
Parametric Pricing of Higher Order
Moments in S&P500 Options∗

G.C.Lim(a), G.M.Martin(b) and V.L.Martin(a)

September 29, 2003

Abstract

A general parametric framework based on the generalized Student t distribution
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over 100,000 observations. A range of performance criteria are used to evaluate the
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Black-Scholes model.
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1 Introduction

The Black and Scholes (1973) model represents the most common framework adopted in

practice for pricing options. Part of the reason for its popularity is its analytical tractability

as the price is simply the mean of a truncated lognormal distribution; see Ingersoll (1987).

Two key assumptions underlying the Black-Scholes model are that the distribution of the

underlying asset returns is normal and that volatility is constant. However, there is strong

empirical evidence that neither assumption is valid; for a review of this literature see Boller-

slev, Chou and Kroner (1992). One manifestation of these misspecifications for pricing

options is the occurrence of volatility smiles and skews, whereby implied volatility estimates

vary across strike prices written on contracts in the same market; see Hull and White (1987),

Corrado and Su (1997) and Hafner and Herwartz (2001), amongst others.

A number of alternative frameworks have been proposed in the literature to correct for

the misspecification of the Black-Scholes model; see Jackwerth (1999) for a recent review.

These frameworks can be classified into three broad categories. The first category involves

relaxing the constant volatility assumption. Examples are the deterministic volatility models

of Dupire (1994) and Dumas, Fleming and Whaley (1998); the stochastic volatility models of

Hull and White (1987), Heston (1993), Bakshi, Cao and Chen (1997), Bates (2000), Chernov

and Ghysels (2000) and Pan (2002); and the Generalized Autoregressive Heteroscedasticity

(GARCH) models of Engle and Mustafa (1992), Duan (1995, 1999), Heston and Nandi

(2000), Hafner and Herwartz (2001) and Bauwens and Lubrano (2002). The second category

involves relaxing the normality assumption using either parametric or nonparametric meth-

ods. Parametric examples are the lognormal mixture model of Melick and Thomas (1997)

and the flexible distributional frameworks adopted in Lim, Lye, Martin and Martin (1998)

and Martin, Forbes and Martin (2003). Nonparametric examples include the Edgeworth

expansion of Jarrow and Rudd (1982) and Corrado and Su (1997); the Hermite polynomial

approximation of Ane (1999); the nonparametric density estimator of Ait-Sahalia (1996),

Ait-Sahalia and Lo (1998, 2000) and Ait-Sahalia, Wang and Yared (2001); and the neural

network approach of Garcia and Gencay (2000). The third category consists of augmenting

the mean returns specification. The most popular form involves the inclusion of a Poisson

jump process; see for example, Bakshi, Cao and Chen (1997), Bates (2000) and Pan (2002).

The approach adopted in this paper combines elements of the first two approaches. A

parametric risk neutral distribution based on the generalized Student t (GST) distribution
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of Lye and Martin (1993, 1994) is proposed which accommodates higher order moments in

returns distributions. Time varying volatility is modelled by specifying the conditional vari-

ance to be a function of the net state return over the life of the option; see Rosenberg and

Engle (1997) and Rosenberg (1998). The option is then priced by evaluating the expected

value of the discounted payoff of the option contract. The chosen specifications are appeal-

ing in that they lead to a computationally efficient procedure for pricing options based on

univariate numerical quadrature. This is in contrast to models priced using Monte Carlo

methods, which require computing the expectation as an average of a large number of sim-

ulation paths. Another advantage of the proposed framework is that a number of existing

parametric models are special cases of the GST distribution, including the Black-Scholes

model. This means that standard procedures can be adopted to test between competing

parametric specifications. Other approaches based on lognormal mixture distributions and

Edgeworth expansions are shown to be related to the GST distribution but not directly

nested. For these cases other statistical criteria are adopted to test between the competing

models. In choosing an appropriate model from the class of models based on Edgeworth

expansions, the Jarrow and Rudd (1982) formulation is not adopted as the probability dis-

tribution is not guaranteed to be positive over the support. Instead, an alternative option

price model based on the semi-nonparametric density of Gallant and Tauchen (1989) is pro-

posed. A final advantage of the proposed framework is empirical, as the GST distribution is

shown in general to yield prices of S&P500 options which are superior to other models, in

terms of a range of performance measures.

The rest of the paper is structured as follows. Section 2 presents the framework for pricing

options using a general parametric family of distributions, based on the GST distribution.

Option prices based on this distributional model are referred to as GST option prices. In

Section 3 the GST option price model is shown to nest the Black-Scholes model, as well as

being related to semi-nonparametric pricing models and a model based on a mixture of log-

normals. The shapes of the GST risk neutral probability distributions are investigated, the

effects on option pricing examined and the presence of volatility smiles and skews discussed

in Section 4. The empirical implications for pricing S&P500 options traded on selected days

during April 1995, are presented in Section 5. In evaluating the competing models, five

performance measures are adopted based on significance testing, mispricing, forecastability,

hedging errors and volatility skew corrections. The key result of the analysis is that the GST
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model produces option prices that are superior in general to prices produced by all other

models considered. A fundamental feature of these empirical results is the importance of

modelling skewness in stock returns both to minimize option pricing errors and to establish

a consistent framework to price options across the full spectrum of moneyness in a single

market. Concluding remarks are contained in Section 6.

2 Parametric Valuation of Options

2.1 General Framework

In this section, a general framework for pricing stock options based on flexible parametric

distributions is presented. The distributional model of the stock price generalizes the log-

normal distribution which underlies the Black-Scholes option price model, by allowing for

higher order moments in returns.

As options on the S&P500 index are European options, the option price model developed

here does not allow for early exercise.1 Consider valuing a European call stock option at

time t maturing at time T = t+n, where n represents the length of the contract. Defining St

as the spot price at time t of the stock index, the price of the option with exercise price X,

is given as the expected value of its discounted payoff; see Ingersoll (1987) and Hull (2000),

F (St) = E
h
e−rτ max (ST −X, 0) |St

i
, (1)

where the conditional expectation E [.|St] , is taken with respect to the risk neutral prob-
ability measure, τ = n/365 represents the time until maturity expressed as a proportion

of a year, and r represents the risk-free interest rate. An alternative way of writing (1)

which is more convenient in developing the generalized forms of the risk neutral probability

distribution adopted in this paper, is

F (St) = e
−rτ

∞Z
X

(ST −X)g(ST |St)dST , (2)

where g(ST |St) is the risk neutral probability density function of the stock price at the time
of maturity, ST , conditional on the current value, St.

1However, American style options such as options written on the S&P100 index, could be priced from
the framework developed here by using, for example, the upper and lower bounds that characterise the
relationships between European and American options; see Melick and Thomas (1997).
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In deriving the form of the risk neutral probability distribution, g(ST |St) in (2), the
returns of the stock index over the life of the option contract are assumed to be generated

as

ln
µ
ST
St

¶
=

Ã
r − σ2T |t

2

!
τ + σ T |t

√
τzT , (3)

where σ T |t is the annualized conditional volatility process and zT is a standardized random

variable with zero mean and unit variance.2 In specifying σ T |t, the formulation of Rosenberg

and Engle (1997) and Rosenberg (1998) is adopted,

σ T |t = exp (β1 + β2 ln (ST/St)) . (4)

This specification shows that conditional volatility is stochastic, as it is a function of the

future return over the life of the option, ln (ST/St) . In the case where β2 > 0, the relationship

between volatility and future return is positive. In the case where β2 < 0, there is an inverse

relationship between future return and volatility, corresponding to a version of the leverage

effect. Setting β2 = 0 yields the constant volatility specification which underlies the Black-

Scholes model.

The inclusion of future returns in (4) contrasts with volatility specifications based on

GARCH, which are backward looking, with volatility being a function of lagged returns. In

the context of option pricing, whereby option prices are based on an evaluation of the future

evolution of the underlying spot price, equation (4) is a more natural volatility specification.

In common with a GARCH-type volatility specification, an additional error term is not

introduced, with all randomness deriving from randomness in the asset price itself. This

contrasts with a stochastic volatility model, in which the volatility process has its own

random innovations, which may or may not be correlated with the innovations to the price

process. As is highlighted below, the volatility specification in (4), as well as having a natural

interpretation in an option pricing context, also has particular computational advantages

compared with the GARCH and stochastic volatility specifications.

In choosing the form of the distribution function of zT , the adopted distribution needs to

be able to capture the well-known empirical feature of nonnormality in stock returns. The

distribution adopted here that has these characteristics is the GST distribution introduced
2In the case of constant volatility and normal errors, equation (2) can be derived from integrating the

stochastic differential equation, d lnSt =
³
r − σ2

2

´
dτ + σdW, over the life of the option, where dW ∼

N (0, dτ) . For the more general case of time-varying volatility functions and non-normal errors, the properties
of the continuous time process that underlies the model can be identified using the rules of Ait Sahalia (2002).
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by Lye and Martin (1993, 1994). This distributional family has been found to be successful

in capturing the features of financial returns; see Lim, Lye, Martin and Martin (1998) and

Lye, Martin and Teo (1998).3 Formally the GST distribution is specified as follows. Let w

be a GST random variable with mean µw, variance σ
2
w and density given by

f (w) = k exp
h
θ1 tan

−1 ³w/√ν´+ θ2 ln
³
ν + w2

´
+ θ3w + θ4w

2 + θ5w
3 + θ6w

4
i
, (5)

where k is the integrating constant given by

k−1 =
Z
exp

h
θ1 tan

−1 ³w/√ν´+ θ2 ln
³
ν + w2

´
+ θ3w + θ4w

2 + θ5w
3 + θ6w

4
i
dw. (6)

For the standardized GST variate, zT = (w − µw)/σw, the density is

p (zT ) = kσw exp [θ1 tan
−1
Ã
µw + σwzT√

ν

!
+ θ2 ln

³
ν + (µw + σwzT )

2
´

+θ3 (µw + σwzT ) + θ4 (µw + σwzT )
2

+θ5 (µw + σwzT )
3 + θ6 (µw + σwzT )

4 ], (7)

where k is the same normalizing constant as defined in (6). Closed form expressions do not

exist for k, µw and σ2w, but these quantities can be computed numerically.

The moments of the GST distribution exist as long as the parameter on the highest even-

order term is negative. Hence, with reference to (7), imposing the restriction θ6 < 0 ensures

the existence of all moments of the distribution. The term exp
h
θ4 (µw + σwzT )

2
i
corresponds

to the kernel of a normal density, with θ4 = −0.5. The power term,
³
ν + (µw + σwzT )

2
´θ2
, is

a generalization of the kernel of a Student t density and controls the degree of kurtosis in the

distribution, along with θ4 and θ6. The parameters θ1, θ3 and θ5 control the odd moments

of the distribution, including skewness. The role of the parameters of (7) in controlling the

shape of the returns distribution is illustrated in Section 3.

The risk neutral probability density function g(ST |St), is derived from the returns distri-
bution p (zT ) in (7), via

g(ST |St) = |J | p (zT ) , (8)
3Other flexible parametric frameworks can also be used. For example, Martin, Forbes and Martin (2003)

use a combination of the GST model and the distributional model of Fernandez and Steele (1998).
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where J is the Jacobian of the transformation from zT to ST , given by

J =
dzT
dST

=
1

STσ T |t
√
τ

"
1 + β2σ

2
T |tτ − β2

Ã
ln (ST/St)−

Ã
r − σ2T |t

2

!
τ

!#
, (9)

and σ2T |t is defined in (4).

Stock options can be priced by using (7) to (9) in (2). This formulation expands the

Black-Scholes pricing framework as now both kurtosis and skewness in stock returns, as

well as conditional volatility, are all priced in the stock option. Apart from some special

cases, the integral in (2) needs to be computed numerically. In contrast with other option

evaluation methods however, this computation occurs via a straight-forward application of

one-dimensional numerical quadrature. In particular, the specification of volatility as a

function of ST enables a closed form solution for g(ST |St) to be derived, meaning that the
augmentation of a nonnormal distributional assumption with time-varying volatility involves

no additional computational complexity.4

Option prices based on (7) to (9) are referred to hereafter as GST prices. In the empirical

analysis, three variants of the GST model are investigated:

GST-1: θ1 6= 0; θ2 = −
³
1+ν
2

´
; θ3 = 0; θ4 = −0.5; θ5 = θ6 = 0

GST-2: θ1 = 0; θ2 = −
³
1+ν
2

´
; θ3 6= 0; θ4 = −0.5; θ5 = θ6 = 0

GST-3: θ1 = 0; θ2 = −
³
1+ν
2

´
; θ3 6= 0; θ4 6= 0; θ5 6= 0; θ6 = −0.25.

(10)

The choice of value for θ4 in GST-1 and GST-2 is motivated by the usual normalization

adopted in the normal distribution. The choice of value for θ6 in GST-3 also serves as a

normalization. Before considering the properties of the GST option pricing model in more

detail, its relationship with other option pricing models is discussed in the following section.

Three alternative models are discussed. The first is the Black-Scholes model, which is based

on the assumption of normal returns and constant volatility. The second is based on semi-

nonparametric distributions, constructed from an augmentation of a normal distribution to
4The stochastic volatility model of Heston (1993) produces a closed form solution for the option price

only under the assumption of conditional normality. Even then, the solution is analytical only up to two
one-dimensional integrals in the complex plane. Further, estimation of any stochastic volatility model via
observed option prices is extremely computationally intensive due to the presence of the latent volatilites; see,
for example, Chernov and Ghysels (2000) and Forbes, Martin and Wright (2003). The same point applies to
the stochastic volatility model with jumps investigated by Bakshi, Cao and Chen (1997), Bates (2000) and
Pan (2002). The GARCH option price of Heston and Nandi (2000) is similar in nature to the specification
in Heston (1993), again based on conditional normality. The augmentation of GARCH with a nonnormal
conditional distribution in Hafner and Herwartz (2001), Bauwens and Lubrano (2002) and Martin, Forbes
and Martin (2003) entails the use of Monte Carlo simulation for the option price evaluation.
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allow for higher order moments. The third approach also captures higher order moments,

but via a mixture of lognormals.5

3 Relationships with Other Models

3.1 Black-Scholes Option Pricing

The Black-Scholes option price model is based on the assumption that returns are normally

distributed. From (7), normality is achieved by imposing the restrictions

θ1 = θ2 = θ3 = 0; θ4 = −0.5; θ5 = θ6 = 0, (11)

thereby yielding the standard normal probability density function

p(zT ) = ke
−0.5z2T , (12)

with

k =
1√
2π
,

as now µw = 0 and σ2w = 1. Using (12) in (8) gives the risk neutral probability density as

g(ST |St) = |J | exp

−12
 ln (ST/St)−

µ
r − σ2

T |t
2

¶
τ

σ T |t
√
τ


2
 , (13)

where J is given by (9) and σ T |t by (4).

The other assumption underlying the Black-Scholes model is that volatility is constant

over the life of the contract. By setting β2 = 0 in (4), (13) simplifies to the lognormal density

g(ST |St) = 1

ST exp (β1)
√
τ
exp

−1
2

 ln (ST/St)−
³
r − exp(β1)

2

´
τ

exp (β1)
√
τ

2
 . (14)

Using (14) in (2), the price of the option is

F (St) = e
−rτ

∞Z
X

(ST −X)
ST exp(β1)

√
2πτ

exp

−1
2

 ln (ST/St)−
³
r − exp(β1)

2

´
τ

exp(β1)
√
τ

2
 dST , (15)

5Comparisons with other classes of option pricing models, as, for example, the stochastic volatility/random
jump models mentioned earlier, are beyond the scope of this paper. However such comparisons would be an
interesting area of future research.
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which is equivalent to the discounted value of the mean of a truncated lognormal distribution;

see Ingersoll (1987). For this case an analytical solution exists and is given by the standard

Black-Scholes stock option pricing equation,

F (St) = BS = StN(d1)−Xe−rτN(d2), (16)

where

d1 =
ln(St/X) +

³
r + exp(2β1)

2

´
τ

exp(β1)
√
τ

d2 =
ln(St/X) +

³
r − exp(2β1)

2

´
τ

exp(β1)
√
τ

.

3.2 Semi-Nonparametric Models

The class of semi-nonparametric option pricing models discussed here are based on an aug-

mentation of the normal returns density through the inclusion of higher order terms. Jarrow

and Rudd (1982) were the first to adopt this approach, which has more recently been imple-

mented by Corrado and Su (1997) and Capelle-Blancard, Jurczenko and Maillet (2001).

To show the relationship between the GST and the Jarrow-Rudd option pricing models,

consider expanding the GST density in an Edgeworth expansion around the normal den-

sity. Letting p (zT ) represent the GST density with distribution function P (zT ) , and n (zT )

represent the normal density with distribution function N (zT ) , the Edgeworth expansion is

p (zT ) = n (zT )− (κ1 (P )− κ1 (N))

1!

dn (zT )

dzT

+
(κ2 (P )− κ2 (N))

2!

d2n (zT )

dz2T
− (κ3 (P )− κ3 (N))

3!

d3n (zT )

dz3T

+

³
κ4 (P )− κ4 (N) + 3 (κ2 (P )− κ2 (N))

2
´

4!

d4n (zT )

dz4T
+ ε (zT ) , (17)

where ε (zT ) is an approximation error arising from the exclusion of higher order terms in

the expansion and κi is the ith cumulant of the associated distribution. This expression can

be simplified by noting that both returns distributions are standardized to have zero mean
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(κ1 = 0) and unit variance (κ2 = 1) ,

p (zT ) = n (zT )− (κ3 (P )− κ3 (N))

3!

d3n (zT )

dz3T

+
(κ4 (P )− κ4 (N))

4!

d4n (zT )

dz4T
+ ε (zT ) . (18)

By using the properties of the normal distribution,

p (zT ) = n (zT )

"
1 + γ1

(z3T − 3zT )
6

+ γ2
(z4T − 6z2T + 3)

24

#
+ ε (zT ) , (19)

where

γ1 =
(κ3 (P )− κ3 (N))

3!
and γ2 =

(κ4 (P )− κ4 (N))

4!
(20)

are the unknown parameters which capture respectively skewness and kurtosis. The ex-

pression in (19) shows that the difference between the two densities, p (zT ) and n (zT ) , is

determined by the third and fourth moments. Substituting (19) into (8) and ignoring the

approximation error, gives the approximate risk neutral probability distribution function

g(ST |St) = |J |n (zT )
"
1 + γ1

(z3T − 3zT )
6

+ γ2
(z4T − 6z2T + 3)

24

#
, (21)

where J is the Jacobian of the transformation from zT to ST given in (9) and (3) is used

to substitute ST for zT . This expression shows that the density g (ST |St) is approximated
by the lognormal distribution plus higher order terms which capture skewness and kurtosis.

Using (21) in (2) to price options yields the Jarrow-Rudd option pricing model, augmented

by time-varying volatility as defined in (4),

F (St) = BS + γ1Q3 + γ2Q4, (22)

where BS is the Black-Scholes price defined in (16),

Q3 = e
−rτ

∞Z
X

(ST −X) |J | (z
3
T − 3zT )
6

dST (23)

and

Q4 = e
−rτ

∞Z
X

(ST −X) |J | (z
4
T − 6z2T + 3)

24
dST , (24)

with the substitution of ST for zT occurring via (3). In the case where volatility is assumed

to be constant and β2 = 0 in (4), (23) and (24) have analytical solutions as given in Jarrow

and Rudd (1982). Otherwise, (23) and (24) need to be computed numerically.
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The establishment of the relationship between the GST and Jarrow-Rudd models also

highlights the risk neutral properties of the GST model. In particular, as the lognormal

distribution corresponds to the risk neutral distribution for ST , provided that the mean of

the underlying return process is set equal to the risk free interest rate, and given that the

GST distribution for ST is constrained to have the same mean, it follows from the arguments

in Jarrow and Rudd (1982) that the GST specification for g(ST |St) can be interpreted as
the risk neutral probability distribution, at least in the local region around the lognormal

distribution. In general, functions of the higher order moments in the risk neutral GST

model, including variance, skewness and kurtosis, differ from the corresponding empirical

functions. As the approach adopted in the paper is to specify the risk neutral distribution

directly, the form of the adjustment in the higher order moments is taken as given.6

To highlight the ability of the Jarrow-Rudd model to approximate nonnormal distribu-

tions, the following experiment is performed, whereby the Jarrow-Rudd distribution is used

to approximate the GST distribution. The results are presented in Figure 1 for various

parameterizations of the GST distribution. The Jarrow-Rudd approximating distribution is

given by (19) with the cumulants in (20) set equal to their respective values.

In Figure 1(a), the approximation is reasonable. In Figure 1(b), the Jarrow-Rudd ap-

proximating distribution does well in capturing the tails of the GST distribution, but over-

estimates the peak. In Figure 1(c), the over-estimate of the peak of the GST distribution

is more severe than it is in Figure 1(b), resulting in the approximating distribution over

compensating in the approximation of the left tail. The approximation error is even more

dramatic in 1(d), where the failure to approximate the peak of the true distribution correctly

results in a spurious lobe in the left-hand tail of the approximating distribution.

One problem with implementing the Jarrow-Rudd approach is that the risk neutral prob-

ability distribution in (21) is not constrained to be positive over the support of the density.

Interestingly, this problem appears to have been ignored in the literature so far. The problem

is highlighted in (19) which shows that the returns distribution is a function of cubic and

quartic polynomials, which can, in general, yield negative values. The problem of negativity

can be expected to be more severe when the Jarrow-Rudd approximation does not model

the true distribution accurately, causing the polynomial terms to over-adjust, especially in
6The links between higher order moments in the empirical and risk-neutral distributions can be identified

numerically using the approach of Duan (1999). This procedure is based on sequential applications of the
inverse cumulative distribution function technique.
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Figure 1: Approximation properties of the Jarrow-Rudd distribution: true distribution –
–—; approximating distribution - - - - - . The true distribution is a GST distribution with
ν = 0.04, θ2 = −(1 + ν)/2, θ1 = −20, θ4 = −0.5, θ5 = 0 and θ6 = 0.
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the tails of the estimated distribution.7

To impose non-negativity on the underlying risk neutral probability distribution, an

alternative specification is based on the semi-nonparametric density of Gallant and Tauchen

(1989). Ignoring the approximation error, the standardized returns distribution in (19) is

respecified as

p (zT ) = n (zT )

"
1 + λ1

(z3T − 3zT )
6

+ λ2
(z4T − 6z2T + 3)

24

#2
, (25)

where the augmenting polynomial is now squared, forcing the probabilities to be greater

than or equal to zero for all values of zT . Using (25) in (2) yields the semi-nonparametric

option pricing model which is compared with the GST model in the empirical application in

Section 5. This model is referred to as the SNP option pricing model hereinafter.

3.3 Mixture of Lognormals

An alternative approach suggested by Melick and Thomas (1997) to capture departures from

normal returns is based on a mixture of lognormal distributions. The option pricing model

is

F (St) = αBS (σ1) + (1− α)BS (σ2) , (26)

where BS (σi) , i = 1, 2, is the Black-Scholes price as defined in (16), and assuming constant

volatility, σi, i = 1, 2. The parameter 0 ≤ α ≤ 1, is the mixing parameter which weights
the two subordinate lognormal distributions.8 In comparing alternative option price models

in the empirical application below, for commensurability the mixture model is extended to

allow for time-varying volatility, with σ1 and σ2 in (26) replaced respectively by

σ1, T |t =
³
expβ1,1 + β1,2 ln (ST/St)

´
σ2, T |t =

³
expβ2,1 + β2,2 ln (ST/St)

´
. (27)

7Negative probability estimates of the Jarrow-Rudd distribution were generated in the empirical appli-
cation conducted in Section 4. These results are available from the authors upon request. For an earlier
example of the problem of negative probabilities when using an Edgeworth expansion, see Kendall and Stuart
(1969, p.160).

8In constrast to the specification in (26), in the lognormal mixture model proposed by Melick and Thomas
(1997), risk-neutrality is not imposed on the underlying distribution.
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4 Properties of the GST Option Pricing Model

4.1 Risk Neutral Distributional Shapes

Some examples of the risk neutral probability distribution g(ST |St) in (8) are given in Figures
2 and 3, for various parameterizations. The initial spot price is St = 500, for a 6 month

option, τ = 6/12, with a risk-free rate of interest of r = 0.05. In Figure 2 the effects of time-

varying volatility on the risk-neutral probability distribution, assuming normal returns, are

illustrated. The volatility specification is given by (4) with β1 = −2, and a range of values
of β2 to control for the relative impact of expected returns over the life of the option on

time-varying volatility. The risk neutral probability distribution of the Black-Scholes model

is represented by the case β2 = 0, in Figure 2. The results show that as β2 increases the risk

neutral probability distributions become more positively skewed.

In Figure 3, the effect of departures from normal returns on the shape of the risk neutral

probability distribution is demonstrated. Three parameterizations of the GST-1 model are

adopted, based on changes in ν, θ1 and θ4, with θ3 = θ5 = θ6 = 0. Setting ν = 4 and

θ4 = −0.5 causes the risk neutral probability distribution to become relatively more peaked
than the lognormal distribution, with fatter tails. For θ1 = 2, the risk neutral probability

distribution becomes even more positively skewed, whilst for θ1 = −2, the distribution
exhibits relatively less positive skewness than the lognormal distribution.

4.2 Option Price Sensitivities

The effects of changes in the parameters of the GST-3 model on the option prices, is high-

lighted in Table 1. The option prices are computed for both one month contracts, τ = 1/12,

and three month contracts, τ = 3/12, with strike prices of X = 450, 500, 550. The spot rate

is St = 500 with a risk free rate of interest r = 0.05.

The Black-Scholes model is represented by the row labeled, Normal: β2 = 0, that is,

normal returns with constant volatility. The effects on the Black-Scholes price of time-

varying volatility are highlighted in the next set of rows, with values of β2 increasing from

0.1 to 0.4. Not surprisingly, option prices increase monotonically as the value of β2 increases,

reflecting that increases in risk caused by increases in volatility are priced at a premium.

The effects of changes in the parameters θ3 and θ5 in the returns distribution in (7) are

highlighted by the rows labeled GST-3 in Table 1. Comparing the Black-Scholes and GST-3
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Figure 2: Risk neutral probability distributions for alternative volatility parameterisations,
assuming normality in stock returns.

Figure 3: Risk neutral probability distributions for alternative distributional parameterisa-
tions of the GST-1 model in (10), with β2 = 0, θ2 = −(1 + ν)/2 and θ3 = θ5 = θ6 = 0.
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prices, it can be seen that the shorter-term GST-3 prices (τ = 1/12) deviate relatively more

from the corresponding Black-Scholes prices than do the longer-term prices (τ = 3/12). For

the one-month options, the results show that for the in-the-money options (X = 450), the

Black-Scholes price, 51.88, is smaller than the GST-3 prices. For the at-the-money options

(X = 500), the Black-Scholes price of 8.86 is slightly smaller than all of the GST-3 prices,

except for the case where θ3 = −2 and θ5 = −0.2. For the out-the-money options (X = 550),

the Black-Scholes price of 0.07 is less than the GST-3 prices for θ3 = −2, but equal to the
GST-3 prices for θ3 = −1. Considering the results for the three-month options, the Black-
Scholes prices are smaller than the GST-3 prices for θ3 = −2 for the in-the-money options
and greater for θ3 = −1. The opposite situation occurs for the at-the-money-options. For
the out-of-the money options, the Black-Scholes prices are less than the GST-3 prices for all

parameterizations.

4.3 Volatility Skews

The relative differences in the Black-Scholes and GST-3 prices across moneyness groups in

Table 1 demonstrate that the Black-Scholes implied volatilities are not constant, if options are

priced according to the GST model. To highlight the relationship between volatility skews

and misspecification of the returns distribution, the following experiments are performed.

The experiments are based on a true volatility parameter value of σ T |t = σ = 0.15 or 15%.

The option prices are computed for a three month contract length, τ = 3/12, based on a

spot rate of S = 500, and strike prices ranging from X = 400 to X = 600, in steps of 1. The

risk free rate of interest is r = 0.05.

Two experiments are conducted to highlight the relationship between the volatility skew

and nonnormality in returns. In the first experiment, the effects on the implied volatility

skew of changes in θ5 in (7) are demonstrated. The values of the remaining parameters are

specified in the caption for Figure 4. Equating this price with the Black-Scholes price gives

the value of the implied volatility plotted in Figure 4.9 The calculations are performed for

θ5 = −0.2,−0.1. The results show that the volatility skew is reduced as the absolute value
of θ5 decreases. For deep in-the-money options (X/S < 0.9), there are large differences

between the implied volatility and the true volatility of 0.15. This implies that Black-Scholes

is seriously underpricing deep in-the-money options. For those contracts where the implied
9The GAUSS procedure OPTMUM is used to compute the implied volatilities.
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Table 1:

Sensitivity of option prices to alternative conditional volatility parameterizations and
distributional models

(For all models, St = 500, r = 0.05, β1 = −2)

Distributional Model τ = 1/12 years τ = 3/12 years

X : 450 500 550 450 500 550

Normal: β2 = 0.0 51.88 8.86 0.07 56.12 16.74 1.88

Normal: β2 = 0.1 51.96 8.90 0.07 56.31 16.88 1.98
Normal: β2 = 0.2 52.03 8.95 0.08 56.51 17.02 2.07
Normal: β2 = 0.3 52.11 8.99 0.09 56.71 17.17 2.18
Normal: β2 = 0.4 52.19 9.03 0.10 56.92 17.32 2.28

GST-3(a): θ3 = −2, θ5 = −0.2 56.68 8.84 0.12 57.65 16.66 2.33
GST-3(a): θ3 = −2, θ5 = −0.1 54.29 8.87 0.11 56.90 16.73 2.26
GST-3(a): θ3 = −1, θ5 = −0.2 53.26 8.93 0.07 56.07 16.85 2.09
GST-3(a): θ3 = −1, θ5 = −0.1 52.97 8.92 0.07 56.04 16.84 2.06

(a) β2 = 0, ν = 1, θ1 = 0, θ2 = − (1 + ν) /2, θ4 = −0.5, θ6 = −0.25.
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Figure 4: Volatility skews generated for τ = 0.25 when returns are distributed as GST-3
with ν = 1, θ1 = 0, θ2 = − (1 + ν) /2, θ3 = −2, θ4 = −0.5, θ6 = −0.25. The true volatility
is σ = 0.15.

volatility is less than the true volatility of 0.15, Black-Scholes is overpricing. The differences

between the implied and true volatilities are relatively small across the moneyness spectrum

for X/S ≥ 0.9.
The second volatility skew experiment is the same as the first, except that θ3 is now

allowed to vary. The values specified for the other parameters are given in the caption of

Figure 5. The results presented in Figure 5 are qualitatively similar to those presented in

Figure 4. In particular, there is strong evidence of a volatility skew, with large differences

between the implied and true volatilities for deep in-the-money options. Increasing the value

of θ3 from −2.0 to −1.0 moderates the extent of the skew.
As an alternative experiment to identify the ability of the GST model to price options

better than the model which does not allow for higher order moments, option prices are now

simulated assuming that a volatility skew does indeed exist. The true price of a call option

is equal to the Black-Scholes price, but with the volatility changing over moneyness. The

idea is to see if the GST model can still recover the implied volatility skew, even when the

underlying returns distribution is normal.10 The true volatility skew is presented in Figure
10This experiment is based on the suggestion of an anonymous referee.
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Figure 5: Volatility skews generated for τ = 0.25 when returns are distributed as GST-3
with ν = 1, θ1 = 0, θ2 = − (1 + ν) /2, θ4 = −0.5, θ5 = −0.2, θ6 = −0.25. The true volatility
is σ = 0.15.

6. The volatility skew is constructed from call option data written on S&P500 stock options

on April 4th and parameterized by using a quadratic regression equation in moneyness. This

data is also used in the empirical section of the paper. The spot price is set at 500, with

strike prices ranging from 450 to 550 in steps of 1, producing a total of 101 option contracts.

Maturity is 3 months, τ = 3/12, and the risk free rate of interest is set at r = 0.05. The

simulated call option price associated with each contract is set equal to the Black-Scholes

price, assuming that the true volatility is given by the volatility skew function. Both the

normal and GST models are then estimated using the simulated data, which, in turn, are

used to price the 101 option contracts.11 Having generated the expected prices for the two

models, the implied volatilities are then calculated by equating the expected price from each

model with the Black-Scholes price.

The implied volatility smiles of the normal and GST models for the experiment are given

in Figure 6. The normal model does poorly in recovering the volatility skew. In contrast the

GST model does a very good job in recovering the volatility skew across the full moneyness
11Both the normal and GST models allow for a conditional volatility structure based on (4). With reference

to (10), the GST-1 specification is used. The free parameters are estimated by maximum likelihood; see the
discussion below about estimation methods.
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Figure 6: Simulation experiment to compare the ability of the GST-1 and normal option
price models to recover a volatility skew.

spectrum.

5 Pricing S&P500 Stock Options

5.1 Data Description

The data set used in the empirical application consists of quotes on call options written on

the S&P500 stock index, obtained from the Berkeley Options Database. The quotes relate to

options traded in the month of April, 1995. Specifically, the alternative models are estimated

using the midpoints of bid-ask quotes for April 4th, 11th and 18th respectively. Predictive

and hedging performances are then assessed using data for the remaining days in April. Each

sub-sample comprises approximately 40,000 prices, for option contracts extending over the

full moneyness spectrum. Defining S −X as the intrinsic value of the call option, options

for which S/X ∈ (0.97, 1.03) are categorized as at-the-money, those for which S/X ≤ 0.97,
as out-of-the-money, and those for which S/X ≥ 1.03, as in-the-money. Maturity lengths

range from approximately one to five months. Each record in the dataset comprises the

bid-ask quote, the synchronously recorded spot price of the index, the time at which the

quote was recorded, and the strike price.
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As dividends are paid on the S&P500 index, the current spot price, St, in (1) and in all

subsequent formulae is replaced by the dividend-exclusive spot price, Ste−dτ , where d is the

average rate of dividends paid on the S&P500 index over 1995. This rate is used as a proxy

for the rate of dividend payment made over the life of each option. Daily dividend data for

1995, used to construct d, were obtained from Standard and Poors. Only observations for

which the average of the bid and ask prices exceeds the lower bound of

LB = max{0, Ste−dτ − e−rτX},

and which are recorded between 9.00am and 3.00pm are included in the sample. The first

restriction serves to exclude prices which fail to satisfy the no-arbitrage lower bound, whilst

the second restriction seeks to minimize the problem of nonsynchroneity between the spot

and option prices.

The interest rate, r, is the three month bill rate observed on that day, with interest rate

data obtained from Datastream. Tables 2, 3 and 4 summarize the main characteristics of

the datasets used in the estimation.

5.2 Model Estimation

Define the theoretical price of the jth option contract at time t, as

Fj,t = F (St,Xj, τ j, r;Ω) , (28)

where Ω is the vector of parameters which characterize the returns distribution and the

volatility specification. In the case of the Black-Scholes option pricing model, for example,

Ω = {β1}. The relationship between Cj,t, the market price of the jth option contract at time
t, and Fj,t, is given by

Cj,t = Fj,t + ej,t, (29)

where ej,t represents the pricing error. This pricing error can be viewed as capturing the

deviation which occurs between an observed market option price, Cj,t, and any version of the

theoretical price, Fj,t. For example, a deviation may occur due to market-related factors, such

as the non-synchronous recording of spot and option prices. The error can also be viewed

as encompassing the fact that any parametric model is only ever an approximation of the

process by which market participants set an option price. Following the approach of Engle
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Table 2:

S&P500 Option Price Dataset: April 4, 1995.

Variable All Moneyness (S/X)
Contracts

< 0.97 0.97− 1.03 > 1.03

Call Price: X $60.87 $8.60 $19.90 $66.36
SD $31.17 $2.84 $5.82 $28.83
Min $1.04 $1.04 $3.38 $21.63
Max $156.25 $10.63 $29.88 $156.25

Number 43584 511 4519 38554

Maturity May 11600 45 121 11434
(No. of Prices) June 16748 39 2047 14662

Sept. 15236 427 2351 12458

Strike Price: X $448.65
SD $34.02
Min $350.00
Max $550.00

Number 30

Spot: X $503.33
(S&P 500 Index) SD $0.56

Min $502.38
Max $504.56
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Table 3:

S&P500 Option Price Dataset: April 11, 1995.

Variable All Moneyness (S/X)
Contracts

< 0.97 0.97− 1.03 > 1.03

Call Price: X $50.00 $6.31 $17.13 $57.01
SD $27.15 $1.98 $5.33 $24.50
Min $0.95 $0.95 $1.94 $19.13
Max $157.63 $10.07 $29.00 $157.63

Number 43509 438 7088 35983

Maturity: May 9609 19 1706 7884
(No. of Prices) June 15254 20 1868 13366

Sept. 18646 399 3514 14733

Strike Price: X $463.37
SD $29.96
Min $350.00
Max $600.00

Number 31

Spot: X $506.19
(S&P 500 Index) SD $0.72

Min $502.29
Max $508.42
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Table 4:

S&P500 Option Price Dataset: April 18, 1995.

Variable All Moneyness (S/X)
Contracts

< 0.97 0.97− 1.03 > 1.03

Call Price: X $46.89 $5.13 $17.38 $53.73
SD $25.84 $2.45 $5.19 $23.48
Min $0.60 $0.60 $1.10 $17.38
Max $156.88 $8.63 $29.50 $156.88

Number 38099 670 6274 31155

Maturity: May 7984 25 1297 6662
(No. of Prices) June 12579 27 1699 10853

Sept. 17536 618 3278 13640

Strike Price: X $465.73
SD $28.67
Min $350.00
Max $550.00

Number 30

Spot: X $505.65
(S&P 500 Index) SD $0.63

Min $504.12
Max $506.71

24



andMustafa (1992), Sabbatini and Linton (1998) and Jacquier and Jarrow (2000), the pricing

error is assumed to be a normal random variable with zero mean; see also the discussion in

Clement, Gourieroux and Monfort (2000). To allow for the variance of the pricing error to

vary across option contracts of different degrees of moneyness, ej,t is specified as having a

variance ω2j,t, defined by

ω2j,t = φ1 + φ2(St/Xj), (30)

where φ1 and φ2 are unknown parameters.

Letting N represent the number of observations in a pooled data set of time series and

cross-sectional prices of option contracts, the logarithm of the likelihood function is given by

lnL = −1
2

NX
j,t

ln
³
2πω2j,t

´
− 1
2

NX
j,t

Ã
Cj,t − Fj,t

ωj,t

!2
. (31)

This function is maximized with respect to φ1, φ2 and Ω, using the GAUSS procedure

MAXLIK. The numerical integration procedure for computing the theoretical option price

Fj,t for the various models is based on the GAUSS procedure INTQUAD1. All integrals are

transformed to the (−1, 1) range. As a test of the accuracy of the integration procedure, both
numerical and analytical formulae for the Black-Scholes model were used. Both procedures

generated the same parameter estimates to at least four decimal points.12

5.3 Performance Evaluation

The performance of the alternative pricing models is now investigated. Five procedures are

used to assess the performance of the models. The first consists of conducting standard

tests of significance on the parameter estimates. The second concentrates on comparing the

relative size of mispricing errors of each model. The third focuses on forecasting properties,

whilst the fourth procedure compares the relative size of hedging errors from each model.

The last procedure examines the ability of the competing models to correct for volatility

skews.

5.3.1 Statistical Tests

Tables 5 to 7 contain the parameter estimates of the GST and normal option price models

for the three respective days investigated, with standard errors based on the inverse of the
12Computation time for all models estimated is rapid. For example, in the case of the most highly

parameterized model (GST-3), the GAUSS program takes 42 iterations to converge. The total time taken
to achieve convergence is just over one hour on a Pentium 4, 200 Mhz.
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Hessian given in parentheses. The models consist of the three GST models as defined in

(10), and the normal distribution. All models use the volatility specification in (4).

The parameter estimates of β2 reported in Tables 5 to 7 are statistically significant for

all models across all three days, thereby providing strong evidence of time-varying volatility.

In particular, the significant estimate of β2 in the normal model across all three days, repre-

sents an immediate rejection of the Black-Scholes model, which assumes normal returns and

constant volatility.

The estimates of the distributional parameters provide further rejection of the Black-

Scholes model as they highlight strong evidence of nonnormality. For example, there is

strong evidence of negative skewness across all three days and across all three GST models

investigated. In the case of the GST-2 and GST-1 models, negative skewness is identified

by the negative estimates of θ3 and θ1 respectively. In the case of the more general model,

GST-3, skewness is jointly modelled by the two parameters θ3 and θ5, which capture odd

moment behavior. To identify the sign of skewness for this model, the third moment of the

returns distribution is calculated as
R
z3Tp (zT ) dzT , which shows that the GST-3 distribution

is also negatively skewed across all three days.13

Measurement of kurtosis via the calculation of
R
z4Tp (zT ) dzT indicates that the GST-1

and GST-2 models exhibit significant excess kurtosis. For the GST-3 model, the inclusion

of the higher order term, (µw + σwzT )
4, in the exponential in (7), with a value of −0.25 for

the associated parameter θ6, serves to reduce kurtosis to slightly less than the value of 3

associated with the normal distribution, for all three days. For this model then, the more

significant departure from normality occurs in the form of skewness.14

A comparison of the point estimates for all three GST models, across the three days

investigated, shows that the signs are consistent and the magnitudes are similar, especially

in the case of the point estimates based on April 11th and 18th options. This result is also

supported by the estimates of skewness and kurtosis for each GST model across the three
13For example, the third moment around the mean of the returns distribution is computed as −0.235 using

data on the 4th of April. Performing a test of skewness under the null hypothesis of normality leads to a
strong rejection of the null using conventional significance levels. Similar results occur for the other two days
investigated.
14Given the findings of significant departures from normality and constant volatility, the rules of Ait

Sahalia (2002) are used to determine if the underlying continuous time process is a diffusion. The criterion
for a diffusion is ∂2 ln (g(ST |St)) /∂ST∂St > 0, ∀ST , St. Using data for April 4th, for example, negative
values of the criterion are found. Using the delta method to compute the standard errors of the criterion
function, these negative values are found to be statistically significant.
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days.15

For comparison, the parameter estimates of the SNP and mixture of lognormals option

pricing models are reported in Tables 8 and 9 respectively. Both models show significant

evidence of time-varying volatility across all three days. Both models also provide evidence

of departures from normality in returns, as indicated by the significance of all relevant

parameters.

The estimates of φ2 for all five models reported in Tables 5 to 9 and across all three

days investigated, show a significant relationship between the pricing error variance and the

moneyness of the option contract.16

5.3.2 Mispricing

An overall measure of the pricing error is given by

s2 =

P
j,t (Cj,t − Fj,t)2

N
, (32)

where Cj,t and Fj,t are defined above.17 Estimates of the residual variance for the most

general of the GST models, GST-3, along with the SNP, mixture and normal models, across

the three days, are given Table 10. To allow for differences in parameter dimensionality

across the models when comparing mispricing properties, the AIC and SIC statistics are

also presented. A comparison of all measures of fit across the models shows that the GST-3

model yields reductions in the amount of mispricing relative to the mixture and normal

models, on all three days. It also exhibits less mispricing than the SNP model on April

4th and April 18th, producing slightly higher average mispricing than the SNP model on

April 11th. Overall, the SNP model is the next best performer, followed by the mixture

model. The normal model yields increases in mispricing over the GST-3 model of nearly

7000% on April 4th and between approximately 120% and 500% on the other two days.

These statistics provide further strong evidence that there are large gains to be made from

modelling the nonnormalities in stock returns and that the GST-3 model does a better job
15A formal test of parameter constancy across the three days, for each model, is conducted by comparing

the log of the likelihood from pooling the data with the sum of the three log likelihoods from not pooling.
This test leads to rejection of parameter constancy for each model. These results are not reported in the
paper.
16The single exception to this finding is the insignificant estimate of φ2 for the GST-3 model on April

18th.
17Whilst equation (32) is based on an L2 norm, other norms could be used to measure the extent of the

pricing error.
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overall in capturing the impact of these distributional features on option prices than do the

alternative nonnormal specifications.18

5.3.3 Forecasting

The forecasting performance of the GST-3, SNP, mixture and normal pricing models are

compared in Table 11. For each of the three days for which parameter estimates are produced

(4th, 11th and 18th of April), forecasts for the remaining days of the corresponding week are

computed. For example, the parameter estimates based on the 4th of April data are used to

compute option prices on the 5th, 6th and 7th of April. The forecast error is given by

fej,t = Cj,t − F j,t|April 4th, (33)

where Cj,t are call option prices recorded on either the 5th, 6th or 7th of April, and

F j,t|April 4th = F (St, Xj, τ t, r;ΩApril 4th) , (34)

with ΩApril 4th signifying parameter estimates based on April 4th data. The parameter esti-

mates based on the 11th of April data are used to compute option prices for the 12th and

13th of April, and the parameter estimates based on the 18th of April data used to compute

option prices for the 19th to the 21st of April, where the corresponding forecast errors are

defined as in (33).

The forecasting performance of the models is assessed using two statistics. The first is

the Diebold and Mariano (1995) (DM) statistic, which is used to test whether the differences

between the pricing errors of any particular model and the normal model are significant.

The statistic is calculated as

DM =
1
N

P
j,t dj,tq

1
N

P
j,t d

2
j,t

, (35)

where dj,t is the difference between the forecast errors of any of the models based on a

nonnormal distribution and the model based on the normal distribution for the jth option

contract at time t. Under the null hypothesis that there is no difference in the forecast errors

of the two models, DM is asymptotically distributed as N (0, 1) . The results in Table 11

show that in all but 2 of the 24 cases, the differences are significant.
18An alternative measure of mispricing, along the lines of that used in Corrado and Su (1997), would be

based on the proportion of theoretical prices, for each option price model, which fall within the observed
bid-ask spread associated with the option contract.
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The second statistic used to evaluate the forecasting properties of the models is the Root

Mean Squared Error (RMSE). This statistic assesses whether the nonnormal specifications

produce errors which are smaller in magnitude, on average, than those produced by the

normal specification. In the case of forecasts based on the April 4th data, the RMSE is

computed as

RMSE =

sP
j,t fe

2
j,t

N
, (36)

where fej,t is as defined in (33). The results in Table 11 show that overall the GST-3 pricing

model yields the smallest RMSE, followed by the SNP, mixture and normal models. In the

three cases where the RMSE of the SNP model is smaller than that of the GST-3 model,

the differences are only marginal.

5.3.4 Hedging Errors

An important aim of risk management is to construct risk-free portfolios. The ability to

achieve this aim is not only a function of the frequency with which a portfolio is rebalanced,

but also a function of the accuracy with which the assumed model explains the data. To

examine this latter property, the competing models are now used to construct portfolios

based on delta hedges.

Consider forming a portfolio that is short in the call option. Normalizing the portfolio on

a single call option contract, the size of the investment, Ij,t, required to set up the portfolio,

Pj,t, using a delta hedge is

Pj,t = Ij,t = ∆j,tSt − Cj,t, (37)

where St is the spot price at the time the portfolio is constructed, Cj,t is the call price on the

jth option contract, and ∆j,t represents the proportion of stocks purchased to delta hedge

the portfolio,

∆j,t =
dCj,t
dSt

. (38)

The value of the portfolio at the start of the next day, based on the proportion of stocks

purchased in the previous day, is

Pj,t+1 = ∆j,tSt+1 − Cj,t+1. (39)

The value of this portfolio can be compared to investing the amount Ij,t in (37) at the risk

free rate of interest r for one day. The value of this investment in period t+ 1, is

Ij,t+1 = Ij,t exp (r/365) = (∆j,tSt − Cj,t) exp (r/365) . (40)
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The difference between (39) and (40) yields the one day ahead hedging error; see Bakshi,

Cao and Chen (1997),

Hj,t+1 = Pj,t+1 − Ij,t+1
= ∆j,t (St+1 − St exp (r/365))− (Cj,t+1 − Cj,t exp (r/365)) . (41)

The hedging error for k days ahead is calculated as

Hj,t+k = ∆j,t (St+k − St exp (rk/365))− (Cj,t+k − Cj,t exp (rk/365)) , (42)

which is the measure used to compare the hedging performances of the competing models.19

The results of the hedging error experiments for the various option price models across

the three sample periods are contained in Tables 12 to 14 respectively. These results give

the incremental value over investing in a risk free asset from constructing a portfolio on the

4th, 11th and 18th of April which is not rebalanced over the time horizons given. The total

number of unique contracts that have matching contracts across the time horizon are 574

for April 4th results, 563 for April 11th results and 377 for April 18th results.20 All values

are expressed in dollars whereby a value of +X (−X) means that the portfolio earns $X
more than (less than) would be earned from investing the money at the risk free rate of

interest over the pertinent forecast period. The size of the hedging errors are broken-down

into moneyness classes, St/Xj, as well as being reported for the total class. For comparison,

the average values of the investment, Ij,t in (37), across all contracts for each model are also

presented in Tables 12 to 14. In calculating ∆j,t in (38) for each of the models, a numerical

differentiation procedure is used.

Concentrating on the hedging errors associated with all contracts in Tables 12 to 14,

across all hedging periods, the GST-3 models produces smaller absolute hedging errors than

the normal model, on average, in 6 of the 8 cases.21 In comparing across nonnormal models,

especially the GST-3 and SNP models, there is very little difference in average hedging

performance. To assess the significance of the difference between the hedging errors of the
19Although volatility is stochastic, as discussed earlier, is it still a function of the single error process

which drives the mean of the underlying spot price. This implies that a vega hedge is not required, which is
in contrast with the class of volatility models used by Heston (1993), for example. However, in calculating
the delta in (38), as St enters the volatility specification in (4), the hedging portfolio is affected by the
time-varying nature of the volatility.
20In computing the hedging errors, the spot rates are those time-stamped with the call option. Hence, the

spot rates will vary slightly over the day for different contracts written on the same day.
21Preliminary tests (not reported) that the average magnitude of the hedging errors associated with each

model are zero, leads to strong rejection.
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nonnormal and normal models, Tables 12 to 14 also include the DM statistic from (35), where

the forecast errors are replaced by the hedging errors in (42). These results show that in the

great majority of cases, the hedging errors associated with the nonnormal specifications are

significantly different from the errors associated with the normal model.

One feature of the hedging errors in Tables 12 to 14 is that the hedging errors for all

models increase in magnitude as the hedging horizon increases. This may not only reflect the

lack of rebalancing of the portfolio, but also the fact that the delta hedge is not necessarily

the appropriate risk management instrument to use when the returns process underlying

the option contract is nonnormal. An interesting future research project would be to devise

hedging strategies to manage higher order moments in the underlying returns.

5.3.5 Volatility Skew Corrections

As a final performance measure, the ability of the GST model to correct for volatility skews

is examined. The results are given in Figure 7 which compares the implied volatility skew

for the Black-Scholes model with the implied volatility skew obtained for the GST model,

using options prices on April 4th 1995, written on May contracts.22 In computing the option

price, Fj,t, the point estimates of the GST distribution are based on the GST-3 model given

in Table 5. The implied volatility parameter is computed by solving

Cj,t = Fj,t (σ) ,

for each contract assuming volatility over the life of the contract is fixed, that is, σ T |t = σ.The

calculations are performed over the full range of strike prices.23 To generate a smooth implied

volatility surface, the implied volatility estimates presented in Figure 7 are the predictions

from regressing the implied volatility values on a constant and a quadratic polynomial in

moneyness.

For comparability with Figures 4 and 5, the volatility smiles presented in Figure 7 are

plotted against the inverse of moneyness, X/S. The results show the volatility skew as-

sociated with the Black-Scholes model, with implied volatility values of just under 40%

for deep in-the-money contracts, and about 10% for deep out-of-the-money contracts. The
22Similar qualitative results are obtained for the June and September contracts, as well as from using data

on April 11th and 18th, 1995. To save space these results are not presented.
23Contracts with the same strike price X, but different moneyness as a result of differences in the spot

price St, over the day, are all included. This yields a total sample size of over 11, 000 contracts to compute
the implied volatility functions for April 4th.
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Table 5:

Maximum likelihood estimates of option price models for the
4th of April 1995: standard errors in brackets, N = 43584.

Parameter GST-3 GST-2 GST-1 Normal

β1 -2.107 -2.033 -2.001 -2.003
(0.001) (0.001) (0.001) (0.001)

β2 0.208 0.189 0.163 0.178
(0.002) (0.001) (0.001) (0.002)

γ =
√
ν 0.655 0.575 0.569 n.a.(a)

(0.004) (0.002) (0.002)

θ1 0.000 0.000 -0.515 0.000
(0.002)

θ2 -0.715 -0.665 -0.662 0.000
(0.002) (0.001) (0.001)

θ3 0.708 -0.373 0.000 0.000
(0.005) (0.001)

θ4 -1.072 -0.500 -0.500 -0.500
(0.008)

θ5 -1.034 0.000 0.000 0.000
( 0.002)

θ6 -0.250 0.000 0.000 0.000

φ1 -3.687 -6.387 -7.197 -7.820
(0.046) (0.048) (0.046) (0.051)

φ2 2.538 6.111 7.097 8.038
(0.051) (0.054) (0.051) (0.057)

Av. log-likelihood(b) -0.011 -0.517 -0.592 -0.814

(a) n.a. = not applicable.

(b) The average log-likelihood is lnL/N, where L is likelihood and N is the sample size.
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Table 6:

Maximum likelihood estimates of option price models for the
11th of April 1995: standard errors in brackets, N = 43509.

Parameter GST-3 GST-2 GST-1 Normal

β1 -2.127 -2.054 -2.019 -2.108
(0.001) (0.001) (0.001) (0.001)

β2 0.418 0.314 0.261 0.420
(0.004) (0.004) (0.003) (0.001)

γ =
√
ν 0.592 0.355 0.338 n.a.(a)

(0.007) (0.001) (0.001)

θ1 0.000 0.000 -0.292 0.000
(0.002)

θ2 -0.675 -0.563 -0.557 0.000
(0.004) (0.001) (0.001)

θ3 1.031 -0.314 0.000 0.000
(0.012) (0.003)

θ4 -0.338 -0.500 -0.500 -0.500
( 0.017)

θ5 -0.848 0.000 0.000 0.000
(0.005)

θ6 -0.250 0.000 0.000 0.000

φ1 0.251 -3.111 -4.357 -3.601
(0.062) (0.073) ( 0.056) (0.033)

φ2 -1.426 2.714 4.156 3.638
(0.067) (0.079) (0.061) (0.036)

Av. log-likelihood(b) -0.355 -0.810 -0.894 -1.172

(a) n.a. = not applicable.

(b) The average log-likelihood is lnL/N, where L is likelihood and N is the sample size.
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Table 7:

Maximum likelihood estimates of option price models for the
18th of April 1995: standard errors in brackets, N = 38099.

Parameter GST-3 GST-2 GST-1 Normal

β1 -2.137 -2.069 -2.042 -2.120
(0.009) (0.001) ( 0.001) (0.002)

β2 0.350 0.270 0.243 0.421
(0.041) (0.003) (0.003) (0.001)

γ =
√
ν 0.592 0.444 0.436 n.a.(a)

(0.012) (0.002) (0.003)

θ1 0.000 0.000 -0.484 0.000
( 0.003)

θ2 -0.675 -0.599 -0.595 0.000
(0.002) (0.001) (0.001)

θ3 0.917 -0.370 0.000 0.000
(0.021) (0.002)

θ4 -0.344 -0.500 -0.500 -0.500
(0.070)

θ5 -0.796 0.000 0.000 0.000
(0.019)

θ6 -0.250 0.000 0.000 0.000

φ1 -1.204 -4.245 -5.047 -4.128
(0.850) (0.064) (0.062) (0.038)

φ2 0.295 3.910 4.860 4.089
(0.917) (0.069) (0.067) (0.041)

Av. log-likelihood(b) -0.488 -0.800 -0.879 -1.083

(a) n.a. = not applicable.

(b) The average log-likelihood is lnL/N, where L is likelihood and N is the sample size.
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Table 8:

Maximum likelihood estimates of the SNP
price model for various dates: standard errors in brackets.

Parameter 4th of April 11th of April 18th of April

β1 -2.109 -2.219 -2.225
(0.001) (0.001) (0.002)

β2 -0.185 0.436 0.434
(0.004) (0.001) (0.001)

λ1 -0.386 -0.626 -0.576
(0.002) ( 0.002) (0.002)

λ2 0.133 -0.048 -0.088
(0.003) (0.001) (0.001)

φ1 -5.199 -0.238 0.293
(0.066) (0.117) (0.166)

φ2 4.426 -0.965 -1.296
(0.073) (0.124) (0.172)

Av. log-likelihood(a) -0.193 -0.292 -0.511

(a) The average log-likelihood is lnL/N, where L is likelihood and N is the sample size.
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Table 9:

Maximum likelihood estimates of the mixture of lognormal option
price model for various dates: standard errors in brackets.

Parameter 4th of April 11th of April 18th of April

β1,1 -1.415 -1.426 -1.429
(0.003) (0.003) (0.005)

β1,2 0.149 -0.142 -0.355
(0.004) (0.004) (0.009)

β2,1 -2.616 -2.708 -2.495
(0.001) (0.009) (0.006)

β2,2 -0.301 0.513 0.488
(0.017) (0.001) (0.001)

α 0.274 0.284 0.228
(0.001) (0.002) (0.003)

φ1 -6.853 -7.885 -9.248
(0.051) (0.070) (0.075)

φ2 6.278 7.476 9.043
(0.057) (0.076) (0.081)

Av. log-likelihood(a) -0.201 -0.426 -0.557

(a) The average log-likelihood is lnL/N, where L is likelihood and N is the sample size.
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Table 10:

Estimates of mispricing of alternative models across selected days.

Day Statistic GST-3 SNP Mixture Normal

4th of April s2(a) 0.065 0.114 0.180 0.839
AIC(b) 0.022 0.386 0.403 1.628
SIC(c) 0.023 0.387 0.404 1.629

11th of April s2 0.121 0.106 0.325 0.769
AIC 0.710 0.583 0.853 2.343
SIC 0.711 0.585 0.854 2.344

18th of April s2 0.156 0.168 0.536 0.671
AIC 0.977 1.021 1.114 2.166
SIC 0.978 1.023 1.116 2.167

(a) Based on equation (32).

(b) AIC = -2lnL/N+2k/N, where L is the likelihood, N is the sample size and k is the number of estimated
parameters.

(c) SIC = -2lnL/N+ln(N)k/N, where L is the likelihood, N is the sample size and k is the number of

estimated parameters.
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Table 11:

Forecasting performance of alternative option price
models across various days in April 1995; DM is the Diebold-Mariano statistic given by
(35) and RMSE is the root mean square error defined in (36). (∗∗ indicates significance at

the 5% level.)

Forecast Day Statistic GST-3 SNP Mixture Normal

4th of April

5th DM 13.597∗∗ 2.002∗∗ 6.658∗∗ n.a.(a)

RMSE 0.327 0.414 0.516 0.929
6th DM 20.427∗∗ 7.344∗∗ 14.093∗∗ n.a.

RMSE 0.331 0.414 0.532 0.979
7th DM 0.580 -16.285∗∗ -4.870∗∗ n.a.

RMSE 0.370 0.443 0.488 0.848

11th of April

12th DM -26.252∗∗ -6.271∗∗ -38.652∗∗ n.a.
RMSE 0.346 0.332 0.573 0.872

13th DM -37.600∗∗ -20.756∗∗ -53.934∗∗ n.a.
RMSE 0.506 0.501 0.698 0.900

18th of April

19th DM 2.009∗∗ 37.007∗∗ -37.298∗∗ n.a.
RMSE 0.419 0.534 0.789 0.880

20th DM -15.603∗∗ 0.772 -59.597∗∗ n.a.
RMSE 0.406 0.420 0.720 0.809

21st DM -30.250∗∗ -29.778∗∗ -68.538∗∗ n.a.
RMSE 0.968 0.952 1.092 1.112

(a) n.a. = not applicable.
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Table 12:

Hedging performance of alternative option price models constructed on the 4th of April
1995: Average over contracts of excess profits expressed in dollars relative to a risk-free

investment. (∗∗ indicates significance at the 5% level.)

Day GST-3 SNP Mixture Normal

4th Investment (I) 406.181 406.018 404.992 400.637

Moneyness (S/X)

5th <0.97 -0.326 -0.342 -0.456 -0.396
0.97 - 1.00 -0.205 -0.237 -0.281 -0.325
1.00 - 1.03 0.151 0.122 0.113 0.031
>1.03 0.164 0.166 0.166 0.160

All contracts(a) 0.153 0.153 0.150 0.139

DM(b) 6.307∗∗ 8.376∗∗ 5.553∗∗ n.a.

6th <0.97 -0.015 -0.037 -0.217 -0.118
0.97 - 1.00 6.376 6.301 6.173 6.087
1.00 - 1.03 1.510 1.455 1.428 1.282
>1.03 -3.057 -3.058 -3.057 -3.086

All contracts(a) -2.606 -2.613 -2.615 -2.653

DM 7.313∗∗ 8.213∗∗ 6.564∗∗ n.a.

7th <0.97 14.131 14.128 14.123 14.129
0.97 - 1.00 13.814 13.791 13.786 13.727
1.00 - 1.03 5.899 5.883 5.890 5.824
>1.03 -5.930 -5.934 -5.932 -5.963

All contracts(a) -4.932 -4.937 -4.935 -4.968

DM 6.303∗∗ 7.197∗∗ 6.331∗∗ n.a.

n.a.= not applicable.

(a) These average hedging errors are all significantly different from zero.

(b) Diebold-Mariano statistic computed for all contracts.
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Table 13:

Hedging performance of alternative option price models constructed on the 11th of April
1995: Average over contracts of excess profits expressed in dollars relative to a risk-free

investment. (∗∗ indicates significance at the 5% level.)

Day GST-3 SNP Mixture Normal

11th Investment (I) 409.833 409.427 408.536 408.610

Moneyness (S/X)

12th <0.97 -0.197 -0.197 -0.194 -0.195
0.97 - 1.00 0.013 0.013 0.011 0.026
1.00 - 1.03 -0.069 -0.071 -0.068 -0.038
>1.03 -0.036 -0.036 -0.037 -0.039

All contracts(a) -0.039 -0.039 -0.039 -0.037

DM(b) -1.165 -1.270 -1.717 n.a.

13th <0.97 - - - -
0.97 - 1.00 - - - -
1.00 - 1.03 -10.776 -10.829 -11.033 -11.002
>1.03 -0.891 -0.885 -0.894 -0.913

All contracts(a) -1.365 -1.362 -1.380 -1.397

DM 4.541∗∗ 5.309∗∗ 3.228∗∗ n.a.

n.a. denotes not applicable.

- denotes no contracts.

(a) These average hedging errors are all significantly different from zero.

(b) Diebold-Mariano statistic computed for all contracts.
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Table 14:

Hedging performance of alternative option price models constructed on the 18th of April
1995: Average over contracts of excess profits expressed in dollars relative to a risk-free

investment. (∗∗ indicates significance at the 5% level.)

Day GST-3 SNP Mixture Normal

18th Investment (I) 402.606 403.003 397.517 396.991

Moneyness (S/X)

19th <0.97 0.117 0.143 0.270 0.212
0.97 - 1.00 0.085 0.110 0.238 0.252
1.00 - 1.03 0.250 0.250 0.301 0.357
>1.03 0.238 0.233 0.230 0.215

All contracts(a) 0.228 0.226 0.246 0.247

DM(b) -4.602∗∗ -5.310∗∗ -0.441 n.a.

20th <0.97 - - - -
0.97 - 1.00 -11.661 -11.625 -11.454 -11.519
1.00 - 1.03 -4.001 -4.003 -3.982 -3.945
>1.03 -9.776 -9.780 -9.795 -9.819

All contracts(a) -8.913 -8.916 -8.925 -8.940

DM 4.617∗∗ 4.258∗∗ 4.530∗∗ n.a.

21st <0.97 - - - -
0.97 - 1.00 - - - -
1.00 - 1.03 -11.015 -11.081 -11.388 -11.210
>1.03 -8.396 -8.400 -8.450 -8.468

All contracts(a) -8.424 -8.428 -8.481 -8.498

DM 8.394∗∗ 8.844∗∗ 5.006∗∗ n.a.

n.a. denotes not applicable.

- denotes no contracts.

(a) These average hedging errors are all significantly different from zero.

(b) Diebold-Mariano statistic computed for all contracts.
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Figure 7: Volatility smiles for alternative models using data from April 4th, 1995, written
on May options.

GST-3 model corrects the volatility skew arising from the Black-Scholes model, with implied

volatility estimates now in a much narrower range of 10% to 14%. In fact, for the very deep

in-the-money options, 0.75 < X/S < 0.9, the implied volatility estimates are remarkably

stable at around 13% to 14%, compared to the Black-Scholes implied volatilities which are

range from 17% to 38%.

6 Conclusions

A general framework for pricing higher order moments and time-varying volatility in S&P500

options is developed. The approach consists of modelling the returns over the life of the

option contract as a GST distribution. This yields a parametric form for the risk neutral

density function which is used to price options. The parametric pricing model is shown to

nest the Black-Scholes model.

The performance of a range of models is investigated using option contracts written on

the S&P500 stock index for selected days in April 1995. The empirical results show signif-

icant gains to be made from pricing higher order moments in stock returns. The empirical

significance of skewness, in particular, is consistent with the theoretical arguments provided
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by Bakshi, Kapadia and Madan (2003) for the importance of skewness in the pricing of

options. The GST option price model corrects for volatility skews, thereby providing a con-

sistent framework to price options in a single market across the full spectrum of moneyness.

The GST modelling framework is also found to be superior, in general, to the alternative

SNP and lognormal mixture models.
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