable (ie. groundwater), X(t) is the independent 
variable (climate), T(B) is a causal time-invariant linear filter, B is back shift oper-
ator and N(t) is a zero-mean stationary process (uncorrelated with X(t)). 

The second TSST model developed is a Yule-Walker multivariate autoregres-
sive (MA) model using monthly data. 

Further theoretical discussion, development and references for both TSST 
models can be found in Brockwell and Davis (2002). 
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Fig.5. Predictions of groundwater level by the transfer function noise (TFN) model. 

-1.6

-1.2

-0.8

-0.4

0.0

0.4

0.8

1.2

1.6

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Se
as

on
al

 c
om

po
ne

nt
 (s

k)
 : 

gr
ou

nd
w

at
er

 (m
)

-150

-100

-50

0

50

100

150

200

250

Se
as

on
al

 c
om

po
ne

nt
 (s

k)
 : 

ne
t f

lu
x 

(m
m

)

Seasonal groundwater component

Seasonal net flux component

 
Fig.4. Seasonal components of climatic net flux and groundwater level data. 
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Results 
Monthly groundwater levels have been predicted for twenty months by analysing 
twenty two years monthly data (Fig. 5) by TFN model. The monthly net flux and 
monthly groundwater levels have been predicted for twenty years by analysing 
twenty-two years monthly data, shown in (Fig. 6) by MA model. 
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Fig.6. Predictions of monthly net flux (left) and groundwater levels (right) 
by multivariate autoregressive (MA) model. 
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The TFN model is represented by: 

Input X(t) = -0.012 X(t-1) + 0.121 X(t-2) + 0.266 X(t-3) – 0.201 X(t-4) – 
0.551 X(t-5) + Z(t) + 0.190 Z(t-1) – 0.367 Z(t-2) – 0.438 Z(t-3) + 0.276 Z(t-

4) + 0.935 Z(t-5)       (Eq.4) 

Transfer  T(B) = 1.7 B / (1 – 0.283 B)    (Eq.5) 

Noise N(t) = W(t) + 0.5135W(t-1) + 0.336W(t-2) + 0.2365W(t-3) (Eq. 6) 

Model performance was evaluated in the light of existing statistical criteria, 
such as model simplicity, model fitness and the Akaike Information Criterion with 
Correction AICC (Akaike 1969), combined with the appropriateness of the physi-
cal basis of the two methods. In Table 2, to compare the statistical performance of 
the monthly-based models, a number of criteria have been considered. These are 
the AICC statistic, root mean square error (RMSE), and square of correlation coef-
ficient (R2) for the models. It is found that the TFN model performs better than the 
AR model with respect to RMSE and R2, while the reverse is true for the AICC 
statistic. The AICC statistic is a standard selection criterion when the competing 
models are of the same type, where a minimum value indicates the best model, but 
it does not make sense when comparing two different types of models. In this 
case, the TFN model is structurally different from the MA model. From this basis, 
the TFN model can be said to be better than the AR model. 

The groundwater levels are predicted by the monthly TFN and MA models for 
the period November 2001 to October 2002 and compared to measured values (ie. 
a model validation test). The results are shown in Fig. 7 and confidence intervals 
are compared in Table 2. In the validation test the two models are similar. 

Table 1. Statistical evaluation and comparison of TFN and MA models. 

Model AICC RMSE R2 
Transfer function noise (TFN) 6698 0.166 0.761 
Multivariate autoregressive (MA) 6585 0.173 0.760 
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Fig.7. Validation of TFN model (left) and MA model (right) for Nov. 2001 to Oct. 2002. 

Table 2. Average confidence interval range for TFN and MA models, Nov. 2001 to Oct. 
2002 validation. 

Model Average range of confidence interval (m) 
Transfer function noise (TFN) 2.94 
Multivariate autoregressive (MA) 2.56 

 
Technically, TFN models are superior to MA models in explaining the 

groundwater-climate relationship. The theory of MA model considers the mutual 
dependence of all the series of the process. For instance, the net flux at time t+1 is 
represented as function of net flux at t, t-1, t-2 … together with groundwater level 
at t, t-1, t-2 … as well and a noise component. However, in the TFN model, the 
previous values of the groundwater level series are not considered explicitly. From 
the scientific point of view, there does exist a strong causal relationship between 
net flux and groundwater level, but the relationship is not two way. That means 
net flux influences groundwater level but groundwater level does not influence net 
flux to any significant extent (ie. the influence is effectively one way). Although 
the evaporative flux depends on soil moisture content, which in turn is influenced 
by the nearness of groundwater level to the surface, the importance of this variable 
is much less than other factors such as intensity and duration of radiative energy, 
relative humidity, temperature gradient, soil thermal conductivity, vegetation type, 
wind speed, etc., which influence the evaporation and transpiration process. The 
statistical fits and confidence intervals of both models, however, are comparable. 
Therefore, the TFN model is more acceptable than the MA model in representing 
the system and predicting future groundwater levels. 
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Discussion 

To select the appropriate method of analysis of the groundwater-climate relation-
ship, reviews of the various classes of models were performed. The three basic 
features, useful for distinguishing approaches to modelling are (CRCCH 2005): 
• the nature of the basic algorithms (empirical, conceptual or process-based); 
• whether a statistical or deterministic approach is taken to input or parameter 

specification; 
• whether the spatial and temporal representation is lumped or distributed. 

The review of key climate feedbacks which are related to groundwater recharge 
and hydrologic processes suggests that to manage the complex interaction between 
climate and groundwater recharge, the development of a balanced modelling 
framework is necessary. Data-based statistical techniques are more preferable than 
deterministic models when the latter requires too much simplification of the com-
plex system. Comprehensive modelling of groundwater-climate relationships 
could go to the ultimate extent of including a variety of processes, such as heat 
flow, groundwater flow and pumping, vapour fluxes, cloud cover, vegetative 
transpiration, soil evaporation, variable geology and soils, and so on. However, 
such complexity is clearly unrealistic given the large spatial and temporal uncer-
tainties involved in all of these aspects and processes. 

Climatic conditions and variability undoubtedly govern or contribute to shallow 
groundwater levels (e.g. Fig. 2) (see also Alley 2001; Glassley 2003; Loáiciga 
2003; Michaud et al 2004), yet a complete process representation is computation-
ally and physically unrealistic given the complex variability of processes and in-
ter-dependence of many factors. This is not to ignore the value of sound physical 
or process-based models, but it highlights that different approaches such as time 
series statistics can be used to compliment such models and analyses, often pro-
viding efficient numerical techniques which effectively combine the complexity of 
natural processes into functional statistical relationships. 

Conclusions 

Groundwater levels will be the major driver for the potential transport of solutes 
from a rehabilitated Ranger uranium mine, especially levels relative to non-mine 
areas. To ensure that the rehabilitation achieves its legal obligations to protect the 
surrounding water resources and ecosystems for 10,000 years from tailings, it is 
vital to understand and be able to model the groundwater-climate relationship. 
This is a fundamental objective to ensure a sustainable post-mining land use and 
protection of the recognised world-heritage values of the region. 

To bridge the gap between the observation scale (~monthly data) and modelling 
scale (long-term prediction) (Bloschl and Sivapalan 1995), we have used common 
time series statistical techniques. These methods identify the underlying patterns 
and the qualitative description of the groundwater-climate relationship, such as 
seasonal variability or long-term trends. 
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The application of a classical decomposition model to the groundwater-climate 
data for Ranger was used first to gain an understanding of the relationship. The 
timing of the peak and trough between the two seasonal data sets indicates that the 
lag between them is less (2 months) during high groundwater levels (wet season) 
and much more (4 to 5 months) during low groundwater levels (dry season). 
Hence the process has a variable lag throughout the year. 

Thus, for improved understanding of the physics with the help of statistics, a 
classical decomposition model has been used with historical net flux and ground-
water level data for the Ranger uranium mine site. A transfer function noise (TFN) 
model and multivariate autoregressive (MA) model were then developed by using 
the net flux and groundwater level data to predict the future groundwater level. 
Some of them have been found to be numerically efficient and others have the 
quality of best fit. 

Finally the statistical performance is almost equal for both the TFN model and 
MA model but the physical representation is better in TFN than MA. Therefore a 
monthly-based TFN should be the recommended model for the prediction purpose 
in future research. 
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Groundwater-climate relationships, Ranger 
uranium mine, Australia: 2. Validation of 
unsaturated flow modelling 
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Abstract. This paper presents the results of applying an unsaturated flow model to 

observed historical groundwater-climate data at the Ranger uranium project, 

Northern Territory, Australia. Based on observed data, a one-dimensional model 

was developed to fit historical data for several bores. Statistical evaluation of va-

rying porosity and hydraulic conductivity was undertaken, thereby giving a rea-

sonable model configuration. The model is thus confirmed as suitable for predict-

ing the impacts of future climate change scenarios on water table fluctuations. 

Introduction 

The relationship between groundwater and climate is critical in the design of ura-
nium mine rehabilitation, especially in tropical regions with intense monsoonal 
rains and extended dry seasons. The Ranger uranium mine is located in the wet-
dry tropics of northern Australia and is surrounded by the world heritage-listed 
Kakadu National Park (Fig. 1). It is imperative to understand the groundwater-
climate relationship to ensure that appropriate rehabilitation designs are imple-
mented upon mine closure (see also companion paper Kabir et al 2008). 

A variety of techniques can be used to model groundwater fluctuations as a 
function of climatic conditions. The complex geology and climatic variability of 
the Ranger region makes a deterministic, detailed process-based model a difficult 
task. For an alternative viable approach, this paper uses the unsaturated flow mod-
el Seep/W (Krahn 2004) based on a one-dimensional conceptual model of the 
groundwater-climate system. Given the relatively flat topography and large annual 
fluctuations in the water table versus minor lateral flows, the flow system can be 
simplified as effectively vertical, thereby allowing direct implementation in 
Seep/W. The refined model can then be used for a variety of purposes. 
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Fig.1. Location and outline of the Ranger uranium project, Northern Territory, Australia. 

Hydrogeology of the Ranger site 

The Ranger uranium project was briefly described in the companion paper Kabir 
et al (2008). Although there have been numerous studies on the hydrogeology and 
water balance at Ranger, only a few have directly examined the relationship be-
tween groundwater and climate, especially rainfall-evaporation and recharge (e.g. 
Vardavas, 1993; Woods 1994). A brief review of the hydrogeology is presented, 
followed by a justification of the modelling approach used for this work. 

In the past, hydrogeology studies at Ranger have commonly focussed on water 
or tailings management issues. The hydrogeology is considered to comprise three 
principal aquifer types – alluvial sands and gravels (Type A), lateritic layers, 
clayey sands to weathered rocks (Type B), and fractured rocks (e.g. schists, dolo-
mite) (Type C), shown in Fig. 2 (Ahmad and Green 1986; Woods 1994; Brown et 
al 1998). The most important shallow aquifers are found as weathered and lateritic 
soils (by area), with annual variations in the water table being between 1 to 5 m. 
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One example of the seasonal groundwater movement compared to cumulative 
net flux (rainfall – evapotranspiration) is given in Fig. 3, showing annual variation 
along with long term climatic variability (ie. wetter versus dryer periods). 

Seep/W model structure and development 
A one-dimensional conceptual model of groundwater-climate interaction was 
adopted (e.g. Type B). A homogenous vertical column was defined with no-flow 
boundaries on all sides except the surface where net climate flux was applied 
(rainfall – evapotranspiration) at monthly time steps. Soil properties were based on 
previous work, such as porosity, saturated hydraulic conductivity and unsaturated 
moisture retention (characteristic) curve (e.g. Willett et al 1993; Akber 1991), 
while the unsaturated hydraulic conductivity function was defined from the cha-
racteristic curve (e.g. van Genuchten or Fredlund-Xing models, see Krahn 2004).  

As noted above, the hydrogeology of the Ranger area is highly heterogeneous, 
leading to differing average responses of the water table to the annual wet season 
(e.g. annual fluctuation, or Δh, of 1-5 m). Obtaining reliable spatial data on all of 
the above properties is difficult and still includes residual uncertainty. As such a 
range of Seep/W models were developed with varying soil parameters to assess 
this uncertainty. This allowed a choice of optimum properties for each bore to be 

TYPE A REGIMES

TYPE C
 REGIMES

TYPE B REGIMES
Wet

Dry

Season

Typical  :
A = 0.1-20 m/d

K

B = 0.01-1 m/d
C = 0.001-1 m/d 

Fig.2. Conceptual hydrogeology of Ranger, including approximate wet and dry season posi-
tion of the water table (adapted from Ahmad and Green 1986; Woods 1994). 
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Fig.3. Variation of groundwater (bore OB21A) and cumulative climatic net flux. 
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used for assessing climate change impacts (see Kabir et al 2008b). In this work, 
saturated hydraulic conductivity (K, 0.3 to 30 m/30 days) and effective porosity 
(n, 2.5% to 20%) were varied. All model results were statistically evaluated using 
the measures in Table 1, to ascertain the ‘goodness of fit’ for each model. 

Table 1. Statistical objective functionsa used to assess model fit. 
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a From Zheng and Bennett (1995), Middlemis et al  (2001), Nash and Sutcliffe (1970). 
b Primary variables are h head; t time step number (T total time steps); d model – measured 
difference; Subscript ‘m’ / ‘o’ – model / observed values; ‾ (overscore) average (e.g. mh  = 
average modelled head). 

Results 

Nine model were developed with the combinations of K=0.3, 3 and 30 m/30days 
and n=2.5, 5 and 10%. Statistical evaluations of model runs are given in Tables 2 
and 3, with an example in Fig. 4. An example of measured versus modelled 
groundwater heads (bore OB21A) is graphed in Fig. 5. 

From Tables 2 and 3, optimum (desirable) values of criteria mh , E, Ratio, 
RMSE, β, d , and Se are found to in one model combination, while criterion r is 
found to be in a different model run. The difference, however, between r values in 
these models is mostly marginal. To achieve better consistency between the crite-
ria, runs are extended to additional set of combinations for n=20%. The direction 
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of changes of the criteria are again found to be mostly inconsistent. The best bore 
with consistent model parameter comes out to be OB27 with K 30 n 20. 

Table 2. Statistical assessmentsa of Seep/W model runs versus soil parameters (K, n). 

 mh  E r Ratio RMSE β d  Se 
Desired value – 1 1 1 0 0 0 0 

 

OB1Ab, oh  = 25.83 m, Δh = 3.17 m (K m/30 days, n %) 
K 0.3, n 2.5 25.43 -0.56 0.23 0.98 0.09 4.37 0.4 0.09 
K 3, n 2.5 21.57 -30.2 0.42 0.84 0.42 12.94 4.26 0.33 
K 30, n 2.5 1.83 -3781 0.3 0.07 4.62 5.47 24 4.39 
K 0.3, n 5 25.69 -0.37 0.09 0.99 0.09 1.54 0.14 0.09 
K 3, n 5 23.3 -11.07 0.33 0.9 0.26 11.99 2.53 0.21 
K 30, n 5 22.01 -18.69 0.35 0.85 0.33 16.09 3.82 0.24 
K 0.3, n 10 25.82 -0.11 0.16 1 0.08 0.11 0.01 0.08 
K 3, n 10 23.94 -4.16 0.26 0.93 0.17 14.98 1.89 0.13 
K 30, n 10 23.81 -0.12 0.33 0.92 0.17 16.75 2.02 0.12 
K 0.3, n 20 25.83 0.03 0.21 1 0.07 0.06 <0.01 0.07 
K 30, n 20 24.71 -0.99 0.3 0.96 0.11 13.9 1.12 0.08 

 

OB20b, oh  = 18.09 m, Δh = 1.67 m (K m/30 days, n %) 
K 0.3, n 2.5 16.82 -1.5 0.59 0.93 0.1 21.86 1.27 0.06 
K 3, n 2.5 13.14 -42.81 0.72 0.73 0.41 18.18 4.94 0.27 
K 30, n 2.5 9.76 -123.84 0.63 0.54 0.7 18.12 8.33 0.46 
K 0.3, n 5 17.1 -0.67 0.59 0.95 0.08 19.12 0.99 0.05 
K 3, n 5 14.39 -19.95 0.63 0.8 0.29 22.36 3.7 0.17 
K 30, n 5 14.08 -23.53 0.61 0.78 0.31 22.49 4.01 0.18 
K 0.3, n 10 17.2 -0.42 0.62 0.95 0.07 17.79 0.88 0.05 
K 3, n 10 15.56 -7.28 0.54 0.86 0.18 30.49 2.53 0.08 
K 30, n 10 15.14 -9.78 0.56 0.84 0.2 33.93 2.95 0.09 
K 0.3, n 20 17.17 -0.59 0.6 0.95 0.08 17.23 0.92 0.05 
K 30, n 20 16.09 -3.86 0.53 0.89 0.14 35.98 2 0.06 

 

OB21Ab, oh  = 23.42 m, Δh = 2.14 m (K m/30 days, n %) 
K 0.3, n 2.5 24.98 -0.59 0.75 1.07 0.12 -22.7 -1.56 0.07 
K 3, n 2.5 20.75 -8.13 0.66 0.89 0.29 11.34 2.67 0.24 
K 30, n 2.5 17.14 -31.94 0.35 0.73 0.55 16.6 6.28 0.38 
K 0.3, n 5 24.62 -0.34 0.7 1.05 0.11 -14.97 -1.2 0.08 
K 3, n 5 20.24 -5.75 0.55 0.86 0.25 21.87 3.17 0.15 
K 30, n 5 18.96 -11.53 0.34 0.81 0.34 24.09 4.45 0.18 
K 0.3, n 10 23.33 0.37 0.72 1 0.08 1.18 0.09 0.08 
K 3, n 10 19.86 -5.83 0.37 0.85 0.25 33.79 3.55 0.11 
K 30, n 10 19.58 -7.05 0.24 0.84 0.27 32.97 3.84 0.12 
K 0.3, n 20 21.77 -0.71 0.71 0.93 0.13 24.27 1.65 0.07 
K 30, n 20 20.03 -5.05 0.34 0.86 0.24 36.91 3.39 0.09 

 

a Best fits are highlighted in grey shaded bold-italic text; next closest fits are bold only. 
b Model runs with K 3 not available. 
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Table 3. Statistical assessmentsa of Seep/W model runs versus soil parameters (K, n). 

 mh  E r Ratio RMSE β d  Se 
Desired value – 1 1 1 0 0 0 0 

 

OB27b, oh  = 8.87 m, Δh = 2.00 m (K m/30 days, n %) 
K 0.3, n 2.5 10.15 -1.54 0.62 1.14 0.13 -20.57 -1.28 0.06 
K 3, n 2.5 10.92 -5.37 0.77 1.23 0.2 -21.73 -2.05 0.09 
K 30, n 2.5 11.09 -6.16 0.77 1.25 0.21 -23.58 -2.21 0.09 
K 0.3, n 5 10.18 -2.1 0.42 1.15 0.14 -15.78 -1.31 0.08 
K 3, n 5 10.69 -3.55 0.78 1.2 0.17 -27.86 -1.81 0.07 
K 30, n 5 10.46 -2.82 0.79 1.18 0.15 -21.31 -1.58 0.07 
K 0.3, n 10 9.92 -1.84 0.42 1.12 0.13 -10.71 -1.05 0.1 
K 3, n 10 9.52 -0.04 0.72 1.07 0.08 -11.2 -0.65 0.06 
K 30, n 10 9.42 0.23 0.77 1.06 0.07 -10.54 -0.54 0.05 
K 3, n 20 8.61 0.28 0.62 0.97 0.07 4.26 0.27 0.06 
K 30, n 20 8.56 0.37 0.81 0.96 0.06 5.51 0.31 0.06 

 

OB41b, oh  = 14.89 m, Δh = 1.69 m (K m/30 days, n %) 
K 0.3, n 2.5 12.24 -18.29 0.55 0.82 0.19 25.11 2.84 0.11 
K 3, n 2.5 8.77 -168.18 0.53 0.59 0.57 15.74 9.43 0.6 
K 30, n 2.5 -20.62 -26838 0.35 -1.38 7.21 5.22 65.38 12.54 
K 0.3, n 5 12.59 -13.31 0.36 0.85 0.17 23.99 2.44 0.1 
K 3, n 5 10.57 -69.46 0.42 0.71 0.37 21.34 6.39 0.3 
K 30, n 5 9.97 -90.09 0.38 0.67 0.42 21.26 7.15 0.34 
K 0.3, n 10 12.92 -9.64 0.21 0.87 0.14 21.71 2.05 0.09 
K 3, n 10 12.08 -26.33 0.35 0.81 0.23 23.99 3.89 0.16 
K 30, n 10 12.4 -21.75 0.39 0.83 0.21 23.92 3.57 0.15 
K 0.3, n 20 12.93 -5.53 -0.24 0.89 0.18 19.29 1.67 0.09 
K 30, n 20 12 -13.5 -0.01 0.82 0.27 24.29 2.6 0.11 

 

a Best fits are highlighted in grey shaded bold-italic text; next closest fits are bold only. 
b Model runs with K 0.3-n 20 (OB27) and K 3-n 20 (OB41) not available. 
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Fig.4. Example of the variation of selected statistical evaluations for bore OB1A. 
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Fig.5. Observed versus modelled groundwater levels in bore OB21A. 

Discussion 

Based on all results above, the performance of the models for OB27 achieves the 
best result since this bore successfully includes the best E and r values in one 
combination of hydraulic conductivity and porosity. Another important aspect of 
the results is that the best model may not necessarily be unique, rather it corres-
ponds to a range of parameter values for most of the bores. For example, with re-
spect to the statistical evaluation of parameter combinations, OB41 shows a lot of 
scatter while OB27 shows a consistent parameter combination. 

If we analyse the importance of all criteria in context to the primary objective 
of the modelling, the most important criterion is considered to be the r value as 
this deals with both the magnitude and direction of deviation whereas other crite-
ria deal with magnitude only (see Middlemis et al. 2001). 

The relative influence of porosity (n) on the annual average groundwater fluc-
tuation (Δh) can be explored by comparing OB20 and OB21A, since they are close 
to each other. The model results show the importance of n in the amplitude of Δh. 
OB20 performs well with n of 10% to 20% and a measured average annual 
groundwater variation (Δh) of 1.67m, whereas OB21A performs well with n of 5% 
to 10% with Δh of 2.14m. This shows that annual fluctuations are higher for lower 
porosity (all other factors remaining the same). 

The results also show that hydraulic conductivity is important in modelling the 
annual and longer term response of groundwater (as should be expected). Based 
on field work at Ranger (e.g. Willett et al 1993; Akber 1991), it is clear that the 
weathered near surface geology and aquifers at Ranger are highly variable and he-
terogeneous. The approach adopted in this paper is clearly a simplification which 
allows for efficient modelling at the expense of more thorough discretisation of 
model parameters (K, n, others). As such, the approach adopted herein of using a 
simplified one-dimensional homogenous model appears reasonable. 
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Conclusions 

This paper presented the results of applying an unsaturated flow model (Seep/W) 
to observed historical groundwater-climate data at the Ranger uranium project. 
The approach adopted a one-dimensional groundwater-climate model to fit histor-
ical data for several bores, with varying values for hydraulic conductivity and po-
rosity to assess uncertainty due to the heterogeneous geology of the area. All mod-
el runs were evaluated with a range of statistical measures for goodness of fit. In 
summary, the research approach utilised herein demonstrates that a simplified 
conceptual model implemented via an unsaturated flow model can achieve a ro-
bust model configuration with reasonable statistical confidence. 
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Abstract. This paper presents the results from using a validated unsaturated flow 

model to predict groundwater response to climate variability and climate change at 

the Ranger uranium project, Northern Territory, Australia. A Monte Carlo-style 

approach was adopted, with 30 statistically generated replicates for each of the 5 

models and 7 scenarios from the IPCC climate change projections, giving 1050 

model runs in total. The results are presented in terms of predicted groundwater 

levels to 2100. The paper demonstrates the usefulness of this modelling approach 

in understanding the future impacts from climate change on groundwater levels. 

Introduction 

The relationship between groundwater and climate is critical in the design of ura-
nium mine rehabilitation, especially in tropical regions with intense monsoonal 
rains and extended dry seasons. The Ranger uranium mine is located in the wet-
dry tropics of northern Australia and is surrounded by the world heritage-listed 
Kakadu National Park (see companion paper, Kabir et al 2008, for location map). 

Given that climate change is predicted to lead to significant hydrologic changes 
across northern Australia (e.g. Hennessy et al. 2007), such as changing rainfall and 
evapotranspiration, it is critical to use the available data to best understand what 
this means for groundwater recharge, levels and therefore minesite rehabilitation. 

This paper develops an approach to model the potential impacts of climate 
change and climate variability on groundwater levels through a Monte Carlo tech-
nique. The unsaturated flow model used is taken from Kabir et al (2008), and 
compliments other methods to model groundwater-climate relationships such as 
time series statistical techniques. 
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Climate variability and climate change 

For this research work, the processes of climate variability and climate change 
need to be carefully defined, followed by a brief review of northern Australia. 

According to the UN Framework Convention on Climate Change (UNFCCC), 
climate change refers to long-term processes occurring over several decades or 
centuries which leads to changes in average climatic conditions, and includes both 
anthropogenic and natural causes (Houghton et al 2001). Climate variability is 
considered to range from inter-annual to inter-decadal and is related to natural 
phenomena. However, the Intergovernmental Panel of Climate Change (IPCC) de-
finition of climate change means any change in climate over time, whether due to 
natural variability or as a result of human activity – different to the UNFCCC. 

There is an abundance of literature on the processes and controls on climatic 
conditions across northern Australia. The most common indices used in this area 
include sea surface temperature (SST) differences between certain regions, such as 
the Southern Oscillation Index (SOI) to predict El Nino (dry, leading to ‘ENSO’) 
or La Nina (wet) climatic periods, Indian Ocean Dipole (IOD) (Ashok et al. 2003; 
Chang et al 2006), Pacific Decadal Oscillation (PDO) (Mantua et al 1997; Zhang 
et al 1997; Mantua and Hare 2002; Verdon and Frank 2006a,b) and Interdecadal 
Pacific Oscillation (IPO) (Power et al 1999). In general, they describe whether 
climatic conditions are more likely to be warm/ cool, or wet/dry, based on diffe-
rential SST’s between particular regions. They are commonly correlated to major 
continental regions, such as eastern Australia or western Americas, occur on dif-
ferent cycles (e.g. annual to decadal or longer) and widely used to predict likely 
climatic conditions. Northern Australia is influenced by the variable combination 
of all of these indices (with PDO perhaps being the least important). 

The models used by the IPCC to predict climate change are not consistent in 
tropical northern Australia (Alley et al 2007), meaning for the Ranger mine site 
there is uncertainty regarding the nature and magnitude of change. Less than 66% 
of models agree on the sign of the change (increase/decrease of precipitation in 
Dec-Jan-Feb), and is probably related to complex interaction of multiple factors. 

There is an increasing recognition that rising temperature is exacerbating the 
impact of any rainfall reduction (Cai 2007). As a result of reduced precipitation 
and increased evaporation, dryer periods are projected to intensify in southern and 
eastern Australia (Hennessy and Fitzharris 2007; Hennessy et al. 2007). But there 
has been an increasing trend in rainfall over much of north and northwest Austral-
ia over recent decades, which has contrasted with decreases over the rest of the 
continent. Also, Smith and Suppiah (2007) argue that the trends in rainfall totals 
and average intensities in northern Australia are largely unrelated to trends in 
ENSO and most likely reflect the influence of other factors. 

The degree to which climate change will impact on the frequency or magnitude 
of all of the above indices and processes remains uncertain and difficult to predict. 
For example, ENSO events will still occur without any climate change or they 
may alter due to climate change, with different climate models predicting variable 
changes such as intensity, duration, wet/dry, warm/cool and so on (see Knutson et 
al 1997; Timmermann et al 1999; Collins 2000a,b; among others). 
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Although periods of flood and drought risk in eastern Australia have been cor-
related to the PDO and IPO, they appear to have minimal influence in northern 
tropical Australia. However, due to their importance in overall climatic conditions 
across Australia, they are retained in algorithms to generate net flux data sets. 

A number of fundamental issues need to be considered. The non-linearity in the 
strength of ENSO for Australia, the occurrence of IOD in relation to ENSO for 
Australia, the relationship between IOD and ENSO in Australia, the uncertainty of 
future influence of IOD on ENSO of Australia, and the interaction of ENSO 
events with local climate of the Kakadu region. 

There exists non-linearity in the strength of ENSO events in Australia. The dif-
ferences in the strength of relationship between El Nino (La Nina) with wet (dry) 
condition can be described as follows. 

As a typical tropical phenomenon, the evolution of the IOD is strongly linked 
to the annual seasonal cycle – the phenomenon develops during May/June, peaks 
in September/October, and diminishes in December/January (Chang et al 2006). 
Therefore the IOD influences the Australian winter climate (Ashok et al. 2003). 
The El Nino events in Australia usually emerge in the March to June period and 
strongest influence occurs in the six months of June to November (BoM 2007a). 
The cooling of La Nina is relatively strongest during October to March period 
(BoM 2007a). Therefore the overlapping of IOD with ENSO is more prevalent 
with El Nino than La Nina. However, the link between IOD and ENSO has been 
reported to be have been broken or weakened by climate change (Kumar et al 
1999), giving rise to further uncertainty in winter climate conditions in Australia. 

The increased dry conditions caused by El Nino occur during the dry season, 
compared to the increased wet conditions caused by La Nina which occur during 
the wet season. Therefore if we do not consider the influence of IOD with ENSO, 
the impact will be greater for both El Nino and La Nina. If we do consider the 
IOD influence with ENSO, the rainfall in the site being summer rainfall, it is not 
counteracted by IOD, thus the wet season will still be unimpacted by IOD. Similar 
results have been recognised by others (Bayliss, pers. comm., 2007). A tabular re-
presentation of the links between IOD and ENSO is shown in Table 1. 

The predictability of interdecadal climate events remains an area of uncertainty. 
By reviewing the existing understanding of the ENSO, IPO, PDO, and IOD 
events, some conditional aspects of these natural processes have been identified. 
We translate this understanding, observations and possibilities into our algorithm 
for generating the spells of ENSO events for the Ranger site and combine this with 
IPCC predicted climate data to generate net flux data sets for modelling. 

Table 1. Annual links between ENSO and IOD events. 

J F M A M J J A S O N D J F M A M 
    IOD start   IOD peak  IOD end     
  El Nino months       
        La Nina months 

Wet season Dry season Wet season Dry 
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Modelling methodology 
A Monte Carlo-style approach is adopted to generate multiple replicates of input 
data for numerous model runs. A multi-step algorithm is developed to generate a 
series of net flux data, incorporating average climate data, predicted climate 
change trends from IPCC global climate models (GCMs), ENSO and IOD events. 

Climate change models and predicted data 

The IPCC make the output data from GCMs available, and in Australia this is 
from the CSIRO through the OzClim software (CSIRO 2006). The OzClim data 
used for this report is from the Third Assessment report series, as the 2007 reports 
and data were not yet available. 

The GCMs hydro-climate data available from OzClim were rainfall and point 
potential evapotranspiration (PPET). For application in flow models, however, 
PPET needs to be converted to areal actual evapotranspiration (AAET). All PPET 
data was converted to AAET based on standard methods (e.g. Morton 1983). 

In 2004, Hennesy et al (2004) undertook a detailed performance evaluation of 
12 GCMs for the Northern Territory, Australia, in simulating the current regional 
climate. Based on this study, other IPCC reports and related literature, five GCMs 
were selected for extracting future climate change data for the Ranger mine site, 
namely the CSIRO: Mk2, HadCM2, HadCM3, ECHAM4/OPY and CSIRO: 
DARLAM 125km GCMs. Further to the physical models, IPCC use six future 
emission scenarios as inputs to the various GCMs, called A1B, A1FI, A1T, A2, 
B1 and B2, and they have remain unchanged from the Third to Fourth Assessment 
reports. An additional scenario, IS92cc, was also available from OzClim, giving a 
total of seven scenarios for each of the five GCMs. Further details regarding all 
GCMs and emissions scenarios is available in the varous IPCC literature. Annual 
net flux data for all 7 IPCC scenarios from the HadCM3 model is shown in Fig. 1. 

Climate variability algorithm 

We summarise the findings of the literature review and translate these into deci-
sion rules and address ambiguity in generating the conditional random process. 

Decision for PDO: Random selection of PDO positive (El Nino enhanced), and 
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Fig.1. Estimated net flux for all scenarios (HadCM3 GCM) 
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PDO negative (La Nina enhanced) and PDO zero (both non enhanced) 
Decision for IOD-ENSO relationship for Australia: La Nina is stronger than El 
Nino for Australia while IOD ENSO inverse relationship exists. 
Decision for IOD-ENSO relationship for site: 

• Irrespective of the existence of the link between IOD and ENSO, the site wet 
season is supposed to be consistently and strongly influenced by La Nina.  

• With the dry season, if the link (inverse relation between ENSO and IOD) re-
mains broken then the El Nino will be stronger for the site.  

• And if the relationship is again established then the El Nino might become 
weakly related to dry condition for the site. 
There could be concern for the IOD-El Nino relationship in future predictions 

but nothing for the IOD-La Nina relationship. 
Ambiguity 1: PDO duration is to be randomly selected from 20 to 40 years. 

This broad guideline comes from the studies based on the IPO during past hundred 
years (e.g. Verdon and Wyatt 2004). 

Ambiguity 2: The randomly selected PDO duration is covered by selecting 
random ENSO duration of 0 to 8 years. The guidelines for selection of frequency 
limit of ENSO events have been obtained by analysing the past 100 year’s events 
in Australia (BoM 2005; BoM 2007a,b). For positive or negative PDO the cycle is 
selected to be 0 to 5 years and for transitional PDO the cycle is selected to be 6 to 
8 years. 

Ambiguity 3: The IOD-El Nino inverse relationship can exist or not. 
The amplitude of ENSO events in the context of present research relate to the 

rainfall and AAET in ENSO months. We assume during El Nino years that when 
rainfall is less, AAET is also less. During La Nina years, when rainfall is more, 
then AAET is also more. But practically, however, this relationship is not linearly 
correlated, meaning rainfall is unbounded while AAET is bounded as suggested 
by Morton’s equation (Morton 1983). We use the historical percentile records of 
AAET to cut off the point of wet conditions’ AAET. 

For the ENSO events, the ranking from ENSO1, ENSO2 … to ENSO5 goes 
with the 99.99, 90, 10, 5, 1 percentile values of rainfall and AAET. If PDO is for 
La Nina, it will be always enhanced (because it is independent of IOD), if PDO is 
for El Nino, it may be enhanced or not (because it depends on IOD). For enhanced 
La Nina we use the 99.99 percentile value, and for non-enhanced La Nina we use 
90 percentile values. For El Nino we use 10, 5 and 1 percentile values. The ranges 
of percentile values are extracted from reviewing the indices of Expert Team on 
Climate Change Detection and Indices (ETCCDI) (Alexander et al. 2006, 2007). 

Combining climate change and variability 

We combine the net flux for ENSO and non-ENSO years and months to generate 
stochastically generated data. The combined data of the stochastically generated 
net flux is indicated by NFi,jSTO, meaning the net flux for ith month of jth year of 
any randomly generated century. We obtain 35 sets of net flux data from OzClim 
for 100 years from 2000 to 2100 and 35 sets of multiplying factors are computed 
as NFi,2000+jOZ(k) / NFi,2000OZ(k), where NFi,2000+jOZ(k) is used to indicate 
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the net flux for ith month (i = 1 to 12) of jth year (j = 0 to 100) predicted by Oz-
Clim for the kth set (k = 1 to 35). Therefore, the predicted data NFi,jPRED(k) is as 
follows: 

NFi,j
PRED(k) = NFi,j

STO x  NFi,2000+j
OZ(k) / NFi,2000

OZ(k) (Eq.1) 

The number of replicates is selected as 30, based on the guideline of Janssen et 
al (1993), where it is stated that for random sampling the number of samples to be 
taken should be larger than ten times the number of parameters included in the 
Monte Carlo analysis. We use three numbers of ambiguities, leading to 30 repli-
cates. The overall algorithm for conditional random generation of ENSO events is 
shown in Fig. 2. The total number of sets of NFi,j

PRED(k) is therefore 1050 (35 
GCM-scenario combinations and 30 replicates). 

 
Fig.2. Algorithm flow chart for the generation of ENSO rain and AAET data (climate 
change and natural climatic variability) for the Ranger site 
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A major issue not addressed by the above approach and algorithm is extreme 
events such as tropical cyclones. In reality, such severe events would cause intense 
flooding rather than an extreme rise of the groundwater level (Kabir 2008). There-
fore, in the monthly-based time series data, we neglect tropical cyclone events 
whose duration is normally 3 to 5 days only. 

Results 
One sample set of net flux data is shown in Fig. 3. The cumulative net flux was al-
so computed to assess the influence of wet and dry periods on net flux, which can 
not be seen from the monthly net flux data. The SeepW model result of the com-
puted groundwater level for that net flux is also shown in Fig. 3. 

The aggregrate results from all 30 replicates and 7 scenarios of the HadCM3 
GCM are shown in Fig. 4, giving mean (μ) groundwater level for each scenario 
and the maximum/minimum mean plus/minus standard deviation (±σ). Yohe et al 
(2007) used HadCM3 in IPCC’s Fourth Assessment report in the assessment of 
global water resource availability. Complete results are given in Kabir (2008). 

The results of groundwater levels in Fig’s 3 and 4 establishes two key findings. 
Firstly, that longer term trends in climatic conditions are indeed critical in shaping 
overall groundwater levels (e.g. Fig. 3). Secondly, despite all 7 IPCC scenarios 
predicting a long-term decline in net flux and dryer overall hydrologic conditions, 
climate variability, giving rise to extended wetter or dryer periods, can achieve 
major rises or declines in groundwater levels which appear to outweigh the trends 
predicted under climate change scenarios. 
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Fig.3. Generated monthly net flux, cumulative net flux and modelled level response (bore 
OB27, CSIRO MK2, Scenario A2). 
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Conclusions 
This paper sought to build on previous modelling work by developing a metho-
dology to assess the impacts on groundwater levels from potential climate change 
scenarios and climate variability. 

Climate variability was predicted by combining the current understanding of 
important climate indices such as El Nino/La Nina, IPO, PDO and IOD into a sto-
chastic algorithm for generating climate data. Data for climate change predictions 
were obtained from IPCC global climate models and future emissions scenarios. 
These two components were then combined to produce an input data set of net 
flux for use in the previously validated unsaturated flow model for the Ranger site. 
Summary results were then presented in terms of mean groundwater level over 
time under each scenario for the HadCM3 GCM, including maximum/minimum ± 
standard deviation groundwater level at each time step from all model runs. The 
algorithms incorporate current climate knowledge, and can be updated as new 
knowledge or udnerstanding comes to light. 

Overall, the results show the critical importance of climate variability as well as 
climate change. Under extended wet periods, groundwater levels are predicted to 
rise significantly, while the major declines are expected under lengthy dry climatic 
periods. The modelling shows that although the impact of climate change could be 
significant, it must also be considered in the face of climate variability. The paper, 
combined with the two concurrent papers, therefore provides a sound basis and 
methodology upon which to understand the potential impacts of climate change 
and climate variability on groundwater levels. This, in turn, is critical with respect 
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Fig.4. Modelled mean groundwater levels (bore OB27), HadCM3 GCM and A2, A1B, 
B1, B2, A1F, A1T and IS92cc emission scenarios; max/min mean ± standard devia-
tion 
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to different uranium mine rehabilitation approaches in a wet-dry tropical climate 
surrounded by a region of very high conservation and cultural values. 
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